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ABSTRACT

In physics, there is a scalar function called the action which behaves like a cost
function. When minimized, it yields the “path of least action” which represents the
path a physical system will take through space and time. This function is crucial
in theoretical physics and is usually minimized analytically to obtain equations
of motion for various problems. In this paper, we propose a different approach:
instead of minimizing the action analytically, we discretize it and then minimize
it directly with gradient descent. We use this approach to obtain dynamics for six
different physical systems and show that they are nearly identical to ground-truth
dynamics. We discuss failure modes such as the unconstrained energy effect and
show how to address them. Finally, we use the discretized action to construct a
simple but novel quantum simulation. Code: github.com/greydanus/ncf
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Figure 1: Finding a path of least action with gradient descent. Left: We compare the normal approach
of ODE integration to our approach of action minimization. The action is the sum, over every point
in the path, of kinetic energy T minus potential energy V . We compute the gradients of this quantity
with respect to the path coordinates and then deform the initial path (yellow) into the path of least
action (green). This path resolves to a parabola, matching the path obtained via ODE integration.
Right: We plot the path’s action S, kinetic energy T , and potential energy V over the course of
optimization. All three quantities asymptote at the S, T , and V values of the ODE trajectory.

1 INTRODUCTION

Over the past two centuries, many works have studied the action in a variety of physical and
mathematical settings (Goldstine, 2012; Ferguson, 2004). In all these studies, the authors treated
the action analytically. They only solved for paths of least action indirectly by first invoking the
Euler-Lagrange equation, then solving for a system of differential equations, and finally integrating
those equations over time with an ordinary differential equation (ODE) solver.

In this paper, we take a different approach:
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Instead of solving for paths of stationary action analytically, we discretize the
action function and then minimize it directly with gradient descent.

We use this approach to obtain dynamics for six different physical systems: a body in free fall,
a pendulum, a double pendulum, the three body problem, a gas with a Lennard-Jones potential,
and the planetary ephemerides of the inner solar system. We document a failure mode called the
unconstrained energy effect and discuss how to mitigate it. Finally, we note that the action controls
the resonance modes of paths in quantum mechanics and use our discretized version to construct a
simple quantum simulation.

2 BACKGROUND

The Lagrangian method. The Lagrangian method begins by considering all the paths a physical
system could take from an initial state x(t0) to a final state x(t1). Then it provides a simple rule
for selecting the path x̂ that nature will actually take: the action S, defined in Eqn. 1, must have a
stationary value over this path. Here T and V are the kinetic and potential energy functions for the
system at any given time t in [t0, t1].

S :=

∫ t1

t0

L(x, ẋ, t) dt where L = T − V (1)

x̂ has the property
d

dt

(
∂L

∂ ˙̂x(t)

)
=

∂L

∂x̂(t)
for t ∈ [t0, t1] (2)

Finding x̂ with Euler-Lagrange. When S is stationary, we can show that the Euler-Lagrange
equation (Eqn. 2) holds true over the interval [t0, t1] (Morin, 2008). This observation is valuable
because it allows us to solve for x̂: first we apply the Euler-Lagrange equation to the Lagrangian L
and derive a system of partial differential equations. Then we integrate those equations to obtain x̂.
Importantly, this approach works for all problems spanning classical mechanics, electrodynamics,
thermodynamics, and relativity. It provides a coherent theoretical framework for studying classical
physics as a whole.

Finding x̂ with action minimization (this work). A more direct approach to finding x̂ begins with
the insight that paths of stationary action are almost always also paths of least action Morin (2008).
Thus, without much loss of generality, we can exchange the Euler-Lagrange equation for the simple
minimization objective shown in the third part of Eqn. 3. Meanwhile, as shown in the first part of
Eqn. 3, we can redefine S as a discrete sum over N evenly-spaced time slices:

S :=

N∑
i=0

L(x, ẋ, ti)∆t where ẋ(ti) :=
x(ti+1)− x(ti)

∆t
and x̂ := argmin

x
S(x) (3)

One problem remains: having discretized x̂ we can no longer take its derivative to obtain an exact
value for ẋ(ti). Instead, we must use the finite-differences approximation shown in the second part of
Equation 3. Of course, this approximation will not be possible for the very last ẋ in the sum because
ẋN+1 does not exist. For this value we will assume that, for large N , the change in velocity over
the interval ∆t is small and thus let ẋN = ẋN−1. Having made this last approximation, we can
now compute the gradient ∂S

∂x numerically and use it to minimize S. This can be done with PyTorch
(Paszke et al., 2019) or any other package that supports automatic differentiation.

Related work: minimizing the Onsager-Machlup action. One line of related work involves
minimizing the action of the Onsager-Machlup (OM) function (Onsager & Machlup, 1953; Faccioli
et al., 2006). It is used to describe the time dynamics of the probability density of a stochastic
process. The action of the OM function has a different physical interpretation from the action of a
Lagrangian but shares certain mathematical properties. Adib (2008) discretize diffusion trajectories
and calculate their gradients (Eqn. 22) but do not minimize the OM action. Conversely, Lee et al.
(2017); Zuckerman & Woolf (2000) minimize the OM action – to analyze protein folding dynamics –
but use gradient-free optimization methods: Metropolis MCMC and Conformational Space Annealing
respectively (Metropolis et al., 1953; Lee et al., 1997). Like our work, these works fix the initial and
final states and (sometimes) minimize the action over the interval. Unlike our work, they use the OM
function and do not perform minimization with automatic differentiation or gradient descent. We
discuss additional related work in the context of gradient-based optimization of physics problems in
Appendix A.1.
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Figure 2: Visualizing our technique applied to a variety of different physics simulations. First row:
We show diagrams of the setups and variables of the six systems under investigation. Second row:
we visualize the ODE paths (purple), initial semi-random paths (yellow), and final paths of minimized
action (green). These plots give an intuition for how the paths deform during optimization. Third
row: We visualize the optimization dynamics in terms of action, kinetic energy, and potential energy.

3 SIX EXPERIMENTS
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Figure 3: The unconstrained energy effect in the pendulum
task. Optimization converges to the baseline path initially.
After additional optimizer steps, it converges to a different
but also valid solution where the pendulum swings up, hangs
vertically, and then falls into the final state. This occurs
because our current methods do not constrain the total energy
T + V in the way the ODE initial state (x(t0), ẋ(t0)) does.

Minimizing the action in the way we
have described has not been studied
in detail. We have discussed a few
related works which do this in the
context of the OM function but their
scope and details diverge from this
work and each other. Thus in our
experiments we prioritized simplicity.
Unless otherwise specified, we set all
constants such as mass and gravity to
one. When selecting physical systems,
we began with two toy problems (for
debugging): a free body and a pendu-
lum. Then we investigated four more
complex systems: a double pendulum,
the three body problem, a simple gas, and a real ephemeris dataset of planetary motion. These systems
presented an interesting challenge because they were all nonlinear, chaotic, and high-dimensional1. In
each case, we compared our results to a baseline path obtained with a simple ODE solver using Euler
integration. Appendix A.2 gives more details, including the Lagrangians and equations of motion.

The unconstrained energy effect. Early in our experiments we encountered the unconstrained
energy effect. This happens when the optimizer converges on a valid physical path with a different
total energy from the baseline. Figure 3 shows an example. The reason this happens is that, although
we fix the initial and final states, we do not constrain the path’s total energy T + V . Even though
paths like the one in Figure 3 are not necessarily invalid, they make it difficult for us to recover
baseline ODE paths. For this reason, we use the baseline ODE paths to initialize our paths, perturb
them with Gaussian noise, and then use early stopping to select for paths which are similar (often,
identical) to the ODE baselines. This approach matches the mathematical ansatz of the “calculus of
variations” where one studies perturbed paths in the vicinity of the true path of least action. We note
that there are other ways to mitigate this effect which don’t require an ODE-generated initial path.
We discuss them in Appendix A.2, as they are beyond the main scope of this work.

Results. On all six physical systems we obtained paths of least action which were nearly identical to
the baseline paths of the ODE solver. Figure 2 shows optimization dynamics and qualitative results
while Table 2 shows quantitative results. These results suggest that action minimization can generate
physically-valid dynamics even for chaotic and strongly-coupled systems like the double pendulum

1The state of the simple gas, for example, has a hundred degrees of freedom.
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and three body problem. One interesting pattern we noticed was that optimization dynamics were
dominated by the kinetic energy term T (third row of Figure 2). This occurs because S tends to be
more sensitive to T (which grows as ẋ2) than V . Future methods should focus on stabilizing T .

4 THE QUANTUM LIMIT

Figure 4: Visualizing wave packet dynamics at dif-
ferent scales (ℏ ∝ Scale−1). As ℏ → 0, the waves
retain coherence longer and interfere with the right
wall at higher frequencies, approaching the behav-
ior of a classical particle at Scale = 2. Coherence
grows as oscillations along the off-diagonals of the
phase-action matrix, K, increase in frequency.

The equation for the action, which Lagrange in-
troduced in the context of classical mechanics,
is one of the few equations which does not need
to be redefined in the quantum context. Here,
systems are described with a wave function and
allowed to take on a superposition (linear com-
bination) of paths at once. The best-known ex-
ample of this phenomena is the famous double-
slit experiment, where a single electron fired
at two separate slits travels through both and
interferes with itself on the other side. This
interference occurs because the phase evolves
differently with each path and thus is out of sync
when the paths recombine. The exponential por-
tion of Eqn. 4 describes how a system evolves
as it travels along a given path: it oscillates at a
rate proportional to the path’s action. Thus the
phase of the wave function, after traveling along
a given path for some interval of time, is also proportional to the action. The rest of Eqn. 4 describes
how to recombine the contributions of all paths after some interval of time. First, it rotates the wave
function by the phase change associated with each path and then it sums (integrates) these states to
obtain the full state at the end of the time interval. In the double slit example, this summation would
recombine the waves from the two slits into the full wave function Ψ(x, t) sampled at the sensor.

Ψ(x, t) =

∫
x(0)=x

Ψ(x(t),0) ∗ exp{ i
ℏ

∫
L[x(τ), ẋ(τ), τ ]dτ} Dx (4)

Discretizing the path integral. Feynman et al. (1965) and many others have treated Eqn. 4
analytically, deriving from it both Schrödinger’s equation and the classical principle of least action.
However, as was the case with the classical action, few works have discretized the paths and used the
action to construct a numerical simulation. Once again, that is our goal. It can be done by dividing the
spatial and time dimensions of Eqn. 4 into small, uniform intervals. Then, for each time interval, we
can restrict our group of paths to only the N2 linear paths that connect the N discrete spatial locations
to one another. We can calculate their actions and, with the help of Eqn. 4, their phase changes. Then
we can organize these phase changes in an N ×N phase-action matrix, K, where rows correspond
to locations of path start points, columns correspond to locations of path endpoints, and the matrix
elements themselves are the phase changes of the paths. This matrix, plotted in Figure 4, provides an
intuitive way to visualize how nearby paths interfere with one another at the quantum-classical limit.

A simple quantum simulation. Now, to simulate dynamics over one discrete time slice, we can
simply multiply the wave function (a discretized vector of complex amplitudes at the N spatial
locations) by K. Then we can evolve it arbitrarily far into the future by multiplying by K repeatedly
(see Figure 4). The quantum simulation we recover is fundamentally different from the more popular
Hamiltonian-based simulations (Hartree & Hartree, 1935; Richings et al., 2015) and is remarkable
for its simplicity. It mirrors the philosophical approach we took in the six classical experiments in
that, in both cases, we express computation in terms of the action as directly as possible.

5 CONCLUSION

Basic physical principles and the elegant reasoning behind them are often obscured in the midst of
numerical approximations and domain-specific notation. In this work we have sought to prevent this
from happening by expressing computation in terms of the action as directly as possible.
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A APPENDIX

A.1 ADDITIONAL BACKGROUND

History and interpretation of the action. Physicists discovered the action in the 19th century while
attempting to derive the mechanics of solid and fluid bodies on a purely analytic basis Ferguson
(2004). There was a desire to build a coherent, mathematically-consistent framework for describing
the physical world. Notions of physics at the time were highly intuitive and lacked rigorous analytic
treatment. Thus at its conception the utility of the action was the main focus, not its physical
interpretation. Even so, the interpretation of the action is of fundamental interest in physics. For
the most part (there are exceptions in relativity) the action is written as the difference between the
summed kinetic energy and the summed potential energy along a (closed) system’s path through time
(see Eqn. 1. Our intuition is that these two terms roughly correspond to the total flow of energy due
to entropic forces and inertial forces respectively. Paths of least action, then, represent the notion
that the dynamics of the universe are the result of a delicate balance between forces associated with
entropy and forces associated with inertia.

The Newtonian vs. Lagrangian view of physics. When studying physics, one begins with concepts
that are most accessible to human intuition and then proceeds towards more abstract concepts that
describe nature in generality. This, for example, is why introductory physics courses emphasize a
Newtonian view of physics. Here a group of objects are studied at a particular snapshot in time,
their forces tabulated, and their positions updated to yield the next state of the system. This view is
intuitive because it matches our natural experience of time and space. The Lagrangian method, by
contrast, treats the entire path of a physical system as its own mathematical entity. It is the more
abstract and unintuitive approach, but it is also far more general and mathematically consistent across
domains.

Related work: gradient-based optimization for physics. We have already addressed how other
works studied minimization of the OM action without using gradient-based methods. There are
also a number of works that have explored the use of automatic differentiation and gradient-based
optimization in the physical sciences, but have not specifically looked at the action. Schoenholz &
Cubuk (2020) use these tools to study phenomena such as phase transitions and crystal packing in
the context of molecular dynamics. Freeman et al. (2021) introduce a general-purpose differentiable
physics engine for research in policy optimization. Another recent line of work combines gradient-
based optimization with differential equations (DE). For example, Chen et al. (2018) proposed using
neural networks to parameterize ODEs and Lutter et al. (2019); Cranmer et al. (2020) showed how to
do the same for Lagrangian DEs. Meanwhile, work by Bar-Sinai et al. (2019) and others has focused
on improving adaptive integration methods.

A.2 ADDITIONAL METHODS

Optimization. We experimented with standard gradient descent, gradient descent with momentum,
and the Adam optimizer Kingma & Ba (2014), which adaptively scales momentum. Adding mo-
mentum – either directly or via Adam – improved convergence time by at least a factor of two. We
chose the Adam optimizer so as to avoid setting separate momentum hyperparameters. We used 500
optimization steps for all of our experiments except for the three body problem, which recovered,
with near-exact precision, the ODE path after 1000 steps.

Constructing the baseline paths. To simulate a classical system’s dynamics using traditional
methods, we must first derive a set of second-order differential equations of motion from physical
principles. This is generally done via application of Newton’s Second Law or the Euler-Lagrange
equation (Eqn. 2). In all systems discussed in this paper, these equations of motion are directly
derivable and expressed as sets of coupled ordinary differential equations (ODEs) in Table 1. In order
to set up a traditional baseline for contrasting with the new action optimization method, each of these
was solved numerically using Euler’s method prior to optimizer trials, using boundary conditions
known to produce complex behaviors. Euler’s method is the most basic and broadly understood
numerical ODE-solving technique, and was chosen so as to maximize the baseline’s analogy to our
equally basic but as-yet untested optimization-based method.

Other ways to address the unconstrained energy effect. Several alternative methods were imple-
mented in attempts to address the unconstrained energy effect before the path perturbation method
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discussed in the main body of the paper was finally selected. Initially, upon realizing the problem
lay in a lack of sufficient constraints, we attempted to feed the optimizer the same x(t0), ẋ(t0)
information that the ODE solver used to resolve total system energy. The simplest way to do this in
our discretized path model was to give the optimizer more reference points from the baseline ODE
simulation. Practically, this meant freezing not just the initial and final points of the path during
optimization, but several of the adjacent points as well. While this did constrain the initial and final
velocities of the optimized paths, it did not significantly affect the behavior of the entire path unless
large swathes of points were frozen. As this would greatly reduce the space of potential applications,
we shifted our attention to other possible solutions.

Next, two distinct regularization schemes were implemented, both based on the addition of energy
conservation terms in the optimizer loss function. The first added a global energy loss term, which
penalized the optimizer in proportion to the difference between total system energy at each point
along a path and the expected value, calculated from ODE x(t0) and ẋ(t0) input conditions. The
second regularizer did not rely on the ODE’s initial conditions, but added a loss term proportional to
the derivative of total system energy over time, i.e. a local energy conservation term. The first of
these worked to a degree, but the path perturbation method gave far cleaner results on the majority
of systems tested. Additionally, path perturbation showcases the potential ability of the optimizer
method to refine energy predictions based on coarser models. Especially in chemistry, precise energy
predictions are a common target for computational models. The local energy conservation method,
on the other hand, provided no noticeable advantage. Indeed, it sometimes had an overtly adverse
effect on optimizer performance, likely due to the additional restrictions it enforced on the space of
potential intermediate paths.

For the purposes of our exploratory work, the path perturbation method was the best fit. We
suspect that there is a better method for properly constraining the total energy and pointing action
minimization towards one non-degenerate path. One of the main focuses of future work in this area
should be the characterization of such a method.

System Lagrangian L = T − V Equations of motion Noise σ ∆t LR

Free Body 1
2mẋ2 −mgx ẍ = g 1.5 0.25 1

Pendulum 1
2ml2θ̇2 −mgl(1− cos(θ)) θ̈ = − g

l sin(θ) 2e-1 1 5e-2

Dbl. Pend. Appendix Appendix 6e-1 6e-2 1e-2

Three Body
∑
i,j

1
2miẋ

2
i +

Gmimj

|rij| ẍi = −G
∑
j

mj

|rij|2 r̂ij 3e-2 0.5 2e-4

Gas
∑
i,j

1
2miẋ

2
i +VLJ(rij) ẍi =

1
mi

∑
j

FLJ(rij) 1e-2 0.5 1e-4

Ephemeris
∑
i,j

1
2miẋ

2
i +

Gmimj

rij
ẍi = −G

∑
j

mj

r2ij
r̂ij 2e+10 1 day 1e+9

Table 1: All optimizations were run for 500 steps. LR = learning rate.

Double pendulum Lagrangian:

L =
1

2
(m1+m2)l

2
1θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2 + m2l1l2θ̇1θ̇2cos(θ1−θ2) + (m1+m2)gl1cos(θ1) + m2gl2cos(θ2)

Double pendulum equations of motion:

θ̈i =
fi − αifj
1− αiαj

where f1 ≡ − l2
l1
[

m2

m1 +m2
θ̇22sin(θ1 − θ2)−

g

l1
sin(θ1)]

f2 ≡ l1
l2
θ̇21sin(θ1 − θ2)−

g

l2
sin(θ2)
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Lennard-Jones Potential:

VLJ(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]

where r is the interparticle distance, ϵ is the depth of the potential energy well in the interaction
between the particles, and σ is related to the value of r where the potential energy is at the minimum.
Using the formula F = −∇U , we can also derive a Lennard-Jones force:

FLJ(r) = 4ϵ

[(
12σ12

r13

)
−

(
6σ6

r7

)]

Sum Action S (Js) Sum Kinetic T (Js) Sum Potential V (Js) Mean Square Error
System ODE Sim ODE Sim ODE Sim Initial Final
Free Body -13.8 -14.0 9.54 8.84 23.4 22.8 630 0.352
Pendulum -16.3 -16.3 81.9 81.7 98.2 98.0 0.118 1.20e-2
Dbl Pend 2.59 2.59 1.58 1.55 -1.01 -1.04 0.170 3.22e-3
3 Body 6.94e-4 6.96e-4 2.48e-4 2.49e-4 -4.46e-4 -4.47e-4 9.74e-3 5.74e-6
Gas 7.81e-5 7.71e-5 1.11e-4 1.18e-4 3.30e-5 4.13e-5 3.09e-5 2.80e-6
Ephemeris 3.76e33 3.75e33 1.28e33 1.26e33 -2.48e33 -2.49e33 1.50e20 7.12e17

Table 2: Quantitative results for the six classical systems described in Section 3.
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Figure 5: Visualizing the capped Lennard-Jones
potential. The capped portion of the potential has
a linearized slope to prevent forces associated with
small radii from growing extremely large and cre-
ating numerical instabilities.
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Figure 6: Visualizing solid and gas states generated
by using two different heat dissipation coefficients.

Gas simulation. Molecular dynamics (MD)
simulations enable investigation of dynamic sys-
tems that would be difficult to observe experi-
mentally (Hollingsworth & Dror, 2018). These
types of simulations date back to the 1950s, with
the earliest work studying hard sphere gasses
(Alder & Wainwright, 1959). Today, MD is
used to understand far more complicated sys-
tems, from helium diffusion in titanium to pro-
tein folding (Zhang et al., 2013; Lee et al., 2017).
These lines of work have advanced in step with
our computing abilities. At their most basic and
traditional, MD simulations operate by taking
the locations of all atoms in the system, using
some potential to model interactions between
the atoms, calculating each pairwise interaction,
and updating the velocities and positions of the
atoms accordingly (Schroeder, 2015).

Our simulation is similar to early MD sim-
ulations and simple MD simulations such as
Schroeder (2015) that are often used to help
students understand the properties of gasses in
introductory chemistry and physics classes. This
simulation is not optimized for a particular ma-
terial or problem, so there are limits to the quan-
titative information that we can get from it. We
use a Lennard-Jones potential (Figure 5) in deter-
mining interaction forces for simplicity, but this
only describes pairwise interactions. More so-
phisticated force fields are possible. Even with
this simple simulation, we are able to generate
a gas-like state and a solid-like state (Figure
6), akin to those possible with other simple MD simulations that use a Lennard-Jones potential
(Schroeder, 2015; Sweet et al., 2018).
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The Ephemeris experiment. We downloaded raw ephemeris data for the inner planets of the solar
system for the calendar year 2022 (1 day resolution). To do this we used the online interface provided
by NASA’s Horizons project. We used the Solar System Barycenter (SSB) for a coordinate center.
In constructing our simulation, we used the simple gravitational well potential of Gmimj

rij
and used

SI units for the gravitational constant G, planet masses m, and durations of time. In exploring
whether action minimization could reconstruct the inner planetary orbits, we perturbed only the
paths of the inner planets and not that of the Sun. We considered a time duration of two months for
this experiment because the orbits of Venus and Mercury cycle more rapidly than that of the Earth
(qualitative visualizations of initial and final paths grew difficult as their orbits begin to extend over
more than one cycle and overlap their tails).

A.3 ADDITIONAL QUANTUM

The principle of least action as a limiting case of the quantum path integral. The principle of least
action is just the limiting case of a path integral where the actions of paths considered are allowed
to approach classical scales. In this regime, paths whose neighbors have variation in their actions
contribute phases which are out of sync with one another. Summing contributions from these regions
is akin to integrating a rapidly-oscillating sine function: every section with a positive (constructive)
contribution is inevitably averaged out by an adjacent negative (destructive) contribution. As spatial
scales increase, oscillations along any given path become more frequent and the net contribution of
any arbitrary group of paths approaches zero. The sole exception occurs where groups of nearby paths
have vanishing variations in action. These paths contribute similar phases and interfere constructively
even at large spatial scales. From this point of view, the classical principle of least action is actually a
description of the resonance modes of the quantum path integral.

Additional discussion related to Figure 4. The quantum-classical resonance limit is depicted
graphically in Figure 4, where an identical quantum simulation is run at three different spatial scales.
Notice that as we trend up in scale towards classicality, even small movements along off-diagonals
result in a series of rapid oscillations. These are high-action paths, linear traversals of a particle
between distant points in our space grid over a vanishing dt. Contributions from these paths will
interfere destructively with one another in almost every trial. We see the direct result of this in the
timed snapshots of each simulation; at a larger scale, the same initial wave packet will decohere
slowly and exhibit only fine high-frequency interference structures compared to its lower-frequency
and thus more-quantum counterparts. As we approach the classical limit, the entire wave packet will
follow the classical path of least action for a particle bouncing off a wall with increasing fidelity.
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