
Under review as a conference paper at ICLR 2024

PUMA: SECURE INFERENCE OF LLAMA-7B IN FIVE
MINUTES

Anonymous authors
Paper under double-blind review

ABSTRACT

With ChatGPT as a representative, tons of companies have began to provide ser-
vices based on large Transformers models. However, using such a service inevitably
leak users’ prompts to the model provider. Previous studies have studied secure in-
ference for Transformer models using secure multiparty computation (MPC), where
model parameters and clients’ prompts are kept secret. Despite this, these frame-
works are still limited in terms of model performance, efficiency, and deployment.
To address these limitations, we propose framework PUMA to enable fast and secure
Transformer model inference. Our framework designs high quality approximations
for expensive functions such as GeLU and softmax, and significantly reduce the
cost of secure inference while preserving the model performance. Additionally, we
design secure Embedding and LayerNorm procedures that faithfully implement the
desired functionality without undermining the Transformer architecture. PUMA is
about 2× faster than the state-of-the-art framework MPCFORMER(ICLR 2023) and
has similar accuracy as plaintext models without fine-tuning (which the previous
works failed to achieve). PUMA can even evaluate LLaMA-7B in around 5 minutes
to generate 1 token. To our best knowledge, this is the first time that a model with
such a parameter size is able to be evaluated under MPC.

1 INTRODUCTION

Pre-trained Transformer models (Vaswani et al., 2017) have attracted much attentions for their high
performance in practical tasks (Radford & Narasimhan, 2018; Zhuge et al., 2021) and been widely
in Deep Learning as a Service (DLaaS) paradigm (Soifer et al., 2019). However, these services can
raise privacy concerns, such as in the case of ChatGPT (Brown et al., 2020), which requires either
users to reveal their private prompts to the service provider or the service provider to release their
proprietary trained weights to users.

One solution to address the privacy concerns of Transformer models service is Secure Multi-Party
Computation (MPC) (Shamir, 1979; Yao, 1986; Goldreich et al., 1987), which can keep data and
model weights private during inference. (Hao et al., 2022; Li et al., 2023; Akimoto et al., 2023; Liang
et al., 2023; Liu & Liu, 2023) have proposed various ways to support secure Transformer models
inference, but these approaches still have one or several of the following drawbacks:

High inference cost. Non-linear functions like GeLU and softmax are challenge to design in MPC.
(Hao et al., 2022) computes these non-linear functions in a faithful way. e.g., they design GeLU using
tanh based on general MPC exponentiation method proposed by (Rathee et al., 2021). But these
general methods are quite expensive in terms of computation and communication, and only tested
under small bitwidth (e.g. below 32).

Retraining required. To reduce the cost of non-linear functions, several works (Li et al., 2023;
Akimoto et al., 2023; Liu & Liu, 2023) suggested to approximate GeLU and softmax using simpler
functions like ReLU and quadratics. These functions are up to an order of magnitude cheaper in
MPC, but would introduce utility loss to the Transformer model. As a result, they require an extra
step of model retraining (fine-tuning). However, retraining is unfriendly for data-limited participants,
and might not achieve satisfactory performance (Kumar et al., 2022).

Incompatible architectures. (Li et al., 2023; Liang et al., 2023) proposed to modify the architecture
of Transformer models to further accelerate secure inference, e.g., decompose the embedding proce-

1

Under review as a conference paper at ICLR 2024

dure or reorganize the linear layers. Worsely, (Li et al., 2023) does not support secure LayerNorm
and simulated the costs using BatchNorm, resulting in incorrect secure inference results. These modi-
fications are in conflicts with existing plaintext Transformer systems, and would lead to deployment
obstacles.

To summarize, in the field of MPC Transformer inference, achieving both model performance and
efficiency is challenging, and people may ask the following question:

Could pre-trained large transformer models be securely and efficiently evaluated with similar accu-
racy as in plaintext, without further retraining ?

To address this challenge, we propose the PUMA framework, which is a fast and accurate end-to-end
secure Transformer inference framework. Our contributions can be summarized as follows:

• New Approximations for Non-linear Functions. We propose more accurate and faster
approximations for the expensive non-linear functions (e.g., GeLU and softmax) in Trans-
former models. Different from existing works, we design the approximations based on the
specialized properties of these non-linear functions to achieve both accuracy and efficiency.

• Faster and More Accurate Secure Inference. We make extensive experiments on 6
transformer models and 4 datasets, the results show that PUMA’s precision is similar to
plaintext ones’ and is about 2× faster than MPCFORMER (note that MPCFORMER does
not achieve similar precision as PUMA). PUMA can even evaluate LLaMA-7B in around 5
minutes to generate one word. To our best knowledge, this is the first time that such a large
language model is able to be evaluated under MPC.

• End-to-End Framework compatible with plaintext. We design and implement all the
layers required by Transformer (including the Embedding and LayerNorm layers that are
missing in other works) in MPC. This allows us to load and securely evaluate the pre-trained
plaintext Transfomer models (e.g. downloaded from Hugging face) easily. To our best
knowledge, PUMA is the first open-sourced MPC solution1 that supports accurate inference
of pre-trained Transformer models without further modifications such as re-training.

Organization. We summarize the related work in § 2 and present the background in § 3. We give
PUMA’s high-level view and concrete design in § 4. We analyze the experimental results in § 5 and
conclude this work in § 6.

2 RELATED WORK

Secure Multiparty Computation (MPC) (Yao, 1986; Goldreich et al., 1987) enables distrusted parties
to jointly compute a function while keeping their inputs private, and secure deep learning inference
using MPC has gained much attention due its high privacy protection. These works operate in a
variety of models and architectures, including two-party setting (Mohassel & Zhang, 2017; Liu et al.,
2017; Mishra et al., 2020; Huang et al., 2022; Patra et al., 2021; Rathee et al., 2020), three-party
setting (Wagh et al., 2019; Mohassel & Rindal, 2018; Wagh et al., 2020; Kumar et al., 2019; Patra &
Suresh, 2020; Tan et al., 2021; Dong et al., 2023), or four-party setting (Byali et al., 2020; Dalskov
et al., 2021). However, most of these approaches only consider secure inference of convolutional/deep
neural networks, and cannot be directly extended to support Transformer models. Recently several
research works (Hao et al., 2022; Li et al., 2023; Akimoto et al., 2023; Liang et al., 2023; Liu &
Liu, 2023) have proposed MPC-based secure inference solutions for Transformer models, but these
approaches still have limitations in terms of model performance, efficiency, and deployment. Among
these works, MPCFORMER (Li et al., 2023) is the only one that have been open-sourced, it is based
on CrypTen (Knott et al., 2021) which is a three-party framework that uses a non-colluding third
party to produce correlated randomness for the client and server. Also their three-party model with
non-colluding assumption has the highest concrete efficiency among different MPC settings. So we
mainly compare our proposed framework PUMA with MPCFORMER under the same three-party
setting.

1https://anonymous.4open.science/r/puma_benchmarks-6A81

2

https://anonymous.4open.science/r/puma_benchmarks-6A81

Under review as a conference paper at ICLR 2024

3 BACKGROUND

3.1 NOTATIONS

The main used notations are as follows: Pi represents the i-th computing party, i ∈ {0, 1, 2}. The
uppercase bold letter X is used for matrices, and the lowercase bold letter x denotes vectors. x[i]
denotes the i-th element of vector x, while lowercase letter x is used for scalar values. Z2ℓ denotes
the discrete ring modulo 2ℓ, R denotes real numbers. J·K is used for 2-out-of-3 replicated secret
sharing (Araki et al., 2016; Mohassel & Rindal, 2018).

3.2 TRANSFORMER MODEL

Transformer models have achieved remarkable success in language understanding (Radford &
Narasimhan, 2018; Devlin et al., 2019; Yang et al., 2019; Touvron et al., 2023), vision understand-
ing (Zhuge et al., 2021; Dong et al., 2022; Chen et al., 2021), and etc. Two popular variants are Bert
(Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019) and GPT (Generative
Pre-Trained models) (Radford & Narasimhan, 2018). A Transformer model (Vaswani et al., 2017)
mainly consists of Embedding, Attention, Feed-Forward Network, and LayerNorm sub-layers:

Attention. Given inputs (Q,K,V), the Attention function is computed as Attention(Q,K,V) =
softmax(Q · KT + M) · V, where M can be viewed as a bias matrix. Besides, (Vaswani et al.,
2017) proposed Multi-Head Attention to jointly attend to information from different representation
subspaces at different positions.

Feed-Forward Network (FFN). FFN is applied to each position separately and identically. This
consists of two linear transformations with an activation in between, and the most commonly
used activation function is GeLU. Given input x and parameters {W1,b1,W2,b2}, FFN can
be formalized as FFN(x) = W2GeLU(W1x + b1) + b2. Note that the parameters of linear
transformations are different from layer to layer.

LayerNorm. Given vector x ∈ Rn, LayerNorm is defined as: LayerNorm(x)[i] = γ · x[i]−µ√
σ

+ β,

where (γ, β) are trained parameters, µ =
∑n

i=1 x[i]

n , and σ =
∑n

i=1(x[i]− µ)2.

3.3 2-OUT-OF-3 REPLICATED SECRET SHARING

A secret value x ∈ Z2ℓ is shared by three random values x0, x1, x2 ∈ Z2ℓ with x = x0 + x1 + x2

(mod 2ℓ). In 2-out-of-3 replicated secret sharing (denoted as J·K-sharing), party Pi gets JxKi =
(xi, xi+1). Without special declaration, we compute in Z2ℓ and omit (mod 2ℓ) for brevity. In the
case of ℓ > 1 (e.g., ℓ = 64) which support arithmetic operations (e.g., +, −, and ·), we refer to this
type as Arithmetic Sharing and use notation J·K. Boolean Sharing (J·KB) refers to ℓ = 1 where (+,−)
and · are respectively replaced by bit-wise ⊕ and ∧.

Addition. Let (c1, c2, c3) be public constants, and (JxK, JyK) be two secret-shared values. Then,
Jc1x+ c2y + c3K can be computed as (c1x0 + c2y0 + c3, c1x1 + c2y1, c1x2 + c2y2) where Pi can
compute its share locally. When (c1 = 1, c2 = 1, c3 = 0), we get Jx+ yK.

Multiplication. In secure multiplication protocol ΠMul, given two shared values JxK and JyK, parties
follows steps: i) First, Pi computes zi = xiyi + xi+1yi + xiyi+1 locally, ii) Parties then perform
re-sharing by letting Pi sends z′i = αi + zi to Pi−1, where α0 + α1 + α2 = 0 (Pi can generate αi in
the setup phase as Mohassel & Rindal (2018)). iii) Finally, {(z′0, z′1), (z′1, z′2), (z′2, z′0)} form Jx · yK.

Underlying Protocols. In addition to addition and multiplication, PUMA relies on several other
underlying protocols: boolean-arithmetic multiplication (ΠMulBA), square ΠSquare, equality test (ΠEq),
less than (ΠLT), reciprocal (ΠRecip), maximum (ΠMax), and reciprocal of square root (ΠrSqrt), from
the state-of-the-art works. We employ them in a black-box manner, and only enumerate the inputs
and outputs of these protocols as follows:

• JzK = ΠMulBA(JbKB, JxK), s.t. z = b · x
• JzK = ΠSquare(JxK), s.t. z = x2

• JzKB = ΠEq(JxK, JyK), s.t. z = 1{x = y}

• JzKB = ΠLT(JxK, JyK), s.t. z = 1{x < y}
• JzK = ΠRecip(JxK), s.t. z = 1/x

• JzK = ΠrSqrt(JxK), s.t. z = 1/
√
x

3

Under review as a conference paper at ICLR 2024

• JzK = ΠMax(JxK), s.t. z = maximum(x)

1{e} returns 1 that when condition e is true, and 0 otherwise. For detailed protocol constructions,
please refer to (Mohassel & Rindal, 2018; Lu et al., 2020; Keller, 2020).

Fixed-Point Representation & Truncation. Real numbers has to be encoded into fixed-point
numbers before represented in finite rings/fields. To avoid overflow, Πf

Trunc has to be used after each
fixed-point multiplication to truncate the least f bits securely. For simpler description, we include
Πf

Trunc in ΠMul and ΠSquare by default and and do not explicitly mention it in our protocol designs.

The above operations can be easily extended to vectors and matrices, and we use the same notation
for vector and matrix operations for simplicity. For more details, please refer to (Mohassel & Rindal,
2018; Wagh et al., 2020).

Threat Model. Following previous works (Mohassel & Rindal, 2018; Li et al., 2023), PUMA is
secure against a semi-honest adversary that corrupts no more than one of the three computing parties.
Semi-honest means such an adversary will follow the protocol specifications, but may try to learn
other’s private information during the protocol. Please note that PUMA cannot defend against attacks
based on inference results, and the mitigation of such attacks (e.g., differential privacy (Abadi et al.,
2016)) falls outside the scope of this study.

4 SECURE DESIGN OF PUMA

In this section, we first present an overview of PUMA, and present the protocols for secure GeLU
, softmax, embedding, and LayerNorm used by PUMA. Note that the linear layers such as matrix
multiplication are straightforward in replicated secret sharing, so we mainly describe our protocols
for non-linear layers in this manuscript.

4.1 OVERVIEW OF PUMA

To achieve secure inference of Transformer models, PUMA defines three kinds of roles: one model
owner, one client, and three computing parties. The model owner and the client provide their models
or inputs to the computing parties (i.e., P0, P1, and P2) in a secret-shared form, then the computing
parties execute the MPC protocols and send the results back to the client. Note that the model owner
and client can also act as one of the computing party, we describe them separately for generality. e.g.,
when the model owner acts as P0, the client acts as P1, a third-party dealer acts as P2, the system
model becomes the same with MPCFORMER (Li et al., 2023).

During the secure inference process, a key invariant is maintained: For any layer, the computing
parties always start with 2-out-of-3 replicated secret shares of the previous layer’s output and the
model weights, and end with 2-out-of-3 replicated secret shares of this layer’s output. As the shares
do not leak any information to each party, this ensures that the layers can be sequentially combined
for arbitrary depths to obtain a secure computation scheme for any Transformer-based model.

4.2 PROTOCOL FOR SECURE GELU

Most of the current approaches view the GeLU function as a composition of smaller functions and try
to optimize each piece of them, making them to miss the chance of optimizing the private GeLU as a
whole. Given the GeLU function:

GeLU(x) =
x

2
·

(
1 + tanh

(√
2

π
·
(
x+ 0.044715 · x3

)))
≈ x · sigmoid(0.071355 · x3 + 1.595769 · x)

, (1)

these approaches (Hao et al., 2022; Wang et al., 2022) focus either on designing approximate
protocols for function tanh or using existing general MPC protocols of exponentiation and reciprocal
for sigmoid.

However, none of current approaches have utilized the fact that GeLU function is almost linear on
the two sides (i.e., GeLU(x) ≈ 0 for x < −4 and GeLU(x) ≈ x for x > 3). Within the short

4

Under review as a conference paper at ICLR 2024

Algorithm 1 Secure GeLU Protocol ΠGeLU

Input: Pi holds the 2-out-of-3 replicate secret share JxKi for i ∈ {0, 1, 2}
Output: Pi gets the 2-out-of-3 replicate secret share JyKi for i ∈ {0, 1, 2}, where y = GeLU(x).
1: P0, P1, and P2 jointly compute

Jb0KB = ΠLT(JxK,−4), ▷ b0 = 1{x < −4}
Jb1KB = ΠLT(JxK,−1.95), ▷ b1 = 1{x < −1.95}
Jb2KB = ΠLT(3, JxK), ▷ b2 = 1{3 < x}

and compute Jz0KB = Jb0KB ⊕ Jb1KB, Jz1KB = Jb1KB ⊕ Jb2KB ⊕ 1, and Jz2KB = Jb2KB. Note that
z0 = 1{−4 ≤ x < −1.95}, z1 = 1{−1.95 ≤ x ≤ 3}, and z2 = 1{x > 3}.

2: Jointly compute Jx2K = ΠSquare(JxK), Jx3K = ΠMul(JxK, Jx2K), Jx4K = ΠSquare(Jx2K), and
Jx6K = ΠSquare(Jx3K).

3: Computing polynomials JF0(x)K and JF1(x)K based on {JxK, Jx2K, Jx3K, Jx4K, Jx6K} as equa-
tion (2) securely.

4: return JyK = ΠMulBA(Jz0KB, JF0(x)K) + ΠMulBA(Jz1KB, JF1(x)K) + ΠMulBA(Jz2KB, JxK).

interval [−4, 3] of GeLU, we suggest a piece-wise approximation of low-degree polynomials is a
more efficient and easy-to-implement choice for its secure protocol. Concretely, our piece-wise
low-degree polynomials are shown as equation (2):

GeLU(x) =

0, x < −4

F0(x), −4 ≤ x < −1.95

F1(x), −1.95 ≤ x ≤ 3

x, x > 3

, (2)

where polynomials F0() and F1() are computed by library numpy.ployfit2 as equation (3). Surprs-
ingly, the above simple poly fit works very well and our max error < 0.01403, median error <
4.41e− 05, and mean error < 0.00168.

F0(x) = −0.011034134030615728x3 − 0.11807612951181953x2

−0.42226581151983866x− 0.5054031199708174

F1(x) = 0.0018067462606141187x6 − 0.037688200365904236x4

+0.3603292692789629x2 + 0.5x+ 0.008526321541038084

(3)

Formally, given secret input JxK, our secure GeLU protocol ΠGeLU is constructed as algorithm 1.

4.3 PROTOCOL FOR SECURE SOFTMAX

In the function Attention(Q,K,V) = softmax(Q ·KT +M) ·V, the key challenge is computing
function softmax. For the sake of numerical stability, the softmax function is computed as

softmax(x)[i] =
exp(x[i]− x̄− ϵ)∑
i exp(x[i]− x̄− ϵ)

, (4)

where x̄ is the maximum element of the input vector x. For the normal plaintext softmax, ϵ = 0. For
a two-dimension matrix, we apply equation (4) to each of its row vector.

Formally, our detailed secure protocol Πsoftmax is illustrated in algorithm 2, where we propose two
optimizations:

• For the first optimization, we set ϵ in equation 4 to a tiny and positive value, e.g., ϵ = 10−6,
so that the inputs to exponentiation in equation 4 are all negative. We exploit the negative
operands for acceleration. Particularly, we compute the exponentiation using the Taylor
series (Tan et al., 2021) with a simple clipping

negExp(x) =

{
0, x < Texp

(1 + x
2t)

2t , x ∈ [Texp, 0].
(5)

2https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html

5

https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html

Under review as a conference paper at ICLR 2024

Algorithm 2 Secure softmax Protocol Πsoftmax

Input: Pi holds the replicate secret share JxKi for i ∈ {0, 1, 2}, and x is a vector of size n.
Output: Pi gets the replicate secret share JyKi for i ∈ {0, 1, 2}, where y = softmax(x).
1: P0, P1, and P2 jointly compute JbKB = ΠLT(Texp, JxK) and the maximum Jx̄K = ΠMax(JxK).
2: Parties locally computes Jx̂K = JxK − Jx̄K − ϵ, and jointly compute Jz0K = 1 + Πt

Trunc(Jx̂K).
3: for j = 1, 2, . . . , t do
4: JzjK = ΠSquare(Jzj−1K).
5: end for
6: Parties locally compute JzK =

∑n
i=1Jz[i]K and jointly compute J1/zK = ΠRecip(JzK).

7: Parties jointly compute Jz/zK = ΠMul(JzK, J1/zK)
8: return JyK = ΠMulBA(JbKB, Jz/zK).

Indeed, we apply the less-than for the branch x < Texp The division by 2t can be achieved
using Πt

Trunc since the input is already negative. Also, we can compute the power-of-2t

using t-step sequences of square function Πsquare and Πf
Trunc. Suppose our MPC program

uses 18-bit fixed-point precision. Then we set Texp = −14 given exp(−14) < 2−18, and
empirically set t = 5.

• Our second optimization is to reduce the number of divisions, which ultimately saves
computation and communication costs. To achieve this, for a vector x of size n, we have
replaced the operation Div(x,Broadcast(y)) with x · Broadcast(1y), where y =

∑n
i=1 x[i].

By making this replacement, we effectively reduce n divisions to just one reciprocal op-
eration and n multiplications. This optimization is particularly beneficial in the case of
the softmax operation. The 1

y in the softmax operation is still large enough to maintain
sufficient accuracy under fixed-point values. As a result, this optimization can significantly
reduce the computational and communication costs while still providing accurate results.

4.4 PROTOCOL FOR SECURE EMBEDDING

The current secure embedding procedure described in (Li et al., 2023) necessitates the client to
generate a one-hot vector using the token id locally. This deviates from a plaintext Transformer
workflow where the one-hot vector is generated inside the model. As a result, they have to carefully
strip off the one-hot step from the pre-trained models, and add the step to the client side, which could
be an obstacle for deployment.

To address this issue, we propose a secure embedding design as follows. Assuming that the token
id ∈ [n] and all embedding vectors are denoted by E = (eT1 , e

T
2 , . . . , e

T
n), the embedding can be

formulated as eid = E[id]. Given (id,E) are in secret-shared fashion, our secure embedding protocol
ΠEmbed works as follows:

• The computing parties securely compute the one-hot vector JoKB after receiving JidK from
the client. Specifically, Jo[i]KB = ΠEq(i, JidK) for i ∈ [n].

• The parties can compute the embedded vector via JeidK = ΠMulBA(JEK, JoKB), where does
not require secure truncation.

In this way, our ΠEmbed does not require explicit modification of the workflow of plaintext Transformer
models, at the cost of more ΠEq and ΠMulBA operations.

4.5 PROTOCOL FOR SECURE LAYERNORM

Recall that given a vector x of size n, LayerNorm(x)[i] = γ · x[i]−µ√
σ

+ β, where (γ, β) are trained

parameters, µ =
∑n

i=1 x[i]

n , and σ =
∑n

i=1(x[i]− µ)2. In MPC, the key challenge is the evaluation
of the divide-square-root x[i]−µ√

σ
formula. To securely evaluate this formula, CrypTen sequentially

executes the MPC protocols of square-root, reciprocal, and multiplication. However, we observe that
x[i]−µ√

σ
is equal to (x[i]−µ) ·σ−1/2. And in the MPC side, the costs of computing the inverse-square-

root σ−1/2 is similar to that of the square-root operation (Lu et al., 2020). Besides, inspired by the

6

Under review as a conference paper at ICLR 2024

Algorithm 3 Secure LayerNorm Protocol ΠLayerNorm

Input: Pi holds the replicate secret share JxKi for i ∈ {0, 1, 2}, and x is a vector of size n.
Output: Pi gets the replicate secret share JyKi for i ∈ {0, 1, 2}, where y = LayerNorm(x).
1: P0, P1, and P2 compute JµK = 1

n ·
∑n

i=1Jx[i]K and JσK =
∑n

i=1 ΠSquare(JxK − JµK)[i].
2: Parties jointly compute Jσ−1/2K = ΠrSqrt(JσK).
3: Parties jointly compute JcK = ΠMul((JxK − JµK), Jσ−1/2K)
4: return JyK = ΠMul(JγK, JcK) + JβK.

second optimization of § 4.3, we can first compute σ−1/2 and then Broadcast(σ−1/2) to support fast
and secure LayerNorm(x). And our formal protocol ΠLayerNorm is shown in algorithm 3.

5 EXPERIMENTAL EVALUATIONS

Implementation. We implement PUMA on top of SecretFlow-SPU (Ma et al., 2023) in C++ and
Python. We encode the data in a fixed-point form under ring Z264 with 18-bit fractional part. Our
experiments are ran on 3 Alibaba Cloud ecs.g7.8xlarge servers with 32 vCPUs and 128GB RAM
each. The CPU model is Intel Xeon(Ice Lake) Platinum 8369B CPU @ 2.70GHz. We evaluate PUMA
on Ubuntu 20.04.6 LTS with Linux kernel 5.4.0-144-generic. Our bandwidth is about 5Gbps and
round trip time is about 1ms.

Models & Datasets. We evaluate PUMA on seven NLP models: Bert-Base, Roberta-Base, and Bert-
Large (Devlin et al., 2019); GPT2-Base, GPT2-Medium, and GPT2-Large (Radford & Narasimhan,
2018); and LLaMA-7B (Touvron et al., 2023). We measure the Bert performance for three NLP tasks
over the datasets of Corpus of Linguistic Acceptability (CoLA), Recognizing Textual Entailment
(RTE), Stanford Question Answering Dataset (QNLI) from GLUE benchmarks (Wang et al., 2019),
and GPT2 performance on Wikitext-103 V1 (Merity et al., 2016).

Baseline. We compare PUMA to the most similar prior work MPCFORMER (Li et al., 2023). But
for fair comparison, we have the following considerations: i) As MPCFORMER neither supports
loading pretrained transformer models nor implements LayerNorm faithfully3, we cannot achieve
meaningful secure inference results using their framework. Therefore, we compare our performance
to that of plaintext (floating-point) to show our precision guarantee. ii) MPCFORMER with Quad
approximations requires retraining the modified models. As PUMA does not require retraining,
we compare our cost to that of MPCFORMER without Quad approximations. Also, we re-run
MPCFORMER in our environment.

5.1 PRECISION

We randomly sample 500 instances from the validation split of each dataset within the GLUE
benchmark to assess Bert inference performance, and for evaluating GPT2 inference performance,
we select 100 samples from the validation split of Wikitext-103 V1. We compare our secure model
inference performance to that of plaintext (floating-point) in Table 1 and 2 to show our precision
guarantee.

In Table 1, we show the Matthews correlation/accuracy of plaintext and PUMA on the Bert models.
We observe that the accuracy achieved by PUMA matches the accuracy of the plaintext Flax code.
Specifically, the accuracy difference does not exceed 0.011 over all datasets. Moreover, in Table 2,
we also compare our perplexity on dataset Wikitext-103 V1 with the plaintext baseline on GPT2
models. The results are similar and the perplexity differences do not exceed 0.02 over all models.

The above accuracy and perplexity advantages experimentally validate that our protocols are numeri-
cally precise.

3As MPCFORMER does not support loading pre-trained Transformer models, we did an experiment in
plaintext Bert-Base that replaced LayerNorm with BatchNorm as MPCFORMER did. This resulted in a
significant drop in the MCC score for CoLA task from 0.616 to −0.020. On the contrary, PUMA achieves an
MCC score of 0.613.

7

Under review as a conference paper at ICLR 2024

Table 1: Performance on GLUE benchmark of Bert-Base, Roberta-Base, and Bert-Large on CoLA,
RTE, and QNLI. Matthews correlation is reported for CoLA. Accuracy is reported for other datasets.

Model Bert-Base Roberta-Base Bert-Large
TASK CoLA RTE QNLI CoLA RTE QNLI CoLA RTE QNLI

Plaintext 0.616 0.700 0.916 0.629 0.805 0.920 0.686 0.755 0.922
PUMA 0.613 0.700 0.916 0.618 0.805 0.918 0.690 0.747 0.918

Table 2: Perplexity of GPT2-Base, GPT2-Medium, and GPT2-Large on Wikitext-103 V1.
Model GPT2-Base GPT2-Medium GPT2-Large

Plaintext 16.284 12.536 10.142
PUMA 16.284 12.540 10.161

Table 3: Costs of Bert-Base, Roberta-Base, and Bert-Large for one sentence of length 128. Time is in
seconds and Communication (Comm. for short) is in GB, which is the same for the following tables.

Model Bert-Base Roberta-Base Bert-Large
Costs Time Comm. Time Comm. Time Comm.

MPCFORMER 55.320 12.089 57.256 12.373 141.222 32.577
PUMA 33.913 10.773 41.641 11.463 73.720 27.246
Improv. 1.631× 1.122× 1.375× 1.079× 1.916× 1.195×

Table 4: Costs of GPT2-Base, GPT2-Medium, and GPT2-Large. The input sentence is of length 32,
all of the costs are for generating 1 token.

Model GPT2-Base GPT2-Medium GPT2-Large
Costs Time Comm. Time Comm. Time Comm.

MPCFORMER 34.889 4.999 73.078 11.766 129.095 22.522
PUMA 15.506 3.774 30.272 7.059 54.154 11.952
Improv. 2.250× 1.325× 2.414× 1.667× 2.383× 1.884×

Table 5: Costs of Bert-Base and GPT2-Base for different input length (denoted as #Input). The input
lengths for Bert-Base and GPT2-Base are respectively {64, 128, 256} and {16, 32, 64}. GPT2-Base
generates 1 token.

#Input 64/16 128/32 256/64
Costs Time Comm. Time Comm. Time Comm.

Bert
MPCFORMER 36.354 5.707 55.320 12.089 112.453 29.927

PUMA 21.141 4.881 33.913 10.773 61.210 26.004
Improv. 1.720× 1.169× 1.631× 1.122× 1.837× 1.151×

GPT2
MPCFORMER 29.695 4.011 34.889 4.999 43.344 7.318

PUMA 11.056 1.875 15.506 3.777 24.860 7.821
Improv. 2.686× 2.139× 2.250× 1.324× 1.744× 0.936×

5.2 INFERENCE COSTS

We compare PUMA’s inference cost to that of MPCFORMER in Table 3 and Table 4. The costs are for
processing one input sentence: i) For Bert models the input sentence is of length 128. ii) For GPT2
models the input length is 32 and generate 1 new word.

On the 3 Bert models in Table 3, PUMA is 1.375 ∼ 1.916× faster than MPCFORMER, and is 1.079 ∼
1.195× more communication-efficient. For the GPT2 models in Table 4, PUMA is 2.250 ∼ 2.414×
faster than MPCFORMER, and is 1.325 ∼ 1.884× more communication-efficient.

We observe that PUMA’s improvements increase as the model size grows, particularly for the GPT2
models. This trend is because our specialized optimizations are more effective when processing
large-scale evaluations.

8

Under review as a conference paper at ICLR 2024

5.3 SCALABILITY

In this subsection, we measure the costs of evaluating PUMA on Bert-Base and GPT2-Base
models for batched inputs, varying-length inputs, and varying-length outputs (only for GPT2-
Base). We also compare our costs to those of MPCFORMER to demonstrate our improvements.

2 4 8 16

100

200

300

400

500

Ti
m
e
(s
)

MPCFormer Time
Puma Time

Figure 1: Runtime of GPT2-Base for gener-
ating different output tokens, the input length
is of length 32.

Input Length Evaluation. Table 5 shows our costs
on varying-length inputs, we evaluate Bert-Base on
inputs of length {64, 128, 256}, and GPT2-Base on
inputs of length {16, 32, 64}. For Bert-Base, PUMA
is 1.631 ∼ 1.837× faster, and for GPT2-Base, PUMA
is 1.744 ∼ 2.686× faster.

Output Length Evaluation. Fig 1 presents our
costs on varying-length outputs for GPT2-Base. Our
improvements against MPCFORMER range from
1.279 ∼ 2.700×.

We observe in Table 5 and Fig 1 that for GPT-2,
our efficiency gains decrease with more input/output
tokens. This is because PUMA introduces extra one-
hot embedding costs (as described in 4.4). We should
emphasize again that PUMA is compatible with plaintext models, and could achieve a similar accuracy
as plaintext models while MPCFORMER could not.

5.4 EVALUATING LLAMA-7B IN FIVE MINUTES.

Our protocols are already complete for evaluating any Transformer-based models including LLaMA-
7B. Unfortunately, existing serialization libraries such as Protobuf (Varda, 2008) and FlatBuffers (van
Oortmerssen, 2014) only support data trunks with size up to 2GB, which is not sufficient for large
MPC tasks. To address this problem, we propose an optimization to SecretFlow-SPU. Concretely,
the system could automatically divide and serialize overly large secret-shared structures into smaller
chunks when communicating or performing I/O operations.

We evaluated the large language model LLaMA-7B using PUMA under 3 Alibaba Cloud
ecs.r7.32xlarge servers, each has 128 threads and 1TB RAM, with 20GB bandwidth, 0.1ms round-
trip-time. As shown in Table 6, PUMA can support secure inference of LLaMA-7B with reasonable
costs. For example, given an input sentence of 8 tokens, PUMA can output one token in around
200 seconds with communication costs of 1.794 GB. To our knowledge, this is the first time that
LLaMA-7B has been evaluated using MPC. Moreover, PUMA can generate the same tokens exactly
as plaintext LLaMA-7B, see Appendix for an example.

Table 6: Costs of the secure inference of LLaMA-7B, #Input denotes the length of input sentence and
#Output denotes the number of generated tokens.

(#Input, #Output) (4, 1) (8, 1) (8, 2)
Costs Time Comm. Time Comm. Time Comm.
PUMA 122.004 0.907 200.473 1.794 364.527 3.857

6 CONCLUSION

We propose an efficient MPC framework PUMA for secure inference on Transformer models based
on replicated secret sharing. To reduce the costs of secure inference, we approximate expensive
functions with accurate polynomials and propose secure Embedding and LayerNorm protocols to
support end-to-end secure inference. Although the inference cost is still quite high, we successfully
make it one step closer to solving users’ privacy concerns in Transformer-based DLaaS. We believe
that by combining PUMA with quantization methods and hardware accelerations in the future, secure
inference of large Transformer models in seconds is no longer impossible.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Y. Akimoto, K. Fukuchi, Y. Akimoto, and J. Sakuma. Privformer: Privacy-preserving transformer with
mpc. In 2023 IEEE 8th European Symposium on Security and Privacy (EuroSP), pp. 392–410, Los
Alamitos, CA, USA, 2023. IEEE Computer Society. doi:10.1109/EuroSP57164.2023.00031.
URL https://doi.ieeecomputersociety.org/10.1109/EuroSP57164.2023.
00031.

Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-throughput
semi-honest secure three-party computation with an honest majority. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pp. 805–817, 2016.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. Flash: Fast and robust framework for
privacy-preserving machine learning. Proc. Priv. Enhancing Technol., 2020(2):459–480, 2020.

Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing
Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 12299–12310, 2021.

Anders Dalskov, Daniel Escudero, and Marcel Keller. Fantastic four: Honest-majority four-party
secure computation with malicious security. In 30th {USENIX} Security Symposium ({USENIX}
Security 21), 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. ArXiv, abs/1810.04805, 2019.

Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen, Weiming Zhang, Lu Yuan, Dong Chen,
Fang Wen, and Nenghai Yu. Bootstrapped masked autoencoders for vision bert pretraining. In
European Conference on Computer Vision, pp. 247–264. Springer, 2022.

Ye Dong, Chen Xiaojun, Weizhan Jing, Li Kaiyun, and Weiping Wang. Meteor: Improved secure
3-party neural network inference with reducing online communication costs. In Proceedings of the
ACM Web Conference 2023, WWW ’23, pp. 2087–2098, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9781450394161.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, pp. 218–229, New York,
NY, USA, 1987. Association for Computing Machinery. ISBN 0897912217.

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei Zhang. Iron:
Private inference on transformers. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=deyqjpcTfsG.

Zhicong Huang, Wen jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure
Two-Party deep neural network inference. In 31st USENIX Security Symposium (USENIX Security
22), pp. 809–826, Boston, MA, August 2022. USENIX Association. ISBN 978-1-939133-31-1.

Marcel Keller. Mp-spdz: A versatile framework for multi-party computation. In Proceedings of the
2020 ACM SIGSAC conference on computer and communications security, pp. 1575–1590, 2020.

B. Knott, S. Venkataraman, A.Y. Hannun, S. Sengupta, M. Ibrahim, and L.J.P. van der Maaten.
Crypten: Secure multi-party computation meets machine learning. In arXiv 2109.00984, 2021.

10

https://doi.org/10.1109/EuroSP57164.2023.00031
https://doi.ieeecomputersociety.org/10.1109/EuroSP57164.2023.00031
https://doi.ieeecomputersociety.org/10.1109/EuroSP57164.2023.00031
https://openreview.net/forum?id=deyqjpcTfsG
https://openreview.net/forum?id=deyqjpcTfsG

Under review as a conference paper at ICLR 2024

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054,
2022.

Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Rastogi, and Rahul
Sharma. Cryptflow: Secure tensorflow inference. arXiv preprint arXiv:1909.07814, 2019.

Dacheng Li, Hongyi Wang, Rulin Shao, Han Guo, Eric Xing, and Hao Zhang. MPCFORMER: FAST,
PERFORMANT AND PRIVATE TRANSFORMER INFERENCE WITH MPC. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=CWmvjOEhgH-.

Zi Liang, Pinghui Wang, Ruofei Zhang, Lifeng Xing, Nuo Xu, and Shuo Zhang. Merge: Fast private
text generation, 2023.

Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions via
minionn transformations. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pp. 619–631, 2017.

Xuanqi Liu and Zhuotao Liu. Llms can understand encrypted prompt: Towards privacy-computing
friendly transformers, 2023.

Wen-jie Lu, Yixuan Fang, Zhicong Huang, Cheng Hong, Chaochao Chen, Hunter Qu, Yajin Zhou,
and Kui Ren. Faster secure multiparty computation of adaptive gradient descent. In Proceedings of
the 2020 Workshop on Privacy-Preserving Machine Learning in Practice, PPMLP’20, pp. 47–49,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450380881.

Junming Ma, Yancheng Zheng, Jun Feng, Derun Zhao, Haoqi Wu, Wenjing Fang, Jin Tan, Chaofan
Yu, Benyu Zhang, and Lei Wang. SecretFlow-SPU: A performant and User-Friendly framework
for Privacy-Preserving machine learning. In 2023 USENIX Annual Technical Conference (USENIX
ATC 23), pp. 17–33, Boston, MA, July 2023. USENIX Association. ISBN 978-1-939133-35-9.
URL https://www.usenix.org/conference/atc23/presentation/ma.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa.
Delphi: A cryptographic inference service for neural networks. In 29th {USENIX} Security
Symposium ({USENIX} Security 20), pp. 2505–2522, 2020.

Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learning. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp.
35–52, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450356930.
doi:10.1145/3243734.3243760. URL https://doi.org/10.1145/3243734.3243760.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine
learning. In 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38. IEEE, 2017.

Arpita Patra and Ajith Suresh. Blaze: blazing fast privacy-preserving machine learning. arXiv
preprint arXiv:2005.09042, 2020.

Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. {ABY2. 0}: Improved {Mixed-
Protocol} secure {Two-Party} computation. In 30th USENIX Security Symposium (USENIX
Security 21), pp. 2165–2182, 2021.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-training.
2018.

Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya Gupta, Aseem
Rastogi, and Rahul Sharma. Cryptflow2: Practical 2-party secure inference. New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450370899. URL https:
//doi.org/10.1145/3372297.3417274.

11

https://openreview.net/forum?id=CWmvjOEhgH-
https://openreview.net/forum?id=CWmvjOEhgH-
https://www.usenix.org/conference/atc23/presentation/ma
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3372297.3417274
https://doi.org/10.1145/3372297.3417274

Under review as a conference paper at ICLR 2024

Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta, Rahul Sharma, Nishanth
Chandran, and Aseem Rastogi. Sirnn: A math library for secure rnn inference. arXiv preprint
arXiv:2105.04236, 2021.

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

Jonathan Soifer, Jason Li, Mingqin Li, Jeffrey Zhu, Yingnan Li, Yuxiong He, Elton Zheng, Adi
Oltean, Maya Mosyak, Chris Barnes, et al. Deep learning inference service at microsoft. In 2019
USENIX Conference on Operational Machine Learning (OpML 19), pp. 15–17, 2019.

Sijun Tan, Brian Knott, Yuan Tian, and David J Wu. Cryptgpu: Fast privacy-preserving machine
learning on the gpu. arXiv preprint arXiv:2104.10949, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Wouter van Oortmerssen. Flatbuffers: a memory efficient serialization library. Web Page. androidde-
velopers. googleblog. com/2014/06/flatbuffers-memory-efficient. html, 2014.

Kenton Varda. Protocol buffers: Google’s data interchange format. Google Open Source Blog,
Available at least as early as Jul, 72:23, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-party secure computation for
neural network training. Proceedings on Privacy Enhancing Technologies, 2019(3):26–49, 2019.

Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal Rabin.
Falcon: Honest-majority maliciously secure framework for private deep learning. arXiv preprint
arXiv:2004.02229, 2020.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=rJ4km2R5t7.

Yongqin Wang, G. Edward Suh, Wenjie Xiong, Benjamin Lefaudeux, Brian Knott, Murali Annavaram,
and Hsien-Hsin S. Lee. Characterization of mpc-based private inference for transformer-based
models. In 2022 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), pp. 187–197, 2022. doi:10.1109/ISPASS55109.2022.00025.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In Proceedings of the
33rd International Conference on Neural Information Processing Systems, Red Hook, NY, USA,
2019. Curran Associates Inc.

Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pp. 162–167. IEEE, 1986.

Mingchen Zhuge, Dehong Gao, Deng-Ping Fan, Linbo Jin, Ben Chen, Haoming Zhou, Minghui Qiu,
and Ling Shao. Kaleido-bert: Vision-language pre-training on fashion domain. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12647–12657, 2021.

12

https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.1109/ISPASS55109.2022.00025
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Under review as a conference paper at ICLR 2024

Plaintext

Prompt:
Q: What is the largest animal?
Outputs:
A: The largest animal is the blue whale.
Q: What is the smallest animal?
A: The smallest animal is the bee.

PUMA

Prompt:
Q: What is the largest animal?
Outputs:
A: The largest animal is the blue whale.
Q: What is the smallest animal?
A: The smallest animal is the bee.

Figure 2: Outputs of LLaMA-7B in plaintext and PUMA.

A DETAILS OF EXPERIMENTAL MODELS

In this section, we present the architecture of the experimental models in brief. For more details,
please refer to HuggingFace Transformers library (Wolf et al., 2020).

• Bert-Base: Bert-Base is the base version of the Bert model and consists of 12 Transformer
encoder layers, 768 hidden size, and 12 heads. It has 110 million parameters and is trained
on a large corpus of unlabeled text data.

• Roberta-Base: Similar to Bert-base, Roberta-base is a base version of the Roberta model. It
comprises 12 Transformer layers, 768 hidden size, and 12 heads. It has around 125 million
parameters.

• Bert-Large: Bert-Large is an extended version of Bert-base with 24 Transformer encoder
layers, 1024 hidden size, and 16 heads. It has approximately 340 million parameters, making
it more powerful and capable of capturing complex language patterns.

• GPT2-Base: GPT2-Base is the base version of the Gpt2 model and consists of 12 Trans-
former decoder layers, 768 hidden size, and 12 heads. It has 117 million parameters and is
trained on a large corpus of text data. GPT2-Base is mainly used for tasks involving text
generation and language understanding.

• GPT2-Medium: GPT2-Medium comprises 24 Transformer decoder layers, 1024 hidden
size, and 16 heads. And it has approximately 345 million parameters.

• GPT2-Large: GPT2-Large is the largest variant of the GPT2 model, featuring 36 Transformer
decoder layers, 1280 hidden size, and 16 heads. It has approximately 774 million parameters.

B PUMA FOR LLAMA-7B

Unlike GPT-2 and Bert, LLaMA uses SiLU instead of GeLU, we can approximate SiLU using similar
piece-wise low-degree polynomials with different coefficients. The full polynomials could be found
in flax_llama7b.py .

In Figure 2, we show the output tokens of LLamA-7B (with fixed randomness) given the prompt: Q:
What is the largest animal? It can be seen that our PUMA outputs the same tokens as LLaMA-7B
does in plaintext for generating more than 20 tokens.

13

	Introduction
	Related Work
	Background
	Notations
	Transformer Model
	2-out-of-3 Replicated Secret Sharing

	Secure Design of Puma
	Overview of Puma
	Protocol for Secure GeLU
	Protocol for Secure Softmax
	Protocol for Secure Embedding
	Protocol for Secure LayerNorm

	Experimental Evaluations
	Precision
	Inference Costs
	Scalability
	Evaluating LLaMA-7B in Five Minutes.

	Conclusion
	Details of Experimental Models
	Puma for LLaMA-7B

