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Abstract

While powerful, classical Bayesian Optimization (BO) and active learning methods

]
2 struggle to incorporate complex prior knowledge, provide limited interpretability in
3 explaining why a candidate looks promising, and can be computationally demand-
4 ing. Large language models (LLMs) offer complementary strengths in reasoning
5 ability and integration of domain knowledge, but it remains unclear when and
6 how they can reliably improve BO campaigns. We reconcile previous reports by
7 providing a systematic comparison of various LLM-based approaches (off-the-shelf
8 reasoning LLMs relying on in-context learning, fine-tuned on synthetic BO, and
9 light-weight agentic workflows using tools) against classical statistical BO across

10 molecular optimization and protein design tasks. We find that off-the-shelf reason-

11 ing LLMs fail in SMILES-based molecular optimization due to their poor handling

12 of SMILES representations and large in-context inputs, but agentic workflows that

13 leverage cheminformatics tools and statistical model-based filtering overcome these

14 limitations. In contrast, in the design of four-residue protein motifs, pure reasoning

15 LLMs excel by generating domain knowledge-driven hypotheses, while agentic

16 workflows underperform, relying too heavily on tools. These results highlight the

17 complementarity of reasoning models and agentic architectures, offering guidance

18 on when each is preferable. Finally, we show that non-reasoning LLMs trained

19 via supervised fine-tuning (SFT) can efficiently mimic statistical strategies in our

20 setting, sometimes outperforming reasoning models at a fraction of the computa-

21 tional cost. Together, our findings clarify the respective roles and failure modes of

22 reasoning, agentic, and statistical approaches in BO, and propose a path toward

23 hybrid methods that combine the strengths of LLM-hypothesis generation and

24 statistical rigor.

Table 1: Comparison of supervised fine-tuned (SFT), off-the-shelf (LLM), and agentic (Agent)
approaches for BO across our two domains.

Domain Performance Relative Cost
Example Representation | Search Space | Budget | SFT | LLM | Agent | SFT | LLM | Agent
small AA motifs Simple Less constrained | Small | Mid | High | Poor | Low | Mid High
Medium-sized SMILES Complex Constrained Large - Poor | High - High | Mid

s 1 Introduction

26 Chemical space diversity presents a challenge in scientific discovery, specifically in fields like drug
27 design, protein engineering, and others where the number of potential candidates is prohibitively

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75
76

77

78

79
80
81

large to test thoroughly. Bayesian optimization (BO) is a paradigm that addresses the challenge of
efficiently navigating large search spaces in an intelligent manner [[Snoek et al.| |2012]]. At its core,
BO is a probabilistic machine learning approach where a model iteratively suggests experiments to
perform for costly evaluations (e.g., human expert, physical experiment, computational model, etc.).
The iterative, data-driven strategy is meant to optimally explore the search space, while exploiting
the best possible candidates with minimal number of experiments, thereby accelerating the scientific
discovery process [Tabor et al.,|2018]]. The framework has been successfully used in drug discovery
[Korovina et al., 2020l [Pyzer-Knapp, |2018]], chemical reaction optimization [Shields et al.| 2021]],
catalyst development and more [[Tabor et al., 2018, |[Hsieh et al., 2018]].

At the core of the Bayesian optimization framework is the acquisition function (AF). It is the
formulation that decides which candidate (or set of) to select at each iteration. Statistical AFs are
often designed to manage the fundamental trade-off between exploitation and exploration [Kaelbling
et al.l[1996| [Shahriari et al.|[2015]]. Exploration will increase the knowledge of the model by focusing
on candidates where the model is uncertain, aiming to reduce global error of the model, potentially
uncovering novel regions of the search space with better performance. Exploitation, on the other hand,
prioritizes already known regions where the model currently predicts the best outcome, effectively
optimizing known regions of high performance. Common methods such as Upper Confidence Bound
(UCB) [Lai and Robbins| |1985]] and Thompson Sampling (TS) [Thompson, 1933} Thompson et al.,
2022] offer frameworks for balancing these competing objectives.

The performance of these methods is contingent on the quality of the model’s uncertainty estimates
and only captures the knowledge from the model predictions, but does not include chemical knowledge
available in the large body of literature work. The inherent opacity of the surrogate models typically
employed in Bayesian optimization hinders its broader utility, as it precludes researchers from
elucidating the fundamental structure-property relationships governing the system. The expensive
calculations in common surrogate models such as the Gaussian Process limit the ability of using
BO for large search spaces and long optimization campaigns. Collectively, these constraints on
interpretability, computational scalability, and knowledge integration limit the practical utility of
Bayesian optimization.

Large language models (LLMs) on top of being disruptive in virtually every other field, also bring
potential benefits to scientific discovery. The vast domain knowledge and reasoning capabilities of
LLMs promise great potential in enhancing BO. Studies have used LLMs for the entire BO pipeline
[Yang et al.| [2023]], replacing representation, uncertainty quantification and acquisition [Wang et al.,
2025]], or dynamically sampling new proposal distributions as the campaign evolves [Agarwal et al.|
2025]). Yet there is a lack of clear understanding as to when and how LLMs are better than classical
BO methods.

In this work, we systematically compare LLM-based approaches (off-the-shelf, fine-tuned or agentic)
against BO methods. At the core of the investigation, is to understand under what conditions do
LLMs perform better than BO, and when not. We do this by using two benchmarks. SMILES-based
molecular optimization and a four-residue protein optimization. The SMILES task is characterized
by a constrained search-space, where valid SMILES strings form only a small fraction of all possible
character sequences, and a large evaluation budget. The protein task is characterized by simple
representations (four-residue amino acid sequence) and a less-constrained search space — all amino
acid combinations are valid and a small evaluation budget. Our main findings are that off-the-
shelf models fail in SMILES-based molecular optimization tasks, due to the inability to accurately
understand molecular structure from SMILES strings and failure to process large in-context inputs.
Agentic frameworks, that have been equipped with domain specific tools, help to overcome these
both failure modes by offloading filtering to tools. In the four-residue protein design task, reasoning
models excel due to effective domain related hypothesis generation. On the other hand, agentic
workflows under-perform here in comparison to pure reasoning models.

2 Related Works

2.1 Bayesian optimization and active learning in molecular sciences

Bayesian optimization and active learning have been extensively employed in various fields to
accelerate scientific discovery. In drug discovery, these methods are used to navigate the vast
chemical space to find novel drug candidates, optimizing for properties such as docking scores,
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potency, and more [McDonald et al., [2025]]. For instance, Dang et al.|[2025] showed that BO can
guide the synthesis of ligands with high affinity to specific enzymes. In materials science, these
techniques have accelerated the discovery of novel liquid electrolytes, identified novel electro-catalyst
candidates for CO4 reduction and oxygen evolution reduction, and discovered new alloys with
enhanced mechanical strength [Dave et al., |2022| Jenewein et al., 2024, [Tran and Ulissil, [2018],
Ghorbani et al.,|2024]]. Furthermore, BO is frequently applied to optimize the conditions of chemical
reactions, efficiently determining the ideal temperature, pressure, and reactant concentrations to
maximize yield and minimize byproducts [Tachibana et al.l 2023 [Burger et al.,|2020]]. In the field
of protein engineering, Bayesian optimization and active learning guide the design of antibodies
with high target specificity, proteins with high thermostability, and peptide sequences with favorable
functionality and stability [Khan et al., 2023} |Stanton et al., {2022, Manshour et al., 2024]].

2.2 LLM-guided Bayesian optimization and active learning

With recent advances in LLMs, there is a shift toward the integration of LLMs into the BO/AL loop
to exploit their vast prior knowledge and reasoning capabilities. One major direction involves framing
the LLM itself as an optimizer [Yang et al.| 2023 |Xia et al.| |2025]]. In molecular discovery [Reinhart
and Statt, [2024], it has been demonstrated that off-the-shelf LLMs (e.g., Claude 3.5) can serve as an
an evolutionary optimizer for macromolecular operations, outperforming traditional active learning
pipelines and genetic algorithms on a polymer sequence discovery task, suggesting that LLMs can
implicitly balance exploration and exploitation . Similarly, Liu et al.|[2024] integrate an LLM into the
BO process by framing optimization as a language problem by prompting the model to propose and
evaluate solutions given the history of observation. Leveraging the LLM’s zero/few- shot learning to
guide search, their approach (LLAMBO) improved hyperparameter tuning efficiency in data-sparse
settings without any model fine-tuning. [Lu et al.| [2025]] achieve similar results on simple transition
metal complexes discovery using in-context learning. However, some studies provide a more cautious
perspective. [Kristiadi et al.| [2024]] reports that general-purpose LLMs offer limited benefit, unless
they have been pretrained or finetuned with domain-specific data (e.g., molecular data). Additionally,
this finding is further corroborated by [Wang et al.| [2025]] who found that no off-the-shelf LLM, no
matter incorporated at what stage of BO, can outperform a simple statistical baseline. These results
highlight that careful adaptation is needed to leverage LLMs in BO/AL settings. Building on top of
these previous works, our work systematically investigate advantages and limitations of using LLMs
for BO in scientific discovery, and proposes strategies to overcome the limitations.

2.3 Frameworks: Off-the-shelf vs. fine-tuned vs. agentic LLMs

Scientific research with Large Language Models (LLMs) spans a spectrum from general-purpose
application to highly specialized automation. At one end, off-the-shelf models like GPT, Gemini,
Claude, Llama, and Qwen serve as powerful, multipurpose tools for tasks such as summarizing
literature, generating hypotheses, and writing code, leveraging their vast pretrained knowledge base.
Researchers develop finetuned models by further training a base LLM on a specific domain-centric
dataset, for example, routes of chemical synthesis or therapeutics to increase performance in specific
tasks [Sun et al., 2025} |(Chaves et al.| 2024, |[Zhang et al., 2025]. The finetuning process hones the
model’s capabilities, enabling it to generate highly accurate and contextually relevant outputs for
niche tasks that a general model would struggle with. |Sumers et al.| [[2023]] proposed agentic LLM
frameworks that integrate various LLMs into large systems capable of handling more complicated
tasks by dividing into smaller tasks, using larger context windows with more advanced memory, and
with the ability to perform actions with integrated tools. Agentic frameworks have been successfully
utilized in discovering protein design principles [Ghafarollahi and Buehler, |2025b], novel treatments
for macular degeneration [[Ghareeb et al.| 2025]], designing novel alloys [Ghafarollahi and Buehler,
2025al], and more [Xi1a et al.,[2025].

3 Overview

We study the success and failure modes of LLMs across two flavors of Bayesian optimization (BO)
tasks: SMILES-based molecular optimization and four-residue protein optimization. The molecule
task (SMILES-based) is characterized by a constrained search space where valid SMILES strings
form only a small fraction of all possible character sequences—and a large evaluation budget. The
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protein task (four-residue) is characterized by a less-constrained search space where all amino acid
combinations are valid, and a small evaluation budget.

Across both domains, we evaluate three classes of LLM-based methods: (1) off-the-shelf reasoning
models, (2) our developed agentic workflow, and (3) non-reasoning LLMs fine-tuned to mimic
statistical acquisition strategies. We compare these against standard statistical baselines and analyze
where LLM-based approaches succeed or fail.

SMILES-based molecular optimization. For the molecule task, we use the benchmark introduced
by|Gorantla et al.|[2024]]. The benchmark contains 4 datasets of thousands of medium-sized molecules
(95% in the [15, 22] carbon range), with measured binding affinities to a protein target. We run our
tests against two of these targets; D2R, and TYK2. The goal is to identify molecules in the top 2%
for each target. Following prior work, we initialize with starting size = 60, batch size =
60, and extend the evaluation budget to 600 (from 360 in the original benchmark) to strengthen the
signal. We also evaluate the predictive model’s RMSE on the entire database as a metric of how well
each acquisition function informs the predictive model.

As statistical baselines, we implement Gaussian process regression with a Tanimoto kernel (4096
bits, radius 2), using four acquisition strategies: Greedy, Upper Confidence Bound (UCB), Thompson
Sampling (TS), and Random sampling.

In BO, the effect of starting point is huge. If we start from bad local minima, greedy algorithm would
fail miserably. Thus, robustness of the method to the initialization is required. To evaluate robustness,
we consider two initialization regimes for the molecule task: (1) starting batches sampled uniformly
at random and (2) batches sampled from a single cluster in a UMAP embedding of chemical space.

four-residue protein optimization. For the protein task, we adopt the framework of [Yang et al.
[2025]], which provides fitness values for nearly all sequences in the full 20* combinatorial search
space of two highly epistatic motifs (on GB1 and TrpB). The objective is to discover sequences of
maximal fitness.

We evaluate performance using two metrics: (1) maximum fitness score, as in the original benchmark,
and (2) recall of top-performing sequences (top 0.5 %), for consistency with the molecule task.
Baselines include Greedy, UCB, TS, Random, and a directed evolution strategy (greedy local search
around the wildtype). The predictive model is a deep neural network (DNN) ensemble trained on
one-hot encoded sequences, as shown to perform best in the original paper. We test both a small
campaign (starting size = 10, batch size = 10, budget = 60) and the larger campaign
studied by |Yang et al.|[2025] (starting size = 96, batch size = 96, budget = 480).

4 Off-the-Shelf Reasoning LLMs Struggle with Molecular Optimization

4.1 Setup: Reasoning LLM-based acquisition design and prompting strategy

We evaluate three reasoning models on this benchmark - Qwen3-32B [QwenTeam, 2025[], GPT-5-
medium reasoning [[OpenAl 2025]], and Llama-4-maverick-17B [MetaAll 2025]. At each iteration,
the model receives the campaign description, accumulated observations (SMILES with ground truth
fitness values of selected samples), and a candidate pool (SMILES with predictive model fitness
values and confidence scores).

The full list of candidates was processed in chunks of size dependent on the context length, selecting
a batch from each chunk, and then a final batch from the union of selections from all chunks.
Due to context length limits, smaller models (Qwen3, GPT-5) cannot simultaneously attend to all
accumulated observations and candidate chunks. For these models, we first prompt to summarize the
accumulated observations, and the summary was then used to inform the selections from the chunks.
With this method, acquisition takes around 2 minutes and 60,000 tokens per 1,000 samples.

4.2 Poor handling of large in-context inputs and SMILES limits the reasoning model
performance.

LLM-based acquisition underperform compared to statistical acquisition functions in terms of recall,
effectively mimicking the greedy algorithm in both the random start (Figure[Ta)), and the bad start
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(Figure [Tb), showing a limited ability to identify and escape the local minima. Contrary to our
expectation that LLMs would leverage scientific reasoning to escape bad starts, their selections rely
heavily on GP predictions, providing little additional information gain for the GP model compared
with statistical baselines (Figure[Id).

The inferior performance of LLM-based acquisition highlights two main issues. First, LLMs struggle
to correctly parse and reason over SMILES strings. Second, they are unable to accurately process the
large in-context dataset tables. Qwen3 and Llama-4 often deviate from the required output format,
selecting duplicates or using wrong budget. GPT-5 is more precise with the format, but appears to
fail at correctly mapping chemical patterns to SMILES (further discussion in[A.T). Moreover, finding
an optimal way of chunking the data for in-context input requires an extra effort.

S Agentic Workflows Improve Data Comprehension and Scalability

Given these limitations, we explore whether agentic workflows, where an LLLM orchestrates tool
use rather than directly ranking molecules, can mitigate data processing challenges. We designed an
LLM workflow to select from the candidate pool using a limited set of simple tools, including: (1)
sorting by GP predictions, (2) filtering by SMARTS substrings, (3) filtering by Tanimoto similarity in
comparison to compounds already observed or to the current batch, and (4) filtering using UCB with
hyperparameters set by the agent.

5.1 Setup: Workflow architecture with strategist, implementer, and summary nodes

The workflow begins with a "strategist" node prompted to analyze the campaign stage, objectives,
and accumulated observations (a dataframe of SMILES string and score of each molecule selected
in previous cycles). Based on this analysis, it proposes a set of selection strategies. Each strategy
is then passed to an "implementer" node, responsible for executing the strategy via tool calls. The
results, along with the information of strategies, task reasoning, and tool calls, is finally processed
by a "summary" node which evaluates the effectiveness of each strategy and the cycle performance
overall. This summary is subsequently fed back to the "reasoning" node, informing the design of
strategies in the next iteration. Claude-3.5-sonnet [Anthropicl 2024]] was used for both implementer
and summary nodes.

5.2 Agentic workflows surpass both statistical and LLM baselines

Even with a limited set of tools, the agentic workflow proves effective, greatly surpassing all off-the-
shelf models in the easy task (Figure|[laj AGENT), and the statistical models on the bad start (Figure

[Ib). The main reason for this improvement is that the workflow’s ability to leverage rule-based

SMARTS filtering, rather than having to rely on their own understanding of SMILES.

5.3 Limiting in-context information reinforces domain knowledge-driven reasoning

From the LLM reasoning history, we observed that the agent consistently copied patterns from
SMILES present in the accumulated observations table for SMARTS filtering. Interestingly, when
we remove all sample-level information (i.e., SMILES strings and their associated scores) from the
prompt provided to the "strategist" node (Prompt A{A.4.T] SMILES table at end of cycle summary
Prompt A{A.4.T), while maintaining the natural language cycle summaries (generated by the "sum-
mary" node), the model engages in expert-level chemical reasoning about structural motifs associated
with binding. Instead of copy-pasting substrings from the table of accumulated observations, it instead
creates SMARTS filters based on chemical hypotheses from prior knowledge. This method achieves
performance comparable to statistical methods on the simpler task (Figure|la, SIMPLEAGENT)
while providing larger information gain to the GP model (Figure[Ic), and quickly breaks out from the
bad starts (Figure[Tb). The improvement from the original AGENT suggests that constraining models
to tool-mediated reasoning allows domain knowledge to be used more effectively than forcing direct
SMILES comprehension.
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Figure 1: Performance of statistical acquisition functions (GREEDY, UCB = upper confidence
bound, TS = Thompson sampling), off-the-shelf models (GPT-5, Qwen3, Llama4 (non-reasoning)),
and agentic flows (AGENT, SIMPLEAGENT) on the molecular BO task. Metrics: (1) Recall at
2 % (Top row), the fraction of the top 2 % of candidates in the entire search space, (2) predictive
model’s RMSE on the accumulated observations (Bottom row) measuring how well-informed the
predictive model is of the search space at a given stage of the campaign. Left column: Binding
affinity optimization for D2R target with random initialization. Right column: Binding affinity
optimization for TYK2 target, with initialization from a bad local minima testing the method’s ability
to explore. N=10 samples for all methods except Qwen3-D2R random start (N=5), Qwen3-TYK?2
bad start (N=5), GPT-5-D2R random start (N=5), and GPT-5-TYK2 bad start (N=4). Dashed line
(Random) marks the performance of random acquisition. Agentic models outperform statistical
models when the campaign is initialized in a bad local minima and are competitive on random
initializations, while informing the predictive model more.

6 Protein optimization task shows the true power of reasoning model

From our previous section, we identified the failure modes in SMILES-based molecular optimization
task. LLMs are not good at comprehending SMILES and in-context processing of large dataset is not
ideal. As such, we next investigated whether these models are more effective in the task with simpler
representations and less-constrained search spaces, optimizing the fitness of a four-position protein
motif.

The set of current observations for statistical models and the agentic workflows were initialized with
random samples from the search space and a target protein description that included the wildtype
(WT) sequence. The "off-the-shelf" reasoning models were given the same background and WT. The
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agentic workflow could filter by predictive model predictions, blosum62 scores, Hamming distances,
regex patterns, and UCB.

6.1 Qwen3 agentic workflows collapse to directed-evolution behavior and underperform

Across both protein targets GB1 and TrpB, Qwen3 underperformed across all metrics (Figure [2).
Closer inspection on the reasoning log revealed that its proposals were almost exclusively point
mutations of the WT or current best-performing sequence, effectively reproducing directed evolution
(DE) (FigureEl, DE baseline).

Budget: 60, Model: Onehot-DNN Budget: 480, Model: Onehot-DNN
Max Fitness Achieved Max Fitness Achieved
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Figure 2: Performance of statistical acquisition functions (GREEDY, UCB = upper confidence
bound, TS = Thompson sampling), off-the-shelf models (GPT-5, Qwen3), and Qwen3-based agentic
models (AGENT, SIMPLEAGENT) on the active learning task of optimizing a four-residue motif.
Metrics: (1) highest achieved fitness (Top row), (2) recall at 0.5 % (Bottom row), implying the
fraction of the top 0.5 % motifs in the entire search space. The campaign is performed on two scales:
with a budget of 60, batch size 10 motifs (Left column), and with a budget of 480, batch size 96
motifs (Right column). Error bars mark standard deviation. Statistical methods use 50 samples, and
LLM methods use 10 samples. Dashed line (DE) marks the performance of directed evolution starting
from the WT. Dotted line (Top row, Random) marks expected performance from random acquisition.
GPT-5 performs the best in the small campaign, but performance deteriorates with increased batch
sizes and budgets. Agents fail due to the limited usefulness of tools in this domain.

The Qwen3-based agent also performed poorly: it heavily relied on regex-matching of the accumu-
lated observations and again converged to DE-like behavior (Figure [2a). To mitigate this, we limited
the information provided to the initial prompt, withholding any information about the sequences in the
accumulated observations so far. This SIMPLEAGENT variant showed marked improvement (Figure
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[2a), as it relied more on the GP model predictions rather than trying to search near the previous
observations. Nevertheless, its recall remained substantially lower than statistical baselines (Figure

2d).
Although performing significantly worse than the statistical models on the recall metric (Figure [2d),

it still scales indefinitely in execution time and cost with budget. Extensive tool tuning, or unlimited
accessibility to python would likely improve performance significantly.

6.2 Off-the-shelf GPT-5 outperforms statistical methods with effective hypothesis discovery in
the smaller campaign

We next evaluated GPT-5, which produced highly potent results in the protein task. Starting from the
WT, GPT-5 identified 11 sequences in the top 0.5% of the full search space within just 60 evaluations
(Figure [2a). Notably, GPT-5 appeared to have biological knowledge about the system: given only the
WT sequence “VDGV” along with the keyword “epistatic,” it identified GB1 as the protein target.

We therefore ran both Qwen3 and GPT-5 without any context about the wildtype or the protein, and
still observed very strong performance of GPT-5. Both Qwen3 and GPT-5 demonstrated explicit
hypothesis-driven search. While Qwen3 still appeared ineffective at executing on the ideas, GPT-5
had already by the second cycle, articulated and tested the hypothesis that “bulky residues at positions
1 and 3, small residues elsewhere” yield high-fitness sequences, a pattern that is 5.3x more common
in the top 0.5% of sequences than on average. Moreover, GPT-5 generated multiple hypotheses per
batch, enabling rapid exploration of the sequence landscape, in sharp contrast to Qwen3’s incremental
point mutations. However, GPT-5 suffered from scaling limitations. In larger campaigns with high
batch sizes, its performance plateaued (Figures [2b] 2d).

6.3 Generative reasoning scales efficiently independent of search space size

An important note is that the off-the-shelf models are fully generative, producing new sequences
directly rather than evaluating an entire candidate pool. This makes their runtime independent of the
search space size. Thompson sampling, which requires repeated retraining of the predictive model
and covariance matrix computations scales by O(/N3) when using an exact GP in a search space of
N candidates, and O(/Nm) using low-rank (m rank) to approximate the covariance matrix. This
efficiency advantage suggests a role for reasoning models in settings where computational overhead
dominates.

7 Fine-tuning Non-Reasoning LL.Ms Trains the Models to Perform Bayesian
Acquisition Behavior

As a complement to the other findings, we aimed to see if non-reasoning Qwen2.5-7B-Instruct could
be fine-tuned to perform simpler generative tasks. Off-the-shelf Qwen2.5-7B-Instruct is unable
to effectively perform the task. Wang et al.|[2025]] showed that training a non-reasoning LLM on
acquisitions by a statistical model in an artificial setting using Direct Preference Optimization (DPO)
can improve the Bayesian behavior of the LLM on selection tasks very similar to the molecular task
described in this article.

We similarly generated synthetic AL tasks in the motif domain, and trained the non-reasoning
LLM using DPO and supervised fine-tuning (SFT) using trajectories sampled from onehot-DNN
Ensemble-TS method as training examples. DPO underperformed in this task, but SFT significantly
outperformed Qwen3, and achieved performance competitive with the statistical methods (details in
the Appendix A.2.5).

8 Conclusion

In this paper, various LLM-based methods (off-the-shelf, agentic and fine-tuned) are systematically
compared on two Bayesian optimization tasks. Models of various sizes and capabilities are compared
to gain insight into the scope and potential of using LLMs for BO.

SMILES-based molecular optimization gives enhanced perspective on a common problem for LLMs:
off-the-shelf models struggle with in-context processing of large datasets and accurate parsing of
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Table 2: Comparison of LLM approaches for Active Learning across different domains

(a) SMILES-Based Molecular Optimization

TYK2, Bad Start D2R, Random Start
Recall@2% 1T | RMSE | | Recall@2% T | RMSE |
Method ‘ ‘ x1073 ‘ x10~?
Best Statistical Model | 0.32 £0.25 | 160 £47 | 0.80 4+ 0.05 90 +5
Best Agent 0.54 + 0.12 93 +7 0.78 +0.05 86+6
Best Off-the-Shelf 020+£0.18 | 121 +13 | 0.61 £0.09 91+5

(b) four-residue Protein Optimization

GB1, Budget 60 TrpB, Budget 60
Recall@0.5% 1 | Max Fitness T | Recall@0.5% 1 | Max Fitness 1
Method ‘ x103 ‘ x103
Best Statistical Model 12+7 0.63 +0.17 9+ 10 0.51+£0.32
Best Agent 5+6 0.50 + 0.25 7+7 0.57 £ 0.20
Best Off-the-Shelf 20 +£11 0.60 + 0.13 10+ 15 0.45+0.35

SMILES strings. The introduction of an agentic workflow with the ability to use a set of simple tools
greatly increases the performance of LLMs on this task. Furthermore, by removing SMILES related
information from the agent the model performance increases even more. This happens as the model
creates chemical hypothesis more freely and relies less on direct SMILES string comprehension.
Table 2] (a) shows the performance increase of the best agent framework in this task.

The protein optimization task shows the power of reasoning models on simpler representations. While
the smaller models (Qwen3-32B) and the agentic frameworks saw performance much lower than that
of the BO baselines, the GPT-5 reasoning model generated a wide variety of valid hypothesis and
rapidly explored the sequence landscape. On the other hand, GPT-5 suffered from scaling to larger
campaigns with high batch sizes, where its performance plateaued. Finally, fine-tuned non-reasoning
models were able to achieve enhanced performance compared to their non-fine-tuned reasoning
counterparts while operating on a fraction of cost.

This study shows the potential for using LLMs in BO in various fields under the correct circumstances.
In constrained search spaces such as SMILES optimization, agentic workflows equipped with
external tools yield stronger performance, whereas in less-constrained search spaces with more
LLM-comprehensible representations such as protein optimization, off-the-shelf reasoning models
employing generative strategies prove more effective.
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7 A Technical Appendices and Supplementary Material
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Method TYK2 Bad Start TYK2 Random Start D2R Bad Start D2R Random Start
Recall@2% 1 RMSE | Recall@2% 1 RMSE | Recall@2% 1 RMSE | Recall@2% 1 RMSE |
x1073 x1073 x1073 x1073
GREEDY 0.16 4 0.14 234 + 20 0.62 £ 0.04 100 + 4 0.47 £ 0.17 123+9 0.52 £ 0.13 96 + 6
UCB 0.32 +0.25 160 + 47 0.69 + 0.04 94 +4 0.68 £ 0.08 110 +£7 0.80 £ 0.05 90 + 5
TS 0.19 £0.15 205 + 41 0.65 £ 0.04 9+5 0.56 £ 0.15 118+ 9 0.71 £ 0.07 92+6
AGENT 0.47 £ 0.14 107 + 33 0.62 £+ 0.11 90 + 4 0.70 £ 0.09 9 +7 0.65 £ 0.10 90 +6
SIMPLEAGENT 0.54 £ 0.12 93+7 0.64 £ 0.06 86 +2 0.69 £ 0.08 98 + 10 0.78 £ 0.05 86+6
GPT-5 0.20 £0.18 121 +£13 - - - - 0.61 £ 0.09 91+£5
Qwen3 0.17 £ 0.17 169 + 45 - - - - 0.53 £+ 0.10 93 +6

Table 3: Performance comparison for different acquisition methods on the molecular domain. Errors
are standard deviations (N=4 GPT-5 TYK2 bad start; N=5 GPT other; N=5 Qwen3; N=10 all others).
Bold numbers mark significantly better performance in a statistical method relative to all LLM-
method or an LLM-method relative to all statistical method (95% confidence in difference between
means by bootstrapping on random seeds).

Method Budget 60, GB1 Budget 480, GB1 Budget 60, TrpB
Recall@0.5% 1 Max Fitness T Recall@0.5% 1 Max Fitness 1 Recall@0.5% 1 Max Fitness 1
x103 x103 x103
GREEDY 12+7 0.63 £ 0.17 231 + 60 0.89 £0.13 9410 0.51 £0.32
UCB 9+7 0.56 £ 0.18 196 + 53 0.90 + 0.12 7+38 0.50 £ 0.30
TS 12+38 0.62 £ 0.17 216 £ 55 0.90 £ 0.12 9+£9 0.52 £ 0.29
AGENT - - - - - -
SIMPLEAGENT 5+6 0.50 £ 0.25 194 £ 52 0.90 £ 0.08 == 0.57 £ 0.20
GPT5 1447 0.56 £ 0.05 83 +£23 0.74 £ 0.18 16+9 0.58 £ 0.05
Qwen3 3+3 0.46 £ 0.14 6+3 0.60 £ 0.20 1148 0.61 £ 0.08
Qwen3-BLIND 3+4 0.41 4+ 0.19 - - 3+5 043 £ 0.32
GPT5-BLIND 20 + 11 0.60 £ 0.13 - - 10 £+ 15 0.45 £ 0.35

Table 4: Performance comparison for different acquisition methods on the protein domain. Errors
mark standard deviations (N=50 for statistical models, N=10 otherwise). Bold numbers mark
significantly better performance in a statistical method relative to all LLM-method or an LLM-
method relative to all statistical method (95% confidence by bootstrapping on random seeds for
agent-statistical comparisons (N=10), and on unique trajectories on off-the-shelf LLM (N=10)-
statistical (N=50) comparisons). Note: Averages and marginal errors shown for statistical models
here are across 50 samples, but significance between agents and statistical models is still computed
on 10 shared starting points.

A.1 LLMs have trouble comprehending SMILES

In depth analysis of the off-the-shelf LLM responses showed several failure modes. Firstly, the
Qwen3 and Llama (and Claude-Sonnet-3.7, not included in data) were greedy with respect to selecting
SMILES strings. When prompted with a table sorted by predicted affinity, they exclusively chose
from the very top of the table. When the table was shuffled, they sometimes appeared to only process
subsets of the table. As seen in Response[A.T] Llama-4-maverick has a very high probability of
selecting a candidate index following a candidate index it has already selected. This is not a surprising,
but a serious issue. The reasoning was often advanced, but despite extensive prompt engineering
efforts, LLMs struggled to implement their stated strategies in practice. Models would provide
excellent rationales for decisions and develop sophisticated AL strategies during the reasoning phase,
yet default to simple heuristics during selection. The reasoning around specific molecule structures
was often extremely brief and related only to one or two substructures, often on the edges of the
SMILES string (Figure [3] right). The model often confused different substructures in multi-ring
systems. To further investigate SMILES comprehension, we asked Qwen3 to summarize different
SMILES from our database (Figure[3] left). The summaries often include several correctly named
substructures and correct chemical properties, but the relation between the substructures is absent.
Qwen3 also often uses SMILES substrings to design hypothesis and filters. This leads to very dense
summaries of the chemical space largely containing copy-pasted substrings (Response [A.4.T)). This
shows that the reasoning models are capable of using substructre information from the SMILES,
but that it requires significant token use. When prompted with more SMILES, precision decreases
drastically. Llama-4-maverick reasons in a similar fashion. Qwen3 and Llama-4, rely heavily on
overly simple filters that only capture minimal information about a given molecule’s performance.
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Other studies have similarly shown that reducing detailed numeric or conceptually complex data
increases performance [Agarwal et al} [2023].

Interestingly, GPTS5 uses a completely different language. The summaries are more extensive (Re-
sponse[A.4.T)) and detailed. It is able to derive relations between substructures, for example "Substruc-
ture filter: pyridyl-diamide with two secondary amides: ArL-NH-C(=0)—pyridyl-NH-C(=0)-ArR".
GPT5’s failure likely lies in its ability to apply such derived filters in practice. We observed several
instances in which it was mapping even simple substructures incorrectly, stating that it found sul-
fonyl in the indices of molecules without a single sulfur. GPTS5 has indeed been shown to perform
better than other models on atom mapping, which may translate to better understanding relations
between substructures, but not on SMILES to TUPAC [Runcie, 2025}, [Runcie et al.l [2025]]. We aim to
investigate this further in subsequent work.

GPT actually recognizes that the chemical space is constrained in the clustered starting configurations
(Figure[TB) but does nothing about it: "The chemical space is tightly focused around a
single core with well-behaved, monotonic SAR along three modular regions."

e p

Response 1: Llama-4-maverick response from processing chunk

Here are 60 selected indices, ensuring a mix across the entire range and
diversity in chemical structures and predicted properties:

<selected_indices>

[38, 497, 244, 248, 293, 294, 999, 1000, 113, 116, 140, 599, 605, 758, 762,
838, 839, 847, 851, 884, 885, 937, 940, 949, 950, 951, 952, 953, 954, 10,
20, 31, 32, 33, 34, 39, 48, 52, 60, 62, 70, 106, 108, 115, 117, 118,
119, 121, 122, 123, 124, 125, 130, 131, 132, 133, 134, 135, 136, 137,
138, 139]

</selected_indices>
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A.2 Implementation Details
A.2.1 Bayesian Optimization Loop

Each Bayesian Optimization campaign is characterized by an initial size of set of observations
selected randomly or from a cluster, a batch size denoting the number of samples to be selected or
generated each loop, and a budget of total samples drawn throughout the campaign. The number of
cycles is defined directly from the batch size and the budget. Each cycle follows the following
scheme:

1. Train a predictive model on accumulated observations

2. Use the predictive model to predict the fitness of all candidates in the search space
3. Sample observations from the predictions using an Acquisition function
4.

Assign true labels to all sampled observations and add them to the set of accumulated
observations

A.2.2 LLM-based approaches

This project investigates the use of Large Language Models (LLMs) as the predictive model and/or
acquisition function within the BO loop. We compare the performance of three distinct LLM strategies
in this role:

* Off-the-shelf model: A base LLM applied directly using zero-shot or few-shot prompting.
For the molecular optimization task the LLM replaces only the acquisition function. For the
protein optimization task the LLM replaces both the predictive model and the acquisition
function and is completely standalone.

* Fine-tuned model: An LLM finetuned to the specific optimization task through further
training on a domain-specific dataset. The fine-tuned model was trained only for the protein
optimization task.

* Agentic workflow: A system where an LLM orchestrates a more complex, multi-step rea-
soning process to sample the candidate space. The agentic workflow replaces the acquisition
function.

The project used various publicly available LLM families. Llama-4-maverick [MetaAl, 2025] and
Qwen3-32B [[QwenTeam, 2025 which were accessed through the Lambda API. GPT-5 ? was
accessed through the OpenAl API. Claude [Anthropic| [2024] models were accessed through the
Anthropic API. Local Qwen models were accessed from Huggingface.

A.2.3 Molecular optimization task

The project utilized publicly available binding affinity datasets assembled by Gorantla et al.[[2024]];
TYK2: 9,997 congeneric molecules with aminopyrimidine core scaffold, derived from RBFE
calculations [Thompson et al., 2022]], USP7: 4,535 diverse scaffolds from ChEMBL, exhibiting
multiple assay minima, D2R: 2,502 molecule subset of ACNet dataset [Zhang et al., 2023, high
activity cliff content, Mpro: COVID Moonshot project data, smallest dataset (665 compounds). The
target Mpro was discarded because of insufficient data, and USP7 was discarded due to irregularities
in the data. The TYK2 search space consists of several larger clusters of molecules, making the
search trivial when initialized randomly. The D2R search space consists of a diverse set of molecules.
We therefore mainly used TYK?2 data to initialize a bad start from one of the clusters, and the D2R
data for random starts. Bad start was initialized by clustering (K-means, 10 clusters) a UMAP of
the chemical space (10 components), and drawing all initial observations from the same cluster. For
completion, we also ran TYK?2 with random start and D2R with bad starts for a subset of the methods
tested.

A Gaussian process regressor (GP) with a Tanimoto similarity kernel (radius=4, nbits=4096) trained
for 500 epochs (learning rate=0.001, Adam, gpytorch 1.14, rdkit 2025.3.3) was used
as a predictive model. The GP generates both predictions and their corresponding standard deviations.
A random selector drew samples from the candidates from a uniform distribution. UCB directly

15



N
. 4
O\ " '{3’{]\/’“ ’OHN °

"Carbonyl (CO), thiol groups (two -SCH2-), hydroxyl (terminal -OH), alkyne "...thiazole-piperidine with trifluoromethoxy group.." v
(C#C). Five-membered heterocyclic ring (piperidine derivative) with chiral
center. Alkyne is rigid; rest of molecule flexible. H-bond donors: hydroxyl;
acceptors: carbonyl. Moderate size (~15 heavy atoms). Complex structure
with multiple stereocenters and functionalgroups.”
OH

¥
Ox N
o
V4
O
N’
K
S
(o] N’
H

N-
§
N
)
\<
c
"Pyrrolidine ring (heterocyclic), benzene ring (aromatic), ester (C=0-0), "...chlorothiazole variant with high confidence..."v
amide (C=0-NH). Flexible backbone with multiple rotatable bonds (ester,
amide, alkyl chains). H-bond donors: amide NH, pyrrolidine NH. Acceptors:
amide carbonyl, ester carbonyl, ester O. Medium size, complex structure

with 4 rings and 5 functional groups." v
E o o
HZNﬁN@N /\\
| HO' Q o
o N)

=

J

z

Z SN
o (\N \N)I>< Nfzj\
) Br
Q\NJ\E/\/\/N\) °

7

"...bromi d benzodioxole, unique pattern..." X

Key functional groups: isopropyl, piperidine (heterocyclic) X, benzene
(aromatic), carbonyl, amide, trifluoromethyl. Ring systems: six-membered
piperidine, aromatic benzene. Flexibility: multiplerotatable bonds (amide,
piperidine, side chains). H-bonding: amide NH (donor), carbonyl (accep-
tor), piperidine N (donor/acceptor). Size: ~20 heavy atoms X, moderate
complexity. Cationic: piperidine N may protonate at physiological pH. Hy-
drophobic: trifl hyl, ic rings; hydrophilic: amide, piperidine.

7

J”\ i
[o} o]
H
OJI\N N\_)kN )\ %0
H : H
8 H

he o
"Tripeptide with nitrile (C#N), isopropyl, and phenyl side chains. Aromatic "...cyclopropylmethyl variant of successful scaffold..."
benzene ring. Multiple rotatable bonds (peptide backbone, side chains).
Amide NH donors (3) and carbonyl acceptors (3). Ester O (acceptor).
Chiral centers (3). ~18 heavy atoms X. Cationic at physiological pH
(nitrile, amides). Hydrophobic (isopropyl, phenyl) and hydrophilic (amide,
ester) regions.

7 |
b=
q
\ ! ,
=4
/_\ o, N.
z = OH

/ S

=N

O N/ \
"Aromatic benzene ring with methoxy group (OCH3) at C1. Piperazine "...with a dimethylaminoethyl group..."

(six-membered, two N) and pyrrolidine (five-membered, one N) heterocycles.
Flexibility from ring conformations and single bonds. H-bond donors:
piperazine NH, pyrrolidine NH X ; acceptors: methoxy O. Moderate size
~ 15 heavy atoms X ), complex structure with multiplerings."

Figure 3: Left: Qwen3 responses when asked to summerize given SMILES. Right: Qwen3 reasoning
about given SMILES during selection or chemical space summary.
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Figure 4: Top row: Complement to Figure max fitness achieved in D2R campaign with random
start (left) and in TYK?2 campaign with bad start (right). Middle: Campaign results from D2R
campaign with bad start. Bottom row: Campaign results from TYK2 with random start. Error bars
mark standard deviation. The SIMPLEAGENT achieves comparable results to the best statistical
methods (UCB, TS) (@c, @f) while informing the predictive model more (@d}[dg), and often discovering
higher affinity molecules within the budget.

sampled the top candidates from the score s = p + 3'/20, using 3 = 4. The Thompson sampler
sampled the top-most common candidates from 100 calls to the predictive model posterior.

Oft-the-shelf LLM models were replacing the acquisition functions. We tried Qwen3-32B (tempera-
ture 0.6), Llama-4-maverick-17b-128e-instruct-fp8 (temperature 0.7), and GPT-5 (medium reasoning
effort). Ateach cycle, the LLM was prompted to select the optimal candidates to move on with from a
table of candidates index, SMILES, prediction, and predictive model confidence. Prompts to models
with more extended context windows (Llama-4-maverick) also included a table of all compounds
used to train the predictive model and their respective labels (Prompt[A.4.2). Models with smaller
context windows (Qwen3, GPT-5) were informed of the accumulated observations by first having
the model summarize the chemical space into a compact string (Prompt[A.4.T), which replaced the
historical data section. The set of candidates was then processed in chunks of ~ 400 candidates for
Qwen3 and GPT-5, and ~1,200 candidates for Llama-4. The models were asked to select max(batch
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Figure 5: Complement to Figure Left column: Max fitness and recall for campaign targeting a
different protein motif (TrpB) with a budget of 60 and a batch size of 10 motifs. For TrpB, sequences
closer to the WT generally yield higher fitness than for GB1 (Figure [2a)), leading to DE outperforming
all other methods in fitness and some in recall. Qwen3 primarily reproduces DE-like behavior,
whereas GPT-5 explores more advanced patterns. Right column: Same campaign setup as Figure[2a]
but with a poorly tuned predictive model. All methods relying on the predictive model fail, while
reasoning models, being fully standalone, remain unaffected, demonstrating LLM robustness. Error
bars denote standard deviation.

size, chunk size/n chunks) candidates from each chunk, and a final selection was then made from the
chunk selections. Significant prompt engineering and fallbacks were required to make this method
reliable and moderately efficient.

Agentic workflows were set up in Langgraph 0.5.0. They consist of three main LLM types operating
in a hierarchical structure:

Strategist (Qwen3-32B, temperature 0.6): High-level planning node with reasoning enabled.
Receives extensive information about the current BO stage, previous cycles, and accumulated
observations (Prompt[A-4.T). Generates an arbitrary number of complementary filter strategies for
candidate selection. (generate_strategy in Figure[J). The only difference between the AGENT
and the SIMPLEAGENT is a SMILES table (amino acid sequences in protein task) appended to the
end of each cycle summary (cycle summary example, Prompt [A-4.T).

Implementers (Claude Sonnet 3.5-20241022, temperature 0): Multiple execution nodes created
in series, no thinking (implement_strategy in Figure[9). Each receives one strategy from the
strategist and implements database filtering using prediction thresholds, UCB weighting, SMARTS
matching parsed using SQL boolean format (AND, OR, NOT with parentheses) for flexible sub-
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Figure 6: UMAP of the molecules selected as start batch (Pink) of all available molecules in the

database (Gray) when initialized with a random start on D2R target
start on the TYK?2 target (Right).

(Left) and with a bad, clustered

structure querying, and/or Tanimoto similarity to accumulated observations or the current batch. As
implementers in the series select candidates, these are removed from the database to avoid selecting
duplicates. If the batch size is not filled after processing all strategies due to incompatible filters, a
final implementer node is created to fill the batch size with all strategies.

Summary node (Claude Sonnet 3.5-20241022, temperature 0):
Final summarization node that processes all conversations from the
implementation nodes, and generates comprehensive cycle selection
reports including rationales and identified issues. This report is
then used in the following cycle strategist prompt to inform it about
successful/problematic filters.

The yellow-highlighted region in the workflow graph (Figure [9) rep-
resents the core implementation loop where strategies are executed
through available tools.

To test how much the strategist was held back by the limited tools in
the molecular domain, we removed all tool descriptions and stated
"your strategies will be implemented by experienced chemists". The
only filtering method commonly requested, not available to our agent
was k-means clustering of the data.

A.2.4 Protein optimization task

We built on the codebase and data assembled by [Yang et al.| [2025]].
The dataset consists of fitness scores of an almost complete set of
possible mutations on four-residue motifs on two proteins (GB1 and
TrpB). In the paper, they benchmark using the highest discovered
fitness across four cycles (batch size=96, starting size=96,
budget=480). We used DNN ensemble predictive model with one-
hot encoding of the amino acids, optimized by|Yang et al.|[2025]. For
comparison, we also test the implementation of the GP with ESM2
embedding, which was shown to perform the worst on the task. The
acquisition functions Greedy, Thompson, and UCB (8 = 4), were

__start__

l

generate_strategy

do"_\mplememamn

__start__

clean_implementation tools

v

summarise_implementers

|

_end__

Figure 9: LLM workflow
structure showing strategist-
implementer-reporter hierar-
chy with tool integration loop.

left identical to the paper. For more details, we refer to the original paper. We ran 4 campaigns:
The Small-Good 1, and Small-Good 2 campaigns assess the performance on short campaigns
with optimized predictive model-encoding combination against two different protein targets (GB1,
TrpB). Small-Bad evaluates the performance of acquisition functions when paired with an improper
predictive model-encoding combination, whereas Big-Good assesses performance on the larger cam-
paign from the original paper, utilizing an optimized predictive model and encoding. We evaluated
performance by highest fitness, as in the paper, as recall with a 0.5% cutoff, which ensures both
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Figure 7: Performance of off-the-shelf models initialized without any context to the target protein (-
BLIND) on the GB1 task (Upper), and the TrpB task (L.ower), compared to a subset of other models.
The GPT-5 blind model performs similar or significantly better than all statistical models on the recall
metric. The unexpected performance on the GB1 task is largely a coincidence. GPT-5-BLIND often
starts the search with the conservative guess "AAAA" which happens to be highly successful in the
GBI1 task. Qwen3 perfroms point wise mutations achieving performance similar to directed evolution

(DE), which is an especially good strategy on the TrpB task, but fails to generalize to the GB1 task.
Error bars mark standard deviation.

Target Model Initial size | Batch size | Budget
Small-Good 1 | GB1 | DNN-onehot 10 10 60
Small-Bad GB1 GP-ESM2 10 10 60
Big-Good GB1 | DNN-onehot 96 96 480
Small-Good 2 | TrpB | DNN-onehot 10 10 60

Table 5: BO scenarios

WT are outside the cutoff. The 2 % cutoff used in Domain 1 quickly becomes saturated and less
informative on this task.

Off-the-shelf models were implemented as generative models, completely standalone from the
predictive models. The campaign was started of with an introduction to the task, the WT, and a brief
description of the target motif function and protein (Prompt[A.4.1)). For example, the background for
GBI1 was: "The target is a four-site epistatic region (wildtype: V39, D40, G41, V54, fitness 0.1) of
the 56-residue protein G domain Bl (GB1), an immunoglobulin-binding domain from Streptococcal
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Figure 8: GB1. SFT and DPO models compared to a subset of other methods. The SFT model
significantly outperforms the reasoning model Qwen3 while executing 30x faster and achieves
performance competitive with UCB on the recall metric Error bars mark standard deviatio.

bacteria. These sites account for a majority of the most strongly epistatic interactions in GBI and
span a fitness landscape of 160,000 variants. Variants were assessed for IgG-Fc binding using mRNA
display and high-throughput sequencing". Importantly, the actual protein name "TrpB" was changed
to "protein" as we observed a significant bias in Qwen3 to the amino acid Tryptophan (W, Trp)
introduced by simply including the word TrpB in the prompt, completely deteriorating performance.
Indeed, Trp occur 584x less frequently in the top 0.5 % performing sequences compared to average.

After each generation, it was again prompted with The validation experiment in cycle {current_cycle}
is finished. These are the results: {validated_results}. and a system message reminding it about
the output format, and the 10 best sequences found so far (Prompt[A4.T)). The model was asked to
generate 50 % overhead to each batch selection and rank the sequences in order of importance to
avoid issues with overlapping generations, and instances of generations not existing in the labeled
data. If too many sequences were invalid, the model was prompted to correct mistakes, or informed
that "the following were invalid for experiments" and asked to generate new. To manage context
limits and gracefully handle formatting issues, the off-the-shelf reasoning models were wrapped in a
Langgraph context. This context allowed nodes to validate outputs, ask the model to correct errors,
summarize conversations during longer campaigns, and extract sequences from prompts (Figure[I0).
Blind models were implemented with the same prompts, but replacing the background with an empty
string.

The LLM workflows were implemented identically to the workflows in the molecular domain, but
with different tools. The models were able to sort by Hamming and Blosum62 similarity, regex,
prediction, and UCB. Just as in the molecular task, we implemented an AGENT informed by the
accumulated observations in the form or a table of sequences and fitness, and a SIMPLEAGENT
without detailed data. The AGENT was only used for one task as we found SIMPLEAGENT greatly
outperformed it. We also found that removing information about the predictive-model prediction
range, fitness ranges, and letting the LLLM rewrite tool descriptions improved performance and
consistency further.

A.2.5 Fine-Tuning

We aimed to determine if a non-reasoning LLM could be fine-tuned to perform a generative task.
Wang et al.|[2025]] showed that training a non-reasoning LLM on acquisitions by a statistical model
in an artificial setting can improve the Bayesian behavior of the LLM. We created 14 biologically
relevant synthetic datasets from the ESM2 embedding of the motifs provided by Yang et al.[[2025]].
Fitness was assigned to the sequences using Algorithm[I] which is able to generate a large variety of
fitness distributions. Step 9-13 are optional and were taken to increase the difficulty. No parameters
were tuned significantly and all were assigned to create variance in the distributions while keeping
them somewhat similar to the biological data. We ran 50 campaigns (batch size=10, initial
size=10, budget=400 on each dataset using onehot embedding, DNN ensemble predictive model
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Figure 10: LLM standalone BO structure showing the evolution node which prompts the LLM to analyze and
generate new variations for the next cycle, the count node which gives the LLM feedback if generations are
duplicates or invalid, the update state node which labels the proposed variations, and a simple summary node
which triggers if the message stream approaches context limit. The loop ends after a set number of cycles.

and TS acquisition function. From each trajectory, we drew 15 time points ¢ with P(X = t) =

¢! 2?21 i~1,t € [1,40]. For each time point, we created a prompt where the past trajectory
selections were added in context with their assigned fitness, and the next batch selection in the
trajectory was used as a ground truth optimal selection. To further increase variance between the
prompts, we permuted all sequence positions in each prompt and shuffled the order of the sequences
in-context. This step was crucial for successful training. We attempted both Supervised Fine-Tuning
(SFT) with the ground truth as a label, and Direct Preference Optimization (DPO) [Rafailov et al.,
2024 with the ground truth contrasted with a randomly generated string or a string in the set of
accumulated observations.

SFT was run using SFTTrainer in TRL (trl 0.19.1, transformers 4.54.1, flash-attn 2.7.4, vllm 0.10.0)
[von Werra et al.,2020]] with per_device_batch_size=8, gradient_accumulation_steps=2,
dtype=bf16, gradient_checkpointing=True, max_grad_norm=1, weight_decay=0.1,
learning_rate=5e-6, warmup_ratio=0.05, lr_schedular_type=cosine for 3 epochs, and
with early stopping on evaluation loss. Training was only made on the responses and not
prompts. DPO was run with per_device_batch_size=1, gradient_accumulation_steps=16,
dtype=bf16, gradient_checkpointing=True, max_grad_norm=1, weight_decay=0.1,
learning_rate=5e-7, beta=0.9, 1r_schedular_type=cosine for 2 epochs. The strong regu-
larization to the reference model was essential for any results. DPO has been shown to work well
for training LLMs to think like statistical models, but for this task, it performs poorly. The reason
is likely that the difference between the chosen and rejected strings is too similar. The difference
between an intelligently mutated string that deviates from most high performers by up to 2 positions,
and a string generated at random can be almost identical. First training the model with SFT and then
further with DPO reduces performance compared to only training with SFT.

Qwen2.5-7B-Instruct was loaded from HuggingFace. The off-the-shelf model underperformed
random selection because of formatting issues and an inherently greedy behavior. Training on 4
NVIDIA A100-SXM4-80GB with accelerate and Deepspeed [Rasley et al.,2020] takes about 12 min
for 0.5B models and 2 hours for 7B models.

The fine-tuned model was optimized to generate 10 sequences per batch and was run with a tempera-
ture of 0.7 during inference. When the model generated an invalid sequence, the in-context data was
reshuffled and the model re-prompted. When the model generated duplicates of the in-context data,
temperature was incremented by 0.05 in that cycle. Running a small campaign (batch size=10,
starting size=10, budget=60) takes 11.9 s without any time optimization compared to 15.6 s
with onehot+GP+Thompson (Proper posterior sampling of posterior approximated with 1000 Fourier
features) on a single NVIDIA A100-SXM4-40GB.

22



693

694
695

696

697
698
699
700
701
702
703

704
705
706
707
708
709
710

71

Algorithm 1 Synthetic Fitness Generation

Input: Sequences S

Tokenize: E <~ ESM2(S),E € R"*¢

Sample binary mask: m ~ Bernoulli(p = 0.2)¢
Sample log-weights: logw ~ N(u = —6.5, 02 = 1.5)
Apply mask: w < m © exp(log w)

Compute fitness: f + E - w

Add noise: log f < A (logf, 0.012)

Normalize: f + (f — min f)/(max f — min f)

Set 10% randomly to zero: f; + Ofori € Z C {1,...,n}
Set near-zero values to zero: f; < 0 if f; < 0.001

: while Quantile;, 495 (f) > 0.5 do

f; < fi1'5

: end while

: return Dataset {(s;, fi) 7",

PRADINER D

—_—
B

A.3 Statistical Analysis

Statistical intervals were defined as margin of error for a 95% confidence in population mean, defined
as e = —=0.975,n1-

A.3.1 Bootstrap

Significance threshold was defined as 95% confidence in separation between a statistical method
and all LLM-based methods, or an LLM-based method and all statistical methods. When comparing
agents, or off-the-shelf models in the molecular task, to statistical methods, bootstrapping was made
on shared random seeds (/N = 10 for agent-statistical comparisons, N = 5 for Qwen3-statistical
comparisons, N = 3 for GPT-5-statistical comparisons) because of the strong covariance between
trajectories with the same starting point. N random seeds were drawn with replacement, the mean of
the corresponding trajectories were compared between methods.

When comparing statistical methods to off-the-shelf models in the protein task, bootstrapping was
made on trajectories as the off-the-shelf models here are completely starting-point independent. We
could therefore use a higher sample size for the statistical models. N = 50 random seeds and their
respective trajectories were drawn with replacement from the set of random seeds used to initialize the
statistical models, and N = 10 trajectories were drawn with replacement from the set of off-the-shelf
LLM trajectories. The mean of the corresponding groups of trajectories were compared between
methods.

All bootstrap iterations were repeated 10,000 times.
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A.4 Prompts and Responses

A4.1 Prompts

Prompt 1: In-context acquisition prompt. '"Oracle' here refers to the predictive model

You are selecting ligands for validation in an active learning campaign for
protein {protein}.

**xQVERALL CAMPAIGN OBJECTIVE:** Maximize the total number of top high-
affinity ligands in the training data at the end of the campaign. A top
high-affinity ligand is in the top 2J of all ligand candidates.

*xCampaign Status:*x*
- Cycle: {cycle}/{total_cycles}

**Historical Data:x*x*

Used to train the Gaussian Process Regression oracle, sorted by RBFE:
<validated_ligands>

{self._compact_df (labeled_data, index=False)}

</validated_ligands>

3. **Candidates** [SMILES, predicted RBFE, std]:
Randomly ordered.

<candidates>

{self._compact_df (chunk)}

</candidates>

**xYour task:**

- Reason about the chemical space, the candidates, the reliability of the
oracle model, and the overall campaign goal. Describe the rationale
behind your selection.

- Select exactly {budget} candidates to move on with (validate and add to
training data for next cycle). Output format:

<selected_indices>

[index1, index2, ...]

</selected_indices>

Prompt 2: Prompt to summarize chemical space

You are a chemoinformatic expert working in a team of chemoinformatic experts
selecting ligands for validation in an active learning campaign protein
{protein}.

You have access to a set of validated ligands, and your junior colleague has
access to a set of thousands of candidates to validate.

**xYour task:**

- Create a concise summary of the validated chemical space that preserves all

structural features, patterns, and structure-activity relationships,

- Your junior colleague will use the summary to select candidates from his
large list. Include any crucial instructions for the selection process.
Your junior collegue will not have access to the training data.

- Consider number of validated ligands, and number of cycles left. What are
the most important features to preserve?

*xCampaign Status:*x*

- Current cycle: {cycle}

- Total cycles: {total_cycles}

- Oracle model: {oracle_name}

- Overall Campaign Goal: Maximize number of validated high-affinity ligands
in the training data at the end of the campaign
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**Validated Training Data:**

{len(training_df)} ligands with measured RBFE values:
<validated_ligands>

{self._compact_df (training_df)}

</validated_ligands>

**Required output:*x*

<training_data_description>

Comprehensive but concise description of the training data to be used by the
junior colleague that fully encompasses the chemical space, and the
active learning context.

</training_data_description>

*x0utput Format:**

<training_data_description>

[Training data description that will be passed to the junior colleaguel

</training_data_description>

Include exactly one instance of <training_data_description> tag in your
response

Response 2: Example of Qwen3 summary of chemical space

<training_data_description>

The validated ligand set (120 molecules) centers on **bipartite scaffolds*x
linking aromatic/heteroaromatic rings via **amide/urea linkers*x, with
key features:

1. *xCore Architecture**: Two aromatic rings (often phenyl/pyridine) bridged
by amide/urea (-CONH-/-NHC(O)N-) linkers. Common substructures include *
cenc (¢) *8Ag*C (=0) N*xakg*cccccX* (X = C1/F/Br/0).

2. x*Electron-Withdrawing Groups#**: Para/meta halogens (Cl, F, Br) dominate
on terminal aromatics (e.g., *c(c(Cl)F)*, *c(c(Cl)Cl)*). Dual
fluorination (*c(c(F)F)*) improves RBFE (>9.5 kcal/mol).

3. x*xHydrogen Bonding Motifs**: Urea/urethane linkers (*N=C(0)N#*) enhance
activity (top 10% RBFE &L&9.5 kcal/mol). Terminal nitroso/amino groups
(*-N(H)C=0%, *-NH2%) reduce activity (<8.5 kcal/mol).

4. #xAliphatic Chains**: N-linked methyl/ethyl groups (*-CH3*, *-CH2CH2-* in
*N(C)C(=0)N*) stabilize topologies. Longer chains (*-CH2CH2CH2-*)
correlate with reduced affinity (ITRBFE &Ll -0.33K30.5 kcal/mol per CH2).

5. x*Steric Constraints**: Bulky substituents (e.g., *Brx, *N(C)(C)Cx)
tolerate modestly (RBFE >9 kcal/mol if paired with strong IK-stacking
partners); avoid *I* or #NO2* due to poor performance (median RBFE ~7
kcal/mol) .

6. x*x0rthogonal Features**: Ether linkers (*-0-CH2-*) improve water
solubility without sacrificing activity (best performers retain C1l/F on
aromatic rings).

**Selection Priorities for Next Cyclesx*x:
- Fill gaps in **meta-fluorinated aromatics#** and **mixed X/Y halogen pairs**
(e.g., *c(c(CLIF)* vs *c(c(F)F)*).

- Test #**shortened/cyclic spacers*x (replace *CH2CH2* with *CH2* or *CH20CH2
*x) to optimize linker stiffness.

- Explore **triazine/triazole cores** as rigid alternatives to *ccnc(c)*
scaffolds.

- Avoid redundant modifications (e.g., additional Br/I substitutions or
longer aliphatic chains).

- Validate **heteroaryl replacements** (thienyl, furyl) adjacent to amide
linkers.
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Candidates must align with existing SAR while introducing minimal scaffold
novelty. Favor analogs expanding **fluorination patterns** and **
alkylation balance** across the bipartite framework.

</training_data_description>

Response 3: Example of GPTS summary of chemical space

<training_data_description>

Context and goal

- You will down-select candidates (no access to training data) for TYK2
across 2 remaining cycles (currently 7/9). Oracle = Gaussian Process
regressor (uncertainty-aware). Objective = maximize the number of
validated high-affinity ligands in the training set by end of cycle 9.

What has worked (validated chemical space; 418 ligands; top RBFE up to ~12.2)

- Two privileged chemotypes dominate. Keep these intact unless explicitly
exploring:

1) "Triad" anilide series (majority, highest RBFE):
Left: 6-membered diazine/pyridine core, most often a 4-aminopyrimidine/
pyrimidinyl-pyridine, typically 5-alkyl (Me >> Et ~= iPr) and para-amine
bearing a small basic side chain (see "Left-side chains" below) .
Middle: 2-aminopyridine (or 2-aminopyridinyl) most often 5-fluoro-
substituted.
Linker: secondary anilide/benzamide (--NH--C(=0)--Ar) with the amide NH
on the "middle ring" side (do not reverse the amide).
Right (distal aryl): dihalo phenyl; the recurring best pattern is ortho-
chloro + meta/para-fluoro; di-F is also strong; o0-Cl/o-Cl is acceptable;
o-Br variants can be good. Occasional phenol tolerated but generally not
top.
Summary motif (abstract): [5-Me-(amino)pyrimidine/pyridyl]--NH--(5-F-2-
aminopyridyl) --NH--C(=0) -- [0-C1, m/p-F phenyl].
2) "Morpholine-tail heteroaryl amide" series (secondary cluster; many

9.8--11.7):
Acyl aryl similar to above (often F/Cl patterns).
Hinge-facing heteroaryl is more N-rich (e.g., Nc--cnn(c)--) bearing a
pendant N-morpholine or N-(2-oxa-5-azabicyclic) tertiary amine (--
N4CCOCC4) . Keep the tertiary amine and the heteroaryl arrangement
together; they are synergistic.

Left-side chains (key to high RBFE, in order of priority)
- Small, conformationally constrained cations:
A) Azetidine (--N1CCC1--) on the left ring amine: repeatedly among the top
(T11--12.2).
B) Cyclopropyl-bearing secondary amines (--NC1CC1l--) and small hydroxyalkyl
secondaries (--N--CH(CH3)--CH20H or --N--CH2--CH20H) are strong.
C) 4-hydroxyazetidine and other compact "N,0" motifs are good compromises.
D) Bulkier or more flexible amines (long chains, multiple heteroatoms) and
heavily N-methylated cations tend to underperform vs A--C.

Substituent SAR you can apply directly
- Distal aryl (acyl side):
Priority 1: o0-Cl + m- or p-F (best-in-class recurring motif).
Priority 2: o0-Cl + p-Cl or o-Cl + p-Br (slightly lower on average, but
still strong).
Priority 3: di-F (good); di-Cl (acceptable; generally slightly lower).
Deprioritize: strong donors (p-OMe/phenoxy), dense polar patterns, or
removal of ortho-halogen.
- Middle ring:
2-aminopyridine with 5-F consistently outperforms unsubstituted analogs;
removal of the 5-F is generally a drop.
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- Left heteroaryl core:
4-aminopyrimidine/related diazines with a 5-Me substituent are most common
in top tier. Me > Et "= iPr; larger alkyls drop off.
- Amide orientation:
Preserve the "middle ring --NH--C(=0)-- distal aryl" orientation. Amide
reversal/urea/sulfonamide replacements are not supported by top data.
- Halogen count:
Retain at least one ortho-halogen on the distal aryl (Cl >> F for ortho);
removing it usually costs 0.5--1.0 RBFE.
- H-bond pattern:
Keep exactly one amide NH donor and two ring nitrogens across the triad;
adding extra strong donors/acceptors generally hurts.

What to avoid (seen repeatedly lower)

- Reversing the amide, swapping the amide for urea/sulfonamide, or breaking
the triad topology.

Overly flexible or bulky cationic tails; long aliphatic chains; multiple
extra heteroatoms on the left side chain.

- Distal aryl without ortho-halogen; heavy electron-donation (e.g., para-0Me)

unless paired with the optimal ortho-halogen pattern.

- Extra ring nitrogens that overpolarize the middle ring (e.g., turning the 2-
aminopyridine into a more N-rich diazine) typically drops RBFE.

Nitrile decorations and phenols appear in mid-tier but rarely at the top;
deprioritize unless needed for diversity.

Concrete selection rules for your candidate list
1) Hard filters (must pass)

- Contains the triad or morpholine chemotype:

a) Triad: left 6-membered N-containing ring (prefer 4-aminopyrimidine)
linked to 2-aminopyridine (prefer 5-F), linked via --NH--C(=0)-- to a
distal aryl.

b) Morpholine series: aryl amide paired with Nc--cnn(c)--(N-morpholine)
heteroaryl tail.

- Distal aryl includes an ortho-halogen (prefer Cl; Br acceptable; F only
if paired with another F/Cl).

- Exactly one amide linker (secondary amide; not reversed).

2) Prioritization scoring (apply additively; pick highest-scoring per cluster
)

+3: Left side chain is azetidine (--N1CCC1l--).

+2: Left side chain is cyclopropyl secondary amine or small hydroxyalkyl
secondary amine.

+2: Middle ring = 2-aminopyridine with 5-F.

+2: Distal aryl = o-Cl + p-F (or o-Cl + m-F).

+1: Distal aryl = o0-Cl + p-Cl (or o-Cl + p-Br) or di-F.

+1: Left ring = 4-aminopyrimidine with 5-Me.

-2: Reversed amide, missing ortho-halogen, or bulky/flexible tertiary
amines on the left.

-1: Extra strong donors (phenols, guanidines) or >1 extra heteroatom
beyond the patterns above.

3) Diversity protocol (to hedge with GP uncertainty; 2 cycles left)

- Cycle 7->8 (this round): 70% exploitation + 30% exploration
Exploitation: Pick close analogs within the triad keeping the features
above; systematically vary ONE position at a time:

R-distal: swap p-F <-> p-Cl <-> p-Br; move F m<->p; di-F vs o-Cl/p-F.

R-middle: 5-F -> 5-H (limited set) to quantify the drop; 2-
aminopyridine <-> 2-aminopyrimidine (very small set).

R-left chain: azetidine <-> hydroxyethyl secondary amine <->
cyclopropyl; Assingle N-methyl; ASone OH.
Exploration: 3--4 small clusters outside the densest neighborhood:

- Replace distal phenyl with 2-pyridyl retaining o-Cl (on 3-position
relative to amide) and a para-F where possible.

- Swap 5-Me on the left ring to Et or iPr (single change) to probe
steric tolerance.
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- Morpholine-series pickups that match the same distal aryl patterns (
0-Cl with F).
- Cycle 8->9 (final): 85--90% exploitation
- Lock in the top 2--3 R-group patterns discovered; make nearest-
neighbor analogs (1 change only; keep ortho-Cl and 5-F).
- Reserve 10--15% for "safety" variants: same distal aryl but two best
left-chain options; same left chain but two best distal patterns.

Quick triage checklist (yes/no)
- Amide present and correctly oriented? Yes -> proceed; No -> drop.
- Distal aryl has ortho-Cl (or Br)? Yes -> proceed; No -> only keep if di-F
and everything else optimal.
- Middle ring is 2-aminopyridine with 5-F7 Yes -> strong; No -> keep a few
for diversity only.
- Left chain is compact cation (azetidine/cyclopropyl/hydroxyethyl)? Yes ->
strong; No -> deprioritize.
Left heteroaryl is 4-aminopyrimidine (5-Me)? Yes -> strong; No -> keep
minority for exploration.

If you must choose one "safe" pattern to maximize hits now

- Pick candidates matching: 4-aminopyrimidine (5-Me) --NH-- 5-F-2-
aminopyridine --NH--C(=0)-- 2,4-dihalo phenyl (o-Cl + p-F), with a left
azetidine side chain. Then explore A3(p-F->p-Cl), As(azetidine->
cyclopropyl/hydroxyethyl), As(o-Cl/p-F->0-Cl/m-F).

What not to change this late

- Do not remove the ortho-halogen on the distal aryl or the 5-F on the middle
ring across the bulk of your picks.

- Do not invert the amide or replace it with urea/sulfonamide.

- Do not add bulky solubilizing tails; prefer small, rigid cations.

Submission format suggestion (to help us review quickly)
- Group selected candidates into small R-group matrices:

Matrix 1 (triad, fixed left = azetidine; vary distal p-substituent): {o-Cl/
p-F, 0-C1/p-Cl, o-Cl/p-Br, o-Cl/m-F}.

Matrix 2 (triad, fixed distal = o0-Cl/p-F; vary left chain): {azetidine,
cyclopropyl secondary amine, hydroxyethyl secondary amine, 4-
hydroxyazetidine}.

Matrix 3 (morpholine series, fixed distal = o0-Cl/p-F; vary heteroaryl N
pattern minimally).

- Within each matrix, avoid >1 simultaneous change relative to the
prototypical pattern.

Rationale link to RBFE observations

- The highest RBFE ligands co-occur with: compact left cations (especially
azetidine), 5-F on the central 2-aminopyridine, and ortho-Cl plus F on
the distal phenyl; Br is tolerated. When these features are removed,
drops of 70.3--1.0 RBFE are common; when combined, RBFE >=10.5--12 is
frequent. The morpholine-tail chemotype is a reliable secondary path with
the same distal aryl patterns.

Use this guide to pre-filter and prioritize; then, if you have a model to
score uncertainty, allocate the exploration quota to the edges defined
above.

</training_data_description>

Prompt 3: Strategist prompt. ''Oracle'’ here refers to the predictive model

You are a senior medicinal chemist and expert in active learning performing
an active learning drug development campaign. Your task is to evaluate
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the current state of the campaign and delegate candidate selection to
junior colleagues who have strong computational skills but limited
chemical intuition. They need clear, specific instructions to filter the
molecular database effectively.

**xCONTEXT AND DATA EXPLANATION:*x*

- SMILES: Chemical structure representation of molecules

- affinity: Validated binding affinity from experiments (RBFE score, higher
is better)

- predictions: Oracle model’s predicted affinity for unlabeled candidates

- std: Oracle model’s standard deviation in predictions

- max_per_cycle: Maximum affinity achieved in each cycle’s selected compounds

- mean_per_cycle: Average affinity of selected compounds in each cycle

- oracle RMSE: Root Mean Square Error between oracle predictions and
validated affinities for selected compounds at a given cycle (measurement

of the oracle’s performance on selected compounds, not nessecairily the

oracle’s performance on the entire database. If we heavily favor
exploitation one cycle, RMSE will appear lower because we are selecting
candidates that the model is confident about, but not necessarily the
best candidates.)

- Completed cycles: {cycles_completed}

- Total cycles: {total_cycles}

- Budget this cycle: {batch_size}

- Oracle model: Gaussian Process Regression

- Measure of affinity: RBFE (higher is better)

*x0verall Campaign Goalxk*

From our ligand database, discover as many compounds as possible that would
rank in the top 2J, by binding affinity. Success is measured by recall: of

all the truly high-affinity ligands in the database, how many can you

find within your experimental budget?

**Previous cycles performancex*
- Max affinity in selected candidates (starting from cycle O, should increase
over time): {max_per_cycle}

- Mean performance in selected candidates (starting from cycle O, should
increase over time): {mean_per_cycle}

- Oracle RMSE on selected candidates a given cycle (starting from cycle O,
not included in training data that cycle, should decrease over time): {
oracle_rmse_per_cycle}

**Previous Cycles Summaries:**

A1l Validated Candidates Used for Training or Current Cycle Oracle. Here
follows strategies implemented at previous cycles, and their respective
performance. Use this to inform your new strategies in the context of the

current cycle and campaign state, dont copy them.

<past_cycles_data>

{past_cycles_data}

</past_cycles_data>

**x ANALYSTIS: **
Analyze the current state of the campaign.

**CHEMICAL ANALYSIS REQUIREMENTS: **

Identify chemical regions for exploitation and exploration:

- Be specific: use chemical knowledge and terminology to describe patterns
and potential binding motifs. Look for both simple and complex (multiple
substructures) patterns.

- Similar targets: [Structural patterns in the training data that are
promising]

- Potential targets: [knowledge about protein {protein} that could be used to

guide the selection, hypothesis testing motifs]
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- Coverage gap: "Training data covers a [small/medium/large] portion of the
relevant feature space"
- What targets were explored in previous cycles? How did they perform?

*kxActive Learning Status:**

Identify if exploration or exploitation is more important:

- How are we doing towards the overall campaign goal?

- Passed progress: [is the current training data promising or is the oracle
plateauing? Are we stuck in a local optimum?]

- Exploration vs exploitation: [can we afford to explore more or should we
exploit more?]

- Is the oracle better or worse that our intuition?

**xTASK : **

Design the optimal selection strategy for this cycle that your junior
colleagues can execute independently. Your junior colleagues don’t know
about each other’s work. This may be a single protocol or multiple
complementary protocols, depending on what’s most appropriate for the
current campaign state. Design hypotheses for testing and informing
coming cycles when suitable.

Provide only actionable filtering instructions - no explanations or chemical
rationale needed.

YOUR JUNIOR COLLEAGUES’ CAPABILITIES

They can filter candidates using:

- Computational approaches: Predictions

- Upper confidence bound (UCB): Predictions + beta * std, given beta

- Chemical approaches: Substructures (SMARTS or substructure names) and
similarity metrics

- Diversity approaches: Tanimoto similarity metrics (pairwise between
selected candidates or to training data)

- Hybrid approaches: Combining the above

EACH PROTOCOL SHOULD SPECIFY:

Exact number of candidates to select

Precise filtering criteria with numerical thresholds
Clear chemical and/or computational constraints

Ensure total candidate count across all protocols equals {batch_sizel}. Output
your analysis and strategies as soon as you are confindent in your
selection.

Response 4: Example of cycle summary. '"Oracle' here refers to the predictive model

Cycle 1:
# AL Campaign Acquisition Summary

## Implementation

All selection strategies were successfully implemented, yielding 60 total
compounds:

- 25 compounds balancing exploitation/exploration (pred >7.5, UCB beta=1.5)

- 20 exploration-focused compounds (UCB beta=3.0, high uncertainty)

- 10 structurally diverse compounds (Tanimoto <0.3)

- 5 compounds exploiting known SAR (fluorinated pyrimidines with halogens)

No substructure filters failed or needed to be released. Database contained
all requested chemical patterns.

## Campaign Impact
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The selections maintain a strategic 42/58 split between exploitation and
exploration:

- Exploitation (30 compounds): Targeting high-affinity regions through
predicted values >7.5 and known SAR patterns of fluorinated pyrimidines

- Exploration (30 compounds): Probing uncertain regions through high UCB
scores and ensuring structural diversity

This balanced approach is appropriate for the early campaign stage with
limited training data (60 compounds). The selections will expand chemical
space coverage while still leveraging emerging SAR patterns around
halogenated aromatics. The varying uncertainty thresholds (beta=1.5 vs
beta=3.0) provide a gradient of exploration intensity, helping to
systematically improve model reliability.

Strategy 1: Select 25 candidates with predictions >7.5 and UCB (beta=1.5) to
balance high-affinity exploitation with moderate uncertainty
Number final selections: 25

RMSE: 0.76
Mean: 9.60
Max: 10.63

Strategy 2: Select 20 candidates with UCB (beta=3.0) to prioritize
exploration of uncertain regions (std >0.45)
Number final selections: 20

RMSE: 1.14
Mean: 8.92
Max: 10.87

Strategy 3: Select 10 candidates with Tanimoto similarity <0.3 to the
training set to enforce diversity
Number final selections: 10

RMSE: 1.56
Mean: 8.29
Max: 9.57

Strategy 4: Select 5 candidates containing fluorinated pyrimidine core [n]1
cccc([FI)cl and [C1l] or [Br] substitutions
Number final selections: 5

RMSE: 0.75
Mean: 10.04
Max: 10.33

Selected candidates from cycle 1 with oracle predictions and std:
SMILES|affinity|oracle_prediction|oracle_std
clcc(c(cciN)C(=0)Nc2cc(ncc2F)NC(=0)C3CC3)C118.9619.8410.173
CNC(=0)Ncicc(cenl)NC(=0)c2c(cccc2Cl)F|9.95]|9.68|0.252
clcc(c(cciIN)C1)C(=0)Nc2cc(ncc2F)NC(=0)C3CC3F|10.5]9.710.178

Prompt 4: Standalone Model Start Prompt

You are an expert protein engineer with deep chemical intuition leading a
directed evolution campaign. Apply rigorous chemical principles to
discover high-fitness variants within your experimental budget.

**xCAMPAIGN OVERVIEW: **

- Target: Four-site region of {self.protein}

- Background: {background}

- Total Budget: {self.total_budget} experimental validations
- Batch Size: {self.batch_size} sequences per round

- Number of cycles: {self.max_cycles}
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- Sequence Length: 4 amino acids
This is the START of your campaign. You have no prior data.

**STRATEGIC APPROACH: %%
At every cycle, you’ll receive previous results. Select {3*self.batch_size //
2} untested sequences using chemical logic and hypothesis testing.

*xQUTPUT REQUIREMENTS: **

1. **Chemical Reasoning**: Evaluate the past cycles and explain your
mechanistic hypotheses and chemical logic for the next cycle. Add
reasoning within <reasoning> tags.

3. *xPriority Ranking**: Sort by priority with chemical justification

4. *xFinal List**: End with {3*self.batch_size//2} ranked sequences for next
cycle validation for buffer, {self.batch_size} of which will be validated

in the next cycle.

Design sequences that test well-reasoned chemical hypotheses. Balance
thorough exploration with chemical principles to maximize discovery
potential through systematic, chemistry-guided experimentation.

Prompt 5: Standalone Model System Message

You are an expert protein engineer with designing and controlling a directed
evolution campaign. You must strategically select protein sequences to
maximize fitness discovery within your experimental budget at the end of
the campaign.

Current cycle {state["current_cycle"]} of {state["max_cycles"]}.
Select {3*self.batch_size//2} sequences, optimal for the campaign goal, to
validate in next cycle.
0f these, {self.batch_size} will be validated in the next cycle, depending on
experimental feasibility.
Sort you selection by priority.

Highest performing sequences so far:
{self.validated_results.sort_values(by=’fitness’, ascending=False).head(10).
round(3) .to_string(index=False)}

**x0utput format**: End your analysis with a list of {3*self.batch_size//2}
sequences (STRICTLY 4-letter codes like ’AMHG’, °QPEI’).

A.4.2 Response examples

Prompt 6: GPTS TrpB BLIND full campaign example.

You are an expert protein engineer with deep chemical intuition leading a
directed evolution campaign. Apply rigorous chemical principles to
discover high-fitness variants within your experimental budget.

**xCAMPAIGN OVERVIEW: **-

- Target: Four-site region of unknown

- Background: No background available, we enter the campaign blind.
- Total Budget: 60 experimental validations

- Batch Size: 10 sequences per round

- Number of cycles: 6

- Sequence Length: 4 amino acids
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This is the START of your campaign. You have no prior data.

**STRATEGIC APPROACH:**
At every cycle, you’ll receive previous results. Select 15 untested sequences
using chemical logic and hypothesis testing.

*xQUTPUT REQUIREMENTS: **

1. **Chemical Reasoning**: Evaluate the past cycles and explain your
mechanistic hypotheses and chemical logic for the next cycle.

3. *xPriority Ranking**: Sort by priority with chemical justification

4. xxFinal List**: End with 15 ranked sequences for next cycle validation for
buffer, 10 of which will be validated in the next cycle.

4. *x0utput format**: List 15 sequences (STRICTLY 4-letter codes like ’AMHG’,

’QPEI’) at the end of your response.

Design sequences that test well-reasoned chemical hypotheses. Balance
thorough exploration with chemical principles to maximize discovery
potential through systematic, chemistry-guided experimentation.

Response 5: GPTS5 response

Chemical reasoning and strategy for Cycle 1 (blind start)

- With no prior data, we should maximize information gain per experiment by
spanning orthogonal physicochemical axes: net charge (positive vs
negative), hydrophobicity (aliphatic vs aromatic), polar H-bonding (Ser/
Thr vs Asn/Gln), conformational rigidity/flexibility (Pro/Gly), redox/
metal coordination (Cys/His, D-x-D), and secondary-structure propensities

(Ala/Leu/Ile/Val).

- The set below implements a fractional-factorial-like sweep across these

axes, so early results can reveal main effects and simple interactions by
comparing closely related contrasts (e.g., cationic vs anionic; aromatic
vs aliphatic; HXH vs D-x-D; rigid PxxP vs flexible PGPG).

- Prioritization favors maximal diversity first, then close contrasts to
refine mechanistic hypotheses.

Priority ranking with brief chemical justification

1) KRRR aKT Strongly cationic, Arg/Lys-rich for electrostatic binding to
acidic/negatively charged targets (e.g., nucleic acids or acidic protein
patches).

2) DEED &AT Strongly anionic, acidic cluster probe; contrasts directly with
KRRR to test electrostatic preference.

3) WFWY aAT Aromatic-rich, tests pi&ASpi/piakScation interactions and
hydrophobic packing using mixed F/W/Y.

4) LVIL akT Aliphatic hydrophobic core motif; contrasts WFWY to separate
aromatic-specific effects from generic hydrophobics.

5) STST aAT Ser/Thr H-bond network and turn/helix edge propensity; probes
polar OH-mediated recognition.

6) HEGH 3AT HExH-like histidine motif; tests metal coordination and pH-
sensitive binding via His.

7) DADE AT D-x-D acidic motif; canonical divalent metal-binding/chelation
contrast to HEGH.

8) CAGC 3AT Cys pair (CxxC) enables redox/disulfide or soft-metal
coordination; probes thiol chemistry and structural constraint.

9) PGPG 3AT Alternating Pro/Gly for high turn propensity and conformational
flexibility; tests if tight turns are favored.

10) PAPP &KT PxxP motif to enforce rigidity and SH3-like motif geometry;
contrasts PGPG for flexibility vs rigidity.

11) RKRK aKT Alternating cationic pattern to test charge spacing vs clustered

cationic (KRRR).
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12) QNQQ &AT Amide-rich polar H-bonding without charge; probes polar
recognition distinct from Ser/Thr chemistry.

13) FWLW aKT Alternating aromatic/aliphatic to test interleaved hydrophobic/
aromatic patterns vs clustered aromatics (WFWY).

14) AAAA 3AT Helix-prone neutral baseline; a clean reference for main-effect
comparisons across positions.

15) LYKS aKT Mixed motif (hydrophobic-aromatic-basic-polar) to sample
heterogeneous interfaces and potential pidAScation (Y/K) interplay.

Final list of 15 sequences for next-cycle validation (top 10 prioritized

above) :
KRRR, DEED, WFWY, LVIL, STST, HEGH, DADE, CAGC, PGPG, PAPP, RKRK, QNQQ, FWLW,
AAAA, LYKS

The validation experiment in cycle O is finished. These are the results:
sequence fitness

AAAA 0.074
KRRR 0.045
LVIL 0.020
DADE 0.016
WEFWY 0.013
STST 0.013
PAPP 0.010
RKRK 0.002
DEED 0.000
HEGH 0.000

Cycle 1 analysis and hypotheses from cycle O data
- Small/neutral wins: AAAA is top (0.074), suggesting minimal side-chain bulk
and strong helix propensity (Ala) are beneficial. This points toward a
preference for compact, low-steric side chains and possibly an alpha-
helical segment.

- Cationic helps, especially Arg-rich clusters: KRRR is second-best (0.045),
while alternating cationic RKRK is poor (0.002). This implies clustered
or context-dependent cationic interactions are beneficial; Arg appears
superior to Lys (guanidinium vs ammonium) .

- Hydrophobic tolerated but suboptimal: LVIL (0.020) and WFWY (0.013)
indicate hydrophobic packing/aromatics help but are inferior to A-rich.

- Acidic clusters and His motifs are disfavored: DEED (0.000), HEGH (0.000);
DADE (0.016) shows that isolated/alternating acidity with small residues
can be tolerated, but excess negative charge is detrimental.

- Polar OH acceptable but not optimal: STST (0.013) suggests limited benefit
from Ser/Thr networks.

Working hypotheses for next designs

1) Ala-rich background is optimal; adding limited positive charge (preferably
Arg) may boost fitness if positioned correctly. Test single-position Arg
and Lys scans on AAAA.

2) Arg likely outperforms Lys; quantify this across positions.

3) Two Arg in an Ala background may be better than one but worse than fully
charged; test spacing effects (AARR).

4) Small/polar (Ser) or smallest (Gly) substitutions might be position-
sensitive; edge vs internal effects may differ.
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5) Keep exploration limited for acidic/aromatic features; include one
ahlsentinel3Al acidic variant to measure penalty of an isolated negative
charge in an Ala carpet.

Priority ranking with justification

1) RAAA 3KT Single Arg at position 1 on AAAA; probes N-terminal placement of
cationic charge with minimal steric penalty.

2) ARAA 3AT Single Arg at position 2; tests internal Arg placement effect.

[...]

The validation experiment in cycle 1 is finished. These are the results:
sequence fitness

AAAG 0.279

AAAS 0.221
Loood

Cycle 2 analysis and mechanistic hypotheses
- Strong terminal preferences emerged:
- Position 4: Gly and Ser are highly beneficial (AAAG 0.279 > AAAS 0.221 >>
AAAA 0.074). This is signature of a C-terminal cap preference for small/
flexible or H-bonding residues that relieve steric clash and/or stabilize
a local turn/helix cap (G > S; next likely T, then Asn; bulkier polar
like Gln expected weaker).
- Position 1: Gly improves fitness (GAAA 0.119 > AAAA 0.074). N-terminal
flexibility or reduced steric bulk appears favorable.

- Charges are generally detrimental, especially Arg at any position (RAAA,
ARAA, AAAR all ~0aKS0.01). Lys is tolerated only internally (AAKA &LL
AAAA), but not beneficial; Lys at posl is harmful (KAAA 0.018). Acidic
residues are strongly disfavored (AADA 0.000). Hydrophobics/aromatics
also underperform.

- Therefore, the productive design space is: small/non-bulky residues,
especially G/S at termini; possibly T/N as alternative C-caps; internal
positions likely prefer A/S/G with caution about excessive flexibility
from multiple Gly.

Design strategy for Cycle 2

- Test additivity/epistasis by combining the best terminal features: G/S at
pos4 with G (and S) at posl.

- Expand C-terminal cap chemistry: Thr and Asn; include Gln as a bulkier
polar comparator.

- Probe whether added flexibility internally helps or hurts: single Gly scans

at positions 2 and 3; single Ser scans at positions 2 and 3.

- Limit risky motifs (charge, aromatics, strong hydrophobics), reserving

budget for the productive small/polar space.

Priority ranking with chemical justification

1) GAAG aET Combines the two strongest single effects (Gl + G4); tests near-
maximal flexibility at termini; highest expected fitness.

2) GAAS aAT G1 + s4; probes if H-bond cap at 4 with flexible N-terminus
rivals G1/G4.

[...]
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<0>The validation experiment in cycle 2 is finished. These are the results:
sequence fitness

GAAS 0.315

SAAG 0.238
Loood

Cycle 3 analysis and mechanistic hypotheses
- Clear SAR emerged: termini prefer very small/polar residues, centers prefer
Ala.

- C-terminal cap: S4 and G4 are strongly beneficial (AAAS 0.221; AAAG
0.279) . Thr4 is highly deleterious (AAAT 0.008). Asn4 is roughly neutral/
slightly worse than baseline (AAAN 0.075).

- N-terminal: Gl improves baseline (GAAA 0.119). S1 is promising when
combined with favorable C-caps (SAAG 0.238; SAAS 0.186), but S1 alone is
unmeasured.

- Best family identified: X A A Y with X aLL {G,S}, Y alLL {G,S}; strongest
observed GAAS (0.315) > SAAG (0.238) > GAAG (0.202) > SAAS (0.186),
indicating terminal epistasis (S4 best with G1; G4 best with S1).

- Internal positions penalize flexibility/polarity: introducing Gly/Ser at
2 or 3 reduces fitness (AGAA 0.071; AAGA 0.023; AASA 0.036), though a
strong C-cap can partially rescue (AAGS 0.107). Centers prefer Ala.

Working hypotheses to guide next designs

1) The global maximum likely resides near XAA Y with X,Y all {G,S}; we will
probe whether modest, chemically plausible deviations at positions 28A$3
(single Ser/Gly) can fine-tune the optimum under favorable terminal pairs

2) N-capping alternatives: Pro or Asn at position 1 might sometimes stabilize
local turns/caps; test them in the context of strong C-caps (S4/G4).
3) Cys as a small polarizable C-cap surrogate for Ser/Gly: test C4 with/
without G1 to map tolerance. Include one Gln4 sentinel to bound amide-cap
performance.
4) Complete missing single-mutant baselines: SAAA (S1 alone) and ASAA (S at
pos2) for positional sensitivity.

Priority ranking with justification

[...]

The validation experiment in cycle 3 is finished. These are the results:
sequence fitness

GPAS 0.341
[...]

Cycle 4 strategy and chemical reasoning

- Confirmed terminal epistasis: Position 4 strongly prefers S or G but with
context. Gl pairs best with S4 (GAAS 0.315 > GAAG 0.202); S1 pairs best
with G4 (SGAG 0.277 > SAAS 0.186). Amide caps (N/Q at 4) and Thr4 are
poor; Cys4 is mediocre. Keep 4 &LL {S,G}.

- Internal positions favor Ala; introducing Gly or Ser at 2 or 3 depresses
fitness even under favorable termini (e.g., GGAS 0.100, GAGS 0.093, GSAS
0.085). Key exception: Proline at position 2 gives a real boost on the G1
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/S4 ridge (GPAS 0.341 > GAAS 0.315), likely via local turn/helix capping
and preorganization without over-flexibilizing the core.

- N-terminus: G1 and S1 are both good in the right context; S1-G4 and G1-S4
look like complementary optima. Nonpolar/hydrophobic or charged
substitutions were uniformly harmful earlier.

Hypotheses to test now

1) Proline-at-2 as a transferable enhancer: Move P2 to the S1/G4 ridge to
create SPAG; also test if P2 improves the weaker G1/G4 ridge (GPAG) and
the weaker S1/S4 ridge (SPAS). Expect SPAG to be competitive with the
current best.

2) Is P best kept at 27 Shift P to position 3 under strong terminals to
quantify penalty vs benefit (GAPS, GAPG, SAPG), anticipating lower but
mapping robustness.

3) N-cap alternatives: Thrl can N-cap in helices; test TPAG/TPAS as
conservative variants against S1 with both C-termini.

4) How much turn bias is too much? Introduce P2-G3 tight turn (GPGS, SPGS)
and double-Pro core (GPPS, GPPG) as stress tests; expect reduced but
informative.

5) Is G1 essential for P2 benefit? Compare APAS vs GPAS baseline (already
known) to quantify the necessity of the Gl N-cap in the P2 motif.

6) Internal polarity under P2: Test GPSS to confirm S3 remains penalizing
even with P2.

Priority ranking with justification
1) SPAG aAT Aligns with S1/G4 synergy; adds P2 which helped on G1/S4. Highest
likelihood to meet or exceed current best.

[...]

The validation experiment in cycle 4 is finished. These are the results:
sequence fitness

TPAG 0.292
[...]

Cycle 5 chemical reasoning and goals

- Clear terminal epistasis remains: position 4 prefers S or G, but the
preference flips with N-terminus and with the presence of Pro at position

28

- With G1 and P2 present, S4 is superior (GPAS 0.341 > GPAG 0.225).

- With T1 and P2, G4 is far superior (TPAG 0.292 >> TPAS 0.113).

- With S1 and P2, evidence from G3 sentinels suggests G4 > S4 (SPGG 0.172 >
SPGS 0.071); we now test this in the optimal A3 background.

- P2 is a key enhancer when used with optimal terminals; P3 is deleterious.
Internal polar/flexible residues at 28K33 are generally harmful unless
they are precisely Pro2 or Gly2 in the S1/G4 context (SGAG 0.277 > SAAG
0.238).

- A3 appears optimal; G3/S3 consistently reduce fitness, but we will probe
whether a small hydrophobe (V3) can be tolerated/improve preorganization
under strong termini/P2.

- N-terminal identity strongly modulates the best C-cap when P2 is present;
we will systematically map X1 in {S,A,N} across Y4 in {G,S} with P2 fixed

to locate the global maximum near the GPAS/SPAG/TPAG ridge.

Priority ranking with justification
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1) SPAG aKT Tests S1/P2 with G4; predicted to be high due to S13ASG4 synergy
and P2 enhancement (cf. SGAG 0.277; P2 likely boosts further).
[...]

The validation experiment in cycle 5 is finished. These are the results:
sequence fitness

GPVS 0.495
[...]
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