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Abstract

Computational level explanations based on optimal feedback control with signal-
dependent noise have been able to account for a vast array of phenomena in human
sensorimotor behavior. However, commonly a cost function needs to be assumed
for a task and the optimality of human behavior is evaluated by comparing observed
and predicted trajectories. Here, we introduce inverse optimal control with signal-
dependent noise, which allows inferring the cost function from observed behavior.
To do so, we formalize the problem as a partially observable Markov decision pro-
cess and distinguish between the agent’s and the experimenter’s inference problems.
Specifically, we derive a probabilistic formulation of the evolution of states and be-
lief states and an approximation to the propagation equation in the linear-quadratic
Gaussian problem with signal-dependent noise. We extend the model to the case of
partial observability of state variables from the point of view of the experimenter.
We show the feasibility of the approach through validation on synthetic data and
application to experimental data. Our approach enables recovering the costs and
benefits implicit in human sequential sensorimotor behavior, thereby reconciling
normative and descriptive approaches in a computational framework.

1 Introduction

Computational level theories of behavior strive to answer the questions, why a system behaves the
way it does and what the goal of the system’s computations is. Such goals can be formalized based
on the reward hypothesis. In the words of Richard Sutton, the reward hypothesis assumes, that “goals
and purposes can be well thought of as maximization of the expected value of the cumulative sum
of a received scalar signal” [1]. Thus, to understand human sensorimotor behavior, it is essential to
characterize its goals and purposes quantitatively in terms of costs and benefits. But particularly in
every-day tasks, the cost and benefits underlying behavior are unknown.

Stochastic optimal control allows formulating behavioral goals in terms of a cost function for tasks
involving sequential actions under action variability, uncertainty in the internal model, and delayed
rewards. The solution to the optimization problem entailed in the cost function is a sequence of
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actions, which is then compared to human movements. While early models optimized costs related to
deterministic kinematics of a movement to a target [2], task goals were subsequently formalized as
costs on the variance of stochastic movements’ endpoint distances to a goal target [3]. Importantly,
although [3] considered open-loop control, it revealed the importance of modeling the specific
variability of human movements, which increases linearly with the magnitude of the control signal
[4]. As the neuronal control signal increases, so does its variability, leading to optimal movements
trading off between achieving task goals and reducing the expected impact of movement variability.

Including sensory feedback in stochastic optimal control leads to a computationally much more
intricate problem, which can be formulated as a partially observable Markov decision process
(POMDP) and is intractable in general. One of the few tractable cases is the linear-quadratic Gaussian
(LQG) setting, where dynamics are linear, costs are quadratic, and variability is additive and Gaussian,
leading to sensory inference of the state and control to be decoupled [5]. However, not only is human
movement variability signal dependent, but additionally the uncertainty of sensory signals increases
linearly with the magnitude of the stimulus, a phenomenon known as Weber’s law [6].

Todorov [7] extended the LQG case by introducing stochastic optimal feedback control with signal-
dependent noise, which allows the specification of noise models in line with what is known about the
human sensorimotor system. This model [8] has been able to explain a broad range of phenomena
in sensorimotor control [9, 10], including linear movement trajectories, smooth velocity profiles,
speed-accuracy tradeoffs, and corrections of errors only if they influence attaining the behavioral
goal. Particularly incorporating signal-dependent noise has been crucial in explaining experimental
data, ranging from how corrections of movements during action execution depend on feedback and
task goals [11], that movements consider sensory uncertainty and temporal delays in real-time [12],
that movement plans in novel environments are reoptimized based on the learning of internal models
to minimize implicit motor costs and maximize rewards [13], and many others [14, 15, 16, 17].

Explaining human behavior in these studies usually starts by hypothesizing the cost function describ-
ing a task, obtaining the optimal feedback controller, and comparing simulated trajectories to those
observed experimentally. This line of inquiry, therefore, utilizes similarity of trajectories to quantify
the degree of optimality in human behaviors. In some cases [14], trajectories are simulated from the
model to check for robustness with respect to changes in the model parameters. If our goal is to use
optimal control models to infer such quantities, which often cannot be measured independently, from
behavior, it would instead be desirable to invert the problem and find those parameter settings which
are consistent with the observed trajectories. While such inverse methods have been developed both
in the field of reinforcement learning to infer the rewards being optimized by an agent [18, 19, 20] as
well as in optimal control for the LQG case [21, 22, 23], this is currently not possible for the noise
characteristics of the human sensorimotor system.

Here, we introduce a probabilistic formulation of inverse optimal feedback control under signal-
dependent noise in the tradition of rational analysis [24, 25]. Our starting point is the forward
problem introduced in [8]. We formulate the inference problem faced by an agent as a POMDP
and distinguish it from the inference problem of an experimenter observing the agent. We proceed
by deriving the likelihood of a sequence of observed states and provide an approximation to the
non-Gaussian uncertainty due to the signal-dependent noise. First, this allows recovering the cost
function underlying the agent’s behavior from observed behavioral data. Second, we extend the
inference of the cost function to the case in which the state variables are only partially observable to
the experimenter, e.g., when only measuring the position of the agent’s movement. Third, we show
through simulated and experimental data that the cost functions can indeed be recovered. Fourth, the
probabilistic formulation allows recovering the agent’s belief during the experiment as well as the
experimenter’s uncertainty about the inferred belief.

Related work

Inferring the cost functions underlying an agent’s behavior has long been of interest in different
scientific fields ranging from economics [26] and psychology [27] to neuroscience [28] and artificial
intelligence, particularly reinforcement learning [18, 19, 29, 20]. Inverse Reinforcement Learning
(IRL) specifically addresses the question of inferring the cost function being optimized [18, 19, 29]
or approximately optimized [30] by an agent, with more recent approaches employing deep neural
networks [31, 32]. Some work has particularly addressed sensorimotor behavior [33, 34, 35, 36] and
extensions to the partially observable setting have been developed [37].
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More relevant to the present study are computational frameworks that invert Bayesian models of
perception and decision making to infer beliefs and costs of the agent. While this literature is
extensive, exemplary studies for trial-based actions include cognitive tomography [38] and inference
of the cost function in sensorimotor learning [39]. Extensions to sequential tasks have also been
proposed, particularly considering active perception [40, 41], real-world behavior [42, 43], and
general formulations [44, 45]. Very similarly, work on Bayesian theory of mind uses highly related
computational models, which also allow for the subjective beliefs of the agent to be different from
the observer’s [46, 47].

In the context of inverse optimal control, related work has considered different problem settings,
e.g., deterministic MDPs without additive noise and full observability [48]. More specifically in the
LQR and LQG domain, [21] is concerned with finding the cost matrices and noise covariances given
a known system with controller and Kalman gain. Similarly, [49] infers the above-mentioned cost
matrices in the LQG setting based on observations but additionally takes constraints into account.
The extension by [23] infers the terminal cost and the state cost function together with an exponential
discount factor in the LQR setting. A different line of work has been concerned with estimating the
dynamics, state sequence, and delay of internal LQG models from neural population activity [22, 50]
under the assumption that an agent might not know the dynamics, e.g., of a brain-computer interface.
Other work [51] is concerned with learning a control policy from states, observations, and controls.

Our approach is different from previous research in two important ways. First, while most other
approaches take different quantities such as the filter or controller gains or the agent’s observations or
controls as given, we consider the setting that is typical in a behavioral experiment: The filter and
controller as well as the agent’s observations are internal to the experimental subject and cannot be
observed. Instead, we assume that only trajectories x1:T are observed. Second, other approaches to
inverse optimal control in the LQG setting do not involve signal-dependent noise, which we address
in this paper.

2 Background: LQG with sensorimorotor noise characterisitics

We model a human subject as an agent in a partially-observable environment as introduced by Todorov
[7] and depicted in Fig. 1 A. For this we consider a discrete-time linear dynamical system with state
xt ∈ Rm and control ut ∈ Rp with both control-independent and control-dependent noises

xt+1 = Axt +But + V ξt +

c∑
i=1

εitCiut. (1)

The noise terms ξt ∈ Rm and εit ∈ R are standard Gaussian random vectors and variables, respectively,
resulting in control-independent noise with covariance V V T and control-dependent noise having
covariance

∑
i Ciutu

T
t C

T
i . The agent receives an observation yt ∈ Rk from the observation model

yt = Hxt +Wωt +

d∑
i=1

εitDixt. (2)

The noise terms ωt ∈ Rk and εt ∈ R are again standard Gaussian, so that the covariance of the
state-independent observation noise is WWT , while for the state-dependent observation noise it is∑
iDixtx

T
t D

T
i . All matrices of the linear dynamical system can in principle be time-varying, but

we leave out the time indices for notational simplicity. The objective of the agent is to choose ut to
minimize a quadratic cost function,

J(u1:T ) = E x1:T

[
T∑
t=1

xTt Qtxt + uTt Rtut

]
. (3)

While the original LQG problem without control- and state-dependent noises can be solved exactly
by determining an optimal linear filter and controller independently [5], this separation principle is
no longer applicable in the case considered here. Todorov [7] introduced an approximate solution
method in which the optimal filters Kt and controllers Lt are iteratively determined in an alternating
fashion, leaving the respective other one constant. The resulting optimal filter which minimizes the
expected cost, is of the form

x̃t+1 = Ax̃t +But +Kt(yt −Hx̃t) + Eηt, (4)
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Figure 1: The agent-experimenter loop and its formalization as POMDP together with the inference
problems from the agent’s point of view and from the experimenter’s point of view.

where ηt is a standard Gaussian random vector and represents internal estimation noise. The optimal
linear control law can be formulated as

ut = −Ltx̃t. (5)

The equations for determining the matrices Lt and Kt are given in Appendix B. For a detailed
derivation the reader is referred to [7].

3 Inverse optimal control

In this paper, we consider the inverse problem, i.e., we observe an agent who is acting optimally in an
agent-experiment loop (Fig. 1 B) according to the model of Section 2, and want to infer properties of
the agent’s perceptual and action processes, which are represented by parameters θ. In the examples
in this paper, we have treated all matrices except the subjective control costs (R) and parameters of the
task objective (Q) as given. This choice is motivated by the fact that the cost function is usually the
least understood quantity in a behavioral experiment, while sensorimotor researchers often have quite
accurate models for the dynamics in the tasks they are studying and for subjects’ noise characteristics.
In principle, however, our probabilistic formulation of the inverse optimal control problem allows
inferring parameters θ of any of the matrices of the system by evaluating the likelihood function w.r.t.
those parameters. Given a set of N independent trajectories {x1:T }i=1:N , each of length T , we can
infer θ by maximizing the product of their likelihoods p(x1:T | θ), each decomposing as

p(x1:T | θ) = pθ(x1)

T−1∏
t=1

pθ(xt+1 | x1:t). (6)

In the following, we drop the explicit dependency of the parameters θ. The graphical model from the
agent’s point of view (Fig. 1 A) is structurally identical to that from the experimenter’s perspective
(Fig. 1 C). But, since we as experimenter observe the true states x1:T instead of the agent’s noisy
observations y1:T , the usual Markov property does not hold and each xt generally depends on all
previous states x1:t−1 via the agent’s estimates and actions. To efficiently compute the likelihood
factors p(xt |x1:t−1), we track our belief about the agent’s belief p(x̃t |x1:t), which gives a sufficient
statistic for the history. This approach allows propagating our uncertainty about the agent’s beliefs
and actions over time and estimating the agent’s belief.

To compute the likelihood function for some value of θ, we first determine the control and filter gains
Lt and Kt using the iterative method introduced by Todorov [7]. We then compute an approximate
likelihood factor p(xt | x1:t−1) for each time step in the following way (see Algorithm 1):

First, we determine the distribution p(xt+1, x̃t+1 | xt, x̃t), which describes the joint evolution of
xt and x̃t (Section 3.1). Second, we combine it with the belief distribution p(x̃t | x1:t), yielding
p(xt+1, x̃t+1 | x1:t) (Section 3.2). As this step cannot be done in closed-form due to the signal-
dependent noise, we introduce a Gaussian approximation of this quantity. Third, marginalizing over
x̃t+1 gives the desired likelihood factor p(xt+1 |x1:t), while conditioning on the observed true states
xt+1 gives the statistic of the history p(x̃t+1 | x1:t+1), which we use for computing the likelihood
factor of the following time step.

In Section 3.3, we extend this procedure to the setting where the state xt is only partially observed as
a noisy linearly transformed version ot (Fig. 1 D).
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Algorithm 1: Approximate Likelihood Computation
Result: Approximate log likelihood of parameters θ
Input: Parameters θ, Data {xi1:T }i=1:N , Model
Lt,Kt ← Approximate optimal controller and filter using the method of Todorov [7];
initialize p(x̃0 | x0) as the experimenter’s initial belief of the agent’s belief;
for each trajectory x1:T from {xi1:T }i=1:N do

for t← 0 to T − 1 do
Compute p(xt+1, x̃t+1 | x1:t) using Eq. (10);
Marginalize over x̃t+1 to get p(xt+1 | x1:t);
Condition on xt+1 to get p(x̃t+1 | x1:t+1) using Eq. (11);

end
end
return

∑N
i=1 log p(xi1) +

∑T
t=2 log p(xit | xi1:t−1)

3.1 Joint dynamics of states and estimates

In this section, we derive the joint dynamics of states and estimates, specifying the distribution
p(xt+1, x̃t+1 | xt, x̃t). To do so, we build on work by Van Den Berg et al. [52], who introduced this
idea for the standard LQG case in the context of planning, and extend it to the model with state- and
action-dependent noises as considered in Section 2. First, we substitute the control in the state update
(1) with its law (5), giving

xt+1 = Axt −BLtx̃t + V ξt −
d∑
i=1

εitCiLtx̃t, (7)

and rewrite the filter update equation (4) as
x̃t+1 = (A−BLt)x̃t +Kt(yt −Hx̃t) + Eηt

= (A−BLt −KtH)x̃t +KtHxt +KtWωt +Kt

c∑
i=1

εitDixt + Eηt. (8)

In the last equation, we have again inserted the control law (5), then the observation model (2), and
rearranged terms. Equations (7) and (8) give us a representation of xt and x̃t which only depends
on states or estimates from the previous time step. Stacking both equations together specifies the
distribution p(xt+1, x̃t+1 | xt, x̃t), with[

xt+1

x̃t+1

]
=

[
A −(B +

∑d
i=1 ε

i
tCi)Lt

Kt(H +
∑c
i=1 ε

i
tDi) A−BLt −KtH

] [
xt
x̃t

]
+

[
V 0 0
0 KtW E

][ξt
ωt
ηt

]

=: (Ft +Mt

c∑
i=1

εitDi)xt + (F̃t +

d∑
i=1

εitCiM̃t)x̃t +Gtζt, (9)

where ζt ∼ N (0, I). For a detailed definition of the matrices Ft, F̃t,Mt, M̃t see Appendix C.1.

3.2 Approximate propagation

We obtain the distribution p(xt+1, x̃t+1 |x1:t) by propagating p(x̃t |x1:t) through the joint dynamics
model (9). But, since the latter involves a product of Gaussian random variables εt and x̃t, the result-
ing distribution is no longer Gaussian. To make likelihood computation tractable, we approximate it
by a Gaussian using moment matching. This allows us to maintain an approximate Gaussian belief
about the agent’s belief and gives us an approximation of the likelihood function in Eq. (6).

First, we assume that our belief of the agent’s belief at time step t is given by a Gaussian distribution
p(x̃t | x1:t) = N

(
µx̃|x,Σx̃|x

)
. To approximately propagate p(x̃t | x1:t) and the observation xt

through Eq. (9), we compute the mean and variance of the resulting distribution via moment matching
(see Appendix E) and obtain the approximation

p(xt+1, x̃t+1 | x1:t) ≈ N
([
xt+1

x̃t+1

] ∣∣∣∣ µ̂t+1 =

[
µ̂x
µ̂x̃

]
, Σ̂t+1 =

[
Σ̂xx Σ̂xx̃
Σ̂x̃x Σ̂x̃x̃

])
, (10)
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with

µ̂t+1 = Ftxt + F̃tµx̃|x,

Σ̂t+1 = Mt(

c∑
i=1

Dixtx
T
t D

T
i )MT

t +

d∑
i=1

CiM̃t(Σx̃|x + µx̃|xµ
T
x̃|x)M̃T

t C
T
i + F̃tΣx̃|xF̃

T
t +GGT .

Marginalizing over x̃t+1 gives an approximation of the likelihood factor of time step t + 1,
p(xt+1 | x1:t) ≈ N (µ̂x, Σ̂xx). On the other hand, conditioning on observation xt+1 gives the
belief of the agent’s belief for the following time step, p(x̃t+1 | x1:t+1) = N

(
µ̂x̃|x, Σ̂x̃|x

)
, with

µ̂x̃|x = µ̂x̃ + Σ̂x̃xΣ̂−1
xx (xt+1 − µ̂x), Σ̂x̃|x = Σ̂x̃x̃ − Σ̂x̃xΣ̂−1

xx Σ̂xx̃. (11)

We initialize p(x̃0 | x0) with the initial belief of the agent.

3.3 Partial observability from the observer’s point of view

In practice, we often do not have access to the full state xt in the model, e.g., if there are unmeasured
quantities of the physical world such as velocity and acceleration when using a tracking system
which only provides measurements of position in time, or if we have latent variables in our model
representing internal states of the observed agent. Furthermore, measurements might be noisy, e.g.,
due to the use of imprecise tracking hardware. We therefore consider the case where the state is
partially observable for both the agent, i.e., the subject in the experiment, and the observer, i.e., the
experimenter. In this case, we assume that the experimenter observes a linear transformation o ∈ Rs
of the state xt with additive Gaussian noise, i.e.,

ot = Sxt + Uϑt, (12)

where ϑt is a standard Gaussian random vector, resulting in the distribution p(ot | xt) =
N
(
Sxt, UU

T
)
. The resulting Bayesian network is shown in Fig. 1 D. We can again formulate a

joint dynamical system of xt and x̃t with additional observations ot, resulting in[
xt+1

x̃t+1

ot+1

]
=

 A −(B +
∑d
i=1 ε

i
tCi)Lt

Kt(H +
∑c
i=1 ε

i
tDi) A−BLt −KtH

SA −S(B +
∑d
i=1 ε

i
tCi)Lt

[xt
x̃t

]
+

[
V 0 0 0
0 KtW E 0
SV 0 0 U

]ξtωtηt
ϑ


=: (Ft +Mt

c∑
i=1

εitDi)xt + (F̃t +

d∑
i=1

εitCiM̃t)x̃t +Gtζt, (13)

with matrices Ft, F̃t,Mt, M̃t defined accordingly (for definitions see Appendix C.2). Note that this
equation is structurally the same as for the fully-observable case (Eq. (9)) and we have overloaded
the matrix definitions to highlight that both can be treated similarly.

The likelihood of an observed trajectory decomposes as p(o1:T | θ) = pθ(o1)
∏T
t=2 pθ(ot | o1:t−1).

For computing the factors p(ot | o1:t−1), we follow structurally the same steps as for the fully-
observable case, but now p(xt, x̃t | o1:t) serves as sufficient statistic of the history: We first assume
the distribution p(xt, x̃t | o1:t) to be Gaussian distributed and approximately propagate it through the
joint dynamics model p(xt+1, x̃t+1,ot+1 | xt, x̃t) (Eq. (13)) by computing the mean and variance.
We marginalize the resulting Gaussian approximation of p(xt+1, x̃t+1,ot+1 | o1:t) over xt+1, x̃t+1,
yielding the likelihood factors p(ot+1 | o1:t). On the other hand, conditioning on the observation ot
gives the history statistic p(xt, x̃t | o1:t) for the following time step. All steps are very similar to the
fully-observable case, but a more detailed description is given in Appendix D.

3.4 Parameter inference

In the previous sections, we have provided an algorithm for computing an approximate likelihood
of the parameters θ given a set of observed trajectories {xi1:T }i=1:N . To determine the optimal
parameters, we maximize the likelihood, giving us a point estimate θMLE of the true parameters. As
one has to solve the control problem (determining Lt and Kt) by an iterative procedure [7] for every
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A Simulated data B Likelihood function

E RMSE for pairsD Mean simulated data

C Belief tracking

G RMSE # trialsF RMSE per parameter

Figure 2: Validation on synthetic reaching data. A Simulated trajectories of the reaching task. B
Negative log likelihood for different combinations of the parameters given data and the resp. third
parameter. C Belief tracking: During a reaching movement, the agent has a belief about the position,
velocity, and acceleration (green dotted lines). The experimenter observes a noisy version of the
agent’s actual movements (blue) and computes an estimate of the agent’s belief (orange dashed lines
with shaded region representing 2× SD). D Mean trajectories with RMSE 0.016 (MLE), 0.1, 0.5,
and 1.0. E RMSE of the MLEs for all parameters on pairwise grids (for one value respective third
parameter). The colors are the same as in the previous subplot. F Distribution over 10 repetitions
of RMSE for each parameter across different values for the other parameters. G RMSE and KL
divergences (between empirical distributions of true trajectories and simulated ones based on the
MLE) with 0.2 and 0.8 quantiles for different numbers of trajectories with parameters as in (A).

likelihood evaluation, computing gradients of the likelihood (although possible) is not very efficient.
We instead use the robust gradient-free optimizer BOBYQA2 [53], which minimizes the negative
log likelihood based on a quadratic approximation. Our implementation in jax [54] is available on
github.3

4 Evaluation and applications

4.1 Validation on synthetic reaching data

We apply the introduced method to recover parameters in a single-joint reaching task with control-
dependent noise and 5-dimensional state space (details in Appendix F.1). The goal is to bring the
hand to a target while minimizing control effort. The cost function has three parameters: (i) v, the
cost of the velocity at the final time step, (ii) f , the cost of the acceleration at the final timestep, (iii) r,
the cost of actions at each timestep. Simulated data for the parameters r = 10−5, v = 0.2, f = 0.02
are shown in Fig. 2 A. Visual inspection of the likelihood function (Fig. 2 B) shows that the maximum
likelihood estimate (MLE) is very close to the true parameter values.

Once we have obtained the MLE, we can perform belief tracking, i.e., computing our approximate
belief of the agent’s belief p(x̃t |o1:t). As an example, we simulatedN = 20 trajectories {o1:T }i=1:N

with T = 30 from a partially observed version of the reaching task used above in which we only
observe the position and treat velocity and acceleration as latent variables. Fig. 2 C shows our
approximate belief about the agent’s belief for the MLE parameters, together with the true agent’s
belief. Note that we can recover the agent’s belief of state, velocity, and acceleration quite accurately
from noisy observations of the position only.

2Python implementation under GNU GPL available at PyPI
3https://github.com/RothkopfLab/inverse-optimal-control
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A Log likelihood B Trajectories

Figure 3: Application to real reaching data. A Negative log likelihoods for the three model
parameters. B Reaching trajectories (velocities and accelerations computed with finite differences)
and simulated data from the model with MLE parameters.

For the evaluation of parameter estimates, we compute their root mean squared errors (RMSEs) in
logarithmic space. The effect of estimation errors on the resulting trajectories is illustrated in Fig. 2 D,
where we simulated trajectories as in Fig. 2 A with different mean parameter errors. To show that our
method yields good parameter estimates over a range of different parameter settings, we perform
maximum likelihood estimations (MLEs) of all three parameters for different true parameter values
of which two were chosen from a pairwise grid while the third one was left as in Fig. 2 A. In this
analysis, we used 100 simulated trajectories and 10 repetitions each. In Fig. 2 E, which shows the
resulting RMSEs for different combinations of true parameters on pairwise grids, we demonstrate that
the RMSEs are small over a wide range of parameter values. The RMSEs (Fig. 2 F) across different
values for the respective other two parameters and 10 repetitions were 2.4× 10−2 (r), 2.1× 10−2

(v) and 3.1× 10−2 (f ). We compared the RMSEs obtained by our estimation method to the ones of
two baseline approaches. A first baseline is obtained by running a version of the algorithm without
signal-dependent noise (i.e., using the basic LQG during inference), for which the likelihood can
be evaluated exactly in closed-form. The results on the reaching problem (Section 4.1) in terms of
RMSE of the parameter estimates are worse by roughly two orders of magnitude (RMSE of 1.766 vs
0.027). A second, stronger baseline is obtained by setting the additive noise in the standard LQG
to the average noise magnitude of simulated trajectories. In this case, the RMSEs are still worse
by roughly an order of magnitude (RMSE of 0.702 vs 0.027). Note that the information on the
average noise level would not be readily available for real data without knowing the true parameters
and therefore constitutes a strong baseline. A plot visualizing the results of the baselines for each
parameter is provided in Appendix G.1.1.

Finally, we investigated the influence of the number of samples by evaluating estimates of trajectories
as in Fig. 2 A for different numbers of trials (Fig. 2 G). As expected, more trials increase the accuracy
of the estimates and lead to lower error. We estimated the convergence rate by fitting a line to the
log-log plot and obtained 0.78 for the RMSE. An analysis using the Kullback–Leibler divergence
between the empirical trajectory distributions of the true and maximum likelihood parameters as an
additional evaluation metric can be found in Appendix G.1.2.

We perform a similar analysis for generated partially observed trajectories in which we only observe
the position and treat velocities, accelerations, and forces as latent variables. The results are qualita-
tively very similar and are therefore presented in Appendix G.1.3. An additional empirical evaluation
of the impact of the moment matching approximation is given in Appendix G.1.4.

4.2 Application to real reaching movements

To show the applicability to real data, we apply our method to reaching trajectories from a previously
published experiment [55], in which a rhesus monkey had to perform center-out reaching movements
and hold its hand at the target to receive a reward. Since the data contains only measurements
of position (velocity and acceleration are computed using finite differences), we use the partially
observable version of the reaching model described in Section 4.1, treating velocity and acceleration as
latent variables. The approximate likelihood functions with respective MLEs of the three parameters
are shown in Fig. 3 A, indicating that we can determine the parameter set for which the trajectories are
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most likely. Fig. 3 B shows the given trajectories together with simulations using our model with the
MLE parameters. We observe that the inferred parameters produce simulated data that convincingly
look like the real data and provides smooth estimates of the latent velocity and acceleration profiles.

4.3 Application to eye movements

A Saccadic eye movements B Parameter estimates

Figure 4: Saccadic eye movements. A Generated
trajectories. B Median and quantiles of MLEs for
a range of true parameter values of r.

We also apply our method to a model of saccadic
eye movements which was presented by Creve-
coeur and Kording [56]. This model captures
fixating one’s eyes to an initial point and then
performing a saccade to fixate another point. A
cost parameter (r) is used to trade off the cost of
the movement and the deviation from the target.
As this model is an LQG model with control-
dependent noises, it directly allows the applica-
tion of our method for recovering the parameter.
Fig. 4 A shows simulated trajectories represent-
ing typical eye movements encountered in the
experiments. The MLEs based on simulated
data for a range of 20 different parameter val-
ues (100 repetitions each) are shown in Fig. 4 B.
Except for very few outliers, the estimated pa-
rameters are very close to the true parameters.

4.4 Application to random problems

To demonstrate that the inference method works on a wide range of problems defined according to
the model definition (Section 2), we evaluate it on randomly generated problems with 5-dimensional
state-space and two-dimensional action space. Detailed information on the generation procedure
is given in Appendix F.3. Each model has two parameters (r1 and r2) which again represent the
cost of control effort in each of the two movement directions. For each model, we sampled a true
value of parameter r2 from a uniform random distribution and estimated both parameters jointly by
maximizing the approximate likelihood. In Fig. 5 A we show the errors for a range of parameter
values r1 for different random models. The median and quantiles for the results of 2000 random
problems are shown in Fig. 5 B. One can observe that the estimates are generally very close to the
true parameters. The results for the other parameter r2 are basically identical since the problem is
symmetric w.r.t. the parameters, but we include the results in Appendix G.2.

5 Conclusion

In this paper, we investigated the inverse optimal control problem under signal-dependent noise. We
formalized the problem as a POMDP and introduced a first method for inferring cost parameters of an
agent in a linear-quadratic control problem with signal-dependent noise. Numerical simulations show

A Individual random seed B Aggregated

Figure 5: Random problems. A MLEs for a range of parameter values of r1 for different random
problems and different values of r2 (color). B Aggregated results (median, percentiles) for 2000
random problems.
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that accurate inference of cost parameters given synthetic data is feasible in random control problems,
simulated arm movements, and simulated eye movements. Additionally, the method can be used to
probabilistically infer the belief of the considered agent. Furthermore, the method was applied to real
data from a macaque monkey performing reaching movements. The inferred parameters reproduce
reaching data in simulation that convincingly agrees with the original data and provides smooth
estimates of the latent velocity and acceleration profiles. More recent and more general methods
for optimal control in high-dimensional continuous domains exist, but while some of these may
provide interpretable non-linear features, they consider deterministic MDPs without noise and assume
full observability [48], others relying on function approximation through neural networks including
GANs, are useful in engineering applications but may not provide a computational level explanation
of behavior [31, 32]. Taken together, our method does not require designing a cost function and
testing for similarity of simulated trajectories with experimental data, but allows inferring the cost
functions directly from behavior, thereby reconciling normative and descriptive approaches to human
sensorimotor behavior.

Limitations and Future work The proposed algorithms are based on stochastic optimal feedback
control with linear dynamics, quadratic cost functions, and signal-dependent noise. As such, the first
limitation lies in the restriction to problems with linear dynamics. An extension to non-linear dynamics
could be achieved by linearizing the dynamics locally or more generally by using a framework that
iteratively linearizes the dynamics at each time step, e.g., iLQG [57]. Similarly, while quadratic cost
functions allow modeling a wide range of costs and benefits within sensorimotor control, certain cost
functions such as exponential discounting may be more cumbersome to accommodate.

While the presented method was able to recover cost functions in the considered problems, higher-
dimensional parameter spaces will likely pose difficulties in finding unique point estimates of
parameters. This problem could be addressed by using appropriate structured prior distributions
over parameters. A fully Bayesian treatment could be realized by using Markov chain Monte
Carlo involving our likelihood model. Further research should similarly investigate the limits of the
Gaussian approximation of the likelihood. In the cases considered here, the approximation of the
likelihood function appeared to be unbiased up to an RMSE of approximately 3× 10−2, however,
approximating distributions by simpler ones may introduce systematic biases and noise. Possible
extensions could resort to using particle filters albeit at a higher computational cost.

Another issue regarding higher-dimensional parameter spaces is that evaluation of the likelihood
function becomes quite expensive by determining the optimal controller and optimal filter iteratively.
Even if this procedure takes only one second on a common PC for the reaching task, optimization in
high-dimensional spaces requires a larger number of function evaluations, which renders inference
costly. By relying on the iterative procedure, it also becomes difficult to compute gradients, which
may prevent the use of efficient gradient-based solvers. While for our applications a solver based on
quadratic approximations was efficient, one could resort to Bayesian optimization.

Future work in the area of robotics may explore applying the inferred cost functions in the training
of visuomotor policies [58, 59] in humanoid robots with reinforcement learning [60]. Possible
applications include utilizing the inferred cost functions in apprenticeship learning [61, 62, 63], in
which a policy is learned from demonstrations of a potentially suboptimal demonstrator or teacher.
Similarly, applications may also include transfer learning [64, 65, 66], in which learned policies or
cost functions are transferred to related tasks.

Finally, characterizing individual human subjects by analyzing their behavior may in principle be used
with negative societal impact. In the context of scientific investigations of human sensorimotor control
within cognitive science and neuroscience, only anonymized behavioral data for the understanding of
the human mind and brain are employed.
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