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Abstract

Interpretability and analysis (IA) research is001
a growing subfield within NLP with the goal002
of developing a deeper understanding of the003
behavior or inner workings of NLP systems004
and methods. Despite growing interest in the005
subfield, a commonly voiced criticism is that006
it lacks actionable insights and therefore has007
little impact on NLP. In this paper, we seek008
to quantify the impact of IA research on the009
broader field of NLP. We approach this with010
a mixed-methods analysis of: (1) a citation011
graph of 185K+ papers built from all papers012
published at ACL and EMNLP conferences013
from 2018 to 2023, and (2) a survey of 138014
members of the NLP community. Our quanti-015
tative results show that IA work is well-cited016
outside of IA, and central in the NLP citation017
graph. Through qualitative analysis of survey018
responses and manual annotation of 556 papers,019
we find that NLP researchers build on findings020
from IA work and perceive it is important for021
progress in NLP, multiple subfields, and rely022
on its findings and terminology for their own023
work. Many novel methods are proposed based024
on IA findings and highly influenced by them,025
but highly influential non-IA work cites IA find-026
ings without being driven by them. We end by027
summarizing what is missing in IA work today028
and provide a call to action, to pave the way for029
a more impactful future of IA research.030

1 Introduction031

The rapid progress made in the development of032

large language models (LLMs, Devlin et al. (2019);033

Radford et al. (2019); Raffel et al. (2020); Bom-034

masani et al. (2022); Touvron et al. (2023); Ope-035

nAI et al. (2024); Team et al. (2024)) has had a036

profound impact on the field of natural language037

processing (NLP) (Gururaja et al., 2023). While038

these models demonstrate unprecedented perfor-039

mance and novel capabilities (Brown et al., 2020;040

Wei et al., 2022), and are rapidly finding their way041
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Figure 1: Interpretability and analysis (IA) is an in-
creasingly popular subfield of NLP: (top) Number of IA
papers in ACL/EMNLP in comparison to other tracks
that have existed since 2020. The number of IA papers
has grown considerably, from 90 papers in 2020 to 160
papers in 2023 (a growth rate of 77.8%). This is the
highest growth rate among these tracks. (bottom) Cita-
tions to IA papers compared to other highly cited tracks.

into real-world applications (OpenAI, 2022; Mi- 042

crosoft, 2023; Google, 2024), they are also opaque 043

and largely treated as black boxes, which does 044

not satisfy other expectations for successful ma- 045

chine learning deployment, such as fairness, trust, 046

accountability, and explainability (Lipton, 2018; 047

Goodman and Flaxman, 2017). 048

In NLP research, these factors have motivated a 049

large body of work on interpretability and analysis 050

(IA), which aims to understand the inner workings 051

of LLMs and explain their predictions (Belinkov 052

and Glass, 2019; Rogers et al., 2020; Rauker et al., 053

2023, inter alia). Researchers in this area are of- 054

ten motivated by the idea that better understanding 055

LLMs is imperative to improve their efficiency, ro- 056

bustness, and trustworthiness, towards successful 057

and safe deployment. IA research has thus wit- 058

nessed rapid growth in the past few years and is 059

now one of the biggest research areas (in terms of 060

number of publications and citations) at the major 061

NLP conferences (see Figure 1). 062
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Despite the rapid growth of IA research (see also063

Figure 9), a commonly voiced criticism is that it064

often lacks actionable insights, especially for how065

to improve models, and therefore has little impact066

on how new NLP models are designed and built.067

This criticism raises questions about the usefulness068

of IA research, and whether its current form is the069

right path towards progress in NLP.070

In this work, we tackle these questions with a071

systematic, mixed-methods study of the impact072

of IA research on NLP in the past and the present,073

and use our findings to inform a vision for the074

future of IA. More specifically, we ask: how does075

interpretability and analysis research influence076

NLP researchers in what they choose to work077

on, what they cite, and how they think about078

NLP altogether?079

We perform a bibliometric analysis of 185,384080

publications based on the two major NLP confer-081

ences, ACL and EMNLP, between 2018 and 2023,082

and solicit opinions from 138 members of the NLP083

community via a survey. In addition to quantitative084

results, we perform qualitative analysis of survey085

responses and 556 papers. This approach gives us a086

holistic view of the impact of IA research on NLP.087

Our analysis reveals that (1) NLP researchers088

build on findings from IA work in their research,089

regardless of whether they work on IA themselves090

or not (§4), (2) NLP researchers and practitioners091

perceive IA work to be important for progress in092

NLP, multiple subfields, and their own work, for093

various reasons (§5), and (3) many novel non-IA094

methods are proposed based on IA findings and095

highly influenced by them, for various areas, even096

though highly influential non-IA work is not driven097

by IA findings despite citing them (§6).098

While our findings show that IA work presents099

insightful observations, there are still opportuni-100

ties for greater impact on the rest of NLP. Thus,101

based on survey responses, we identify the key in-102

gredients that are missing in IA research today —103

unification; actionable recommendations; human-104

centered, interdisciplinary work; and standardized,105

robust methods — and close with a call to action106

with recommendations (§7). We hope our work107

paves the way towards a more impactful future for108

IA research as the field continues to grow.109

2 Methodology110

We start by discussing what we consider as IA111

research and our approach for measuring impact.112

2.1 Interpretability and analysis (IA) research 113

Interpretability research has a long tradition in Ma- 114

chine Learning as well adjacent fields like NLP 115

(Tishby and Zaslavsky, 2015; Karpathy et al., 2015; 116

Kim et al., 2018, inter alia). There is no single 117

agreed upon definition of the term interpretability 118

(see Lipton (2018) for a critical discussion), but two 119

prominent types of interpretability research focus 120

on post-hoc explainability or increasing the trans- 121

parency of machine learning methods and models 122

(Lipton, 2018; Madsen et al., 2024). Analysis re- 123

search is an even broader term and one might argue 124

that nearly every scientific paper contains some 125

form of analysis. In NLP, however, many inter- 126

pretability and analysis papers have in common that 127

their primary contribution is an analysis that aims 128

to advance our understanding of NLP in some way, 129

e.g., by analyzing methods, models, or algorithms 130

(Belinkov and Glass, 2019; Rogers et al., 2020). 131

Here, we adopt a broad definition of interpretabil- 132

ity and analysis (IA) research in NLP that includes 133

all papers that aim to develop a deeper under- 134

standing of the behavior or inner workings of 135

NLP models, methods, or systems. This includes 136

work on explaining models’ predictions or inter- 137

nal computations, investigating broader phenom- 138

ena observed during pre-training or adaptation, and 139

providing a better understanding of the limitations 140

and robustness of existing models. 141

2.2 Measuring impact 142

Our goal is to measure the impact of IA work on 143

NLP research, which is not trivial to define, let 144

alone quantify. To get a holistic view of impact, 145

we consider two different, complementary ways of 146

measuring impact – a bibliometric analysis, and a 147

survey of the NLP community. 148

Citational impact In scientometrics research, ci- 149

tation counts are used as a standard measure of 150

scientific impact (Nicolaisen, 2007; Bornmann and 151

Daniel, 2008; Chacon et al., 2020, inter alia). Thus, 152

we perform a bibliometric analysis to quantify the 153

citational impact of IA work on NLP research.1 We 154

note that citation behavior is complex and there is a 155

growing consensus that citation statistics might not 156

be sufficient for measuring impact (Bornmann and 157

Daniel, 2008; Zhu et al., 2015; Iqbal et al., 2021). 158

1This choice excludes other forms of impact such as in-
creasing user trust, influencing policy and regulation, etc. In
addition, even though IA work impacts other fields, this is
beyond the scope of our paper.
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Figure 2: Diagram showing the process of constructing our citation graph. Starting from an initial set of ACL and
EMNLP papers we collect citations via the Semantic Scholar API and label papers with a classifier.

Surveying the NLP community To incorporate159

a second dimension of impact beyond citation160

counts, we survey NLP researchers and practition-161

ers on how they view the impact of IA research on162

the field. Specifically, we ask respondents about163

their perceptions of IA (its importance in general,164

for specific subfields, and its impact on progress165

in NLP), and their use of IA (how much they read,166

are influenced by, and use concepts from IA work).167

We also solicit opinions on what is missing in IA168

research and where it should go in the future.169

3 Citation graph and community survey170

Here, we describe the construction of our citation171

graph for bibliometric analysis, and the design of172

our survey of the community.173

3.1 Citation graph construction174

Figure 2 illustrates the process of constructing our175

citation graph. We start from an initial set of all176

papers published at ACL and EMNLP from 2018177

to 2023. We focus on these two venues as they are178

leading NLP conferences with a dedicated track for179

interpretability and analysis research since 2020.2180

Using this initial set of papers, we build a citation181

graph using the Semantic Scholar API (Kinney182

et al., 2023). For papers outside our initial set,183

where we have gold labels, we rely on classifiers184

to predict submission tracks. More details on all185

these stages are provided below.186

Collecting ACL and EMNLP papers We col-187

lect paper lists and track information from various188

sources (see Table 3 in Appendix B), as there is no189

one source of this data for ACL and EMNLP con-190

ferences.3 Between 2018 and 2023, official names191

of submission tracks have changed substantially,192

so we standardize all data to 27 tracks. More de-193

tails on this process are provided in Appendix B,194

including summary statistics per track (Table 1).195

2We discuss this decision in more detail in Section 8.
3The ACL Anthology does not contain information on the

submission track.

Building the citation graph We collect the ci- 196

tations of each paper in our initial set via the Se- 197

mantic Scholar API (Kinney et al., 2023), resulting 198

in a citation graph of 185,384 papers (see Table 2 199

in Appendix B for additional statistics). For each 200

node (paper) in the graph, we store its title, abstract, 201

and venue. For each edge (citation), we store infor- 202

mation on the citation intent (binary labels for back- 203

ground, use of methods or comparing results), and 204

citation influence (normal vs. highly influential), 205

all of which are provided by Semantic Scholar. 206

Labeling the citation graph To assign all pa- 207

pers in the citation graph to our standardized set of 208

tracks, we train a classifier based on the titles and 209

abstracts from our initial set of papers. We find that 210

some tracks are very hard to predict due to limited 211

training data and the inherent ambiguity of sub- 212

mission tracks. We thus keep 11 well-performing 213

labels (including IA), and introduce an ‘Other’ la- 214

bel to group the remaining papers. More details on 215

classifier construction are provided in Appendix B. 216

Our final classifier achieves a test micro/macro- 217

F1 score of 0.61/0.61. Although this performance 218

appears rather low, we note that submission tracks 219

have fuzzy boundaries, so papers can often be plau- 220

sible submissions to multiple tracks. Given that we 221

care primarily about accurately predicting IA com- 222

pared to other tracks, we evaluate our classifier on 223

two additional gold sets of data (see Appendix B.1) 224

and obtain 78.1% and 87.8% accuracy on each set. 225

3.2 Surveying the NLP community 226

To solicit opinions from the NLP community on 227

the impact of IA research, we ran a survey from 228

March 19th to June 7th, 2024, advertising within 229

our networks, on social media, and on NLP mailing 230

lists. The full survey is shown in Appendix C. 231

To strike a balance between easy scoring and re- 232

spondent expressivity, we included multiple-choice 233

as well as optional free response questions (Shaugh- 234

nessy et al., 2015). We refined the survey following 235
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Figure 3: Interpretability and analysis track CSI scores matrix against other tracks. These represent the probability
that a random interpretability and analysis paper published in certain year has more citations than a random paper of
other track published the same year.

best practices4 and with feedback from four senior236

NLP researchers who filled out a pilot version. We237

received a total of 138 responses from NLP re-238

searchers in academia and practitioners in industry,239

with 61% of respondents not working on IA them-240

selves (see Appendix C for more statistics).241

Two authors performed qualitative coding, an242

inductive method from the social sciences (Sal-243

dana, 2021), to identify themes in answers to the244

free-response questions. More details on the cod-245

ing process are provided in Appendix D. We mea-246

sure inter-coder reliability with percentage agree-247

ment (O’Connor and Joffe, 2020), which was above248

90% across all subsets of annotation.249

4 Researchers build on findings from IA250

research in their work251

We begin by analyzing whether researchers use252

contributions of IA research in their work. We253

approach this by analyzing citational use, as well254

as survey-reported use beyond citations.255

IA papers are cited more often than other tracks256

When comparing papers from different tracks,257

global counts of citations can be misleading, as258

a small number of papers can account for most of259

the citations in a field (Ioannidis et al., 2016). To260

account for this, we compare citations based on the261

Citation Success Index (CSI; Milojević et al., 2017)262

metric. Given two groups of papers A and B, the263

CSI score computes the probability that a random264

paper from A is more cited than a random paper of265

B. This score is not subject to biases from the skew-266

ness of the citation distribution, and it is clearly267

interpretable; e.g., if we draw random IA and Ma-268

chine Translation papers from EMNLP or ACL in269

4We made sure to clarify definitions, avoid leading ques-
tions, etc. (Shaughnessy et al., 2015).
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Figure 4: Origin of citations to IA papers.

2023, there is a 57.1% chance that the IA paper is 270

more cited than the Machine Translation paper. 271

Figure 3 shows that CSI scores for the IA track 272

are often favorable (CSI > 50%) when compared 273

to other tracks. In 2023, only the Ethics and the 274

Large Language Models tracks had favorable CSI 275

scores against IA. This shows that IA papers have 276

higher citational impact than other tracks, particu- 277

larly in recent conferences. 278

IA papers are well cited outside of IA While 279

high CSI scores tell us that IA papers are cited 280

well, they do not tell us where these citations are 281

coming from, i.e., are IA papers mostly cited by 282

other IA papers or by papers outside of IA? To 283

evaluate the impact of IA work outside of IA, we 284

compare citations within the same track, which we 285

call intra-track citations, to extra-track citations, 286

i.e., citations from outside the track. 287

Figure 4 shows that most citations to IA papers 288

are predicted to be extra-track citations. The pro- 289

portion of references to IA papers differs consid- 290

erably by citing track, with papers about Efficient 291

Methods, Machine Learning, and Large Language 292

Models citing IA research more frequently than oth- 293

ers (see Figure 11 for a visualization of this trend). 294
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While the IA track does not stand out in terms of295

its extra-track citations compared to other tracks296

(see Figure 12), these results still demonstrate that297

the citational impact of IA research extends well298

beyond the IA track itself.299

IA papers are central in NLP Next, we assess300

whether IA papers are impacting NLP as a whole301

rather than just specific tracks. We quantify this302

with the Betweenness Centrality (BC) metric, a303

measure of interdisciplinarity (Leydesdorff, 2007;304

Barnett et al., 2011; Leydesdorff et al., 2018). BC305

quantifies the extent to which a node in the graph306

acts as a bridge along the shortest path between two307

other nodes (Golbeck, 2015); nodes with higher BC308

are considered more important as more information309

passes through them.5 Therefore, we interpret pa-310

pers with a high BC as important papers that are es-311

sential for the connectivity of the citation network.312

We compute the BC for every paper in EMNLP313

and ACL since the IA track started (2020), and find314

that the median BC of IA papers is higher than most315

other tracks, at 1.23× 10−7. Notably, IA ranks as316

the second most central track overall, following the317

Large Language Models track, which has a median318

BC of 1.95 × 10−7. These results (shown in Fig-319

ure 10) provide further evidence that IA work plays320

a central role in the ACL/EMNLP citation network.321

IA influences the work of NLP researchers For322

a complementary view of impact beyond citations,323

we survey NLP community members on how often324

they use concepts from IA in their day-to-day work,325

and more broadly, how IA influences their work.326

As Figure 5 shows, the median rating for use of327

IA concepts by respondents who work on IA is of-328

ten, while even the median respondent who doesn’t329

work on IA uses concepts from IA sometimes. In330

both groups of respondents, there are people who331

always use IA concepts in their day-to-day work.332

Beyond this, IA work influences respondents in dif-333

ferent ways: it provides respondents with research334

ideas (91% of respondents who work on IA; 60% of335

respondents who don’t), changes mental models of336

model capabilities and limitations (77%; 65%), and337

helps ground explanations of respondents’ results338

(64%; 59%). Notably, only 9 (6.5%) respondents339

state that IA does not affect their work. These re-340

sults complement our citation-based findings by341

providing further evidence that IA work impacts342

both IA and non-IA researchers and their research.343

5We provide further discussion of BC in Appendix B.1.
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Figure 5: Survey responses on the frequency of using
concepts from IA research, split by whether the respon-
dents work in this field or not. Higher values indicate
more frequent usage.

5 Researchers find IA work important 344

We continue by surveying the perceived importance 345

of IA work by the NLP community. We consider 346

various perspectives, such as the perceived impor- 347

tance of IA research on overall progress in NLP 348

as well as on individual subfields. 133 out of 138 349

respondents consider IA work important, and per- 350

ceive it as important for progress in NLP, multiple 351

subfields, and for various reasons. 352

Perceived importance for progress in NLP Fig- 353

ure 6 shows that most respondents agree that with- 354

out IA findings, progress in NLP in the last 5 years 355

(2019 to 2024) would have been slower, but not im- 356

possible. Surprisingly, it appears that people who 357

are more deeply engaged with interpretability are 358

more critical of it. Respondents who read more IA 359

work than other topics in NLP, respondents who of- 360

ten or always use concepts from IA literature, and 361

respondents who work on IA themselves all rate IA 362

as having a lower impact on progress in NLP than 363

those who read less IA, use related concepts less 364

frequently, and who work on other topics. 365

It is plausible that respondents who are more 366

engaged with IA work know it better and thus 367

give better-calibrated impressions of the field as a 368

whole, which happen to be more critical. However, 369

it is worth noting that they are perhaps forming 370

their opinions from a different sample of papers 371

(i.e., the average paper from a large body of work) 372

than those who are less engaged with IA work, 373

whose reading might be skewed towards IA work 374

that is more highly cited and influential. This also 375

raises the question of how IA or indeed any sub- 376

field should be evaluated – by the average paper in 377

it, or by the ones that stand out? 378
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Figure 6: Survey responses (N=138) on whether
progress in NLP in the last 5 years would have been
slower or impossible without findings from interpretabil-
ity and analysis research.

There are many other factors that could also influ-379

ence the results we see, e.g., that respondents in380

different categories are reading IA papers that deal381

with different topics, that they have different levels382

of research experience, and that they have differ-383

ent definitions of “progress” in NLP. See §8 for a384

discussion of these factors.385

Perceived importance for different subfields386

Figure 7 shows that the IA work is perceived as387

being important to differing extents for other sub-388

fields within NLP. The modal response is that IA389

work is somewhat important for work on multilin-390

guality (52% of responses), multimodal learning391

(47%) and engineering for large language models392

(47%), and that it is very important for work on rea-393

soning (63%) and bias (72%). Of the five subfields394

we consider, engineering for LLMs is perceived395

to be least impacted by IA work, with 31% of re-396

spondents indicating that they think IA work is not397

important for it. These findings are consistent with398

the themes we find in papers that are highly influ-399

enced by IA research, where bias and reasoning are400

well-represented, and pre-training and architectural401

advancements appear less frequently.402

Reasons for importance When asked whether403

they thought IA work was important and if so,404

why, respondents overwhelmingly (133/138) con-405

sider it important, citing a variety of reasons, the406

most popular of which were: understanding model407

limitations and capabilities (90% of respondents),408

explainability for users (66%), improving model409

trustworthiness (59%), and improving model capa-410

bilities (50%). While a small percentage (4.3%)411

of respondents indicated that they thought it was412

not important (possibly also due to selection bias413
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Figure 7: Survey responses (N=138) on how important
interpretability and analysis research is to work in dif-
ferent subfields.

in our survey), we found that they voice the same 414

concerns as those who do find it important, e.g., a 415

lack of actionability, results that don’t scale, and a 416

lack of impact on the most capable models of today. 417

In our recommendations for the future of the field 418

(§7), we go into these in more detail. 419

6 A closer look at influential papers 420

So far we have discussed findings about IA as a 421

whole, either by considering the role of IA papers in 422

the ACL/EMNLP citation graph or the perception 423

of IA work within the community. In this section, 424

we zoom in on specific influential papers sourced 425

from both our survey and citation graph. We seek 426

to answer: What are these papers about? What 427

kind of work are they impacting, and how? 428

To this end, we inductively obtain the themes of 429

a total of 585 papers, through qualitative coding 430

of their titles and abstracts by two authors (Sal- 431

dana, 2021). The 585 papers include: (1) All 432

papers mentioned more than once as having in- 433

fluenced survey respondents’ work (N=29); (2) 434

highly-cited IA papers from our citation graph 435

(N=50); (3) highly-cited non-IA papers from our ci- 436

tation graph (N=50); (4) non-IA papers that cite and 437

are highly influenced by the top-10 most-cited IA 438

papers (N=456). The resulting themes are mostly 439

descriptive, including topics (e.g., in-context learn- 440

ing, training dynamics) and contribution types (e.g., 441

novel method, analysis). Percentage agreement on 442

our coded themes is above 90% for each subset of 443

papers. See Appendix D for more details. 444

Our analysis reveals that beyond background 445

citations, IA work influences the development of 446

many novel models and metrics outside of IA work, 447

and affects work in domains such as question an- 448

swering (QA), reasoning, and bias. 449
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What are influential IA papers about? Of450

the papers that survey respondents submitted as451

examples of work that has directly influenced452

their own work, representation analysis appears453

in over a third of the papers, novel methods for454

interpretability (e.g., causality, interventions,455

steering, neuron/activation analysis, etc.) are456

proposed in nearly a quarter of them, and probing457

also appears in 24% of these papers.458

In contrast, the top-50 most cited IA papers are459

more often about the analysis component of IA460

(40%). Novel methods (for analysis, evaluation,461

linguistics, probing) are proposed in 26% of462

papers, and evaluation is a main contribution of463

32%. As expected, the most cited non-IA papers464

in our citation graph mostly consist of highly465

influential datasets, models, and methods, e.g.,466

HotpotQA, BART, prefix-tuning (Yang et al., 2018;467

Lewis et al., 2020; Li and Liang, 2021). More top468

themes are shown with the percentage of papers469

in Table 5 in Appendix E.470

We also find evidence that many IA papers471

create novel metaphors to understand models472

— e.g., seeing feed-forward layers as key-value473

memories (Geva et al., 2021), or reading from474

and writing to the “residual stream” (Elhage et al.,475

2021), and many analysis papers highlight the476

limits of models. As survey respondents cited477

these very reasons for why they perceive IA work478

as important, these themes corroborate why these479

papers would be particularly influential. In addi-480

tion, many of the qualities that survey respondents481

feel are currently lacking in IA research (see §7)482

appear in these papers, such as moving beyond483

toy models (Wang et al., 2023), and providing484

actionable methods (Meng et al., 2022).485

Why are influential IA papers cited? As486

citations can have a variety of reasons (Zhu487

et al., 2015; Tahamtan and Bornmann, 2019),488

we examine three types of citational intent –489

background, methods and results citations (see490

Figure 13 in Appendix E). Overall, we find that491

influential IA papers are cited most often as492

background citations, then as methods citations,493

and least frequently when comparing results. In494

comparison, highly cited papers that are not about495

IA tend to be cited most frequently for methods.496

This is expected, as many of these papers are about497

popular datasets and models, as described above.498

What are the citing papers about? Despite the499

large number of background citations, however,500

there is plenty of work—including non-IA work— 501

that is highly influenced (according to Semantic 502

Scholar) by IA research. For a closer look at what 503

these citing papers do, we analyze all 456 papers 504

with a highly influential citations to one of the top 505

10 most-cited IA papers, and annotate their themes 506

based on titles and abstracts. 507

Unsurprisingly, many of the papers have themes 508

in common with what they cite, e.g., papers that 509

analyze multilingual models are frequently cited 510

by papers on cross-lingual transfer. We thus fo- 511

cus on the difference in themes between citing pa- 512

pers and cited papers, and find that over 33% of 513

non-IA papers that are highly influenced by IA 514

work propose novel methods, e.g., many novel 515

ICL methods cite analysis work on demonstrations 516

(Min et al., 2022) and similarly, many novel meth- 517

ods for bias mitigation cite datasets for stereotype 518

evaluation such as Nangia et al. (2020) and Nadeem 519

et al. (2021). These provide concrete counterexam- 520

ples to the claim that IA work does not influence 521

modeling improvements. 522

Is IA work impacting highly cited non-IA work? 523

Looking at the highly-cited non-IA papers, we 524

find that these too tend to cite IA work frequently. 525

22 out of the top 50 most cited non-IA papers are 526

even highly influenced by some IA work, but 28 527

are not highly influenced by any IA work. These 528

results show that while highly influential non-IA 529

work does acknowledge IA findings, it is likely not 530

driven by them. 531

7 Main takeaways and discussion 532

We end by discussing our main findings and recom- 533

mendations on how to move IA research forward. 534

Main takeaways In §4, we saw that IA research 535

plays a central role in NLP and researchers build 536

on findings from IA work in their research, regard- 537

less of whether they work on IA themselves or 538

not. In section §5, we saw that NLP researchers 539

and practitioners perceive IA work to be important 540

for progress in NLP, and multiple subfields. They 541

also find it important for their own work for a va- 542

riety of reasons, regardless of whether they work 543

on IA themselves. Finally, we took a closer look 544

at the most influential IA papers in §6 and found 545

that many novel methods are proposed based on 546

IA findings and highly influenced by them, for vari- 547

ous areas, in particular, work on reasoning, factual 548

knowledge, and bias. All these findings present a 549
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very positive view of IA research and its role within550

NLP in the past and the present. In the remainder551

of this section, we turn to the future of IA research.552

What is missing? To understand what the NLP553

community believes to be important for the future554

of IA work, we asked survey respondents what they555

feel is missing in current IA work and what should556

be different going forward. 25% of the responses557

to this question mentioned a lack of big picture and558

unified understanding in IA work. For example,559

one respondent said:560

“I think the focus should be on climb-561

ing the right hill towards a higher level562

understanding instead of focusing on in-563

teresting individual behaviors.”564

The next three most frequent concerns are a lack of565

utility (i.e., not being useful in practice), modeling566

improvements and actionability—concerns that are567

also echoed by the respondents who do not find IA568

research useful for their own work. Interestingly, a569

commonly voiced opinion among these participants570

is that they believe that scale and performance are571

all that is needed for good NLP models, and that572

IA work only has importance for understanding573

models rather than for building them. Addition-574

ally, respondents mention that IA work could use575

more interdisciplinary connections, through col-576

laboration with domain experts, user studies, and577

human-centered approaches to computing.578

Finally, we note another theme appearing in 10%579

of responses: as IA has a lack of consensus on580

reliable and trustworthy methods, it is unclear how581

such work should be evaluated. Although this is582

not a new concern (Belinkov and Glass, 2019), it583

remains relevant for the impact of IA on NLP.584

A call for action Based on our findings, we make585

the following recommendations:586

Going forward, IA researchers should:

1. Think more about the big picture

2. Strive for more actionable work

3. Center humans in your work

4. Work towards standardized, robust methods
587

Big-picture thinking involves working towards588

general truths about model architectures or behav-589

iors, rather than model-specific results. Actionable590

work requires thinking about how an IA finding can591

propel new ways of building/using NLP systems, 592

rather than being merely descriptive. Centering 593

humans entails evaluation with realistic and rele- 594

vant data and tasks, and performing user studies 595

and human evaluation. Human-centered IA work 596

can also be enhanced through interdisciplinary 597

reading and collaboration. Finally, we urgently 598

need to build consensus on using and evaluating IA 599

methods. Rigorous, well-motivated methods (e.g., 600

using causality) are critical, rather than correlative 601

evidence that may not be correct or faithful. 602

IA for its own sake In closing, we would like to 603

highlight a viewpoint that came up multiple times 604

in survey responses, which was to question the 605

premise of this paper, i.e., to measure the impact of 606

IA on NLP. Many respondents noted that they see 607

IA work as being a valuable scientific pursuit in its 608

own right, stating that “Without it, we’re not doing 609

science,” or “It’s cool! That’s enough for me.” Re- 610

spondents further criticized the often performance- 611

focused definitions of utility, progress, and impact. 612

One respondent noted that these definitions of util- 613

ity have been determined “by extrinsic sociological 614

factors in the broader field of AI”. We sympathize 615

with this observation and note that the focus on 616

performance is a feature of NLP at this point in 617

time. What we value might change going forward, 618

especially as NLP systems are increasingly part of 619

our daily lives, and qualities such as robustness and 620

fairness become even more important. 621

8 Conclusion 622

We contribute a mixed-methods analysis of the im- 623

pact of interpretability and analysis research on 624

NLP. By analyzing a citation graph of 185K+ pa- 625

pers built from all papers published at ACL and 626

EMNLP from 2018 to 2023, surveying 138 respon- 627

dents from the NLP community, and manually an- 628

notating 556 papers, we found that IA work is well- 629

cited in other subfields of NLP, central to the NLP 630

citation graph, and highly influential to many novel 631

methods. NLP researchers and practitioners per- 632

ceive IA work as important for progress in NLP, 633

multiple subfields (especially reasoning and fair- 634

ness), and for their own work. In sum, even though 635

highly influential models, methods and datasets are 636

not driven by IA findings, IA work still has a great 637

impact on NLP in the past and the present. We con- 638

clude with a call to action based on what is missing 639

in the subfield, to pave the way for IA work to be 640

even more impactful in the future. 641
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Limitations642

Focus on papers published at ACL and EMNLP643

The starting point of our analysis are all papers pub-644

lished at ACL and EMNLP. Although these are the645

most cited *CL venues (Mohammad, 2020), our646

analysis excludes several other big NLP venues, in-647

cluding EACL, NAACL, AACL, TACL, and work-648

shops, including BlackboxNLP, which focuses on649

IA work. Additionally, given the growing interest650

in NLP, and in particular, LLMs, from the broader651

machine learning community, there is an increasing652

number of IA papers published at machine learning653

conferences such as ICLR, NeurIPS, and ICML,654

which we also do not consider in our analyses. Sim-655

ilarly, a vast amount of work on mechanistic inter-656

pretability has been published as articles (e.g., on657

LessWrong6 and the AI Alignment Forum7), and658

blog posts (e.g., by Anthropic8). Therefore, there is659

a risk that our analysis misses potentially influential660

IA work published at these venues.661

This is mitigated to an extent by our survey,662

where respondents mention some of these papers663

and blog posts, which we then discuss in our pa-664

per. In addition, the set of papers we consider for665

our analysis is very large (our initial set contains666

477 IA papers). This makes us confident that the667

findings we draw from these papers (and those cit-668

ing them) are representative of broader trends in669

the impact of IA research in NLP. We leave it to670

future work to investigate the impact of IA work671

published outside of established NLP venues.672

Focus on 2018 to 2024 Our analysis focuses on673

papers published between 2018 and 2024. Our674

results thus represent a snapshot in time on the scale675

of research in NLP, where models and methods676

come and go. The time period that we look at is677

dominated by transformer-based language models,678

and a paradigm of using large, general-purpose679

pre-trained models for many tasks, and thus many680

IA papers focus on studying these. Understanding681

this as the context of our analysis and results is682

important, as they may look completely different683

in a time period where the most popular models684

are different or the most popular IA methods are685

different. This also means that our results cannot686

speak to the impact of today’s IA work as its true687

impact might only become clear in the future.688

6https://www.lesswrong.com/
7https://www.alignmentforum.org/
8https://www.anthropic.com/

Not all citations are equal Although our use of 689

citations is an important component of how we 690

quantify impact in this paper, we do not consider 691

citational context or distinguish between types of ci- 692

tations. However, papers can cited for a number of 693

reasons (Bornmann and Daniel, 2008), not all posi- 694

tive and not all having to do with the conventions of 695

scholarly publishing (Bornmann and Daniel, 2008; 696

Zhu et al., 2015; Bornmann and Marx, 2012). 697

Limitations of our survey Although we took 698

steps to get a large number and diversity of survey 699

responses, and we ensured a minimum of 10 re- 700

spondents per bucket when reporting disaggregated 701

results, the 138 responses we received may not be 702

representative of the field as a whole. In particu- 703

lar, full professors (N=5, at various career stages), 704

and industry practitioners who are not researchers 705

(N=1) were somewhat underrepresented in our re- 706

sponses, indicating that our results focus more on 707

research impact rather than impact on industry ap- 708

plications, and are overwhelmingly shaped by PhD 709

students (41.3% of respondents), whose interests, 710

incentives, and assessment of impact are sure to be 711

different from respondents at other career stages. 712

Some respondents brought up the following con- 713

cerns: one respondent felt our definition of IA was 714

too broad for their taste, but our inclusion of in- 715

terpretability and analysis was by design (see Sec- 716

tion 3). Another respondent noted that we defined 717

IA but not what we meant by “progress,” which 718

was also by design, as we did not want to impose a 719

normative definition of progress on our respondents 720

but rather, get at their own intuitions, regardless of 721

how they might define progress. Finally, one re- 722

spondent complained that our questions about the 723

usefulness of IA (to various subfields, on one’s own 724

research, etc.) were framed in absolute rather than 725

relative terms, and that just because IA research has 726

some positive impact on our understanding doesn’t 727

mean that it is the best option to pursue given lim- 728

ited time and resources. This paper presents views 729

of absolute and relative impact via the survey and 730

citation graph analyses, for a holistic view of IA 731

research that also allows for it to have value for 732

its own sake. Ultimately, we believe that a view 733

of “optimal” impact compared to other options lies 734

in the eye of the beholder, and is one (but not the 735

only) way of interpreting our results. 736
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A Related work1593

The increasing number of IA publications during1594

the last few years has resulted in several survey1595

or position papers that critically discuss existing1596

work, identify common patterns, and provide sug-1597

gestions for how to go forward. Lipton (2018)1598

critically question common motivations behind in-1599

terpretability and the lack of definitions in the field.1600

We follow their recommendation and provide a1601

definition of what we consider interpretability and1602

analysis research in §2. Belinkov and Glass (2019)1603

summarize trends in early IA work and discuss1604

recommendations for how to overcome limitations1605

of IA research. Similar to our work, they recom-1606

mend that future work should think about better1607

ways to evaluate IA research and findings. Rogers1608

et al. (2020) survey and synthesize IA work on1609

BERTology, a subfield of IA work that focuses1610

on encoder-only language models. Rauker et al.1611

(2023) survey a large number of papers that study1612

the internals of language models (transparency),1613

and discuss key challenges in the field. Similar to1614

our work, they also argue for better ways of eval-1615

uating IA methods, as well as more actionability1616

and grounding in real-world applications. More re-1617

cently, Madsen et al. (2024) discuss two prominent1618

trends in interpretability research (post-hoc expla-1619

nations and intrinsic interpretability) and argue that1620

interpretability (“the study of explaining models1621

in understandable terms to humans”) needs a new1622

paradigm, centered around faithfulness.1623

Several other works study citational patterns and1624

trends within the broader NLP community. Mo-1625

hammad (2020) uses citations to measure the im-1626

pact of NLP publications indexed by the ACL An-1627

thology. Similar to our approach, they compare1628

how well papers from different areas within NLP1629

are cited, and use citation statistics to draw conclu-1630

sions about the impact of different subfields within1631

NLP. Singh et al. (2023) consider citations as an1632

indicator for how widely the community is reading.1633

They study temporal citations trends and reveal that1634

a majority of cited papers fall within a five year1635

time period before publication of the citing work,1636

demonstrating a recency bias in citation behavior.1637

Jacovi (2023) uses Semantic Scholar to curate a1638

large number of papers focusing on explainability,1639

studying citation trends in the field based on this1640

collection. Wahle et al. (2023) analyze the influ-1641

ence between NLP and other fields over the years. 1642

Also using Semantic Scholar, they rely on citations 1643

to conclude that NLP has become more insular 1644

over time. 1645

Another set of related papers surveys the NLP 1646

community for their perceptions and opinions, 1647

a method we also use. Gururaja et al. (2023), 1648

for example, focus on paradigm shifts and study 1649

factors that shape NLP as a field. They conduct 1650

interviews with NLP researchers and experts and 1651

gather their opinions on critical trends and patterns 1652

that emerge in the field. Pramanick et al. (2023) 1653

also focus on paradigm shifts and impact, but from 1654

a diachronic perspective. They provide a novel 1655

framework to study the evolution of research topics 1656

within a field to establish what drives research in 1657

NLP across time. They find that tasks and methods 1658

have a bigger impact on the field than metrics do. 1659

Lastly, there are several related works in the sci- 1660

entometrics literature that study and compare the 1661

impact of research using the same metrics as we 1662

do: Chacon et al. (2020) apply the citation success 1663

index to compare sub-fields in physics, and Ley- 1664

desdorff (2007) propose the use of Betweenness 1665

Centrality as a measure of the interdisciplinarity of 1666

journals. 1667

B Citation graph details 1668

We provide additional details on the creation of our 1669

citation graph below. 1670

Summary statistics Table 1 shows the number of 1671

papers per track in our initial collection. With 477 1672

papers, IA is the 6th largest track in the collection. 1673

Standarizing submission tracks The submis- 1674

sion tracks of ACL and EMNLP conferences have 1675

changed considerably from 2018 to 2023. Some 1676

tracks were split into multiple tracks, some tracks 1677

appeared (and disappeared), and some were re- 1678

named. As we are mostly interested in compar- 1679

ing IA with other tracks, we decided to merge 1680

tracks in order to create a consistent set of tracks 1681

starting from 2020 (when the IA track was estab- 1682

lished). This unification makes our analysis more 1683

feasible. We manually assigned every track from 1684

ACL/EMNLP from 2020 to 2023 into 27 different 1685

categories: 1686

•Information Extraction/Retrieval 1687

•Machine Translation and Multilinguality 1688

•Machine Learning 1689

•Applications 1690

17
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Track Paper Count

Information Extraction/Retrieval 674
Machine Translation and Multilinguality 594
Machine Learning 557
Applications 516
Dialogue 487
Interpretability and Analysis 477
Semantics 456
Resources and Evaluation 423
Multimodality, Speech and Grounding 389
Generation 361
Question Answering 334
Sentiment Analysis 258
Summarization 244
Theme 188
Social Science 178
Ethics 130
Syntax 121
Efficient Methods 113
Linguistic Theories and Psycholinguistics 106
Discourse and Pragmatics 84
Large Language Models 83
Industry 76
Phonology, Morphology and 72
Word Segmentation
Commonsense Reasoning 32
Human-Centered NLP 18
Unsupervised and Weakly- 17
Supervised Methods in NLP
Theory and Formalism in NLP 6

Table 1: Papers per track in ACL/EMNLP.

•Dialogue1691

•Semantics1692

•Interpretability and Analysis1693

•Resources and Evaluation1694

•Generation1695

•Question Answering1696

•Multimodality, Speech and Grounding1697

•Summarization1698

•Sentiment Analysis1699

•Theme1700

•Social Science1701

•Ethics1702

•Linguistic Theories and Psycholinguistics1703

•Syntax1704

•Efficient Methods1705

•Discourse and Pragmatics1706

•Large Language Models1707

•Phonology, Morphology and Word Segmenta-1708

tion1709

•Industry1710

•Commonsense Reasoning1711

•Human-Centered NLP1712

•Unsupervised and Weakly-Supervised Methods1713

in NLP1714

•Theory and Formalism in NLP1715

Statistic Value

Nodes (papers) 185,384
Edges (citations) 786,376
Nodes originally from ACL/EMNLP 2018-2023 9,248
References from ACL/EMNLP 2018-2023 papers 374,857
Citations of ACL/EMNLP 2018-2023 papers 469,580

Table 2: Statistics of the citation graph. As some
EMNLP/ACL papers cite other EMNLP/ACL papers,
the total number of edges is less than the sum of the
references and citations.

We note that we consider the EMNLP 2023 track: 1716

Language Modeling and Analysis of Language 1717

Models as part of IA. Additionally, we ignore pa- 1718

pers from the theme track, as these topics change 1719

every year. 1720

Cleaning the collected data Since the ACL An- 1721

thology does not provide information about the 1722

submission track, we obtain our data from a di- 1723

verse set of sources as listed in Table 3. Since the 1724

data comes in very different formats, we performed 1725

the following steps to clean it. 1726

We searched for paper titles in the ACL anthol- 1727

ogy to obtain their DOIs. As some papers were re- 1728

named, preventing us from finding the correspond- 1729

ing paper in the ACL Anthology, we queried the 1730

Semantic Scholar API for the closest match, with 1731

a minimum of 0.85 similarity using the Python 1732

difflib.SequenceMatcher class. Finally, we 1733

manually searched for the remaining papers on 1734

Semantic Scholar. After this process, we were left 1735

with only 6 papers with no Semantic Scholar ID. 1736

We exclude these from our analysis. Finally, for 1737

each paper, we queried its citations and its refer- 1738

ences using the Semantic Scholar API, and con- 1739

structed the citation graph based on the results. 1740

Citation intent and influence For each citation, 1741

the Semantic Scholar API provides a label of the 1742

intent (e.g. as background information, use of meth- 1743

ods, or comparing results) (Cohan et al., 2019), and 1744

a label on whether it is a “highly influential” cita- 1745

tion for the paper or not (Valenzuela et al., 2015). 1746

We rely on the latter label when analyzing the most 1747

cited IA papers in Section 6. 1748

Track classifiers details We are interested in an- 1749

alyzing how papers from different tracks cite each 1750

other. However, as most of the nodes in our citation 1751

graph are papers that are not in ACL and EMNLP, 1752

we have no ground truth information for the track 1753

of these papers. Therefore, we built a classifier 1754

18



Conference Data Source

ACL 2018 Conference schedule web page
ACL 2019 Conference schedule web page
ACL 2020 Virtual conference web page
ACL 2021 Conference schedule web page
ACL 2022 Provided by the program chairs
ACL 2023 Github repository to generate webpage
EMNLP 2018 Provided by the program chairs
EMNLP 2019 Conference schedule web page
EMNLP 2020 Github repository to generate webpage
EMNLP 2021 Provided by the program chairs
EMNLP 2022 Provided by the program chairs
EMNLP 2023 Provided by the program chairs

Table 3: Data source for each conference.

to predict the track of a paper, given its title and1755

abstract. The classifier is based on the Specter21756

model (Cohan et al., 2020), which takes a title and1757

an abstract of a paper, and outputs an embedding.1758

We add and train a MLP layer on top of this model1759

to obtain our classifier.1760

We split the data 80/20 using only papers from1761

ACL and EMNLP from 2020 to 2023 (for which1762

we have gold labels), and we trained the classifier1763

for 50 epochs using Adam and a cross entropy loss.1764

We used a learning rate of 2 ∗ 10−3 and a learning1765

rate scheduler with exponential decay (γ = 0.995).1766

We perform upsampling as the number of papers1767

in each track is imbalanced. Additionally, to get an1768

even more diverse set of papers for the interpretabil-1769

ity and analysis track, we augment the training data1770

with papers accepted to the BlackboxNLP work-1771

shop, which focuses on IA work.1772

We find that some tracks are more difficult to pre-1773

dict correctly than others (e.g., Efficient Methods).1774

We attribute this to both the limited training data1775

and the ambiguity of submission tracks. We hence1776

restrict ourselves to the 11 tracks (including IA)1777

with the highest classification accuracy, and intro-1778

duced an ‘Other’ category to group the remaining1779

tracks, which we exclude from our classifier analy-1780

ses. The final set of tracks in our classifier is:1781

•Dialogue1782

•Ethics1783

•Generation1784

•Information Extraction/Retrieval1785

•Interpretability and Analysis1786

•Machine Learning1787

•Machine Translation and Multilinguality1788

•Multimodality, Speech and Grounding1789

•Question Answering1790

•Social Science 1791

•Summarization 1792

•Other 1793

On this final set of tracks, our classifier achieves 1794

an F1 micro/macro score of 0.61/0.61. Given how 1795

noisy submission track labels can be (a paper can 1796

often be a plausible candidate for multiple tracks), 1797

we find our classifier’s performance to be reason- 1798

able. We additionally perform a manual error anal- 1799

ysis and expect the classification errors made on 1800

the test set; most errors were cases where the paper 1801

could have been submitted to the predicted track. 1802

Finally, we label the citation graph using our 1803

classifier. We used Semantic Scholar and Ope- 1804

nAlex (Priem et al., 2022) (in accordance with their 1805

terms of use) to obtain abstracts. 4.9% of the papers 1806

had no abstract in either source; we thus exclude 1807

these from our analysis. 1808

B.1 Sanity checks 1809

Additional IA track classifier evaluations As 1810

we are mostly interested in the performance of de- 1811

tecting IA papers, we validate our classifier in 2 1812

different ways: using the IA papers suggested by 1813

our respondents in the survey, and manual annota- 1814

tion of 556 papers. 1815

For papers suggested by survey respondents (af- 1816

ter removing papers included in the training data), 1817

we run our classifier and get predicted tracks. The 1818

classifier obtained an accuracy of 78.1% (82/105). 1819

Considering that these papers are out-of-domain 1820

in comparison to the training data (some are even 1821

IA papers outside of NLP), we believe this to be a 1822

good result. 1823

As for the 556 papers that were manually an- 1824

notated by two authors, our classifier is 87.8% 1825

(488/556) accurate. As this data is biased towards 1826

non-IA papers (506/556 papers), we also compute 1827

precision, recall and F1 scores. The F1 score is 1828

0.60, precision is 1.0 and recall is 0.42. Since high 1829

precision and low recall show that we underselect 1830

IA papers, we get a conservative estimate of our 1831

positive results rather than an overly generous esti- 1832

mate, which we find acceptable. 1833

Correlation between betweenness centralities 1834

and citation counts Leydesdorff (2007) find that 1835

betweenness centrality can be highly correlated to 1836

citation counts. Although this is expected (papers 1837

with more citations can also act better as bridges), 1838

given that BC is being used as a proxy to mea- 1839

sure the “interdisciplinarity" of a field, we would 1840
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Figure 8: Betweenness centralities versus citation
counts for papers in ACL and EMNLP since 2020.

want this metric to be somewhat orthogonal to the1841

citation counts. We compute the the correlation1842

between the citation counts and the BC of all nodes1843

in our citation graph. At 0.328 (p < 0.001), it is1844

considerably lower than the 0.509 reported by Ley-1845

desdorff (2007). Figure 8 provides a visualization1846

of the correlation.1847

C Survey details1848

We outline ethical considerations pertaining to our1849

survey, along with the final version of the survey1850

below.1851

C.1 Ethical considerations1852

Our survey involved research with human partic-1853

ipants, thus we report the full text of the survey1854

below, and information about recruitment in Sec-1855

tion 3. We determined there to be a negligible1856

risk of harms from participating in our survey, as1857

it contains no offensive or harmful content. As1858

shown in the full survey below, we describe our1859

study objectives and remind respondents that fill-1860

ing out the survey is completely voluntary. We then1861

explicitly ask for their consent to participate, and1862

obtain consent from all 138 survey respondents.1863

For respondents who may not have completed the1864

survey, no data was collected. In lieu of financial1865

compensation, we offered survey respondents the1866

optional opportunity to provide their name or an1867

alias that we would mention in the acknowledge-1868

ments of any future paper we write with the survey1869

results. To protect respondent privacy and confi-1870

dentiality, we will not release the original survey1871

responses in full, but only release high-level statis-1872

tics, annotations from our qualitative coding, and 1873

select non-identifying examples in Section 7. 1874

C.2 Full survey 1875

Impact of Model Analysis and Interpretability 1876

Research on Progress in NLP 1877

Estimated time to complete the survey: 12 minutes 1878

Study description 1879

This project aims to measure the impact that 1880

model analysis and interpretability research has 1881

on current progress in NLP as well as its possible 1882

future impact on the field. 1883

1884

You are encouraged to fill out this survey even 1885

if you have no exposure to model analysis and 1886

interpretability work. 1887

1888

Filling out this questionnaire is completely 1889

voluntary. 1890

1891

By clicking "Yes" below, I am verifying that I have 1892

read the description above and I consent to partici- 1893

pate in this research study. 1894

• Yes 1895

• No 1896

What do we mean by model analysis and 1897

interpretability research? 1898

Model analysis and interpretability research in 1899

natural language processing (NLP) aims to develop 1900

a deeper understanding of and explain the behavior 1901

of NLP systems. 1902

1903

This includes (but is not limited to) explaining 1904

models’ internal computations, investigating 1905

broader phenomena observed during pre-training 1906

or adaptation, and providing a better understanding 1907

of the limitations and robustness of existing 1908

models. 1909

1910

Work on topics such as attribution methods, prob- 1911

ing, mechanistic interpretability, analysis of embed- 1912

ding spaces, explainability, analysis of training dy- 1913

namics, analyzing model bias, etc., are additional 1914

examples of model analysis and interpretability re- 1915

search. 1916

Background questions 1917

1. What is your occupation? 1918

• Bachelor’s student 1919

• Master’s student 1920

20



• PhD student/candidate1921

• Postdoc1922

• Assistant professor1923

• Associate professor1924

• Full professor1925

• Junior industry researcher1926

• Senior industry researcher1927

• NLP practitioner1928

• Other [fill in]1929

1930

2. What is your area of research?1931

Feel free to select multiple options or add missing1932

ones.1933

(The list below is adapted from the calls for papers1934

of COLM and ARR.)1935

• LM adaptation: fine-tuning, instruction-tuning,1936

reinforcement learning (with human feedback),1937

prompt tuning, and in-context alignment1938

• Data for LMs: pre-training data, alignment data,1939

and synthetic data — via manual or algorithmic1940

analysis, curation, and generation1941

• Evaluation of LMs: benchmarks, simulation1942

environments, scalable oversight, evaluation1943

protocols and metrics, human and/or machine1944

evaluation1945

• Societal implications: bias, fairness, account-1946

ability, transparency, equity, misuse, jobs, climate1947

change, and beyond1948

• Safety: security, privacy, misinformation,1949

adversarial attacks and defenses1950

• Science of LMs: scaling laws, fundamental1951

limitations, emergent capabilities, demystification,1952

interpretability, complexity, training dynamics,1953

grokking, learning theory for LMs1954

• Compute efficient LMs: distillation, com-1955

pression, quantization, sample efficient methods,1956

memory efficient methods1957

• Engineering for large LMs: distributed training1958

and inference on different hardware setups,1959

training dynamics, optimization instability1960

• Learning algorithms: learning, unlearning,1961

meta learning, model mixing methods, continual1962

learning1963

• Inference algorithms: decoding algorithms,1964

reasoning algorithms, search algorithms, planning1965

algorithms1966

• Human mind, brain, philosophy, laws and1967

LMs: cognitive science, neuroscience, linguistics,1968

psycholinguistics, philosophical, or legal perspec-1969

tives on LMs1970

• LMs for everyone: multilinguality, low-resource1971

languages, vernacular languages, multiculturalism,1972

value pluralism 1973

• LMs and the world: factuality, retrieval- 1974

augmented LMs, knowledge models, common- 1975

sense reasoning, theory of mind, social norms, 1976

pragmatics, and world models 1977

• LMs and embodiment: perception, action, 1978

robotics, and multimodality 1979

• LMs and interaction: conversation, interactive 1980

learning, and multi-agents learning 1981

• LMs with tools and code: integration with tools 1982

and APIs, LM-driven software engineering 1983

• LMs on diverse modalities and novel applica- 1984

tions: visual LMs, code LMs, math LMs, and so 1985

forth, with extra encouragements for less studied 1986

modalities or applications such as chemistry, 1987

medicine, education, database and beyond 1988

• NLP applications: sentiment analysis, summa- 1989

rization, question answering, etc. 1990

• Computational linguistics: discourse, pragmat- 1991

ics, phonology, morphology, syntax, semantics 1992

• Information extraction, information retrieval, 1993

text mining 1994

• Neurosymbolic approaches 1995

• Non-neural methods approaches for NLP 1996

• Other [fill in] 1997

1998

[OPTIONAL] 1999

If you would like, provide your name (or an 2000

alias) here and we will mention it in the acknowl- 2001

edgements of our future paper. [fill in] 2002

Your take on model analysis and 2003

interpretability research 2004

Reminder: What do we mean by model analysis 2005

and interpretability research? 2006

Model analysis and interpretability research in 2007

natural language processing (NLP) aims to develop 2008

a deeper understanding of and explain the behavior 2009

of NLP systems. 2010

2011

This includes (but is not limited to) explaining 2012

models’ internal computations, investigating 2013

broader phenomena observed during pre-training 2014

or adaptation, and providing a better understanding 2015

of the limitations and robustness of existing 2016

models. 2017

2018

Work on topics such as attribution methods, 2019

probing, mechanistic interpretability, analysis 2020

of embedding spaces, explainability, analysis of 2021

training dynamics, analyzing model bias, etc., 2022

are additional examples of model analysis and 2023
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interpretability research.2024

2025

3. How much do you agree with the following2026

statement?2027

The progress in NLP in the last five years would not2028

have been possible without findings from model2029

analysis and interpretability research.2030

• 1: strongly disagree2031

• 22032

• 32033

• 42034

• 5: strongly agree2035

2036

4. How much do you agree with the following2037

statement?2038

The progress in NLP in the last five years would2039

have been slower without findings from model2040

analysis and interpretability research.2041

• 1: strongly disagree2042

• 22043

• 32044

• 42045

• 5: strongly agree2046

2047

5. How many model analysis and interpretabil-2048

ity works do you read compared to other topics?2049

• I don’t usually read model analysis and inter-2050

pretability work, but I do read NLP works about2051

other topics2052

• I do read some model analysis and interpretability2053

work, but much less than other topics2054

• I read model analysis and interpretability work in2055

about the same volume as other NLP-related topics2056

• I read model analysis and interpretability work2057

more than other NLP topics2058

• Most of the works I read are about model analysis2059

and interpretability2060

2061

6. How, if at all, does model analysis and inter-2062

pretability work influence your own work?2063

□ It provides me with new research ideas2064

□ It changes my mental model of what the2065

capabilities and limitations of models are2066

□ It helps me ground my explanations of my own2067

results2068

□ It adds useful tools for me to visual-2069

ize/evaluate/understand the behavior of a2070

model2071

□ It does not influence my work2072

□ Other [fill in]2073

2074

[OPTIONAL]2075

7. Provide up to 5 model analysis and inter- 2076

pretability papers that have influenced your 2077

work (please provide a comma separated list of 2078

paper titles or URLs). [fill in] 2079

2080

8. In your day-to-day work, do you use con- 2081

cepts from model analysis and interpretability 2082

research (e.g., probing, residual stream, induc- 2083

tion heads, causal interventions, MLP layers as 2084

key-value memories, etc.)? 2085

• Never 2086

• Rarely 2087

• Sometimes 2088

• Often 2089

• Always 2090

2091

9. Do you think model analysis and inter- 2092

pretability research is important, and if so, why? 2093

□ Understanding model limitations and capabili- 2094

ties 2095

□ Making models more computationally efficient 2096

□ Developing safety mechanisms 2097

□ Improving model trustworthiness 2098

□ Explainability for users 2099

□ To fullfill legal requirements (e.g., GDPR) 2100

□ Improving model capabilities 2101

□ Developing novel architectures 2102

□ Developing novel architectures 2103

□ I do not think model analysis and interpretability 2104

work is important 2105

□ Other [fill in] 2106

2107

[OPTIONAL] 2108

10. If you selected "I do not think model analysis 2109

and interpretability research is important" 2110

above, please elaborate why. [fill in] 2111

2112

[OPTIONAL] 2113

11. In your opinion, how important is model 2114

analysis and interpretability research to work 2115

in the areas below? 2116

2117

Work on multilinguality and low-resource lan- 2118

guages 2119

• Model analysis and interpretability research is 2120

not important for 2121

• Model analysis and interpretability research is 2122

somewhat important for 2123

• Model analysis and interpretability research is 2124

very important for 2125

2126

Work on multimodal learning, grounding, and 2127
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embodiment2128

• Model analysis and interpretability research is2129

not important for2130

• Model analysis and interpretability research is2131

somewhat important for2132

• Model analysis and interpretability research is2133

very important for2134

2135

Work on engineering for large language models2136

• Model analysis and interpretability research is2137

not important for2138

• Model analysis and interpretability research is2139

somewhat important for2140

• Model analysis and interpretability research is2141

very important for2142

2143

Work on factuality, reasoning, world models2144

• Model analysis and interpretability research is2145

not important for2146

• Model analysis and interpretability research is2147

somewhat important for2148

• Model analysis and interpretability research is2149

very important for2150

2151

Work on societal implications, bias, misuse, and2152

beyond2153

• Model analysis and interpretability research is2154

not important for2155

• Model analysis and interpretability research is2156

somewhat important for2157

• Model analysis and interpretability research is2158

very important for2159

2160

[OPTIONAL]2161

12. In your opinion, what is missing in model2162

analysis and interpretability research right2163

now? Where should it go in the future and how2164

should it be shaped differently? [fill in]2165

2166

[OPTIONAL]2167

13. Do you have additional opinions or thoughts2168

on model analysis and interpretability research?2169

[fill in]2170

D Qualitative coding2171

Qualitative coding is an inductive methodology2172

from the social sciences (Saldana, 2021), used to2173

systematically surface thematic patterns in data2174

with less structure In the context of this paper,2175

we use qualitative coding to analyze open-ended2176

survey responses, and paper titles and abstracts.2177

Two authors performed qualitative analysis of all 2178

70 open-ended survey responses, and 556 papers 2179

(based on their titles and abstracts). 2180

We began by analyzing the survey responses: 2181

one round of independent coding was done, based 2182

on which we reviewed our codes to normalize terms 2183

and resolve disagreements. After this, a second 2184

round of annotation was performed. 2185

As for the paper annotations, the authors did 2186

a combination of independent coding (with dis- 2187

cussion and re-coding), and co-coding. Through- 2188

out the annotation process, the authors followed 2189

best practices by working closely together to clar- 2190

ify the annotation procedure, discuss the emerging 2191

themes, and re-annotate data that was coded early 2192

on (Bengtsson, 2016). 2193

We iteratively merged codes for related themes 2194

(e.g., pre-training trajectories and training dynam- 2195

ics), and to resolve inconsistencies from typos (e.g., 2196

in-context learning instead of in-contex learning) 2197

and to normalize themes (e.g., interventions instead 2198

of intervention), where applicable. All merging op- 2199

erations are released as part of our code. 2200

We measure inter-coder reliability with percent- 2201

age agreement (O’Connor and Joffe, 2020), which 2202

was above 90% across all subsets of annotation. 2203

Summary statistics are shown in Table 4. 2204

E Additional results 2205

Relative growth of submission tracks Figure 9 2206

shows the the relative growth of the IA track com- 2207

pared to other tracks that have consistently existed 2208

since 2020. IA is the fastest growing track at ACL 2209

and EMNLP. 2210

Betweenness centrality Figure 10 shows the be- 2211

tweenness centralities for the different tracks we 2212

consider. We note that for this analysis we only con- 2213

sider the portion of the citation graph for which we 2214

have gold track labels. Our results show that IA has 2215

the second largest median centrality. This indicates 2216

that IA plays a central role in the ACL/EMNLP 2217

citation graph, in the sense that IA papers often lie 2218

on the shortest path that connects to random papers 2219

of the graph. 2220

Which tracks cite IA papers Figure 11 shows 2221

the percentage of references to IA papers across 2222

tracks. Efficient Methods, Machine Learning, and 2223

Large Language Models cite IA papers more often 2224

than other tracks. 2225
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Data source Instances Themes (total) Themes (per instance) Agreement

Survey (what’s missing?) 42 44 2.12 91.01
Survey (why not important?) 6 9 1.5 100.00
Survey (additional thoughts) 22 29 1.95 100.00
Papers (survey) 29 59 4.28 100.00
Papers (top-50 IA) 50 115 5.38 97.03
Papers (top-50 non-IA) 50 99 4.46 96.41
Papers (non-IA papers highly
influenced by IA)

456 327 4.90 97.49

Table 4: Qualitative coding statistics. For each data source, we list the total number of data instances, the total
number of themes assigned, the number of themes per instance, and the percentage agreement between the codes
assigned by two annotators.
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Figure 9: Growth of accepted papers per track in com-
paring ACL/EMNLP in 2020 vs. in 2023. This consid-
ers the tracks that have consistently existed in ACL and
EMNLP in both those years.

Comparing extra-track ratios Figure 12 com-2226

pares the percentage of intra-track citations across2227

tracks. The percentage of intra-track citations of2228

the IA track is positioned roughly in the middle of2229

tracks. This shows that IA is not an outlier in terms2230

of intra-track citations.2231

Top themes of highly cited IA papers Table 52232

shows the top themes that appear in (1) the papers2233

mentioned by survey participants; (2) the top-502234

most cited IA papers; (3) the top-50 most cited2235

non-IA papers.2236

Citational intent Figure 13 shows the distribu- 2237

tion of citation intents for three groups: IA papers 2238

suggested in our survey responses, the top cited IA 2239

papers in ACL/EMNLP, and the overall most cited 2240

papers in ACL/EMNLP within our citation graph. 2241

Both the IA papers suggested in our survey and the 2242

top cited IA papers in ACL/EMNLP are primarily 2243

cited as background information. In contrast, the 2244

overall top cited papers in ACL/EMNLP are mostly 2245

cited for their use of methods. 2246
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Figure 10: Betweenness centrality of ACL and EMNLP papers since 2020 by track. Lines at the middle of the box
represent the medians, but some tracks have their median at 0.

Sum
mari

za
tio

n

Soc
ial

 S
cie

nc
e

Pho
no

log
y, 

Morp
ho

log
y a

nd

Word
 S

eg
men

tat
ion

Mac
hin

e T
ran

sla
tio

n a
nd

Mult
ilin

gu
ali

ty

Res
ou

rce
s a

nd
 E

va
lua

tio
n

Mult
im

od
ali

ty,
 S

pe
ec

h a
nd

Grou
nd

ing

Sen
tim

en
t A

na
lys

is

Disc
ou

rse
 an

d P
rag

mati
cs

Syn
tax

Dial
og

ue

Gen
era

tio
n

Inf
orm

ati
on

 E
xtr

ac
tio

n/R
etr

iev
al

App
lic

ati
on

s

Ethi
cs

Que
sti

on
 Ans

weri
ng

Lin
gu

ist
ic 

The
ori

es
 an

d

Psy
ch

oli
ng

uis
tic

s

Ind
us

try

Sem
an

tic
s

Com
mon

se
ns

e R
ea

so
nin

g

Effic
ien

t M
eth

od
s

Mac
hin

e L
ea

rni
ng

La
rge

 La
ng

ua
ge

 M
od

els

Int
erp

ret
ab

ilit
y a

nd
 Ana

lys
is

0%

20%

40%

60%

80%

P
er

ce
nt

ag
e 

of
 re

fe
re

nc
es

 to
 IA

Figure 11: Percentage of references to IA papers according to our classifiers prediction.
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Source Top themes (% of papers in which the theme appears)

Survey representation analysis (34%), novel method (24%), probing (24%), attention analysis
(21%), interventions (17.2%), mechanistic interp (17.2%), attribution (17.2%)

Top-50 IA analysis (40%), novel method (36%), evaluation (32%), explainability (20%), lin-
guistics (16%), probing (16%)

Top-50 non-IA novel model (34%), novel method (32%), novel dataset (24%), analysis (16%)

Table 5: Top themes of highly influential IA papers (mentioned by survey respondents and top-50 most-cited IA
papers from the citation graph), compared to the top themes of the top-50 most-cited non-IA papers. Themes are
not mutually exclusive.
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Figure 13: Citation intent percentages for the interpretability and analysis papers suggested in the responses in our
survey, the top cited interpretability and analysis papers in ACL/EMNLP, and the top cited papers in ACL/EMNLP
for any track.
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