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ABSTRACT

The performance of Conflict-Driven Clause Learning solvers hinges on internal
heuristics, yet the heterogeneity of SAT problems makes a single, universally op-
timal configuration unattainable. While prior automated methods can find special-
ized configurations for specific problem families, this dataset-specific approach
lacks generalizability and requires costly re-optimization for new problem types.
We introduce DASHCO, a framework that addresses this challenge by learning
a generalizable mapping from instance features to tailored heuristic ensembles,
enabling a train-once, adapt-broadly model. Our framework uses a Large Lan-
guage Model, guided by systematically defined Problem Archetypes, to generate
a diverse portfolio of specialized heuristic ensembles and subsequently learns an
adaptive selection mechanism to form the final mapping. Experiments show that
DASHCO achieves superior performance and, most notably, demonstrates robust
out-of-domain generalization where non-adaptive methods show limitations. Our
work establishes a more scalable and practical path toward automated algorithm
design for complex, configurable systems.

1 INTRODUCTION

The Boolean Satisfiability (SAT) problem is a cornerstone of computational complexity theory|Cook
(2023) and a problem of immense practical importance |Crawford & Baker| (1994)). Its applications
are vast, with modern solvers enabling crucial advances in diverse fields such as formal verifica-
tion [Prasad et al. (2005), planning Rintanen| (2012), and program analysis [Harris et al.[ (2010).
While SAT is NP-complete, powerful solvers based on the Conflict-Driven Clause Learning (CDCL)
paradigm |Audemard & Simon| (2009) can often solve massive industrial instances with remarkable
efficiency. However, this success is not uniform. The performance of these solvers is critically sensi-
tive to the internal algorithmic heuristics that guide their search. Developing effective heuristics has
consequently been a central focus of SAT research for decades|Audemard & Simon| (2012)); |Liang
et al.| (2018), traditionally relying on a long and costly process of manual design.

The challenge of designing effective heuristics has led to the development of hyper-heuristics [Burke
et al.[(2013)), which automate the process of selecting or generating algorithms. With the advent of
LLMs|Achiam et al.| (2023);|Comanici et al.|(2025)), this field has seen a surge of innovation. Frame-
works like FunSearch Romera-Paredes et al.| (2024)), Evolution of Heuristics (EoH) Liu et al.|(2024),
and ReEvo |Ye et al.| (2024)) have demonstrated that LLMs can generate novel and effective heuris-
tics for various combinatorial optimization (CO) problems by treating algorithm design as a program
search task within an evolutionary framework [van Stein & Bick| (2024). While the recent AutoSAT
framework Sun et al.|(2024)) has made important progress by applying this paradigm to SAT solvers,
a significant limitation underlies these pioneering works: they are inherently dataset-specific. Their
methodology is tailored to a particular training distribution, yielding a single, static heuristic con-
figuration optimized for that specific class of problems. Consequently, the resulting solver lacks
generalizability, and the expensive search process must be repeated for each new problem family.

This limitation is particularly severe because the SAT problem space is enormously heterogeneous,
serving as a universal language for problems from diverse domains like Minesweeper [Kaye| (2000),
cryptographic analysis |[Soos et al.| (2009), and logistics planning Rintanen| (2012). Moreover, the
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performance of a complex system like a CDCL solver is determined by the intricate and often
non-intuitive interplay of its multiple, interacting heuristics for tasks such as restarts /Audemard
& Simon| (2012)); |[Liang et al.| (2018) and phase selection. The synergistic or conflicting effects of
these combinations are notoriously difficult to predict, a challenge that even human experts struggle
to navigate. This implies that simply selecting the best-performing heuristic for each component in
isolation is unlikely to yield a globally optimal solver. It is therefore crucial to holistically explore
the vast combinatorial space of heuristic configurations, rather than merely optimizing individual
components. The goal of such exploration should not be to find a single “best” configuration, as
the optimal choice is deeply instance-dependent given the problem space’s heterogeneity |/Ansotegui
et al.| (2009). Rather, the challenge is to develop a system that can adapt its strategy based on the
problem at hand.

To address these fundamental challenges of generalizability and adaptation, we propose DASHCO
(Data-Aware SAT Heuristics Combinations Optimization). Instead of seeking a single, univer-
sally optimal solver, DASHCO introduces a new paradigm: its objective is to learn a generalizable
mapping from instance characteristics to tailored heuristic configurations. The core of our frame-
work is its data-aware nature, which enables a train-once, adapt-broadly model. DASHCO first
leverages an LLM, guided by high-level Problem Archetypes, to automatically generate a diverse
portfolio of specialized heuristic ensembles, each tailored to different problem structures. Subse-
quently, it learns an adaptive selection mechanism that partitions the instance space based on perfor-
mance, creating a map to dynamically choose the best-suited ensemble for any new SAT instance.
This approach transforms the problem from finding one optimal point to learning a function over the
entire problem space.

We summarize our main contributions as follows:

* We introduce DASHCO, a novel framework that shifts the paradigm from dataset-specific
optimization to generalizable, data-aware algorithm design, directly addressing the critical
limitation of prior work.

* We propose a methodology where Problem Archetypes guide an LLM to generate a di-
verse portfolio of specialized heuristic ensembles, enabling an automated exploration of
the complex interactions between different heuristic components.

* Through extensive experiments, we demonstrate that DASHCO significantly outperforms
baselines. Crucially, it exhibits superior out-of-domain generalization compared to meth-
ods that learn a single, non-adaptive configuration, validating the effectiveness and robust-
ness of our approach.

2 PRELIMINARIES & RELATED WORK

2.1 SAT AND CDCL-BASED SOLVERS

Let V = {x1,...,z,} be a finite set of Boolean variables. The corresponding set of literals is
defined as L = VU{-w | v € V'}. A clause C is a finite subset of L, representing the disjunction of
its literals, with the constraint that for any variable v € V, both v and —v cannot be simultaneously
present in C. A formula F' in Conjunctive Normal Form (CNF) is a set of clauses, {C1,...,Cy,},
representing their conjunction. A fruth assignment (or interpretation) is a function 7 : V. — {T, 1L}
that maps each variable to a truth value. The satisfaction of a formula under 7, denoted by 7 = F,
is defined hierarchically:

1. Aliteral [ € Lissatisfied by 7 (7 = D) ifl =vand 7(v) = T, orifl = -w and 7(v) = L.
2. A clause C is satisfied by 7 (7 = C) if there exists at least one literal [ € C such that

TEIL
3. A formula F is satisfied by 7 (7 |= F) if for all clauses C; € F, 7 = C;.

The Boolean Satisfiability (SAT) problem is the computational task of determining whether a given
CNF formula F' is satisfiable, i.e., whether there exists any truth assignment 7 such that 7 = F.

Modern SAT solvers are predominantly based on the Conflict-Driven Clause Learning (CDCL)
framework. A CDCL-based solver iteratively builds a partial assignment by making decisions and
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applying Boolean Constraint Propagation (BCP). When a conflict arises, the solver analyzes the
cause, learns a new clause to prevent the same conflict from recurring, and backtracks. This pro-
cess is profoundly influenced by a complex interplay of internal heuristics. These strategies guide
key aspects of the search, including which variable to decide on next (branching), when to aban-
don an unpromising search path and restart, and how to diversify the search by adjusting variable
phases. The specific combination and implementation of these heuristics are what differentiate mod-
ern solvers and are the primary determinants of their performance.

2.2 LLM-BASED HEURISTIC GENERATION

The emergence of LLMs has opened a new frontier for automated algorithm design. By leveraging
their powerful code generation and reasoning capabilities, researchers have started to automate the
discovery of heuristics. A prominent approach is to frame heuristic generation as a program search
problem within an evolutionary framework. FunSearch established this paradigm by evolving pro-
grams to find new mathematical discoveries Romera-Paredes et al.|(2024). This was extended to CO
problems by frameworks like EoH |Liu et al.| (2024) and ReEvo |Ye et al.| (2024), which use evolu-
tionary algorithms to prompt an LLM to iteratively refine and improve heuristic code for problems
like TSP and online bin packing. ReEvo notably introduced a reflective step, where the LLM pro-
vides textual feedback to guide the evolutionary search, emulating a verbal gradient Ye et al.[(2024).
MEOoH |Yao et al.|(2025) models automated heuristic design as a multi-objective optimization prob-
lem, using a dominance-dissimilarity mechanism with an LLM to generate a set of heuristics that
balance performance and efficiency.

AutoSAT [Sun et al.[ (2024) was the first to apply this paradigm to the intricate environment of
SAT solvers. Recognizing that generating a competitive solver from scratch is infeasible due to
code complexity, AutoSAT proposed a modular framework where an LLM optimizes specific, pre-
defined heuristic functions within an existing solver. It successfully demonstrated that an LLM could
enhance a baseline CDCL solver to achieve competitive performance.

While these methods are powerful, they generally produce a single, universally applied heuristic
or configuration, overlooking the instance-specific nature of algorithm performance. An emerging
paradigm in automated algorithm design seeks to overcome this limitation by partitioning a problem
class into subclasses based on instance features. This allows for the creation of specialized heuristics
tailored to the unique characteristics of each subclass. Our work, DASHCO, applies this principle
of data-awareness to the multi-heuristic, complex environment of CDCL solvers. In doing so, we
bridge the gap between the universal optimization of frameworks like AutoSAT and a more granular,
data-centric approach to algorithm design.

2.3 ALGORITHM SELECTION AND PORTFOLIO SOLVERS

A major paradigm for tackling instance heterogeneity is portfolio-based algorithm selection, pi-
oneered by the influential SatZilla framework Xu et al.| (2008). SatZilla leverages a portfolio of
diverse, human-designed solvers and uses machine learning models to predict the best-performing
one for a given instance based on its features. DASHCO inherits this data-driven philosophy but
introduces a fundamental novelty: rather than selecting from a portfolio of pre-existing solvers, it
first uses an LLM to automatically generate a new portfolio of fine-grained heuristic ensembles.
DASHCO is thus not only an algorithm selector but also an automated portfolio generator, a key
distinction that significantly expands the space of possible solver configurations.

3 METHODOLOGY

To address the challenge of dataset-specific optimization and the lack of generalizability in prior
work, we propose DASHCO. The core of our methodology is a paradigm shift: instead of repeatedly
executing an expensive search for a single, specialized solver for each new problem family, our goal
is to construct a single, robust, and adaptive framework that generalizes across them.

Specifically, DASHCO'’s objective is not to find one best heuristic ensemble, but to learn a rich map-
ping from the instance feature space to the space of high-performance heuristic configurations. This
is achieved by first creating a diverse portfolio of specialized heuristic ensembles and then learn-
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Figure 1: An overview of the DASHCO framework, illustrating the three primary stages: (1) Data-
Aware Heuristic Evolution, (2) Instance Space Partitioning, and (3) Adaptive Heuristic Selection.

ing an intelligent selection mechanism. Once constructed, this framework can be deployed on new,
unseen SAT instances from diverse problem families, dynamically selecting a suitable configura-
tion without the need for re-optimization. This train-once, adapt-broadly” approach is designed to
be more practical and efficient for real-world applications. The framework operates in three main
stages: (1) Data-Aware Heuristic Evolution, to build the rich portfolio of heuristic components; (2)
Instance Space Partitioning, to learn the mapping between instance types and optimal ensembles;
and (3) Adaptive Heuristic Selection, to apply this mapping to new instances.

3.1 HEURISTIC MODULES IN CDCL-BASED SOLVERS

Following the modular design of AutoSAT, we focus on optimizing a set of critical, independent
heuristic functions within a CDCL-based solver. For this work, we target three key heuristics:

1. Restart Policy (restart): This module implements a crucial strategy to prevent the
solver from becoming trapped in unproductive regions of the search space. A restart policy
determines when to abandon the current search path and backtrack to the top decision
level. While the current partial assignment is discarded, all learned clauses are retained,
allowing the solver to begin a new search attempt with more information. Modern policies
are often dynamic, adapting their restart frequency to the search progress to effectively
combat heavy-tailed runtime distributions [Luby et al.|(1993); Audemard & Simon|(2012).

2. Phase Selection (rephase): This heuristic acts as a diversification mechanism by man-
aging the default polarity (true or false) assigned to variables. During branching, the solver
often uses a variable’s last assigned value as a default choice. Over time, these saved phases
can lead to search stagnation. The rephase function is called periodically to alter these
saved phases, for instance by resetting them or flipping them. This forces the solver to
explore different branches first, effectively diversifying the search and pushing it into new
areas of the solution space Jeroslow & Wang|(1990).

3. Variable Bumping (bump_var): This module is a core component of adaptive branch-
ing strategies. When the solver encounters a conflict, it analyzes the implication graph to
identify the variables responsible for the contradiction. The bump_var function is then
invoked to increase a numerical score, often called an ‘activity score’, associated with each
of these variables. By elevating the scores of conflict-prone variables, this mechanism dy-
namically influences the main branching heuristic to prioritize them in future decisions.
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This effectively focuses the search on the most constrained and active parts of the problem
space Biere et al.[(2009); [Liang et al.|(2016).

Our goal is to find not just one optimal implementation for each of these, but a diverse set of effective
implementations that can be combined into powerful ensembles.

3.2 FEATURE EXTRACTION FOR SAT INSTANCES

A critical precursor to any data-aware method is the ability to characterize instances with a quantita-
tive feature vector. We define a 37-dimensional feature vector v(j) that maps a given SAT instance j
to a vector in R®”, designed to capture a comprehensive set of its structural and statistical properties.

Our feature set is constructed by augmenting an established feature template with new global de-
scriptors. The foundation consists of the complete 33-feature set adapted from the well-established
algorithm selection framework SATzilla, excluding only the most computationally expensive fea-
tures that require pre-solving. To further enhance the descriptive power, we then introduced 4 ad-
ditional lightweight, high-level features that capture global properties such as overall polarity bias
and constraint density. This approach combines a proven, powerful feature set with novel global
metrics, balancing expressive capability with the efficiency required for a dynamic, per-instance
selection model. A detailed breakdown of all 37 features is provided in the Appendix.

3.3 DATA-AWARE HEURISTIC EVOLUTION

To build our library of heuristics, we introduce a guided search process centered around a set of
predefined Problem Archetypes. The purpose of these archetypes is to guide the LLM to search
for heuristics along high-level, human-understandable directions. This ensures that the resulting
heuristics are differentiated, each specialized for a particular type of problem structure, which is
crucial for building a powerful and diverse portfolio for later combination.

Defining Problem Archetypes and Search Environments. A key design choice is to define these
archetypes manually (e.g., ‘highly-constrained problems’ or ‘instances with heterogeneous clause
structures’), rather than using automated clustering at this stage. This is because our goal is to
create effective, semantic prompts to guide the LLM. These interpretable concepts serve as more
potent guidance for the LLM’s creative process than the abstract centroids produced by a black-box
clustering algorithm.

These archetypes serve a crucial dual role in creating specialized search environments. For each
textual archetype d;, we first leverage the LLM to identify a relevant subset of features from
our 38-dimensional space that best characterize it. The corresponding data subset I; C I;,q4p 1S
then curated by splitting the training set at the 50% threshold based on the values of these LLM-
selected features. This process creates a targeted training and evaluation environment for that spe-
cific archetype. Simultaneously, the textual description of the archetype is injected as a direct hint
into the LLM’s prompt to guide the creative code generation, for example: Please note that
we are focusing on highly-constrained problems.

Guided Evolutionary Search. Let D = {(d;, I;)}\_; be the set of established pairs, where each
d; is an optimization direction and I; is its corresponding data subset. For each pair (d;, ;) € D,
we conduct an independent evolutionary search for each heuristic module. During this search, the
textual hint from d; directs the LLM to generate heuristics specialized for that direction, with their
performance evaluated exclusively on the dedicated data subset I;. After this guided search, the total
set of generated heuristic ensembles, formed by the Cartesian product . = Ly cstart X Lrephase X
Lbympvar, undergoes a pruning step where low-performing combinations are filtered out, resulting
in a smaller, high-quality portfolio #'.

3.4 INSTANCE SPACE PARTITIONING VIA PERFORMANCE-BASED CLUSTERING

The Cartesian product of generated heuristics can yield a large number of candidate ensembles,
posing a computational challenge for the partitioning stage. To manage this, we constrain the number
of components per heuristic type (e.g., k < 3) and perform an aggressive pruning step. All generated
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ensembles are evaluated on a benchmark subset, and only a fixed number of the top-performing
candidates are retained in the final portfolio, '

Given this pruned portfolio of high-quality ensembles #’, the next stage is to understand which
ensemble is best for which kind of instance. To achieve this, we partition our training set of instances,
Iirqin, based on performance.

First, we evaluate every heuristic ensemble h; € H on every instance j € Ii qin. Let p(h;, j) be the
performance metric (e.g., PAR-2 score) of ensemble h; on instance j.

Next, for each instance j, we identify its optimal ensemble, h*(j), from our library:

h*(j) = arg ;neigl{p(hi,j) (1)

This allows us to partition the instance set I;,.4;, into disjoint clusters, where each cluster C; is
associated with a single best-performing ensemble h;:

Ci = {.7 € Itrain | h*(]) = hz} (2)

This process creates a direct mapping from a region in the instance feature space (represented by the
instances in C;) to an optimal solver configuration h;. For each resulting cluster C;, we compute its
feature space centroid, v;, by averaging the feature vectors of all its member instances.

3.5 ADAPTIVE HEURISTIC SELECTION FOR INSTANCES

With the partitioned instance space and associated optimal ensembles, we can now perform adaptive
selection for any new, unseen test instance jpe,,. We first extract its feature vector v(jpew). We
then calculate the distance (using normalized Euclidean distance) between v(jneq, ) and each cluster
centroid v;. The heuristic ensemble h;, associated with the closest centroid v}, is selected as the
most suitable configuration for solving j.,. This allows the solver to dynamically adapt its strategy
based on the data characteristics of the problem at hand.

4 EXPERIMENTS

To evaluate the effectiveness of DASHCO, we conduct a series of experiments designed to assess its
performance against baseline and state-of-the-art SAT solvers.

4.1 EXPERIMENTAL SETUP

Environment and Parameters. All solvers are implemented in C++ and compiled with g++ 12.3.0.
The LLM interaction and the evolutionary framework are managed in Python. Experiments were
conducted on servers equipped with AMD Ryzen 9 5950X 16-core processors and 128GB of RAM.
For all heuristic generation tasks, we utilized the GPT-40 model with a temperature of 0.8 to encour-
age diverse outputs. Considering the computational expense of solving SAT problems and the scale
of our benchmarks, the timeout for solving any single SAT instance was set to 1000 seconds.

Backbone Solver. To ensure a methodologically consistent and comparable basis, we follow the
precedent set by AutoSAT |Sun et al| (2024) in selecting our backbone solver. Our framework is
built upon EasySAT, a lightweight and modular CDCL solver. As established in prior work, this
choice provides a clean and capable baseline that is well-suited for modification by LLMs, striking
a practical balance between solver functionality and the token-context limitations inherent in current
LLM-based code generation.

Datasets. Our experimental design is structured to rigorously evaluate the generalization capabil-
ities of DaSAThco. We construct a single, heterogeneous training set by combining 24 unclassified
instances from the SAT Competitions of 2022 and 2023 with 10 instances from each of the Coins-
Grid, LangFord, and PRP benchmarks. Our evaluation then proceeds in two distinct settings:

* In-Domain Generalization: We test performance on held-out instances from the Coins-
Grid, LangFord, and PRP families, which were partially represented in the training set.
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Table 1: Main performance comparison across In-Domain and Out-of-Domain datasets. For each
solver, we report both the PAR-2 score (lower is better) and the number of solved instances (Solved,
higher is better). The timeout is 1000s. Best results in each category are in bold.

EasySAT MiniSat AutoSAT DASHCO Kissat
Dataset #Inst. PAR-2 #S PAR-2 #S PAR-2 #S PAR-2 #S PAR-2 #S
In-Domain Benchmarks
CoinsGrid 52 17575 7  1985.1 4 1711.1 9 13995 16 14042 16
LangFord 64 19159 4 2000.0 0 1850.2 8 17509 12 1610.1 14
PRP 144 1970.4 3 1935.8 9 18438 15 17396 20 1570.0 38
Out-of-Domain Benchmarks
CNP 50 5949 38 11502 22 6144 39 550.7 41 270.7 44
Zamkeller 48 830.5 30 1950.6 5 764.8 32 6114 35 248 48
KnightTour 22 17334 3 1900.7 2 1684.6 4  1369.0 7 1638.5 4

* Out-of-Domain Generalization: To evaluate performance on entirely novel problem
structures, we use test sets from the CNP (Chromatic Number of the Plane), Zamkeller,
and KnightTour families, which were completely excluded from the training process.

Baselines. We compare the performance of DASHCO against a set of representative baselines:

» EasySAT: The lightweight, modular CDCL solver that serves as the direct backbone for
our modifications. Its performance represents the starting point before any LLM-based
optimization.

* AutoSAT [Sun et al.|(2024): A state-of-the-art framework representing the prior paradigm
of dataset-specific optimization. To ensure a fair comparison of generalization capabilities,
we adapt its methodology to our experimental setting. Instead of running its search process
on each individual problem family, we run AutoSAT on the same single, heterogeneous
training set used by DASHCO. This evaluates its ability to find a single “average-best”
configuration for a diverse set of problems. Consequently, the performance reported here
is not directly comparable to its original publication, where it was optimized on specialized
datasets, and may be lower.

* MiniSat Sorensson & Een| (2005): A classic and highly-optimized CDCL solver, which
serves as a robust and widely-recognized traditional baseline.

* Kissat Biere et al.| (2024): A state-of-the-art, highly-engineered CDCL solver that repre-
sents the pinnacle of modern manual heuristic design and frequently wins SAT competi-
tions. It serves as a top-tier benchmark for performance. We deploy the 4.0.0 version of
kissat which submitted to the SAT Competition 2024 and won 3 gold medals.

Metrics. We evaluate solver performance using two standard metrics in the SAT competition: the
number of solved instances within the timeout, and the Penalized Average Runtime with a factor of
2 (PAR-2) score. The PAR-2 score is the average runtime across a set of instances, but with a heavy
penalty for any instance that is not solved within the 1000s timeout. Specifically, unsolved instances
are assigned a runtime of twice the timeout (2000s).

4.2 PERFORMANCE COMPARISON

We evaluate the performance of DASHCO against the baselines on both in-domain and out-of-
domain datasets, with detailed results presented in Table [I} The findings clearly demonstrate the
effectiveness of our data-aware, portfolio-based approach and offer critical insights when compared
against different design paradigms.

Overall, DASHCO consistently and significantly outperforms the EasySAT, MiniSat, and AutoSAT
baselines across both evaluation settings. The comparison with AutoSAT is particularly illuminating,
as it confirms that for a diverse problem set, our adaptive selection from a specialized portfolio is
more effective than relying on a single, average-best configuration produced by prior paradigms.
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The comparison with Kissat highlights the core strengths of our framework. As expected, Kissat,
a top-tier solver, shows exceptional performance on many benchmarks, particularly on well-known
families like Zamkeller. However, the goal of our work is not to surpass a manually-honed solver
on every problem, but to demonstrate a more generalizable and automated design paradigm. The
results strongly support this goal. Most notably, on the out-of-domain KnightTour dataset, DASHCO
decisively outperforms all other solvers, including Kissat. This result is a powerful validation of our
central thesis: for novel problem structures, a static set of highly-tuned heuristics can be suboptimal,
whereas DASHCO’s adaptive mechanism can dynamically select a more suitable configuration from
its generated portfolio. Furthermore, on the in-domain CoinsGrid benchmark, DASHCO achieves
performance on par with Kissat, demonstrating that our automated framework can generate and
select configurations that are competitive with the state-of-the-art.

These results lead to a clear conclusion: while highly-engineered solvers like Kissat represent
the peak of performance for specific problem distributions, our automated, data-aware framework
presents a robust and promising path towards building solvers that can generalize more effectively
across a wide and unpredictable landscape of SAT instances.

4.3 ABLATION STUDY

To understand the contribution of the key components of our framework, we conduct an ablation
study on two representative datasets: CoinsGrid for in-domain generalization, and Zamkeller for
out-of-domain (OOD) generalization. We compare our full DASHCO model against several ablated
variants:

* w/o Data-Aware Generation: The portfolio is generated without the guidance of Problem
Archetypes. The adaptive selection is then applied to this non-specialized portfolio.

* Random Selection: For each instance, we randomly select an ensemble from the fully
generated, specialized portfolio.

* Single Best Selection: We select the single ensemble that performs best on average across
the entire training set and apply it to all instances, simulating a non-adaptive paradigm.

* Oracle: This represents the theoretical performance upper bound of our portfolio, where
for each test instance, we assume an oracle perfectly selects the best-performing ensemble
from our generated portfolio.

The results are presented in Table[2] The full DASHCO model achieves the best performance among
all practical variants. The importance of our data-aware generation is evident when comparing the
full model to the ‘w/o Data-Aware Generation® variant, which shows a clear performance drop.

The analysis of the selection mechanism reveals a crucial insight. The Single Best Selection ap-
proach performs significantly worse than the adaptive DASHCO, particularly on the OOD dataset
Zambkeller, highlighting the failure of a non-adaptive strategy to generalize. Interestingly, the ‘Ora-
cle results demonstrate that there is still considerable room for improvement in the selection mecha-
nism. The gap between DASHCO and the Oracle suggests that while our nearest-centroid selector is
effective, more sophisticated selection models could unlock even greater performance from the gen-
erated portfolio, representing a promising avenue for future work. Nonetheless, both the data-aware
portfolio generation and the dynamic selection mechanism are shown to be critical to DASHCO’s
robust performance.

4.4  ANALYSIS OF PORTFOLIO SCALE AND DIVERSITY

The size of the heuristic portfolio is a critical hyperparameter in our framework. We focused our sen-
sitivity analysis on the two most influential modules: restart and bump_var, fixing the rephase com-
ponent to its default implementation. We evaluated the performance of DASHCO on the CoinsGrid
dataset while varying the portfolio cardinalities for these two heuristics (Krestare and kbump_var),
with k ranging from O to 3.

Figure 2] presents a heatmap of the results, which reveals several key insights. First, a significant
performance improvement is observed when moving from a single heuristic (k = 1 for either dimen-
sion) to combinations of multiple diverse heuristics (k > 2). For instance, the performance of the
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portfolio with (krestart = 2, kpumpver = 2) is substantially better than portfolios with only one var-
ied component, such as (kyestart = 2, kbumpvar = 1). This demonstrates the powerful synergistic
effects that arise from combining a diverse set of specialized heuristics, validating the core premise
of our portfolio-based approach. Second, the heatmap shows that simply increasing the number of
heuristics does not guarantee monotonic improvement, highlighting the complex interplay between
them. The optimal performance is achieved with the portfolio of size (krestart = 2, Kbumpvar = 3)
or (krestart = 3, Kbumpvar = 3). This illustrates that while a richer portfolio is generally beneficial,
the quality and compatibility of the added heuristics are crucial. The results confirm that a diverse,
multi-component portfolio is essential for achieving top performance.

4.5 OVERHEAD ANALYSIS

We analyze the computational overhead of DASHCO in terms of its one-time offline costs and per-
instance online costs. The offline cost involves generating and compiling the heuristic portfolio, a
process made manageable by the lightweight EasySAT backbone. The per-instance online overhead
for solving a new instance is negligible, consisting of two fast operations: feature extraction and
adaptive selection. The calculation of the feature vector is computationally inexpensive and can be
pre-computed for known benchmarks. Subsequently, our adaptive selection via a nearest-centroid
search is extremely efficient, consistently taking less than a second. This minimal online cost makes
DASHCO highly practical. Future work could explore the trade-off between this efficient selector
and more sophisticated models, such as LLMs.

5 CONCLUSION

In this work, we introduced DASHCO, a novel framework that addresses the critical generalizability
limitations in automated SAT solver design by shifting from dataset-specific optimization to a scal-
able “train-once, adapt-broadly” paradigm. Our methodology leverages a Large Language Model,
guided by Problem Archetypes, to generate a diverse portfolio of specialized heuristic ensembles
and then learns an adaptive mechanism to select the best configuration for new instances. Exper-
iments confirm that this approach not only improves performance but, more importantly, exhibits
robust out-of-domain generalization. This validates that learning a mapping from instance features
to a generated portfolio of solvers is a more effective and practical paradigm for the automated de-
sign of complex, configurable systems like SAT solvers. Future work could focus on automating the
discovery of these archetypes and extending this paradigm to other domains.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we commit to making our source code publicly available
upon acceptance of this paper. All SAT instances used for training and evaluation are from publicly
available SAT Competition benchmarks and previous work. We will provide detailed lists and in-
structions for obtaining them in our repository. More details of our implementation can be found in
the Appendix.
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A  DETAILED SAT INSTANCE FEATURES

Our 37-dimensional feature vector is constructed from a combination of 33 features adapted from
the SATzilla template and four new lightweight additions. The complete list is detailed below.

* Problem Size Features

— num_variables: The number of variables, denoted as v.
— num_clauses: The number of clauses, denoted as c.
- var_clause_ratio: The ratio of clauses to variables (c/v).

* Variable-Clause Graph Features

— Variable Nodes Degree (Frequency): avg._var_frequency, var_degree_cv,
var_degreemin, max_var_frequency, var_frequency_entropy.
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B

— Clause Nodes Degree (Length): avg._clause_length, clause_degree_cv,
min_clause_length,max_clause_length, clause_length_entropy.

* Variable Graph Features

— Nodes Degree Statistics: var_graph.-degree_mean, var_graph_degree_cv,
var_graph._degree_min, var_graph_degree_max.

* Balance and Polarity Features (Distributional)

— Per-Clause Literal Ratio: clause_pos_neg_ratio_mean,
clause_pos_neg.ratio_cv, clause_pos_neg.ratio_entropy.

— Per-Variable Occurrence Ratio: var_pos_neg._ratio_mean,
var_pos._neg.ratio._cv, var_pos._neg.ratio.min,

var_pos_-neg_ratio_max, var_pos._neg.ratio_entropy.
— Clause Type Fraction: binary_clause_fraction,
ternary.clause_fraction.
* Proximity to Horn Formula Features

— horn_clause_fraction: The fraction of clauses that are Horn clauses.

— Horn Variable Occurrences: horn_var_occurrence_mean,
horn_var_occurrence_cv, horn_var_occurrence_min,
horn_var_occurrence_max, horn_var_occurrence_entropy.

» Additional High-Level Features (Global)

— positive_literal_ratio: The global ratio of positive literals to total literals.

— balanced_var_ratio: The proportion of variables with an equal number of posi-
tive and negative occurrences.

polarity_bias: A measure of the overall tendency towards positive or negative
literals.

— constraint_density: A measure of problem constraint level.

ALGORITHM OF DASHCO

Algorithm 1 DASHCO Framework Overview

1:
2:

10:
11:
12:
13:
14:

15:

16:
17:
18:
19:

AN A S

Input: Training instance set I;,.qip, test instance jyeq -
Output: Solved result for j,,eq, -
> Stage 1: Data-Aware Heuristic Evolution
Define a set of Problem Archetypes D = {d1, ...,d,}.
for each archetype d; € D do
Create data subset I; C Iy,.4iy by filtering.
end for
H <« [:Testart X ‘crephase X ['bump,var
H' < Prune(H, I4qin) by removing ensembles with performance below a predefined thresh-
old.
> Stage 2: Offline Instance Space Partitioning
for each instance j € Iyqi, do
h*(j) + argminy, ¢y performance(hy, 7).
end for
for each unique hy, that is optimal for some instance do
Ck — {J € Itrainlh*(j) = hk}
Vg, Tl Zjeck v(j).
end for
> Stage 3: Online Adaptive Selection
Unew € U(jnew)~
k + arg min, distance(vpew, U;)-
hselected < hk~
Solve j,ew using the solver configured with hgejected-
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C DATASET CHARACTERISTICS

Our experimental design aims to evaluate the generalization capability of DASHCO. We construct a
single, heterogeneous training set composed of instances from multiple sources, including unclas-
sified problems from the SAT Competitions of 2022 and 2023, as well as the SCPC family. Our
evaluation is then divided into two settings:

¢ In-Domain Generalization: We test on unseen instances from families that were partially
represented in the training set. These benchmarks include CoinsGrid, which originates
from a puzzle about arranging coins on a grid under specific constraints; LangFord, a com-
binatorial challenge of arranging paired numbers such that each pair of number £ is sepa-
rated by exactly k other items; and PRP (Profitable Robust Production), which models an
industrial task of finding a robust production plan under uncertainty. We select 10 instances
from those datasets to compose our training set.

* Out-of-Domain (OOD) Generalization: To evaluate true generalization capabilities, we
use entire problem families that were completely held out during the heuristic evolution
process. These OOD test sets include CNP (Chromatic Number of the Plane), a classic
graph coloring problem; Zamkeller, a complex permutation problem concerning subse-
quences; and KnightTour, which seeks a path for a knight to visit every square on a chess-
board exactly once.

Table 3: Statistical characteristics of the evaluation datasets.

Dataset # Inst. Variables (Mean + Std) Clauses (Mean + Std)
In-Domain Benchmarks
CoinsGrid 52 530807 + 513663 3825868 + 3701594
LangFord 64 312492 + 213284 2734786 + 1972624
PRP 144 499206 + 324889 3337426 + 2175367
Out-of-Domain Benchmarks
CNP 50 9890 + 11139 86724 £ 77379
Zamkeller 48 21435 £ 19119 265218 + 283330
KnightTour 22 135288 + 191062 5742107 £9872215

D DEFINITION OF PAR-2 METRIC

The PAR-2 score is calculated as:
N
1
PAR-2 = — ) ¢
v

where N is the number of instances, and ¢} for instance ¢ is its actual runtime if solved, or 2000s if
unsolved. A lower PAR-2 score is better, as it indicates a solver is both fast and robust. Crucially,
the PAR-2 score also serves as the primary fitness metric that guides the LLM-driven evolutionary
search for better heuristics.

E EXAMPLE PROMPT TEMPLATE

Our data-aware guidance mechanism is designed to be agnostic to the specific underlying LLM-
based heuristic search algorithm. It can be integrated as a modular hint into various existing frame-
works, such as AutoSAT or ReEvo. The following provides an example of how our data-aware hint
can be incorporated into an Advisor prompt, using a structure similar to that of AutoSAT. The key
addition is the highlighted text, which provides the LLM with the specific Problem Archetype it
should optimize for.
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Example Advisor Prompt Template

You are a SAT solver researcher trying to write the {{ task }} to help SAT solver escape from local
optimum. Your goal is to write a {{ task }} for the SAT solver that will help it restart the search and
escape from local optimum, after reading and understanding the <key_code> of SAT solver below.
Please note, the SAT problem instances we are targeting have the following characteristics: {{
problem _archetype_description }}.

Your answer must follow the following JSON format:

{
"description":
"Provide a ...",
"modification_direction":
["some possible directions..."]

Tips:

1. You must traverse all possible positions of <key_code> if you want to modify the {{
task }}.

2. You need to give us some advice to modify the {{ task }}. e.g. some potential directions
to change the heuristics.

3. Notice that, you can only change {{ task }}.
4. {{ other_tips }}
key_code of SAT solver is:

wnwn

{{ origin_key_code }}

Take a deep breath and think it step by step. Then respond strictly in JSON format!

F HYPERPARAMETER SETTINGS

Table []lists the main hyperparameters used across our experiments to ensure reproducibility.

Table 4: Main hyperparameters used in our experiments.

Hyperparameter Value
General Experimental Settings

Solver Timeout 1000s
Random Seed 42
LLM and Evolutionary Search

LLM Model GPT-40
Temperature 0.8
Generations 3
Population Size 2

DASHCO Framework Settings
Number of Problem Archetypes
Heuristics per Type (k)

Pruned Portfolio Size

O W W

G USAGE OF LLMs

We take advantage of LLMs to improve the writing of this paper.
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