
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DASHCO: DATA-AWARE SAT HEURISTICS COM-
BINATIONS OPTIMIZATION VIA LARGE LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of Conflict-Driven Clause Learning solvers hinges on internal
heuristics, yet the heterogeneity of SAT problems makes a single, universally op-
timal configuration unattainable. While prior automated methods can find special-
ized configurations for specific problem families, this dataset-specific approach
lacks generalizability and requires costly re-optimization for new problem types.
We introduce DASHCO, a framework that addresses this challenge by learning
a generalizable mapping from instance features to tailored heuristic ensembles,
enabling a train-once, adapt-broadly model. Our framework uses a Large Lan-
guage Model, guided by systematically defined Problem Archetypes, to generate
a diverse portfolio of specialized heuristic ensembles and subsequently learns an
adaptive selection mechanism to form the final mapping. Experiments show that
DASHCO achieves superior performance and, most notably, demonstrates robust
out-of-domain generalization where non-adaptive methods show limitations. Our
work establishes a more scalable and practical path toward automated algorithm
design for complex, configurable systems.

1 INTRODUCTION

The Boolean Satisfiability (SAT) problem is a cornerstone of computational complexity theory Cook
(2023) and a problem of immense practical importance Crawford & Baker (1994). Its applications
are vast, with modern solvers enabling crucial advances in diverse fields such as formal verifica-
tion Prasad et al. (2005), planning Rintanen (2012), and program analysis Harris et al. (2010).
While SAT is NP-complete, powerful solvers based on the Conflict-Driven Clause Learning (CDCL)
paradigm Audemard & Simon (2009) can often solve massive industrial instances with remarkable
efficiency. However, this success is not uniform. The performance of these solvers is critically sensi-
tive to the internal algorithmic heuristics that guide their search. Developing effective heuristics has
consequently been a central focus of SAT research for decades Audemard & Simon (2012); Liang
et al. (2018), traditionally relying on a long and costly process of manual design.

The challenge of designing effective heuristics has led to the development of hyper-heuristics Burke
et al. (2013), which automate the process of selecting or generating algorithms. With the advent of
LLMs Achiam et al. (2023); Comanici et al. (2025), this field has seen a surge of innovation. Frame-
works like FunSearch Romera-Paredes et al. (2024), Evolution of Heuristics (EoH) Liu et al. (2024),
and ReEvo Ye et al. (2024) have demonstrated that LLMs can generate novel and effective heuris-
tics for various combinatorial optimization (CO) problems by treating algorithm design as a program
search task within an evolutionary framework van Stein & Bäck (2024). While the recent AutoSAT
framework Sun et al. (2024) has made important progress by applying this paradigm to SAT solvers,
a significant limitation underlies these pioneering works: they are inherently dataset-specific. Their
methodology is tailored to a particular training distribution, yielding a single, static heuristic con-
figuration optimized for that specific class of problems. Consequently, the resulting solver lacks
generalizability, and the expensive search process must be repeated for each new problem family.

This limitation is particularly severe because the SAT problem space is enormously heterogeneous,
serving as a universal language for problems from diverse domains like Minesweeper Kaye (2000),
cryptographic analysis Soos et al. (2009), and logistics planning Rintanen (2012). Moreover, the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

performance of a complex system like a CDCL solver is determined by the intricate and often
non-intuitive interplay of its multiple, interacting heuristics for tasks such as restarts Audemard
& Simon (2012); Liang et al. (2018) and phase selection. The synergistic or conflicting effects of
these combinations are notoriously difficult to predict, a challenge that even human experts struggle
to navigate. This implies that simply selecting the best-performing heuristic for each component in
isolation is unlikely to yield a globally optimal solver. It is therefore crucial to holistically explore
the vast combinatorial space of heuristic configurations, rather than merely optimizing individual
components. The goal of such exploration should not be to find a single “best” configuration, as
the optimal choice is deeply instance-dependent given the problem space’s heterogeneity Ansótegui
et al. (2009). Rather, the challenge is to develop a system that can adapt its strategy based on the
problem at hand.

To address these fundamental challenges of generalizability and adaptation, we propose DASHCO
(Data-Aware SAT Heuristics Combinations Optimization). Instead of seeking a single, univer-
sally optimal solver, DASHCO introduces a new paradigm: its objective is to learn a generalizable
mapping from instance characteristics to tailored heuristic configurations. The core of our frame-
work is its data-aware nature, which enables a train-once, adapt-broadly model. DASHCO first
leverages an LLM, guided by high-level Problem Archetypes, to automatically generate a diverse
portfolio of specialized heuristic ensembles, each tailored to different problem structures. Subse-
quently, it learns an adaptive selection mechanism that partitions the instance space based on perfor-
mance, creating a map to dynamically choose the best-suited ensemble for any new SAT instance.
This approach transforms the problem from finding one optimal point to learning a function over the
entire problem space.

We summarize our main contributions as follows:

• We introduce DASHCO, a novel framework that shifts the paradigm from dataset-specific
optimization to generalizable, data-aware algorithm design, directly addressing the critical
limitation of prior work.

• We propose a methodology where Problem Archetypes guide an LLM to generate a di-
verse portfolio of specialized heuristic ensembles, enabling an automated exploration of
the complex interactions between different heuristic components.

• Through extensive experiments, we demonstrate that DASHCO significantly outperforms
baselines. Crucially, it exhibits superior out-of-domain generalization compared to meth-
ods that learn a single, non-adaptive configuration, validating the effectiveness and robust-
ness of our approach.

2 PRELIMINARIES & RELATED WORK

2.1 SAT AND CDCL-BASED SOLVERS

Let V = {x1, . . . , xn} be a finite set of Boolean variables. The corresponding set of literals is
defined as L = V ∪{¬v | v ∈ V }. A clause C is a finite subset of L, representing the disjunction of
its literals, with the constraint that for any variable v ∈ V , both v and ¬v cannot be simultaneously
present in C. A formula F in Conjunctive Normal Form (CNF) is a set of clauses, {C1, . . . , Cm},
representing their conjunction. A truth assignment (or interpretation) is a function τ : V → {⊤,⊥}
that maps each variable to a truth value. The satisfaction of a formula under τ , denoted by τ |= F ,
is defined hierarchically:

1. A literal l ∈ L is satisfied by τ (τ |= l) if l = v and τ(v) = ⊤, or if l = ¬v and τ(v) = ⊥.
2. A clause C is satisfied by τ (τ |= C) if there exists at least one literal l ∈ C such that

τ |= l.
3. A formula F is satisfied by τ (τ |= F) if for all clauses Ci ∈ F , τ |= Ci.

The Boolean Satisfiability (SAT) problem is the computational task of determining whether a given
CNF formula F is satisfiable, i.e., whether there exists any truth assignment τ such that τ |= F .

Modern SAT solvers are predominantly based on the Conflict-Driven Clause Learning (CDCL)
framework. A CDCL-based solver iteratively builds a partial assignment by making decisions and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

applying Boolean Constraint Propagation (BCP). When a conflict arises, the solver analyzes the
cause, learns a new clause to prevent the same conflict from recurring, and backtracks. This pro-
cess is profoundly influenced by a complex interplay of internal heuristics. These strategies guide
key aspects of the search, including which variable to decide on next (branching), when to aban-
don an unpromising search path and restart, and how to diversify the search by adjusting variable
phases. The specific combination and implementation of these heuristics are what differentiate mod-
ern solvers and are the primary determinants of their performance.

2.2 LLM-BASED HEURISTIC GENERATION

The emergence of LLMs has opened a new frontier for automated algorithm design. By leveraging
their powerful code generation and reasoning capabilities, researchers have started to automate the
discovery of heuristics. A prominent approach is to frame heuristic generation as a program search
problem within an evolutionary framework. FunSearch established this paradigm by evolving pro-
grams to find new mathematical discoveries Romera-Paredes et al. (2024). This was extended to CO
problems by frameworks like EoH Liu et al. (2024) and ReEvo Ye et al. (2024), which use evolu-
tionary algorithms to prompt an LLM to iteratively refine and improve heuristic code for problems
like TSP and online bin packing. ReEvo notably introduced a reflective step, where the LLM pro-
vides textual feedback to guide the evolutionary search, emulating a verbal gradient Ye et al. (2024).
MEoH Yao et al. (2025) models automated heuristic design as a multi-objective optimization prob-
lem, using a dominance-dissimilarity mechanism with an LLM to generate a set of heuristics that
balance performance and efficiency.

AutoSAT Sun et al. (2024) was the first to apply this paradigm to the intricate environment of
SAT solvers. Recognizing that generating a competitive solver from scratch is infeasible due to
code complexity, AutoSAT proposed a modular framework where an LLM optimizes specific, pre-
defined heuristic functions within an existing solver. It successfully demonstrated that an LLM could
enhance a baseline CDCL solver to achieve competitive performance.

While these methods are powerful, they generally produce a single, universally applied heuristic
or configuration, overlooking the instance-specific nature of algorithm performance. An emerging
paradigm in automated algorithm design seeks to overcome this limitation by partitioning a problem
class into subclasses based on instance features. This allows for the creation of specialized heuristics
tailored to the unique characteristics of each subclass. Our work, DASHCO, applies this principle
of data-awareness to the multi-heuristic, complex environment of CDCL solvers. In doing so, we
bridge the gap between the universal optimization of frameworks like AutoSAT and a more granular,
data-centric approach to algorithm design.

2.3 ALGORITHM SELECTION AND PORTFOLIO SOLVERS

A major paradigm for tackling instance heterogeneity is portfolio-based algorithm selection, pi-
oneered by the influential SatZilla framework Xu et al. (2008). SatZilla leverages a portfolio of
diverse, human-designed solvers and uses machine learning models to predict the best-performing
one for a given instance based on its features. DASHCO inherits this data-driven philosophy but
introduces a fundamental novelty: rather than selecting from a portfolio of pre-existing solvers, it
first uses an LLM to automatically generate a new portfolio of fine-grained heuristic ensembles.
DASHCO is thus not only an algorithm selector but also an automated portfolio generator, a key
distinction that significantly expands the space of possible solver configurations.

3 METHODOLOGY

To address the challenge of dataset-specific optimization and the lack of generalizability in prior
work, we propose DASHCO. The core of our methodology is a paradigm shift: instead of repeatedly
executing an expensive search for a single, specialized solver for each new problem family, our goal
is to construct a single, robust, and adaptive framework that generalizes across them.

Specifically, DASHCO’s objective is not to find one best heuristic ensemble, but to learn a rich map-
ping from the instance feature space to the space of high-performance heuristic configurations. This
is achieved by first creating a diverse portfolio of specialized heuristic ensembles and then learn-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

SAT Subsets

SAT Database

Problem Archetypes

LLM Heuristic Search Algorithms

+ Hint:
Focus on solving Problem Archetypes A/B/C

A

B

C

Heuristic Families

Data-aware Heuristic Evolution

Solvers

Combination

Test Instance

SAT Database

Performance-based
Partitioning

Adaptive
Selection

Problem Size Features

Variable-Clause Graph Features

Variable Graph Features

Proximity to Horn Formula

Balance & Polarity

Feature Extraction

Figure 1: An overview of the DASHCO framework, illustrating the three primary stages: (1) Data-
Aware Heuristic Evolution, (2) Instance Space Partitioning, and (3) Adaptive Heuristic Selection.

ing an intelligent selection mechanism. Once constructed, this framework can be deployed on new,
unseen SAT instances from diverse problem families, dynamically selecting a suitable configura-
tion without the need for re-optimization. This ”train-once, adapt-broadly” approach is designed to
be more practical and efficient for real-world applications. The framework operates in three main
stages: (1) Data-Aware Heuristic Evolution, to build the rich portfolio of heuristic components; (2)
Instance Space Partitioning, to learn the mapping between instance types and optimal ensembles;
and (3) Adaptive Heuristic Selection, to apply this mapping to new instances.

3.1 HEURISTIC MODULES IN CDCL-BASED SOLVERS

Following the modular design of AutoSAT, we focus on optimizing a set of critical, independent
heuristic functions within a CDCL-based solver. For this work, we target three key heuristics:

1. Restart Policy (restart): This module implements a crucial strategy to prevent the
solver from becoming trapped in unproductive regions of the search space. A restart policy
determines when to abandon the current search path and backtrack to the top decision
level. While the current partial assignment is discarded, all learned clauses are retained,
allowing the solver to begin a new search attempt with more information. Modern policies
are often dynamic, adapting their restart frequency to the search progress to effectively
combat heavy-tailed runtime distributions Luby et al. (1993); Audemard & Simon (2012).

2. Phase Selection (rephase): This heuristic acts as a diversification mechanism by man-
aging the default polarity (true or false) assigned to variables. During branching, the solver
often uses a variable’s last assigned value as a default choice. Over time, these saved phases
can lead to search stagnation. The rephase function is called periodically to alter these
saved phases, for instance by resetting them or flipping them. This forces the solver to
explore different branches first, effectively diversifying the search and pushing it into new
areas of the solution space Jeroslow & Wang (1990).

3. Variable Bumping (bump var): This module is a core component of adaptive branch-
ing strategies. When the solver encounters a conflict, it analyzes the implication graph to
identify the variables responsible for the contradiction. The bump var function is then
invoked to increase a numerical score, often called an ‘activity score’, associated with each
of these variables. By elevating the scores of conflict-prone variables, this mechanism dy-
namically influences the main branching heuristic to prioritize them in future decisions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This effectively focuses the search on the most constrained and active parts of the problem
space Biere et al. (2009); Liang et al. (2016).

Our goal is to find not just one optimal implementation for each of these, but a diverse set of effective
implementations that can be combined into powerful ensembles.

3.2 FEATURE EXTRACTION FOR SAT INSTANCES

A critical precursor to any data-aware method is the ability to characterize instances with a quantita-
tive feature vector. We define a 37-dimensional feature vector v(j) that maps a given SAT instance j
to a vector in R37, designed to capture a comprehensive set of its structural and statistical properties.

Our feature set is constructed by augmenting an established feature template with new global de-
scriptors. The foundation consists of the complete 33-feature set adapted from the well-established
algorithm selection framework SATzilla, excluding only the most computationally expensive fea-
tures that require pre-solving. To further enhance the descriptive power, we then introduced 4 ad-
ditional lightweight, high-level features that capture global properties such as overall polarity bias
and constraint density. This approach combines a proven, powerful feature set with novel global
metrics, balancing expressive capability with the efficiency required for a dynamic, per-instance
selection model. A detailed breakdown of all 37 features is provided in the Appendix.

3.3 DATA-AWARE HEURISTIC EVOLUTION

To build our library of heuristics, we introduce a guided search process centered around a set of
predefined Problem Archetypes. The purpose of these archetypes is to guide the LLM to search
for heuristics along high-level, human-understandable directions. This ensures that the resulting
heuristics are differentiated, each specialized for a particular type of problem structure, which is
crucial for building a powerful and diverse portfolio for later combination.

Defining Problem Archetypes and Search Environments. A key design choice is to define these
archetypes manually (e.g., ‘highly-constrained problems’ or ‘instances with heterogeneous clause
structures’), rather than using automated clustering at this stage. This is because our goal is to
create effective, semantic prompts to guide the LLM. These interpretable concepts serve as more
potent guidance for the LLM’s creative process than the abstract centroids produced by a black-box
clustering algorithm.

These archetypes serve a crucial dual role in creating specialized search environments. For each
textual archetype di, we first leverage the LLM to identify a relevant subset of features from
our 38-dimensional space that best characterize it. The corresponding data subset Ii ⊆ Itrain is
then curated by splitting the training set at the 50% threshold based on the values of these LLM-
selected features. This process creates a targeted training and evaluation environment for that spe-
cific archetype. Simultaneously, the textual description of the archetype is injected as a direct hint
into the LLM’s prompt to guide the creative code generation, for example: Please note that
we are focusing on highly-constrained problems.

Guided Evolutionary Search. Let D = {(di, Ii)}pi=1 be the set of established pairs, where each
di is an optimization direction and Ii is its corresponding data subset. For each pair (di, Ii) ∈ D,
we conduct an independent evolutionary search for each heuristic module. During this search, the
textual hint from di directs the LLM to generate heuristics specialized for that direction, with their
performance evaluated exclusively on the dedicated data subset Ii. After this guided search, the total
set of generated heuristic ensembles, formed by the Cartesian product H = Lrestart × Lrephase ×
Lbump var, undergoes a pruning step where low-performing combinations are filtered out, resulting
in a smaller, high-quality portfolioH′.

3.4 INSTANCE SPACE PARTITIONING VIA PERFORMANCE-BASED CLUSTERING

The Cartesian product of generated heuristics can yield a large number of candidate ensembles,
posing a computational challenge for the partitioning stage. To manage this, we constrain the number
of components per heuristic type (e.g., k ≤ 3) and perform an aggressive pruning step. All generated

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ensembles are evaluated on a benchmark subset, and only a fixed number of the top-performing
candidates are retained in the final portfolio,H′.

Given this pruned portfolio of high-quality ensembles H′, the next stage is to understand which
ensemble is best for which kind of instance. To achieve this, we partition our training set of instances,
Itrain, based on performance.

First, we evaluate every heuristic ensemble hi ∈ H on every instance j ∈ Itrain. Let p(hi, j) be the
performance metric (e.g., PAR-2 score) of ensemble hi on instance j.

Next, for each instance j, we identify its optimal ensemble, h∗(j), from our library:

h∗(j) = arg min
hi∈H

p(hi, j) (1)

This allows us to partition the instance set Itrain into disjoint clusters, where each cluster Ci is
associated with a single best-performing ensemble hi:

Ci = {j ∈ Itrain | h∗(j) = hi} (2)

This process creates a direct mapping from a region in the instance feature space (represented by the
instances in Ci) to an optimal solver configuration hi. For each resulting cluster Ci, we compute its
feature space centroid, v̄i, by averaging the feature vectors of all its member instances.

3.5 ADAPTIVE HEURISTIC SELECTION FOR INSTANCES

With the partitioned instance space and associated optimal ensembles, we can now perform adaptive
selection for any new, unseen test instance jnew. We first extract its feature vector v(jnew). We
then calculate the distance (using normalized Euclidean distance) between v(jnew) and each cluster
centroid v̄i. The heuristic ensemble hk associated with the closest centroid v̄k is selected as the
most suitable configuration for solving jnew. This allows the solver to dynamically adapt its strategy
based on the data characteristics of the problem at hand.

4 EXPERIMENTS

To evaluate the effectiveness of DASHCO, we conduct a series of experiments designed to assess its
performance against baseline and state-of-the-art SAT solvers.

4.1 EXPERIMENTAL SETUP

Environment and Parameters. All solvers are implemented in C++ and compiled with g++ 12.3.0.
The LLM interaction and the evolutionary framework are managed in Python. Experiments were
conducted on servers equipped with AMD Ryzen 9 5950X 16-core processors and 128GB of RAM.
For all heuristic generation tasks, we utilized the GPT-4o model with a temperature of 0.8 to encour-
age diverse outputs. Considering the computational expense of solving SAT problems and the scale
of our benchmarks, the timeout for solving any single SAT instance was set to 1000 seconds.

Backbone Solver. To ensure a methodologically consistent and comparable basis, we follow the
precedent set by AutoSAT Sun et al. (2024) in selecting our backbone solver. Our framework is
built upon EasySAT, a lightweight and modular CDCL solver. As established in prior work, this
choice provides a clean and capable baseline that is well-suited for modification by LLMs, striking
a practical balance between solver functionality and the token-context limitations inherent in current
LLM-based code generation.

Datasets. Our experimental design is structured to rigorously evaluate the generalization capabil-
ities of DaSAThco. We construct a single, heterogeneous training set by combining 24 unclassified
instances from the SAT Competitions of 2022 and 2023 with 10 instances from each of the Coins-
Grid, LangFord, and PRP benchmarks. Our evaluation then proceeds in two distinct settings:

• In-Domain Generalization: We test performance on held-out instances from the Coins-
Grid, LangFord, and PRP families, which were partially represented in the training set.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Main performance comparison across In-Domain and Out-of-Domain datasets. For each
solver, we report both the PAR-2 score (lower is better) and the number of solved instances (Solved,
higher is better). The timeout is 1000s. Best results in each category are in bold.

EasySAT MiniSat AutoSAT DASHCO Kissat

Dataset # Inst. PAR-2 #S PAR-2 #S PAR-2 #S PAR-2 #S PAR-2 #S

In-Domain Benchmarks

CoinsGrid 52 1757.5 7 1985.1 4 1711.1 9 1399.5 16 1404.2 16
LangFord 64 1915.9 4 2000.0 0 1850.2 8 1750.9 12 1610.1 14
PRP 144 1970.4 3 1935.8 9 1843.8 15 1739.6 20 1570.0 38

Out-of-Domain Benchmarks

CNP 50 594.9 38 1150.2 22 614.4 39 550.7 41 270.7 44
Zamkeller 48 830.5 30 1950.6 5 764.8 32 611.4 35 24.8 48
KnightTour 22 1733.4 3 1900.7 2 1684.6 4 1369.0 7 1638.5 4

• Out-of-Domain Generalization: To evaluate performance on entirely novel problem
structures, we use test sets from the CNP (Chromatic Number of the Plane), Zamkeller,
and KnightTour families, which were completely excluded from the training process.

Baselines. We compare the performance of DASHCO against a set of representative baselines:

• EasySAT: The lightweight, modular CDCL solver that serves as the direct backbone for
our modifications. Its performance represents the starting point before any LLM-based
optimization.

• AutoSAT Sun et al. (2024): A state-of-the-art framework representing the prior paradigm
of dataset-specific optimization. To ensure a fair comparison of generalization capabilities,
we adapt its methodology to our experimental setting. Instead of running its search process
on each individual problem family, we run AutoSAT on the same single, heterogeneous
training set used by DASHCO. This evaluates its ability to find a single ”average-best”
configuration for a diverse set of problems. Consequently, the performance reported here
is not directly comparable to its original publication, where it was optimized on specialized
datasets, and may be lower.

• MiniSat Sorensson & Een (2005): A classic and highly-optimized CDCL solver, which
serves as a robust and widely-recognized traditional baseline.

• Kissat Biere et al. (2024): A state-of-the-art, highly-engineered CDCL solver that repre-
sents the pinnacle of modern manual heuristic design and frequently wins SAT competi-
tions. It serves as a top-tier benchmark for performance. We deploy the 4.0.0 version of
kissat which submitted to the SAT Competition 2024 and won 3 gold medals.

Metrics. We evaluate solver performance using two standard metrics in the SAT competition: the
number of solved instances within the timeout, and the Penalized Average Runtime with a factor of
2 (PAR-2) score. The PAR-2 score is the average runtime across a set of instances, but with a heavy
penalty for any instance that is not solved within the 1000s timeout. Specifically, unsolved instances
are assigned a runtime of twice the timeout (2000s).

4.2 PERFORMANCE COMPARISON

We evaluate the performance of DASHCO against the baselines on both in-domain and out-of-
domain datasets, with detailed results presented in Table 1. The findings clearly demonstrate the
effectiveness of our data-aware, portfolio-based approach and offer critical insights when compared
against different design paradigms.

Overall, DASHCO consistently and significantly outperforms the EasySAT, MiniSat, and AutoSAT
baselines across both evaluation settings. The comparison with AutoSAT is particularly illuminating,
as it confirms that for a diverse problem set, our adaptive selection from a specialized portfolio is
more effective than relying on a single, average-best configuration produced by prior paradigms.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The comparison with Kissat highlights the core strengths of our framework. As expected, Kissat,
a top-tier solver, shows exceptional performance on many benchmarks, particularly on well-known
families like Zamkeller. However, the goal of our work is not to surpass a manually-honed solver
on every problem, but to demonstrate a more generalizable and automated design paradigm. The
results strongly support this goal. Most notably, on the out-of-domain KnightTour dataset, DASHCO
decisively outperforms all other solvers, including Kissat. This result is a powerful validation of our
central thesis: for novel problem structures, a static set of highly-tuned heuristics can be suboptimal,
whereas DASHCO’s adaptive mechanism can dynamically select a more suitable configuration from
its generated portfolio. Furthermore, on the in-domain CoinsGrid benchmark, DASHCO achieves
performance on par with Kissat, demonstrating that our automated framework can generate and
select configurations that are competitive with the state-of-the-art.

These results lead to a clear conclusion: while highly-engineered solvers like Kissat represent
the peak of performance for specific problem distributions, our automated, data-aware framework
presents a robust and promising path towards building solvers that can generalize more effectively
across a wide and unpredictable landscape of SAT instances.

4.3 ABLATION STUDY

To understand the contribution of the key components of our framework, we conduct an ablation
study on two representative datasets: CoinsGrid for in-domain generalization, and Zamkeller for
out-of-domain (OOD) generalization. We compare our full DASHCO model against several ablated
variants:

• w/o Data-Aware Generation: The portfolio is generated without the guidance of Problem
Archetypes. The adaptive selection is then applied to this non-specialized portfolio.

• Random Selection: For each instance, we randomly select an ensemble from the fully
generated, specialized portfolio.

• Single Best Selection: We select the single ensemble that performs best on average across
the entire training set and apply it to all instances, simulating a non-adaptive paradigm.

• Oracle: This represents the theoretical performance upper bound of our portfolio, where
for each test instance, we assume an oracle perfectly selects the best-performing ensemble
from our generated portfolio.

The results are presented in Table 2. The full DASHCO model achieves the best performance among
all practical variants. The importance of our data-aware generation is evident when comparing the
full model to the ‘w/o Data-Aware Generation‘ variant, which shows a clear performance drop.

The analysis of the selection mechanism reveals a crucial insight. The Single Best Selection ap-
proach performs significantly worse than the adaptive DASHCO, particularly on the OOD dataset
Zamkeller, highlighting the failure of a non-adaptive strategy to generalize. Interestingly, the ‘Ora-
cle‘ results demonstrate that there is still considerable room for improvement in the selection mecha-
nism. The gap between DASHCO and the Oracle suggests that while our nearest-centroid selector is
effective, more sophisticated selection models could unlock even greater performance from the gen-
erated portfolio, representing a promising avenue for future work. Nonetheless, both the data-aware
portfolio generation and the dynamic selection mechanism are shown to be critical to DASHCO’s
robust performance.

4.4 ANALYSIS OF PORTFOLIO SCALE AND DIVERSITY

The size of the heuristic portfolio is a critical hyperparameter in our framework. We focused our sen-
sitivity analysis on the two most influential modules: restart and bump var, fixing the rephase com-
ponent to its default implementation. We evaluated the performance of DASHCO on the CoinsGrid
dataset while varying the portfolio cardinalities for these two heuristics (krestart and kbump var),
with k ranging from 0 to 3.

Figure 2 presents a heatmap of the results, which reveals several key insights. First, a significant
performance improvement is observed when moving from a single heuristic (k = 1 for either dimen-
sion) to combinations of multiple diverse heuristics (k ≥ 2). For instance, the performance of the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Ablation study on a representative
In-Domain (CoinsGrid) and Out-of-Domain
(Zamkeller) dataset. We report the PAR-2 score
(lower is better) and the number of solved in-
stances (#S, higher is better).

CoinsGrid Zamkeller

Model Variant PAR-2 #S PAR-2 #S

DASHCO 1399.5 16 611.4 35
w/o Data-Aware 1671.0 10 722.4 33
Random 1740.2 8 780.5 29
Single Best 1503.9 12 764.8 32
Oracle 1157.8 19 467.6 41

0 1 2 3
Restart Portfolio Cardinality (krestart)

3

2

1

0Bu
m

p_
va

r P
or

tfo
lio

 C
ar

di
na

lit
y

(k
bu

m
p_

va
r)

1643.0 1600.6 1399.5 1399.5

1715.2 1705.9 1415.3 1415.3

1756.4 1711.1 1437.6 1422.4

1757.5 1715.3 1503.9 1490.7

1400

1450

1500

1550

1600

1650

1700

1750

PA
R-

2
Sc

or
e

Figure 2: Sensitivity analysis of DASHCO’s
performance on the CoinsGrid dataset. The
heatmap shows the average PAR-2 score
as a function of the portfolio cardinalities
for the restart (krestart) and bump var
(kbump var) heuristics. The k=0 point corre-
sponds to the EasySAT baseline.

portfolio with (krestart = 2, kbump var = 2) is substantially better than portfolios with only one var-
ied component, such as (krestart = 2, kbump var = 1). This demonstrates the powerful synergistic
effects that arise from combining a diverse set of specialized heuristics, validating the core premise
of our portfolio-based approach. Second, the heatmap shows that simply increasing the number of
heuristics does not guarantee monotonic improvement, highlighting the complex interplay between
them. The optimal performance is achieved with the portfolio of size (krestart = 2, kbump var = 3)
or (krestart = 3, kbump var = 3). This illustrates that while a richer portfolio is generally beneficial,
the quality and compatibility of the added heuristics are crucial. The results confirm that a diverse,
multi-component portfolio is essential for achieving top performance.

4.5 OVERHEAD ANALYSIS

We analyze the computational overhead of DASHCO in terms of its one-time offline costs and per-
instance online costs. The offline cost involves generating and compiling the heuristic portfolio, a
process made manageable by the lightweight EasySAT backbone. The per-instance online overhead
for solving a new instance is negligible, consisting of two fast operations: feature extraction and
adaptive selection. The calculation of the feature vector is computationally inexpensive and can be
pre-computed for known benchmarks. Subsequently, our adaptive selection via a nearest-centroid
search is extremely efficient, consistently taking less than a second. This minimal online cost makes
DASHCO highly practical. Future work could explore the trade-off between this efficient selector
and more sophisticated models, such as LLMs.

5 CONCLUSION

In this work, we introduced DASHCO, a novel framework that addresses the critical generalizability
limitations in automated SAT solver design by shifting from dataset-specific optimization to a scal-
able ”train-once, adapt-broadly” paradigm. Our methodology leverages a Large Language Model,
guided by Problem Archetypes, to generate a diverse portfolio of specialized heuristic ensembles
and then learns an adaptive mechanism to select the best configuration for new instances. Exper-
iments confirm that this approach not only improves performance but, more importantly, exhibits
robust out-of-domain generalization. This validates that learning a mapping from instance features
to a generated portfolio of solvers is a more effective and practical paradigm for the automated de-
sign of complex, configurable systems like SAT solvers. Future work could focus on automating the
discovery of these archetypes and extending this paradigm to other domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we commit to making our source code publicly available
upon acceptance of this paper. All SAT instances used for training and evaluation are from publicly
available SAT Competition benchmarks and previous work. We will provide detailed lists and in-
structions for obtaining them in our repository. More details of our implementation can be found in
the Appendix.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. On the structure of industrial sat instances. In
International Conference on Principles and Practice of Constraint Programming, pp. 127–141.
Springer, 2009.

Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern sat solvers. In
IJCAI, volume 9, pp. 399–404, 2009.

Gilles Audemard and Laurent Simon. Glucose 2.1: Aggressive, but reactive, clause database man-
agement, dynamic restarts (system description). In Pragmatics of SAT 2012 (POS’12), 2012.

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. Conflict-driven clause learning
sat solvers. Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, pp.
131–153, 2009.

Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks, and Florian Pollitt.
CaDiCaL, Gimsatul, IsaSAT and Kissat entering the SAT Competition 2024. In Marijn Heule,
Markus Iser, Matti Järvisalo, and Martin Suda (eds.), Proc. of SAT Competition 2024 – Solver,
Benchmark and Proof Checker Descriptions, volume B-2024-1 of Department of Computer Sci-
ence Report Series B, pp. 8–10. University of Helsinki, 2024.

Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender
Özcan, and Rong Qu. Hyper-heuristics: A survey of the state of the art. Journal of the Op-
erational Research Society, 64(12):1695–1724, 2013.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Stephen A Cook. The complexity of theorem-proving procedures. In Logic, automata, and compu-
tational complexity: The works of Stephen A. Cook, pp. 143–152. 2023.

James M Crawford and Andrew B Baker. Experimental results on the application of satisfiability
algorithms to scheduling problems. In AAAI, volume 2, pp. 1092–1097, 1994.

William R Harris, Sriram Sankaranarayanan, Franjo Ivančić, and Aarti Gupta. Program analysis via
satisfiability modulo path programs. In Proceedings of the 37th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pp. 71–82, 2010.

Robert G Jeroslow and Jinchang Wang. Solving propositional satisfiability problems. Annals of
mathematics and Artificial Intelligence, 1(1):167–187, 1990.

Richard Kaye. Minesweeper is np-complete. The Mathematical Intelligencer, 22(2):9–15, 2000.

Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate based branch-
ing heuristic for sat solvers. In International Conference on Theory and Applications of Satisfia-
bility Testing, pp. 123–140. Springer, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jia Hui Liang, Chanseok Oh, Minu Mathew, Ciza Thomas, Chunxiao Li, and Vijay Ganesh. Machine
learning-based restart policy for cdcl sat solvers. In International Conference on Theory and
Applications of Satisfiability Testing, pp. 94–110. Springer, 2018.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. arXiv preprint arXiv:2401.02051, 2024.

Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of las vegas algorithms.
Information Processing Letters, 47(4):173–180, 1993.

Mukul R Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances in sat-based formal
verification. International Journal on Software Tools for Technology Transfer, 7(2):156–173,
2005.

Jussi Rintanen. Planning as satisfiability: Heuristics. Artificial intelligence, 193:45–86, 2012.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending sat solvers to cryptographic problems.
In International Conference on Theory and Applications of Satisfiability Testing, pp. 244–257.
Springer, 2009.

Niklas Sorensson and Niklas Een. Minisat v1. 13-a sat solver with conflict-clause minimization.
SAT, 2005(53):1–2, 2005.

Yiwen Sun, Furong Ye, Xianyin Zhang, Shiyu Huang, Bingzhen Zhang, Ke Wei, and Shaowei
Cai. Autosat: Automatically optimize sat solvers via large language models. arXiv preprint
arXiv:2402.10705, 2024.

Niki van Stein and Thomas Bäck. Llamea: A large language model evolutionary algorithm for
automatically generating metaheuristics. IEEE Transactions on Evolutionary Computation, 2024.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla: Portfolio-based algorithm
selection for sat. Journal of Artificial Intelligence Research, 32:565–606, 2008.

Shunyu Yao, Fei Liu, Xi Lin, Zhichao Lu, Zhenkun Wang, and Qingfu Zhang. Multi-objective
evolution of heuristic using large language model. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 27144–27152, 2025.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. Reevo: Large language models as hyper-heuristics with reflective evolution.
Advances in neural information processing systems, 37:43571–43608, 2024.

A DETAILED SAT INSTANCE FEATURES

Our 37-dimensional feature vector is constructed from a combination of 33 features adapted from
the SATzilla template and four new lightweight additions. The complete list is detailed below.

• Problem Size Features
– num variables: The number of variables, denoted as v.
– num clauses: The number of clauses, denoted as c.
– var clause ratio: The ratio of clauses to variables (c/v).

• Variable-Clause Graph Features
– Variable Nodes Degree (Frequency): avg var frequency, var degree cv,
var degree min, max var frequency, var frequency entropy.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

– Clause Nodes Degree (Length): avg clause length, clause degree cv,
min clause length, max clause length, clause length entropy.

• Variable Graph Features
– Nodes Degree Statistics: var graph degree mean, var graph degree cv,
var graph degree min, var graph degree max.

• Balance and Polarity Features (Distributional)
– Per-Clause Literal Ratio: clause pos neg ratio mean,
clause pos neg ratio cv, clause pos neg ratio entropy.

– Per-Variable Occurrence Ratio: var pos neg ratio mean,
var pos neg ratio cv, var pos neg ratio min,
var pos neg ratio max, var pos neg ratio entropy.

– Clause Type Fraction: binary clause fraction,
ternary clause fraction.

• Proximity to Horn Formula Features
– horn clause fraction: The fraction of clauses that are Horn clauses.
– Horn Variable Occurrences: horn var occurrence mean,
horn var occurrence cv, horn var occurrence min,
horn var occurrence max, horn var occurrence entropy.

• Additional High-Level Features (Global)
– positive literal ratio: The global ratio of positive literals to total literals.
– balanced var ratio: The proportion of variables with an equal number of posi-

tive and negative occurrences.
– polarity bias: A measure of the overall tendency towards positive or negative

literals.
– constraint density: A measure of problem constraint level.

B ALGORITHM OF DASHCO

Algorithm 1 DASHCO Framework Overview

1: Input: Training instance set Itrain, test instance jnew.
2: Output: Solved result for jnew.

▷ Stage 1: Data-Aware Heuristic Evolution
3: Define a set of Problem Archetypes D = {d1, ..., dp}.
4: for each archetype di ∈ D do
5: Create data subset Ii ⊆ Itrain by filtering.
6: end for
7: H ← Lrestart × Lrephase × Lbump var

8: H′ ← Prune(H, Itrain) by removing ensembles with performance below a predefined thresh-
old.

▷ Stage 2: Offline Instance Space Partitioning
9: for each instance j ∈ Itrain do

10: h∗(j)← argminhk∈H′ performance(hk, j).
11: end for
12: for each unique hk that is optimal for some instance do
13: Ck ← {j ∈ Itrain|h∗(j) = hk}.
14: vk ← 1

|Ck|
∑

j∈Ck
v(j).

15: end for
▷ Stage 3: Online Adaptive Selection

16: vnew ← v(jnew).
17: k ← argmini distance(vnew, v̄i).
18: hselected ← hk.
19: Solve jnew using the solver configured with hselected.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C DATASET CHARACTERISTICS

Our experimental design aims to evaluate the generalization capability of DASHCO. We construct a
single, heterogeneous training set composed of instances from multiple sources, including unclas-
sified problems from the SAT Competitions of 2022 and 2023, as well as the SCPC family. Our
evaluation is then divided into two settings:

• In-Domain Generalization: We test on unseen instances from families that were partially
represented in the training set. These benchmarks include CoinsGrid, which originates
from a puzzle about arranging coins on a grid under specific constraints; LangFord, a com-
binatorial challenge of arranging paired numbers such that each pair of number k is sepa-
rated by exactly k other items; and PRP (Profitable Robust Production), which models an
industrial task of finding a robust production plan under uncertainty. We select 10 instances
from those datasets to compose our training set.

• Out-of-Domain (OOD) Generalization: To evaluate true generalization capabilities, we
use entire problem families that were completely held out during the heuristic evolution
process. These OOD test sets include CNP (Chromatic Number of the Plane), a classic
graph coloring problem; Zamkeller, a complex permutation problem concerning subse-
quences; and KnightTour, which seeks a path for a knight to visit every square on a chess-
board exactly once.

Table 3: Statistical characteristics of the evaluation datasets.

Dataset # Inst. Variables (Mean ± Std) Clauses (Mean ± Std)
In-Domain Benchmarks

CoinsGrid 52 530807 ± 513663 3825868 ± 3701594
LangFord 64 312492 ± 213284 2734786 ± 1972624
PRP 144 499206 ± 324889 3337426 ± 2175367

Out-of-Domain Benchmarks

CNP 50 9890 ± 11139 86724 ± 77379
Zamkeller 48 21435 ± 19119 265218 ± 283330
KnightTour 22 135288 ± 191062 5742107 ±9872215

D DEFINITION OF PAR-2 METRIC

The PAR-2 score is calculated as:

PAR-2 =
1

N

N∑
i=1

t′i

where N is the number of instances, and t′i for instance i is its actual runtime if solved, or 2000s if
unsolved. A lower PAR-2 score is better, as it indicates a solver is both fast and robust. Crucially,
the PAR-2 score also serves as the primary fitness metric that guides the LLM-driven evolutionary
search for better heuristics.

E EXAMPLE PROMPT TEMPLATE

Our data-aware guidance mechanism is designed to be agnostic to the specific underlying LLM-
based heuristic search algorithm. It can be integrated as a modular hint into various existing frame-
works, such as AutoSAT or ReEvo. The following provides an example of how our data-aware hint
can be incorporated into an Advisor prompt, using a structure similar to that of AutoSAT. The key
addition is the highlighted text, which provides the LLM with the specific Problem Archetype it
should optimize for.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Example Advisor Prompt Template

You are a SAT solver researcher trying to write the {{ task }} to help SAT solver escape from local
optimum. Your goal is to write a {{ task }} for the SAT solver that will help it restart the search and
escape from local optimum, after reading and understanding the <key code> of SAT solver below.
Please note, the SAT problem instances we are targeting have the following characteristics: {{
problem archetype description }}.
Your answer must follow the following JSON format:

{
"description":

"Provide a ...",
"modification_direction":

["some possible directions..."]
}

Tips:
1. You must traverse all possible positions of <key code> if you want to modify the {{

task }}.

2. You need to give us some advice to modify the {{ task }}. e.g. some potential directions
to change the heuristics.

3. Notice that, you can only change {{ task }}.

4. {{ other tips }}
key code of SAT solver is:
"""
{{ origin_key_code }}
"""

Take a deep breath and think it step by step. Then respond strictly in JSON format!

F HYPERPARAMETER SETTINGS

Table 4 lists the main hyperparameters used across our experiments to ensure reproducibility.

Table 4: Main hyperparameters used in our experiments.

Hyperparameter Value
General Experimental Settings
Solver Timeout 1000s
Random Seed 42

LLM and Evolutionary Search
LLM Model GPT-4o
Temperature 0.8
Generations 3
Population Size 2

DASHCO Framework Settings
Number of Problem Archetypes 3
Heuristics per Type (k) 3
Pruned Portfolio Size 9

G USAGE OF LLMS

We take advantage of LLMs to improve the writing of this paper.

14

	Introduction
	Preliminaries & Related Work
	SAT and CDCL-based Solvers
	LLM-based Heuristic Generation
	Algorithm Selection and Portfolio Solvers

	Methodology
	Heuristic Modules in CDCL-based Solvers
	Feature Extraction for SAT Instances
	Data-Aware Heuristic Evolution
	Instance Space Partitioning via Performance-Based Clustering
	Adaptive Heuristic Selection for Instances

	Experiments
	Experimental Setup
	Performance Comparison
	Ablation Study
	Analysis of Portfolio Scale and Diversity
	Overhead Analysis

	Conclusion
	Detailed SAT Instance Features
	Algorithm of DASHCO
	Dataset Characteristics
	Definition of PAR-2 metric
	Example Prompt Template
	Hyperparameter Settings
	Usage of LLMs

