
When Do LLMs Improve Bayesian Optimization? A Systematic Comparison Across Molecular and Protein Design

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 While powerful, classical Bayesian Optimization (BO) and active learning methods
2 struggle to incorporate complex prior knowledge, provide limited interpretability in
3 explaining why a candidate looks promising, and can be computationally demanding.
4 Large language models (LLMs) offer complementary strengths in reasoning
5 ability and integration of domain knowledge, but it remains unclear **when** and
6 **how** they can reliably improve BO campaigns. We reconcile previous reports by
7 providing a systematic comparison of various LLM-based approaches (off-the-shelf
8 reasoning LLMs relying on in-context learning, fine-tuned on synthetic BO, and
9 light-weight agentic workflows using tools) against classical statistical BO across
10 molecular optimization and protein design tasks. We find that off-the-shelf reasoning
11 LLMs fail in SMILES-based molecular optimization due to their poor handling
12 of SMILES representations and large in-context inputs, but agentic workflows that
13 leverage cheminformatics tools and statistical model-based filtering overcome these
14 limitations. In contrast, in the design of four-residue protein motifs, pure reasoning
15 LLMs excel by generating domain knowledge-driven hypotheses, while agentic
16 workflows underperform, relying too heavily on tools. These results highlight the
17 complementarity of reasoning models and agentic architectures, offering guidance
18 on when each is preferable. Finally, we show that non-reasoning LLMs trained
19 via supervised fine-tuning (SFT) can efficiently mimic statistical strategies in our
20 setting, sometimes outperforming reasoning models at a fraction of the computa-
21 tional cost. Together, our findings clarify the respective roles and failure modes of
22 reasoning, agentic, and statistical approaches in BO, and propose a path toward
23 hybrid methods that combine the strengths of LLM-hypothesis generation and
24 statistical rigor.

Table 1: Comparison of supervised fine-tuned (SFT), off-the-shelf (LLM), and agentic (Agent) approaches for BO across our two domains.

Example	Representation	Domain		Performance			Relative Cost		
		Search Space	Budget	SFT	LLM	Agent	SFT	LLM	Agent
small AA motifs	Simple	Less constrained	Small	Mid	High	Poor	Low	Mid	High
Medium-sized SMILES	Complex	Constrained	Large	-	Poor	High	-	High	Mid

1 Introduction

Chemical space diversity presents a challenge in scientific discovery, specifically in fields like drug design, protein engineering, and others where the number of potential candidates is prohibitively

28 large to test thoroughly. Bayesian optimization (BO) is a paradigm that addresses the challenge of
29 efficiently navigating large search spaces in an intelligent manner [Snoek et al., 2012]. At its core,
30 BO is a probabilistic machine learning approach where a model iteratively suggests experiments to
31 perform for costly evaluations (e.g., human expert, physical experiment, computational model, etc.).
32 The iterative, data-driven strategy is meant to optimally explore the search space, while exploiting
33 the best possible candidates with minimal number of experiments, thereby accelerating the scientific
34 discovery process [Tabor et al., 2018]. The framework has been successfully used in drug discovery
35 [Korovina et al., 2020, Pyzer-Knapp, 2018], chemical reaction optimization [Shields et al., 2021],
36 catalyst development and more [Tabor et al., 2018, Hsieh et al., 2018].

37 At the core of the Bayesian optimization framework is the acquisition function (AF). It is the
38 formulation that decides which candidate (or set of) to select at each iteration. Statistical AFs are
39 often designed to manage the fundamental trade-off between exploitation and exploration [Kaelbling
40 et al., 1996, Shahriari et al., 2015]. Exploration will increase the knowledge of the model by focusing
41 on candidates where the model is uncertain, aiming to reduce global error of the model, potentially
42 uncovering novel regions of the search space with better performance. Exploitation, on the other hand,
43 prioritizes already known regions where the model currently predicts the best outcome, effectively
44 optimizing known regions of high performance. Common methods such as Upper Confidence Bound
45 (UCB) [Lai and Robbins, 1985] and Thompson Sampling (TS) [Thompson, 1933, Thompson et al.,
46 2022] offer frameworks for balancing these competing objectives.

47 The performance of these methods is contingent on the quality of the model’s uncertainty estimates
48 and only captures the knowledge from the model predictions, but does not include chemical knowledge
49 available in the large body of literature work. The inherent opacity of the surrogate models typically
50 employed in Bayesian optimization hinders its broader utility, as it precludes researchers from
51 elucidating the fundamental structure-property relationships governing the system. The expensive
52 calculations in common surrogate models such as the Gaussian Process limit the ability of using
53 BO for large search spaces and long optimization campaigns. Collectively, these constraints on
54 interpretability, computational scalability, and knowledge integration limit the practical utility of
55 Bayesian optimization.

56 Large language models (LLMs) on top of being disruptive in virtually every other field, also bring
57 potential benefits to scientific discovery. The vast domain knowledge and reasoning capabilities of
58 LLMs promise great potential in enhancing BO. Studies have used LLMs for the entire BO pipeline
59 [Yang et al., 2023], replacing representation, uncertainty quantification and acquisition [Wang et al.,
60 2025], or dynamically sampling new proposal distributions as the campaign evolves [Agarwal et al.,
61 2025]. Yet there is a lack of clear understanding as to when and how LLMs are better than classical
62 BO methods.

63 In this work, we systematically compare LLM-based approaches (off-the-shelf, fine-tuned or agentic)
64 against BO methods. At the core of the investigation, is to understand under what conditions do
65 LLMs perform better than BO, and when not. We do this by using two benchmarks. SMILES-based
66 molecular optimization and a four-residue protein optimization. The SMILES task is characterized
67 by a constrained search-space, where valid SMILES strings form only a small fraction of all possible
68 character sequences, and a large evaluation budget. The protein task is characterized by simple
69 representations (four-residue amino acid sequence) and a less-constrained search space – all amino
70 acid combinations are valid and a small evaluation budget. Our main findings are that off-the-
71 shelf models fail in SMILES-based molecular optimization tasks, due to the inability to accurately
72 understand molecular structure from SMILES strings and failure to process large in-context inputs.
73 Agentic frameworks, that have been equipped with domain specific tools, help to overcome these
74 both failure modes by offloading filtering to tools. In the four-residue protein design task, reasoning
75 models excel due to effective domain related hypothesis generation. On the other hand, agentic
76 workflows under-perform here in comparison to pure reasoning models.

77 2 Related Works

78 2.1 Bayesian optimization and active learning in molecular sciences

79 Bayesian optimization and active learning have been extensively employed in various fields to
80 accelerate scientific discovery. In drug discovery, these methods are used to navigate the vast
81 chemical space to find novel drug candidates, optimizing for properties such as docking scores,

82 potency, and more [McDonald et al., 2025]. For instance, Dang et al. [2025] showed that BO can
83 guide the synthesis of ligands with high affinity to specific enzymes. In materials science, these
84 techniques have accelerated the discovery of novel liquid electrolytes, identified novel electro-catalyst
85 candidates for CO₂ reduction and oxygen evolution reduction, and discovered new alloys with
86 enhanced mechanical strength [Dave et al., 2022, Jenewein et al., 2024, Tran and Ulissi, 2018,
87 Ghorbani et al., 2024]. Furthermore, BO is frequently applied to optimize the conditions of chemical
88 reactions, efficiently determining the ideal temperature, pressure, and reactant concentrations to
89 maximize yield and minimize byproducts [Tachibana et al., 2023, Burger et al., 2020]. In the field
90 of protein engineering, Bayesian optimization and active learning guide the design of antibodies
91 with high target specificity, proteins with high thermostability, and peptide sequences with favorable
92 functionality and stability [Khan et al., 2023, Stanton et al., 2022, Manshour et al., 2024].

93 **2.2 LLM-guided Bayesian optimization and active learning**

94 With recent advances in LLMs, there is a shift toward the integration of LLMs into the BO/AL loop
95 to exploit their vast prior knowledge and reasoning capabilities. One major direction involves framing
96 the LLM itself as an optimizer [Yang et al., 2023, Xia et al., 2025]. In molecular discovery [Reinhart
97 and Statt, 2024], it has been demonstrated that off-the-shelf LLMs (e.g., Claude 3.5) can serve as an
98 an evolutionary optimizer for macromolecular operations, outperforming traditional active learning
99 pipelines and genetic algorithms on a polymer sequence discovery task, suggesting that LLMs can
100 implicitly balance exploration and exploitation . Similarly, Liu et al. [2024] integrate an LLM into the
101 BO process by framing optimization as a language problem by prompting the model to propose and
102 evaluate solutions given the history of observation. Leveraging the LLM’s zero/few- shot learning to
103 guide search, their approach (LLAMBO) improved hyperparameter tuning efficiency in data-sparse
104 settings without any model fine-tuning. Lu et al. [2025] achieve similar results on simple transition
105 metal complexes discovery using in-context learning. However, some studies provide a more cautious
106 perspective. Kristiadi et al. [2024] reports that general-purpose LLMs offer limited benefit, unless
107 they have been pretrained or finetuned with domain-specific data (e.g., molecular data). Additionally,
108 this finding is further corroborated by Wang et al. [2025] who found that no off-the-shelf LLM, no
109 matter incorporated at what stage of BO, can outperform a simple statistical baseline. These results
110 highlight that careful adaptation is needed to leverage LLMs in BO/AL settings. Building on top of
111 these previous works, our work systematically investigate advantages and limitations of using LLMs
112 for BO in scientific discovery, and proposes strategies to overcome the limitations.

113 **2.3 Frameworks: Off-the-shelf vs. fine-tuned vs. agentic LLMs**

114 Scientific research with Large Language Models (LLMs) spans a spectrum from general-purpose
115 application to highly specialized automation. At one end, off-the-shelf models like GPT, Gemini,
116 Claude, Llama, and Qwen serve as powerful, multipurpose tools for tasks such as summarizing
117 literature, generating hypotheses, and writing code, leveraging their vast pretrained knowledge base.
118 Researchers develop finetuned models by further training a base LLM on a specific domain-centric
119 dataset, for example, routes of chemical synthesis or therapeutics to increase performance in specific
120 tasks [Sun et al., 2025, Chaves et al., 2024, Zhang et al., 2025]. The finetuning process hones the
121 model’s capabilities, enabling it to generate highly accurate and contextually relevant outputs for
122 niche tasks that a general model would struggle with. Sumers et al. [2023] proposed agentic LLM
123 frameworks that integrate various LLMs into large systems capable of handling more complicated
124 tasks by dividing into smaller tasks, using larger context windows with more advanced memory, and
125 with the ability to perform actions with integrated tools. Agentic frameworks have been successfully
126 utilized in discovering protein design principles [Ghafarollahi and Buehler, 2025b], novel treatments
127 for macular degeneration [Ghareeb et al., 2025], designing novel alloys [Ghafarollahi and Buehler,
128 2025a], and more [Xia et al., 2025].

129 **3 Overview**

130 We study the success and failure modes of LLMs across two flavors of Bayesian optimization (BO)
131 tasks: SMILES-based molecular optimization and four-residue protein optimization. The molecule
132 task (SMILES-based) is characterized by a constrained search space where valid SMILES strings
133 form only a small fraction of all possible character sequences—and a large evaluation budget. The

134 protein task (four-residue) is characterized by a less-constrained search space where all amino acid
135 combinations are valid, and a small evaluation budget.

136 Across both domains, we evaluate three classes of LLM-based methods: (1) off-the-shelf reasoning
137 models, (2) our developed agentic workflow, and (3) non-reasoning LLMs fine-tuned to mimic
138 statistical acquisition strategies. We compare these against standard statistical baselines and analyze
139 where LLM-based approaches succeed or fail.

140 **SMILES-based molecular optimization.** For the **molecule** task, we use the benchmark introduced
141 by Gorantla et al. [2024]. The benchmark contains 4 datasets of thousands of medium-sized molecules
142 (95% in the [15, 22] carbon range), with measured binding affinities to a protein target. We run our
143 tests against two of these targets; D2R, and TYK2. The goal is to identify molecules in the top 2%
144 for each target. Following prior work, we initialize with `starting size = 60`, `batch size = 60`, and extend the evaluation budget to 600 (from 360 in the original benchmark) to strengthen the
145 signal. We also evaluate the predictive model’s RMSE on the entire database as a metric of how well
146 each acquisition function informs the predictive model.

148 As statistical baselines, we implement Gaussian process regression with a Tanimoto kernel (4096
149 bits, radius 2), using four acquisition strategies: Greedy, Upper Confidence Bound (UCB), Thompson
150 Sampling (TS), and Random sampling.

151 In BO, the effect of starting point is huge. If we start from bad local minima, greedy algorithm would
152 fail miserably. Thus, robustness of the method to the initialization is required. To evaluate robustness,
153 we consider two initialization regimes for the molecule task: (1) starting batches sampled uniformly
154 at random and (2) batches sampled from a single cluster in a UMAP embedding of chemical space.

155 **four-residue protein optimization.** For the **protein** task, we adopt the framework of Yang et al.
156 [2025], which provides fitness values for nearly all sequences in the full 20^4 combinatorial search
157 space of two highly epistatic motifs (on GB1 and TrpB). The objective is to discover sequences of
158 maximal fitness.

159 We evaluate performance using two metrics: (1) maximum fitness score, as in the original benchmark,
160 and (2) recall of top-performing sequences (top 0.5 %), for consistency with the molecule task.
161 Baselines include Greedy, UCB, TS, Random, and a directed evolution strategy (greedy local search
162 around the wildtype). The predictive model is a deep neural network (DNN) ensemble trained on
163 one-hot encoded sequences, as shown to perform best in the original paper. We test both a small
164 campaign (`starting size = 10`, `batch size = 10`, `budget = 60`) and the larger campaign
165 studied by Yang et al. [2025] (`starting size = 96`, `batch size = 96`, `budget = 480`).

166 4 Off-the-Shelf Reasoning LLMs Struggle with Molecular Optimization

167 4.1 Setup: Reasoning LLM-based acquisition design and prompting strategy

168 We evaluate three reasoning models on this benchmark - **Qwen3-32B** [QwenTeam, 2025], **GPT-5-
169 medium reasoning** [OpenAI, 2025], and **Llama-4-maverick-17B** [MetaAI, 2025]. At each iteration,
170 the model receives the campaign description, accumulated observations (SMILES with ground truth
171 fitness values of selected samples), and a candidate pool (SMILES with predictive model fitness
172 values and confidence scores).

173 The full list of candidates was processed in chunks of size dependent on the context length, selecting
174 a batch from each chunk, and then a final batch from the union of selections from all chunks.
175 Due to context length limits, smaller models (Qwen3, GPT-5) cannot simultaneously attend to all
176 accumulated observations and candidate chunks. For these models, we first prompt to summarize the
177 accumulated observations, and the summary was then used to inform the selections from the chunks.
178 With this method, acquisition takes around 2 minutes and 60,000 tokens per 1,000 samples.

179 4.2 Poor handling of large in-context inputs and SMILES limits the reasoning model 180 performance.

181 LLM-based acquisition underperform compared to statistical acquisition functions in terms of recall,
182 effectively mimicking the greedy algorithm in both the random start (Figure 1a), and the bad start

183 (Figure 1b), showing a limited ability to identify and escape the local minima. Contrary to our
184 expectation that LLMs would leverage scientific reasoning to escape bad starts, their selections rely
185 heavily on GP predictions, providing little additional information gain for the GP model compared
186 with statistical baselines (Figure 1d).

187 The inferior performance of LLM-based acquisition highlights two main issues. First, LLMs struggle
188 to correctly parse and reason over SMILES strings. Second, they are unable to accurately process the
189 large in-context dataset tables. Qwen3 and Llama-4 often deviate from the required output format,
190 selecting duplicates or using wrong budget. GPT-5 is more precise with the format, but appears to
191 fail at correctly mapping chemical patterns to SMILES (further discussion in A.1). Moreover, finding
192 an optimal way of chunking the data for in-context input requires an extra effort.

193 5 Agentic Workflows Improve Data Comprehension and Scalability

194 Given these limitations, we explore whether agentic workflows, where an LLM orchestrates tool
195 use rather than directly ranking molecules, can mitigate data processing challenges. We designed an
196 LLM workflow to select from the candidate pool using a limited set of simple tools, including: (1)
197 sorting by GP predictions, (2) filtering by SMARTS substrings, (3) filtering by Tanimoto similarity in
198 comparison to compounds already observed or to the current batch, and (4) filtering using UCB with
199 hyperparameters set by the agent.

200 5.1 Setup: Workflow architecture with strategist, implementer, and summary nodes

201 The workflow begins with a "strategist" node prompted to analyze the campaign stage, objectives,
202 and accumulated observations (a dataframe of SMILES string and score of each molecule selected
203 in previous cycles). Based on this analysis, it proposes a set of selection strategies. Each strategy
204 is then passed to an "implementer" node, responsible for executing the strategy via tool calls. The
205 results, along with the information of strategies, task reasoning, and tool calls, is finally processed
206 by a "summary" node which evaluates the effectiveness of each strategy and the cycle performance
207 overall. This summary is subsequently fed back to the "reasoning" node, informing the design of
208 strategies in the next iteration. Claude-3.5-sonnet [Anthropic, 2024] was used for both implementer
209 and summary nodes.

210 5.2 Agentic workflows surpass both statistical and LLM baselines

211 Even with a limited set of tools, the agentic workflow proves effective, greatly surpassing all off-the-
212 shelf models in the easy task (Figure 1a, **AGENT**), and the statistical models on the bad start (Figure
213 1b). The main reason for this improvement is that the workflow's ability to leverage rule-based
214 SMARTS filtering, rather than having to rely on their own understanding of SMILES.

215 5.3 Limiting in-context information reinforces domain knowledge-driven reasoning

216 From the LLM reasoning history, we observed that the agent consistently copied patterns from
217 SMILES present in the accumulated observations table for SMARTS filtering. Interestingly, when
218 we remove all sample-level information (i.e., SMILES strings and their associated scores) from the
219 prompt provided to the "strategist" node (Prompt A-A.4.1, SMILES table at end of cycle summary
220 Prompt A-A.4.1), while maintaining the natural language cycle summaries (generated by the "sum-
221 mary" node), the model engages in expert-level chemical reasoning about structural motifs associated
222 with binding. Instead of copy-pasting substrings from the table of accumulated observations, it instead
223 creates SMARTS filters based on chemical hypotheses from prior knowledge. This method achieves
224 performance comparable to statistical methods on the simpler task (Figure 1a, **SIMPLEAGENT**)
225 while providing larger information gain to the GP model (Figure 1c), and quickly breaks out from the
226 bad starts (Figure 1b). The improvement from the original AGENT suggests that constraining models
227 to tool-mediated reasoning allows domain knowledge to be used more effectively than forcing direct
228 SMILES comprehension.

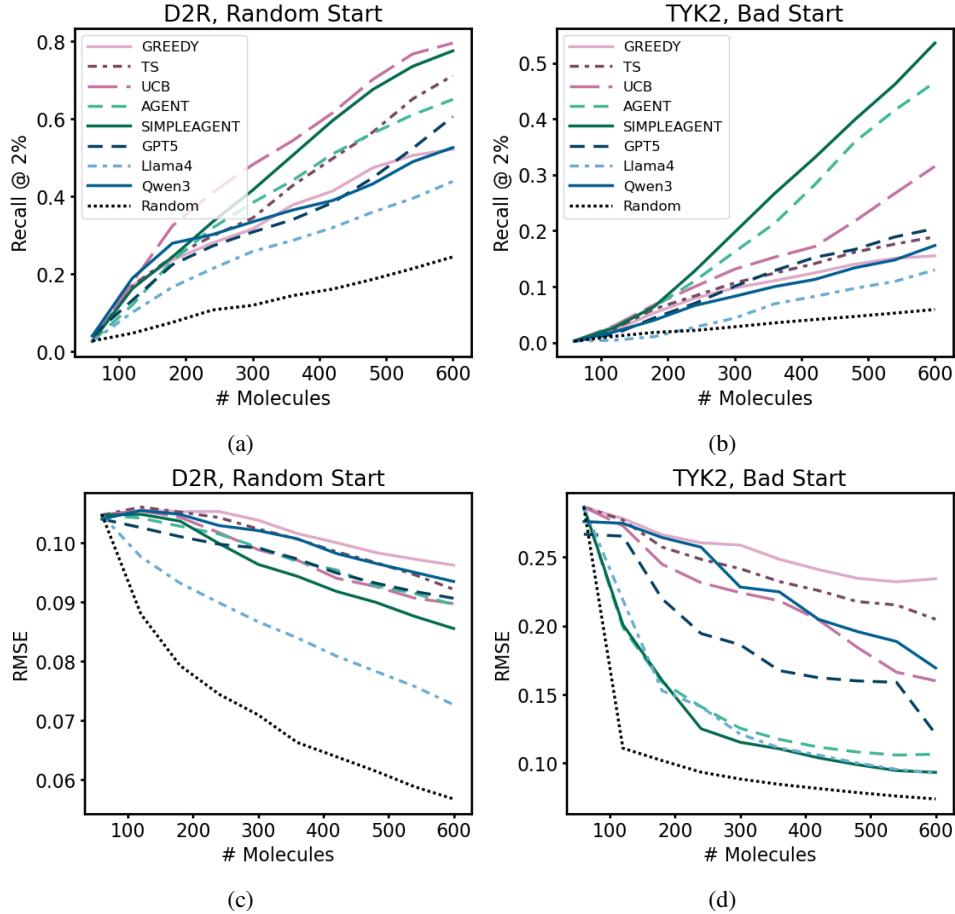


Figure 1: Performance of statistical acquisition functions (**GREEDY**, **UCB** = upper confidence bound, **TS** = Thompson sampling), off-the-shelf models (**GPT-5**, **Qwen3**, **Llama4 (non-reasoning)**), and agentic flows (**AGENT**, **SIMPLEAGENT**) on the molecular BO task. Metrics: (1) Recall at 2 % (**Top row**), the fraction of the top 2 % of candidates in the entire search space, (2) predictive model’s RMSE on the accumulated observations (**Bottom row**) measuring how well-informed the predictive model is of the search space at a given stage of the campaign. **Left column:** Binding affinity optimization for D2R target with random initialization. **Right column:** Binding affinity optimization for TYK2 target, with initialization from a bad local minima testing the method’s ability to explore. N=10 samples for all methods except Qwen3-D2R random start (N=5), Qwen3-TYK2 bad start (N=5), GPT-5-D2R random start (N=5), and GPT-5-TYK2 bad start (N=4). Dashed line (**Random**) marks the performance of random acquisition. Agentic models outperform statistical models when the campaign is initialized in a bad local minima and are competitive on random initializations, while informing the predictive model more.

229 6 Protein optimization task shows the true power of reasoning model

230 From our previous section, we identified the failure modes in SMILES-based molecular optimization
 231 task. LLMs are not good at comprehending SMILES and in-context processing of large dataset is not
 232 ideal. As such, we next investigated whether these models are more effective in the task with simpler
 233 representations and less-constrained search spaces, optimizing the fitness of a four-position protein
 234 motif.

235 The set of current observations for statistical models and the agentic workflows were initialized with
 236 random samples from the search space and a target protein description that included the wildtype
 237 (WT) sequence. The "off-the-shelf" reasoning models were given the same background and WT. The

238 agentic workflow could filter by predictive model predictions, blosum62 scores, Hamming distances,
 239 regex patterns, and UCB.

240 6.1 Qwen3 agentic workflows collapse to directed-evolution behavior and underperform

241 Across both protein targets GB1 and TrpB, Qwen3 underperformed across all metrics (Figure 2).
 242 Closer inspection on the reasoning log revealed that its proposals were almost exclusively point
 243 mutations of the WT or current best-performing sequence, effectively reproducing directed evolution
 244 (DE) (Figure 2, DE baseline).

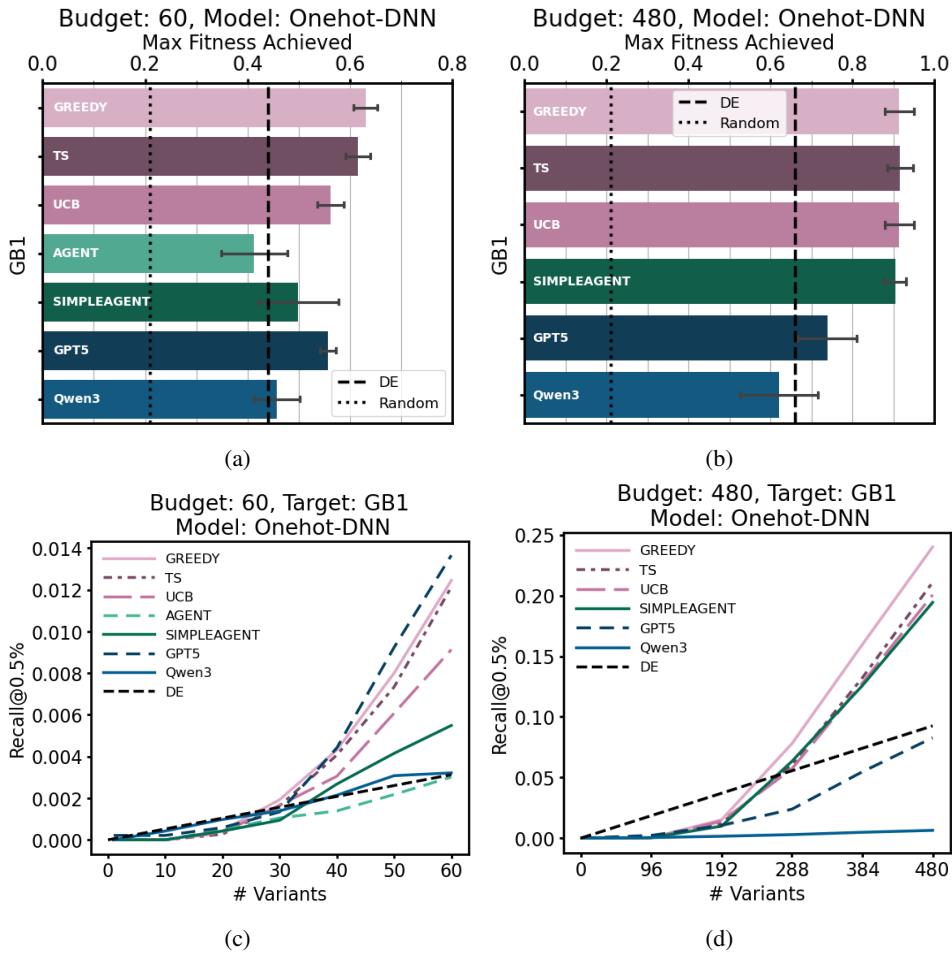


Figure 2: Performance of statistical acquisition functions (GREEDY, UCB = upper confidence bound, TS = Thompson sampling), off-the-shelf models (GPT-5, Qwen3), and Qwen3-based agentic models (AGENT, SIMPLEAGENT) on the active learning task of optimizing a four-residue motif. Metrics: (1) highest achieved fitness (Top row), (2) recall at 0.5 % (Bottom row), implying the fraction of the top 0.5 % motifs in the entire search space. The campaign is performed on two scales: with a budget of 60, batch size 10 motifs (Left column), and with a budget of 480, batch size 96 motifs (Right column). Error bars mark standard deviation. Statistical methods use 50 samples, and LLM methods use 10 samples. Dashed line (DE) marks the performance of directed evolution starting from the WT. Dotted line (Top row, Random) marks expected performance from random acquisition. GPT-5 performs the best in the small campaign, but performance deteriorates with increased batch sizes and budgets. Agents fail due to the limited usefulness of tools in this domain.

245 The Qwen3-based agent also performed poorly: it heavily relied on regex-matching of the accumu-
 246 lated observations and again converged to DE-like behavior (Figure 2a). To mitigate this, we limited
 247 the information provided to the initial prompt, withholding any information about the sequences in the
 248 accumulated observations so far. This SIMPLEAGENT variant showed marked improvement (Figure

249 2a), as it relied more on the GP model predictions rather than trying to search near the previous
250 observations. Nevertheless, its recall remained substantially lower than statistical baselines (Figure
251 2d).

252 Although performing significantly worse than the statistical models on the recall metric (Figure 2d),
253 it still scales indefinitely in execution time and cost with budget. Extensive tool tuning, or unlimited
254 accessibility to python would likely improve performance significantly.

255 **6.2 Off-the-shelf GPT-5 outperforms statistical methods with effective hypothesis discovery in 256 the smaller campaign**

257 We next evaluated GPT-5, which produced highly potent results in the protein task. Starting from the
258 WT, GPT-5 identified 11 sequences in the top 0.5% of the full search space within just 60 evaluations
259 (Figure 2a). Notably, GPT-5 appeared to have biological knowledge about the system: given only the
260 WT sequence “VDGV” along with the keyword “epistatic,” it identified GB1 as the protein target.

261 We therefore ran both Qwen3 and GPT-5 without any context about the wildtype or the protein, and
262 still observed very strong performance of GPT-5. Both Qwen3 and GPT-5 demonstrated explicit
263 hypothesis-driven search. While Qwen3 still appeared ineffective at executing on the ideas, GPT-5
264 had already by the second cycle, articulated and tested the hypothesis that “bulky residues at positions
265 1 and 3, small residues elsewhere” yield high-fitness sequences, a pattern that is 5.3x more common
266 in the top 0.5% of sequences than on average. Moreover, GPT-5 generated multiple hypotheses per
267 batch, enabling rapid exploration of the sequence landscape, in sharp contrast to Qwen3’s incremental
268 point mutations. However, GPT-5 suffered from scaling limitations. In larger campaigns with high
269 batch sizes, its performance plateaued (Figures 2b, 2d).

270 **6.3 Generative reasoning scales efficiently independent of search space size**

271 An important note is that the off-the-shelf models are fully generative, producing new sequences
272 directly rather than evaluating an entire candidate pool. This makes their runtime independent of the
273 search space size. Thompson sampling, which requires repeated retraining of the predictive model
274 and covariance matrix computations scales by $O(N^3)$ when using an exact GP in a search space of
275 N candidates, and $O(Nm)$ using low-rank (m rank) to approximate the covariance matrix. This
276 efficiency advantage suggests a role for reasoning models in settings where computational overhead
277 dominates.

278 **7 Fine-tuning Non-Reasoning LLMs Trains the Models to Perform Bayesian 279 Acquisition Behavior**

280 As a complement to the other findings, we aimed to see if non-reasoning Qwen2.5-7B-Instruct could
281 be fine-tuned to perform simpler generative tasks. Off-the-shelf Qwen2.5-7B-Instruct is unable
282 to effectively perform the task. Wang et al. [2025] showed that training a non-reasoning LLM on
283 acquisitions by a statistical model in an artificial setting using Direct Preference Optimization (DPO)
284 can improve the Bayesian behavior of the LLM on selection tasks very similar to the molecular task
285 described in this article.

286 We similarly generated synthetic AL tasks in the motif domain, and trained the non-reasoning
287 LLM using DPO and supervised fine-tuning (SFT) using trajectories sampled from onehot-DNN
288 Ensemble-TS method as training examples. DPO underperformed in this task, but SFT significantly
289 outperformed Qwen3, and achieved performance competitive with the statistical methods (details in
290 the Appendix A.2.5).

291 **8 Conclusion**

292 In this paper, various LLM-based methods (off-the-shelf, agentic and fine-tuned) are systematically
293 compared on two Bayesian optimization tasks. Models of various sizes and capabilities are compared
294 to gain insight into the scope and potential of using LLMs for BO.

295 SMILES-based molecular optimization gives enhanced perspective on a common problem for LLMs:
296 off-the-shelf models struggle with in-context processing of large datasets and accurate parsing of

Table 2: Comparison of LLM approaches for Active Learning across different domains

(a) SMILES-Based Molecular Optimization

Method	TYK2, Bad Start		D2R, Random Start	
	Recall@2% \uparrow $\times 10^{-3}$	RMSE \downarrow	Recall@2% \uparrow	RMSE \downarrow $\times 10^{-3}$
Best Statistical Model	0.32 ± 0.25	160 ± 47	0.80 ± 0.05	90 ± 5
Best Agent	0.54 ± 0.12	93 ± 7	0.78 ± 0.05	86 ± 6
Best Off-the-Shelf	0.20 ± 0.18	121 ± 13	0.61 ± 0.09	91 ± 5

(b) four-residue Protein Optimization

Method	GB1, Budget 60		TrpB, Budget 60	
	Recall@0.5% \uparrow $\times 10^3$	Max Fitness \uparrow	Recall@0.5% \uparrow $\times 10^3$	Max Fitness \uparrow
Best Statistical Model	12 ± 7	0.63 ± 0.17	9 ± 10	0.51 ± 0.32
Best Agent	5 ± 6	0.50 ± 0.25	7 ± 7	0.57 ± 0.20
Best Off-the-Shelf	20 ± 11	0.60 ± 0.13	10 ± 15	0.45 ± 0.35

297 SMILES strings. The introduction of an agentic workflow with the ability to use a set of simple tools
 298 greatly increases the performance of LLMs on this task. Furthermore, by removing SMILES related
 299 information from the agent the model performance increases even more. This happens as the model
 300 creates chemical hypothesis more freely and relies less on direct SMILES string comprehension.
 301 Table 2 (a) shows the performance increase of the best agent framework in this task.

302 The protein optimization task shows the power of reasoning models on simpler representations. While
 303 the smaller models (Qwen3-32B) and the agentic frameworks saw performance much lower than that
 304 of the BO baselines, the GPT-5 reasoning model generated a wide variety of valid hypothesis and
 305 rapidly explored the sequence landscape. On the other hand, GPT-5 suffered from scaling to larger
 306 campaigns with high batch sizes, where its performance plateaued. Finally, fine-tuned non-reasoning
 307 models were able to achieve enhanced performance compared to their non-fine-tuned reasoning
 308 counterparts while operating on a fraction of cost.

309 This study shows the potential for using LLMs in BO in various fields under the correct circumstances.
 310 In constrained search spaces such as SMILES optimization, agentic workflows equipped with
 311 external tools yield stronger performance, whereas in less-constrained search spaces with more
 312 LLM-comprehensible representations such as protein optimization, off-the-shelf reasoning models
 313 employing generative strategies prove more effective.

314 References

- 315 Dhruv Agarwal, Manoj Ghuhan Arivazhagan, Rajarshi Das, Sandesh Swamy, Sopan Khosla, and
 316 Rashmi Gangadharaiyah. Searching for optimal solutions with LLMs via bayesian optimization.
 317 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=aVfDrl7xDV>.
- 319 Anthropic. Claude 3.5 sonnet model card addendum. <https://www.anthropic.com/news/claude-3-5-sonnet>, 2024. Accessed August 2025.
- 321 Benjamin Burger, Phillip M Maffettone, Vladimir V Gusev, Catherine M Aitchison, Yang Bai,
 322 Xiaoyan Wang, Xiaobo Li, Ben M Alston, Buyi Li, Rob Clowes, et al. A mobile robotic chemist.
 323 *Nature*, 583(7815):237–241, 2020.
- 324 Juan Manuel Zambrano Chaves, Eric Wang, Tao Tu, Eeshit Dhaval Vaishnav, Byron Lee, Sara
 325 Mahdavi, Christopher Semturs, David Fleet, Vivek Natarajan, and Shekoofeh Azizi. Tx-llm: A
 326 large language model for therapeutics. *arXiv preprint arXiv:2406.06316*, 2024.
- 327 Tai Dang, Long-Hung Pham, Sang T Truong, Ari Glenn, Wendy Nguyen, Edward A Pham, Jeffrey S
 328 Glenn, Sanmi Koyejo, and Thang Luong. Preferential multi-objective bayesian optimization for
 329 drug discovery. *arXiv preprint arXiv:2503.16841*, 2025.

- 330 Adarsh Dave, Jared Mitchell, Sven Burke, Hongyi Lin, Jay Whitacre, and Venkatasubramanian
331 Viswanathan. Autonomous optimization of non-aqueous li-ion battery electrolytes via robotic
332 experimentation and machine learning coupling. *Nature communications*, 13(1):5454, 2022.
- 333 Alireza Ghafarollahi and Markus J Buehler. Automating alloy design and discovery with physics-
334 aware multimodal multiagent ai. *Proceedings of the National Academy of Sciences*, 122(4):
335 e2414074122, 2025a.
- 336 Alireza Ghafarollahi and Markus J Buehler. Sparks: Multi-agent artificial intelligence model discovers
337 protein design principles. *arXiv preprint arXiv:2504.19017*, 2025b.
- 338 Ali Essam Ghareeb, Benjamin Chang, Ludovico Mitchener, Angela Yiu, Caralyn J Szostkiewicz,
339 Jon M Laurent, Muhammed T Razzak, Andrew D White, Michaela M Hinks, and Samuel G
340 Rodrigues. Robin: A multi-agent system for automating scientific discovery. *arXiv preprint*
341 *arXiv:2505.13400*, 2025.
- 342 Marzie Ghorbani, M Boley, PNH Nakashima, and Nick Birbilis. An active machine learning approach
343 for optimal design of magnesium alloys using bayesian optimisation. *Scientific Reports*, 14(1):
344 8299, 2024.
- 345 Rohan Gorantla, Alžbeta Kubincová, Benjamin Suutari, Benjamin P. Cossins, and Antonia S. J. S.
346 Mey. Benchmarking active learning protocols for ligand-binding affinity prediction. *Journal of*
347 *Chemical Information and Modeling*, 64(6):1234–1256, 2024. doi: 10.1021/acs.jcim.4c00220.
348 URL <https://pubs.acs.org/doi/10.1021/acs.jcim.4c00220>.
- 349 Hsiao-Wu Hsieh, Connor W Coley, Lorenz M Baumgartner, Klavs F Jensen, and Richard I Robinson.
350 Photoredox iridium–nickel dual-catalyzed decarboxylative arylation cross-coupling: from batch
351 to continuous flow via self-optimizing segmented flow reactor. *Organic process research &*
352 *development*, 22(4):542–550, 2018.
- 353 Ken J Jenewein, Luca Torresi, Navid Haghmoradi, Attila Kormányos, Pascal Friederich, and Serhiy
354 Cherevko. Navigating the unknown with ai: multiobjective bayesian optimization of non-noble
355 acidic oer catalysts. *Journal of Materials Chemistry A*, 12(5):3072–3083, 2024.
- 356 Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey.
357 *Journal of artificial intelligence research*, 4:237–285, 1996.
- 358 Asif Khan, Alexander I Cowen-Rivers, Antoine Grosnit, Derrick-Goh-Xin Deik, Philippe A Robert,
359 Victor Greiff, Eva Smorodina, Puneet Rawat, Rahmad Akbar, Kamil Dreczkowski, et al. Toward
360 real-world automated antibody design with combinatorial bayesian optimization. *Cell Reports*
361 *Methods*, 3(1), 2023.
- 362 Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos, Jeff
363 Schneider, and Eric Xing. Chembo: Bayesian optimization of small organic molecules with syn-
364 thezable recommendations. In *International Conference on Artificial Intelligence and Statistics*,
365 pages 3393–3403. PMLR, 2020.
- 366 Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alán Aspuru-Guzik, and
367 Geoff Pleiss. A sober look at llms for material discovery: Are they actually good for bayesian
368 optimization over molecules? *arXiv preprint arXiv:2402.05015*, 2024.
- 369 T. L. Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. *Advances in*
370 *Applied Mathematics*, 6(1):4–22, 1985. doi: 10.1016/0196-8858(85)90002-8.
- 371 Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
372 to enhance bayesian optimization. *arXiv preprint arXiv:2402.03921*, 2024.
- 373 Jieyu Lu, Zhangde Song, Qiyuan Zhao, Yuanqi Du, Yirui Cao, Haojun Jia, and Chenru Duan.
374 Generative design of functional metal complexes utilizing the internal knowledge and reasoning
375 capability of large language models. *Journal of the American Chemical Society*, 2025. doi:
376 10.1021/jacs.5c02097.
- 377 Negin Manshour, Fei He, Duolin Wang, and Dong Xu. Integrating protein structure prediction and
378 bayesian optimization for peptide design. *Research Square*, pages rs–3, 2024.

- 379 Matthew A McDonald, Brent A Koscher, Richard B Canty, Jason Zhang, Angelina Ning, and
380 Klavs F Jensen. Bayesian optimization over multiple experimental fidelities accelerates automated
381 discovery of drug molecules. *ACS central science*, 11(2):346–356, 2025.
- 382 MetaAI. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation. <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>, 4 2025. Accessed August
383 2025.
- 384
- 385 OpenAI. Gpt-5 system card. <https://cdn.openai.com/gpt-5-system-card.pdf>, 8 2025.
386 Accessed August 2025.
- 387 Edward O Pyzer-Knapp. Bayesian optimization for accelerated drug discovery. *IBM Journal of
388 Research and Development*, 62(6):2–1, 2018.
- 389 QwenTeam. Qwen3 technical report. <https://arxiv.org/abs/2505.09388>, 2025.
- 390 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Chelsea Finn, and Stefano
391 Ermon. Direct preference optimization: Your language model is secretly a reward model. *arXiv
392 preprint arXiv:2305.18290*, cs.LG, jul 2024. URL <https://arxiv.org/abs/2305.18290>. 37th
393 Conference on Neural Information Processing Systems (NeurIPS 2023).
- 394 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
395 mizations enable training deep learning models with over 100 billion parameters. In *Proceedings
396 of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*,
397 pages 3505–3506, New York, NY, USA, 2020. Association for Computing Machinery. doi:
398 10.1145/3394486.3406703. URL <https://dl.acm.org/doi/10.1145/3394486.3406703>.
399 Tutorial.
- 400 Wesley F Reinhart and Antonia Statt. Large language models design sequence-defined macro-
401 molecules via evolutionary optimization. *npj Computational Materials*, 10(1):262, 2024.
- 402 Nicholas Runcie. Gpt-5 achieves state-of-the-art chemical intelligence. <https://www.blopig.com/blog/2025/08/gpt-5-achieves-state-of-the-art-chemical-intelligence/>,
403 August 2025. Oxford Protein Informatics Group Blog.
- 404
- 405 Nicholas T. Runcie, Charlotte M. Deane, and Fergus Imrie. Assessing the chemical intelligence of
406 large language models. *arXiv preprint arXiv:2505.07735*, v2, July 2025. URL <https://arxiv.org/abs/2505.07735>.
- 407
- 408 Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
409 human out of the loop: A review of bayesian optimization. *Proceedings of the IEEE*, 104(1):
410 148–175, 2015.
- 411 Benjamin J Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus I Martinez
412 Alvarado, Jacob M Janey, Ryan P Adams, and Abigail G Doyle. Bayesian reaction optimization as
413 a tool for chemical synthesis. *Nature*, 590(7844):89–96, 2021.
- 414 Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
415 learning algorithms. *Advances in neural information processing systems*, 25, 2012.
- 416 Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Greenside,
417 and Andrew Gordon Wilson. Accelerating bayesian optimization for biological sequence design
418 with denoising autoencoders. In *International conference on machine learning*, pages 20459–20478.
419 PMLR, 2022.
- 420 Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas Griffiths. Cognitive architectures
421 for language agents. *Transactions on Machine Learning Research*, 2023.
- 422 Kunyang Sun, Dorian Bagni, Joseph M Cavanagh, Yingze Wang, Jacob M Sawyer, Andrew Grit-
423 sevskiy, Oufan Zhang, and Teresa Head-Gordon. Synllama: Generating synthesizable molecules
424 and their analogs with large language models. *arXiv preprint arXiv:2503.12602*, 2025.

- 425 Daniel P Tabor, Loïc M Roch, Semyon K Saikin, Christoph Kreisbeck, Dennis Sheberla, Joseph H
426 Montoya, Shyam Dwaraknath, Muratahan Aykol, Carlos Ortiz, Hermann Tribukait, et al. Acceler-
427 ating the discovery of materials for clean energy in the era of smart automation. *Nature reviews*
428 *materials*, 3(5):5–20, 2018.
- 429 Ryo Tachibana, Kailin Zhang, Zhi Zou, Simon Burgener, and Thomas R Ward. A customized bayesian
430 algorithm to optimize enzyme-catalyzed reactions. *ACS Sustainable Chemistry & Engineering*, 11
431 (33):12336–12344, 2023.
- 432 James Thompson, W Patrick Walters, Jianwen A Feng, Nicolas A Pabon, Hongcheng Xu, Michael
433 Maser, Brian B Goldman, Demetri Moustakas, Molly Schmidt, and Forrest York. Optimizing
434 active learning for free energy calculations. *Artificial Intelligence in the Life Sciences*, 2:100050,
435 2022. doi: 10.1016/j.ailsci.2022.100050. URL <https://www.sciencedirect.com/science/article/pii/S2667318522000204>.
- 437 William R. Thompson. On the likelihood that one unknown probability exceeds another in view of the
438 evidence of two samples. *Biometrika*, 25(3-4):285–294, 1933. doi: 10.1093/biomet/25.3-4.285.
- 439 Kevin Tran and Zachary W Ulissi. Active learning across intermetallics to guide discovery of
440 electrocatalysts for co2 reduction and h2 evolution. *Nature Catalysis*, 1(9):696–703, 2018.
- 441 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
442 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
443 learning. <https://github.com/huggingface/trl>, 2020.
- 444 Yuanqing Wang, Yuzhi Xu, Stefano Martiniani, Theofanis Karaletsos, Andrew Gordon Wilson,
445 and Kyunghyun Cho. Molecular active learning: How can llms help? *International Confer-
446 ence on Learning Representations (ICLR)*, 2025. URL <https://openreview.net/forum?id=kYg04pmX7i>. Withdrawn submission.
- 448 Yu Xia, Subhjoyoti Mukherjee, Zhouhang Xie, Junda Wu, Xintong Li, Ryan Aponte, Hanjia Lyu, Joe
449 Barrow, Hongjie Chen, Franck Dernoncourt, Branislav Kveton, Tong Yu, Ruiyi Zhang, Jiuxiang
450 Gu, Nesreen K. Ahmed, Yu Wang, Xiang Chen, Hanieh Deilamsalehy, Sungchul Kim, Zhengmian
451 Hu, Yue Zhao, Nedim Lipka, Seunghyun Yoon, Ting-Hao ‘Kenneth’ Huang, Zichao Wang, Puneet
452 Mathur, Soumyabrata Pal, Koyel Mukherjee, Zhehao Zhang, Namyong Park, Thien Huu Nguyen,
453 Jiebo Luo, Ryan A. Rossi, and Julian McAuley. From selection to generation: A survey of
454 llm-based active learning, May 2025. URL <https://arxiv.org/pdf/2502.11767.pdf>.
- 455 Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
456 Chen. Large language models as optimizers. In *The Twelfth International Conference on Learning*
457 *Representations*, 2023.
- 458 Kevin Y Yang, Kadina Swanson, Wengong Jin, Connor W Coley, Pieter Abbeel, and Regina Barzilay.
459 Active learning-assisted directed evolution. *Nature Communications*, 16:1089, 2025.
- 460 Yutong Zhang, Yujie Wang, Yiming Zhang, Yutong Wang, Yichi Zhang, Yuxuan Wang, Yifan Wang,
461 Yuxuan Zhang, Yuxin Zhang, Yuxin Wang, Yuxiang Wang, Yuxiang Zhang, Yuxiao Wang, and
462 Yuxiao Zhang. Generative molecule design with large language models: A benchmarking study.
463 *arXiv preprint arXiv:2501.19153*, 2025.
- 464 Ziqiao Zhang, Bangyi Zhao, Ailin Xie, Yatao Bian, and Shuigeng Zhou. Activity cliff prediction:
465 Dataset and benchmark. *arXiv preprint arXiv:2302.07541*, 2023. URL <https://arxiv.org/abs/2302.07541>.

467 **A Technical Appendices and Supplementary Material**

Method	TYK2 Bad Start		TYK2 Random Start		D2R Bad Start		D2R Random Start	
	Recall@2% \uparrow	RMSE $\downarrow \times 10^{-3}$	Recall@2% \uparrow	RMSE $\downarrow \times 10^{-3}$	Recall@2% \uparrow	RMSE $\downarrow \times 10^{-3}$	Recall@2% \uparrow	RMSE $\downarrow \times 10^{-3}$
GREEDY	0.16 \pm 0.14	234 \pm 20	0.62 \pm 0.04	100 \pm 4	0.47 \pm 0.17	123 \pm 9	0.52 \pm 0.13	96 \pm 6
UCB	0.32 \pm 0.25	160 \pm 47	0.69 \pm 0.04	94 \pm 4	0.68 \pm 0.08	110 \pm 7	0.80 \pm 0.05	90 \pm 5
TS	0.19 \pm 0.15	205 \pm 41	0.65 \pm 0.04	99 \pm 5	0.56 \pm 0.15	118 \pm 9	0.71 \pm 0.07	92 \pm 6
AGENT	0.47 \pm 0.14	107 \pm 33	0.62 \pm 0.11	90 \pm 4	0.70 \pm 0.09	99 \pm 7	0.65 \pm 0.10	90 \pm 6
SIMPLEAGENT	0.54 \pm 0.12	93 \pm 7	0.64 \pm 0.06	86 \pm 2	0.69 \pm 0.08	98 \pm 10	0.78 \pm 0.05	86 \pm 6
GPT-5	0.20 \pm 0.18	121 \pm 13	-	-	-	-	0.61 \pm 0.09	91 \pm 5
Qwen3	0.17 \pm 0.17	169 \pm 45	-	-	-	-	0.53 \pm 0.10	93 \pm 6

Table 3: Performance comparison for different acquisition methods on the molecular domain. Errors are standard deviations (N=4 GPT-5 TYK2 bad start; N=5 GPT other; N=5 Qwen3; N=10 all others). Bold numbers mark significantly better performance in a statistical method relative to all LLM-method or an LLM-method relative to all statistical method (95% confidence in difference between means by bootstrapping on random seeds).

Method	Budget 60, GB1		Budget 480, GB1		Budget 60, TrpB	
	Recall@0.5% \uparrow $\times 10^3$	Max Fitness \uparrow	Recall@0.5% \uparrow $\times 10^3$	Max Fitness \uparrow	Recall@0.5% \uparrow $\times 10^3$	Max Fitness \uparrow
GREEDY	12 \pm 7	0.63 \pm 0.17	231 \pm 60	0.89 \pm 0.13	9 \pm 10	0.51 \pm 0.32
UCB	9 \pm 7	0.56 \pm 0.18	196 \pm 53	0.90 \pm 0.12	7 \pm 8	0.50 \pm 0.30
TS	12 \pm 8	0.62 \pm 0.17	216 \pm 55	0.90 \pm 0.12	9 \pm 9	0.52 \pm 0.29
AGENT	-	-	-	-	-	-
SIMPLEAGENT	5 \pm 6	0.50 \pm 0.25	194 \pm 52	0.90 \pm 0.08	7 \pm 7	0.57 \pm 0.20
GPT5	14 \pm 7	0.56 \pm 0.05	83 \pm 23	0.74 \pm 0.18	16 \pm 9	0.58 \pm 0.05
Qwen3	3 \pm 3	0.46 \pm 0.14	6 \pm 3	0.60 \pm 0.20	11 \pm 8	0.61 \pm 0.08
Qwen3-BLIND	3 \pm 4	0.41 \pm 0.19	-	-	3 \pm 5	0.43 \pm 0.32
GPT5-BLIND	20 \pm 11	0.60 \pm 0.13	-	-	10 \pm 15	0.45 \pm 0.35

Table 4: Performance comparison for different acquisition methods on the protein domain. Errors mark standard deviations (N=50 for statistical models, N=10 otherwise). Bold numbers mark significantly better performance in a statistical method relative to all LLM-method or an LLM-method relative to all statistical method (95% confidence by bootstrapping on random seeds for agent-statistical comparisons (N=10), and on unique trajectories on off-the-shelf LLM (N=10)-statistical (N=50) comparisons). Note: Averages and marginal errors shown for statistical models here are across 50 samples, but significance between agents and statistical models is still computed on 10 shared starting points.

468 **A.1 LLMs have trouble comprehending SMILES**

469 In depth analysis of the off-the-shelf LLM responses showed several failure modes. Firstly, the
470 Qwen3 and Llama (and Claude-Sonnet-3.7, not included in data) were greedy with respect to selecting
471 SMILES strings. When prompted with a table sorted by predicted affinity, they exclusively chose
472 from the very top of the table. When the table was shuffled, they sometimes appeared to only process
473 subsets of the table. As seen in Response A.1, Llama-4-maverick has a very high probability of
474 selecting a candidate index following a candidate index it has already selected. This is not a surprising,
475 but a serious issue. The reasoning was often advanced, but despite extensive prompt engineering
476 efforts, LLMs struggled to implement their stated strategies in practice. Models would provide
477 excellent rationales for decisions and develop sophisticated AL strategies during the reasoning phase,
478 yet default to simple heuristics during selection. The reasoning around specific molecule structures
479 was often extremely brief and related only to one or two substructures, often on the edges of the
480 SMILES string (Figure 3, right). The model often confused different substructures in multi-ring
481 systems. To further investigate SMILES comprehension, we asked Qwen3 to summarize different
482 SMILES from our database (Figure 3, left). The summaries often include several correctly named
483 substructures and correct chemical properties, but the relation between the substructures is absent.
484 Qwen3 also often uses SMILES substrings to design hypothesis and filters. This leads to very dense
485 summaries of the chemical space largely containing copy-pasted substrings (Response A.4.1). This
486 shows that the reasoning models are capable of using substructure information from the SMILES,
487 but that it requires significant token use. When prompted with more SMILES, precision decreases
488 drastically. Llama-4-maverick reasons in a similar fashion. Qwen3 and Llama-4, rely heavily on
489 overly simple filters that only capture minimal information about a given molecule’s performance.

490 Other studies have similarly shown that reducing detailed numeric or conceptually complex data
491 increases performance [Agarwal et al., 2025].

492 Interestingly, GPT5 uses a completely different language. The summaries are more extensive (Re-
493 sponse A.4.1) and detailed. It is able to derive relations between substructures, for example "*Substruc-*
494 *ture filter: pyridyl-diamide with two secondary amides: Ar^L-NH-C(=O)-pyridyl-NH-C(=O)-Ar^R*".
495 GPT5's failure likely lies in its ability to apply such derived filters in practice. We observed several
496 instances in which it was mapping even simple substructures incorrectly, stating that it found sul-
497 fonyl in the indices of molecules without a single sulfur. GPT5 has indeed been shown to perform
498 better than other models on atom mapping, which may translate to better understanding relations
499 between substructures, but not on SMILES to IUPAC [Runcie, 2025, Runcie et al., 2025]. We aim to
500 investigate this further in subsequent work.

501 GPT actually recognizes that the chemical space is constrained in the clustered starting configurations
502 (Figure 1b) but does nothing about it: "The chemical space is tightly focused around a
503 single core with well-behaved, monotonic SAR along three modular regions."

Response 1: Llama-4-maverick response from processing chunk

...
Here are 60 selected indices, ensuring a mix across the entire range and
diversity in chemical structures and predicted properties:

```
<selected_indices>
[38, 497, 244, 248, 293, 294, 999, 1000, 113, 116, 140, 599, 605, 758, 762,
 838, 839, 847, 851, 884, 885, 937, 940, 949, 950, 951, 952, 953, 954, 10,
 20, 31, 32, 33, 34, 39, 48, 52, 60, 62, 70, 106, 108, 115, 117, 118,
 119, 121, 122, 123, 124, 125, 130, 131, 132, 133, 134, 135, 136, 137,
 138, 139]
</selected_indices>
```

504

505 **A.2 Implementation Details**

506 **A.2.1 Bayesian Optimization Loop**

507 Each Bayesian Optimization campaign is characterized by an `initial_size` of set of observations
508 selected randomly or from a cluster, a `batch_size` denoting the number of samples to be selected or
509 generated each loop, and a `budget` of total samples drawn throughout the campaign. The number of
510 cycles is defined directly from the `batch_size` and the `budget`. Each cycle follows the following
511 scheme:

- 512 1. Train a `predictive_model` on accumulated observations
- 513 2. Use the `predictive_model` to predict the fitness of all candidates in the search space
- 514 3. Sample observations from the predictions using an `Acquisition function`
- 515 4. Assign true labels to all sampled observations and add them to the set of accumulated
516 observations

517 **A.2.2 LLM-based approaches**

518 This project investigates the use of Large Language Models (LLMs) as the predictive model and/or
519 acquisition function within the BO loop. We compare the performance of three distinct LLM strategies
520 in this role:

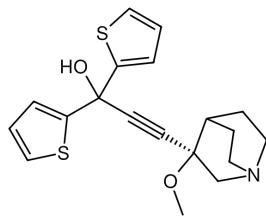
- 521 • **Off-the-shelf model:** A base LLM applied directly using zero-shot or few-shot prompting.
522 For the molecular optimization task the LLM replaces only the acquisition function. For the
523 protein optimization task the LLM replaces both the predictive model and the acquisition
524 function and is completely standalone.
- 525 • **Fine-tuned model:** An LLM finetuned to the specific optimization task through further
526 training on a domain-specific dataset. The fine-tuned model was trained only for the protein
527 optimization task.
- 528 • **Agentic workflow:** A system where an LLM orchestrates a more complex, multi-step rea-
529 soning process to sample the candidate space. The agentic workflow replaces the acquisition
530 function.

531 The project used various publicly available LLM families. Llama-4-maverick [MetaAI, 2025] and
532 Qwen3-32B [QwenTeam, 2025] which were accessed through the Lambda API. GPT-5 ? was
533 accessed through the OpenAI API. Claude Anthropic [2024] models were accessed through the
534 Anthropic API. Local Qwen models were accessed from Huggingface.

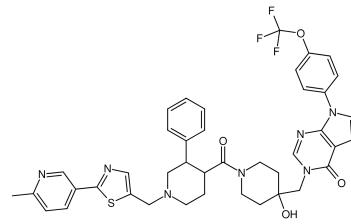
535 **A.2.3 Molecular optimization task**

536 The project utilized publicly available binding affinity datasets assembled by Gorantla et al. [2024];
537 **TYK2**: 9,997 congeneric molecules with aminopyrimidine core scaffold, derived from RBFE
538 calculations [Thompson et al., 2022], **USP7**: 4,535 diverse scaffolds from ChEMBL, exhibiting
539 multiple assay minima, **D2R**: 2,502 molecule subset of ACNet dataset [Zhang et al., 2023], high
540 activity cliff content, **Mpro**: COVID Moonshot project data, smallest dataset (665 compounds). The
541 target Mpro was discarded because of insufficient data, and USP7 was discarded due to irregularities
542 in the data. The TYK2 search space consists of several larger clusters of molecules, making the
543 search trivial when initialized randomly. The D2R search space consists of a diverse set of molecules.
544 We therefore mainly used TYK2 data to initialize a bad start from one of the clusters, and the D2R
545 data for random starts. Bad start was initialized by clustering (K-means, 10 clusters) a UMAP of
546 the chemical space (10 components), and drawing all initial observations from the same cluster. For
547 completion, we also ran TYK2 with random start and D2R with bad starts for a subset of the methods
548 tested.

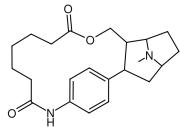
549 A Gaussian process regressor (GP) with a Tanimoto similarity kernel (radius=4, nbins=4096) trained
550 for 500 epochs (learning_rate=0.001, Adam, gpytorch 1.14, rdkit 2025.3.3) was used
551 as a predictive model. The GP generates both predictions and their corresponding standard deviations.
552 A random selector drew samples from the candidates from a uniform distribution. UCB directly



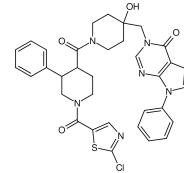
"Carbonyl (CO), thiol groups (two -SCH₂-), hydroxyl (terminal -OH), alkyne (C#C). Five-membered heterocyclic ring (piperidine derivative) with chiral center. Alkyne is rigid; rest of molecule flexible. H-bond donors: hydroxyl; acceptors: carbonyl. Moderate size (~15 heavy atoms). Complex structure with multiple stereocenters and functional groups." ✓



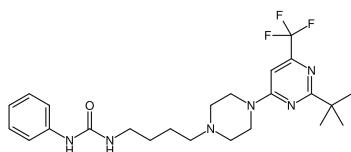
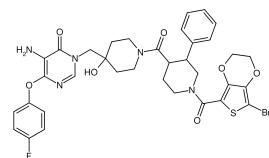
"...thiazole-piperidine with trifluoromethoxy group..." ✓



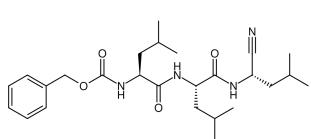
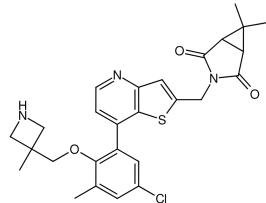
"Pyrrolidine ring (heterocyclic), benzene ring (aromatic), ester (C=O-O), amide (C=O-NH). Flexible backbone with multiple rotatable bonds (ester, amide, alkyl chains). H-bond donors: amide NH, pyrrolidine NH. Acceptors: amide carbonyl, ester carbonyl, ester O. Medium size, complex structure with 4 rings and 5 functional groups." ✓



"...chlorothiazole variant with high confidence..." ✓

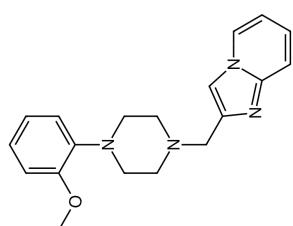
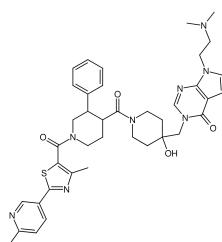


"...brominated benzodioxole, unique substitution pattern..." ✗



"...cyclopropylmethyl variant of successful scaffold..." ✗

"Tripeptide with nitrile (C#N), isopropyl, and phenyl side chains. Aromatic benzene ring. Multiple rotatable bonds (peptide backbone, side chains). Amide NH donors (3) and carbonyl acceptors (3). Ester O (acceptor). Chiral centers (3). ~18 heavy atoms ✗. Cationic at physiological pH (nitrile, amides). Hydrophobic (isopropyl, phenyl) and hydrophilic (amide, ester) regions.



"...with a dimethylaminoethyl group..." ✓

"Aromatic benzene ring with methoxy group (OCH₃) at C1. Piperazine (six-membered, two N) and pyrrolidine (five-membered, one N) heterocycles. Flexibility from ring conformations and single bonds. H-bond donors: piperazine NH, pyrrolidine NH ✗; acceptors: methoxy O. Moderate size (~15 heavy atoms ✗), complex structure with multiplerings."

Figure 3: **Left:** Qwen3 responses when asked to summarize given SMILES. **Right:** Qwen3 reasoning about given SMILES during selection or chemical space summary.

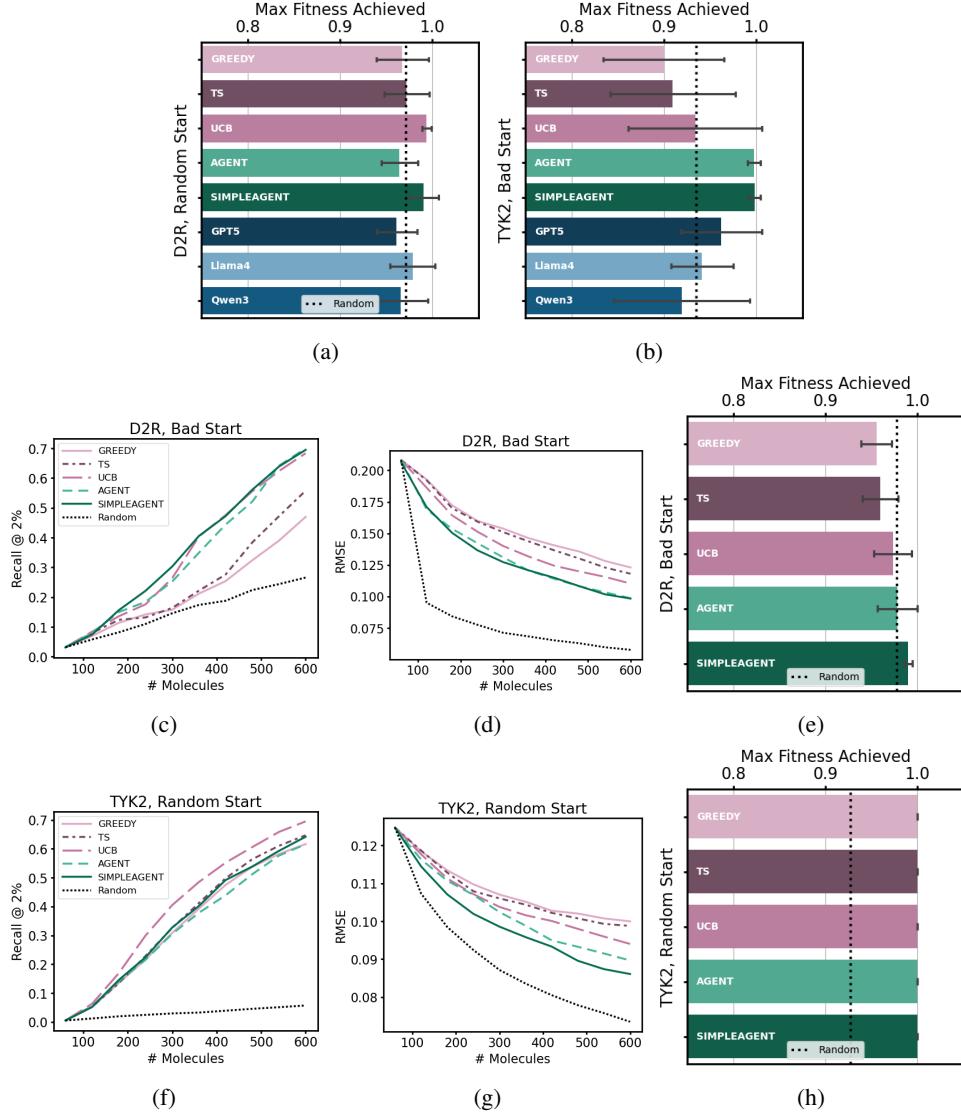


Figure 4: **Top row:** Complement to Figure 1, max fitness achieved in D2R campaign with random start (**left**) and in TYK2 campaign with bad start (**right**). **Middle:** Campaign results from D2R campaign with bad start. **Bottom row:** Campaign results from TYK2 with random start. Error bars mark standard deviation. The SIMPLEAGENT achieves comparable results to the best statistical methods (UCB, TS) (**4c, 4f**) while informing the predictive model more (**4d, 4g**), and often discovering higher affinity molecules within the budget.

553 sampled the top candidates from the score $s = \mu + \beta^{1/2}\sigma$, using $\beta = 4$. The Thompson sampler
 554 sampled the top-most common candidates from 100 calls to the predictive model posterior.

555 Off-the-shelf LLM models were replacing the acquisition functions. We tried Qwen3-32B (temperature
 556 0.6), Llama-4-maverick-17b-128e-instruct-fp8 (temperature 0.7), and GPT-5 (medium reasoning
 557 effort). At each cycle, the LLM was prompted to select the optimal candidates to move on with from a
 558 table of candidates index, SMILES, prediction, and predictive model confidence. Prompts to models
 559 with more extended context windows (Llama-4-maverick) also included a table of all compounds
 560 used to train the predictive model and their respective labels (Prompt A.4.2). Models with smaller
 561 context windows (Qwen3, GPT-5) were informed of the accumulated observations by first having
 562 the model summarize the chemical space into a compact string (Prompt A.4.1), which replaced the
 563 historical data section. The set of candidates was then processed in chunks of ~ 400 candidates for
 564 Qwen3 and GPT-5, and $\sim 1,200$ candidates for Llama-4. The models were asked to select max(batch

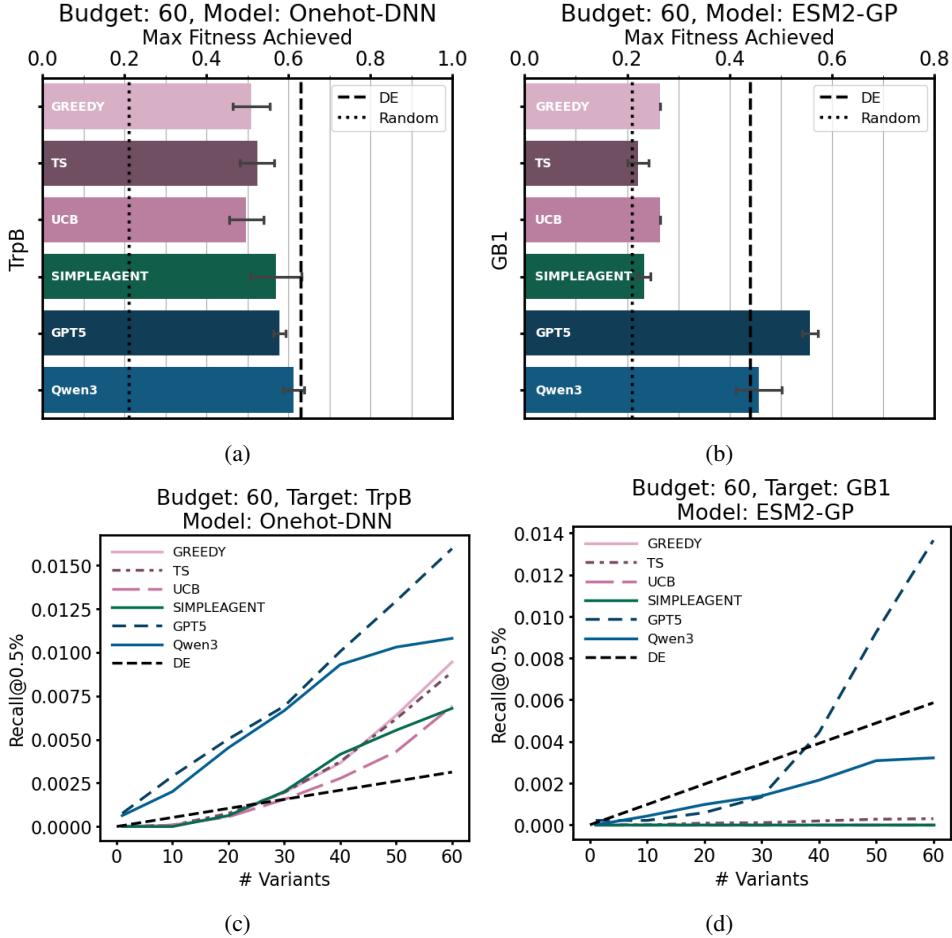


Figure 5: Complement to Figure 2. **Left column:** Max fitness and recall for campaign targeting a different protein motif (TrpB) with a budget of 60 and a batch size of 10 motifs. For TrpB, sequences closer to the WT generally yield higher fitness than for GB1 (Figure 2a), leading to DE outperforming all other methods in fitness and some in recall. Qwen3 primarily reproduces DE-like behavior, whereas GPT-5 explores more advanced patterns. **Right column:** Same campaign setup as Figure 2a, but with a poorly tuned predictive model. All methods relying on the predictive model fail, while reasoning models, being fully standalone, remain unaffected, demonstrating LLM robustness. Error bars denote standard deviation.

565 size, chunk size/n chunks) candidates from each chunk, and a final selection was then made from the
 566 chunk selections. Significant prompt engineering and fallbacks were required to make this method
 567 reliable and moderately efficient.

568 Agentic workflows were set up in Langgraph 0.5.0. They consist of three main LLM types operating
 569 in a hierarchical structure:

570 **Strategist (Qwen3-32B, temperature 0.6):** High-level planning node with reasoning enabled.
 571 Receives extensive information about the current BO stage, previous cycles, and accumulated
 572 observations (Prompt A.4.1). Generates an arbitrary number of complementary filter strategies for
 573 candidate selection. (generate_strategy in Figure 9). The only difference between the AGENT
 574 and the SIMPLEAGENT is a SMILES table (amino acid sequences in protein task) appended to the
 575 end of each cycle summary (cycle summary example, Prompt A.4.1).

576 **Implementers (Claude Sonnet 3.5-20241022, temperature 0):** Multiple execution nodes created
 577 in series, no thinking (implement_strategy in Figure 9). Each receives one strategy from the
 578 strategist and implements database filtering using prediction thresholds, UCB weighting, SMARTS
 579 matching parsed using SQL boolean format (AND, OR, NOT with parentheses) for flexible sub-

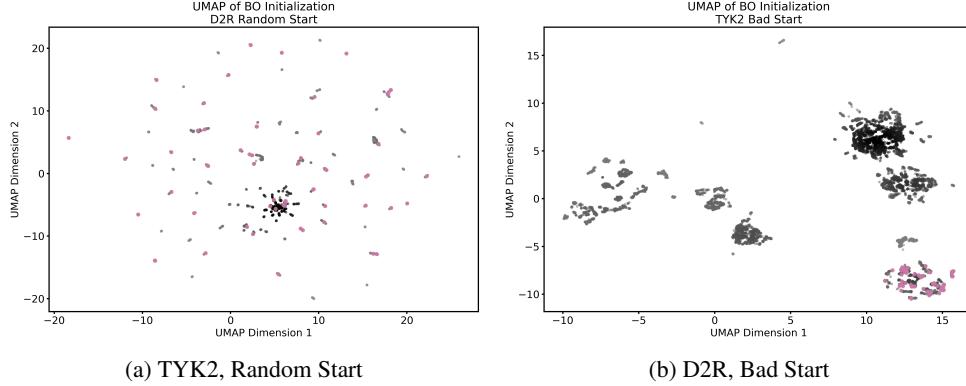


Figure 6: UMAP of the molecules selected as start batch (Pink) of all available molecules in the database (Gray) when initialized with a random start on D2R target (Left) and with a bad, clustered start on the TYK2 target (Right).

580 structure querying, and/or Tanimoto similarity to accumulated observations or the current batch. As
 581 implementers in the series select candidates, these are removed from the database to avoid selecting
 582 duplicates. If the batch size is not filled after processing all strategies due to incompatible filters, a
 583 final implementer node is created to fill the batch size with all strategies.

584 **Summary node (Claude Sonnet 3.5-20241022, temperature 0):**
 585 Final summarization node that processes all conversations from the
 586 implementation nodes, and generates comprehensive cycle selection
 587 reports including rationales and identified issues. This report is
 588 then used in the following cycle strategist prompt to inform it about
 589 successful/problematic filters.

590 The yellow-highlighted region in the workflow graph (Figure 9) rep-
 591 presents the core implementation loop where strategies are executed
 592 through available tools.

593 To test how much the strategist was held back by the limited tools in
 594 the molecular domain, we removed all tool descriptions and stated
 595 "your strategies will be implemented by experienced chemists". The
 596 only filtering method commonly requested, not available to our agent
 597 was k-means clustering of the data.

598 A.2.4 Protein optimization task

599 We built on the codebase and data assembled by Yang et al. [2025].
 600 The dataset consists of fitness scores of an almost complete set of
 601 possible mutations on four-residue motifs on two proteins (GB1 and
 602 TrpB). In the paper, they benchmark using the highest discovered
 603 fitness across four cycles (batch size=96, starting size=96,
 604 budget=480). We used DNN ensemble predictive model with one-
 605 hot encoding of the amino acids, optimized by Yang et al. [2025]. For
 606 comparison, we also test the implementation of the GP with ESM2
 607 embedding, which was shown to perform the worst on the task. The
 608 acquisition functions Greedy, Thompson, and UCB ($\beta = 4$), were
 609 left identical to the paper. For more details, we refer to the original paper. We ran 4 campaigns:
 610 The **Small-Good 1**, and **Small-Good 2** campaigns assess the performance on short campaigns
 611 with optimized predictive model-encoding combination against two different protein targets (GB1,
 612 TrpB). **Small-Bad** evaluates the performance of acquisition functions when paired with an improper
 613 predictive model-encoding combination, whereas **Big-Good** assesses performance on the larger cam-
 614 paign from the original paper, utilizing an optimized predictive model and encoding. We evaluated
 615 performance by highest fitness, as in the paper, as recall with a 0.5% cutoff, which ensures both

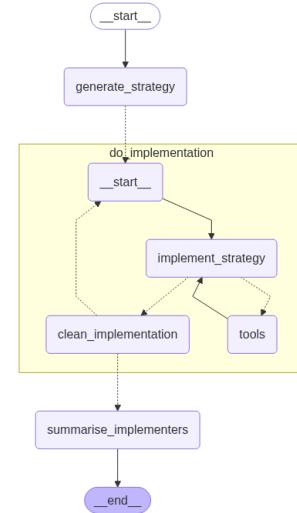


Figure 9: LLM workflow structure showing strategist-implementer-reporter hierarchy with tool integration loop.

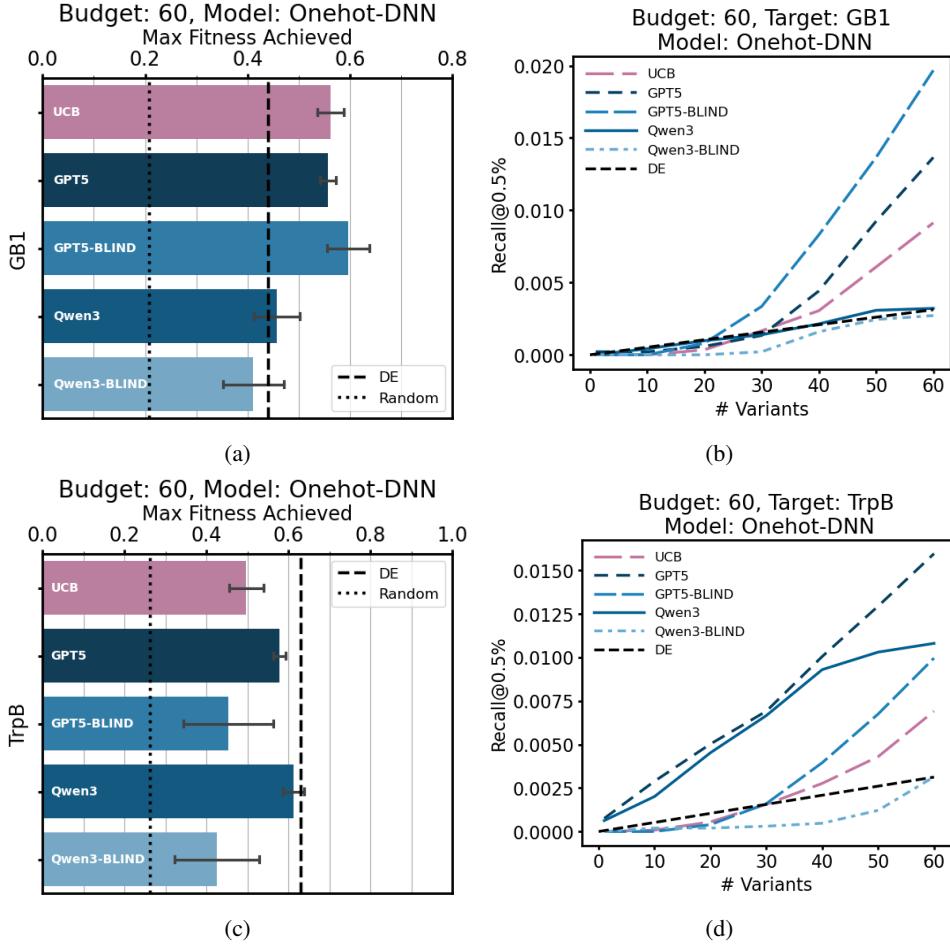


Figure 7: Performance of off-the-shelf models initialized without any context to the target protein (-BLIND) on the GB1 task (**Upper**), and the TrpB task (**Lower**), compared to a subset of other models. The GPT-5 blind model performs similar or significantly better than all statistical models on the recall metric. The unexpected performance on the GB1 task is largely a coincidence. GPT-5-BLIND often starts the search with the conservative guess "AAAA" which happens to be highly successful in the GB1 task. Qwen3 performs point wise mutations achieving performance similar to directed evolution (**DE**), which is an especially good strategy on the TrpB task, but fails to generalize to the GB1 task. Error bars mark standard deviation.

	Target	Model	Initial size	Batch size	Budget
Small-Good 1	GB1	DNN-onehot	10	10	60
Small-Bad	GB1	GP-ESM2	10	10	60
Big-Good	GB1	DNN-onehot	96	96	480
Small-Good 2	TrpB	DNN-onehot	10	10	60

Table 5: BO scenarios

WT are outside the cutoff. The 2 % cutoff used in Domain 1 quickly becomes saturated and less informative on this task.

Off-the-shelf models were implemented as generative models, completely standalone from the predictive models. The campaign was started with an introduction to the task, the WT, and a brief description of the target motif function and protein (Prompt A.4.1). For example, the background for GB1 was: *"The target is a four-site epistatic region (wildtype: V39, D40, G41, V54, fitness 0.1) of the 56-residue protein G domain B1 (GB1), an immunoglobulin-binding domain from Streptococcal*

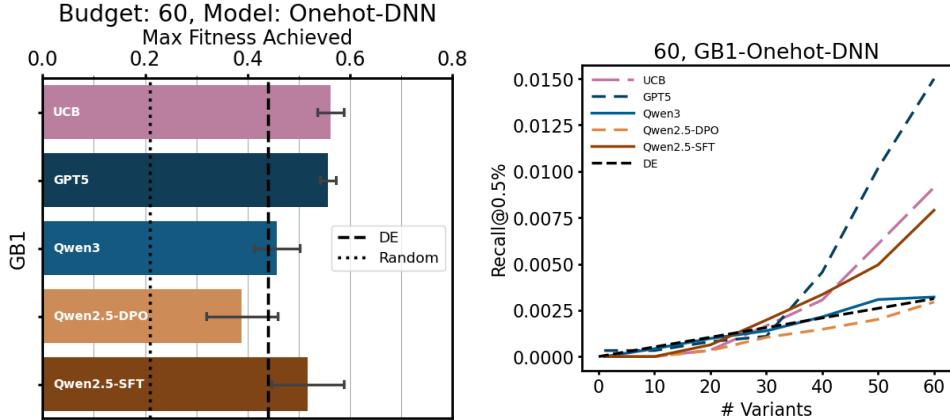


Figure 8: **GB1**. SFT and DPO models compared to a subset of other methods. The SFT model significantly outperforms the reasoning model Qwen3 while executing 30x faster and achieves performance competitive with UCB on the recall metric Error bars mark standard deviation.

623 *bacteria. These sites account for a majority of the most strongly epistatic interactions in GB1 and*
 624 *span a fitness landscape of 160,000 variants. Variants were assessed for IgG-Fc binding using mRNA*
 625 *display and high-throughput sequencing". Importantly, the actual protein name "TrpB" was changed*
 626 *to "protein" as we observed a significant bias in Qwen3 to the amino acid Tryptophan (W,Trp)*
 627 *introduced by simply including the word TrpB in the prompt, completely deteriorating performance.*
 628 *Indeed, Trp occur 584x less frequently in the top 0.5 % performing sequences compared to average.*

629 After each generation, it was again prompted with *The validation experiment in cycle {current_cycle}*
 630 *is finished. These are the results: {validated_results}*. and a system message reminding it about
 631 the output format, and the 10 best sequences found so far (Prompt A.4.1). The model was asked to
 632 generate 50 % overhead to each batch selection and rank the sequences in order of importance to
 633 avoid issues with overlapping generations, and instances of generations not existing in the labeled
 634 data. If too many sequences were invalid, the model was prompted to correct mistakes, or informed
 635 that "the following were invalid for experiments" and asked to generate new. To manage context
 636 limits and gracefully handle formatting issues, the off-the-shelf reasoning models were wrapped in a
 637 Langgraph context. This context allowed nodes to validate outputs, ask the model to correct errors,
 638 summarize conversations during longer campaigns, and extract sequences from prompts (Figure 10).
 639 Blind models were implemented with the same prompts, but replacing the background with an empty
 640 string.

641 The LLM workflows were implemented identically to the workflows in the molecular domain, but
 642 with different tools. The models were able to sort by Hamming and Blosum62 similarity, regex,
 643 prediction, and UCB. Just as in the molecular task, we implemented an AGENT informed by the
 644 accumulated observations in the form or a table of sequences and fitness, and a SIMPLEAGENT
 645 without detailed data. The AGENT was only used for one task as we found SIMPLEAGENT greatly
 646 outperformed it. We also found that removing information about the predictive-model prediction
 647 range, fitness ranges, and letting the LLM rewrite tool descriptions improved performance and
 648 consistency further.

649 A.2.5 Fine-Tuning

650 We aimed to determine if a non-reasoning LLM could be fine-tuned to perform a generative task.
 651 Wang et al. [2025] showed that training a non-reasoning LLM on acquisitions by a statistical model
 652 in an artificial setting can improve the Bayesian behavior of the LLM. We created 14 biologically
 653 relevant synthetic datasets from the ESM2 embedding of the motifs provided by Yang et al. [2025].
 654 Fitness was assigned to the sequences using Algorithm 1, which is able to generate a large variety of
 655 fitness distributions. Step 9-13 are optional and were taken to increase the difficulty. No parameters
 656 were tuned significantly and all were assigned to create variance in the distributions while keeping
 657 them somewhat similar to the biological data. We ran 50 campaigns (batch_size=10, initial
 658 size=10, budget=400 on each dataset using onehot embedding, DNN ensemble predictive model

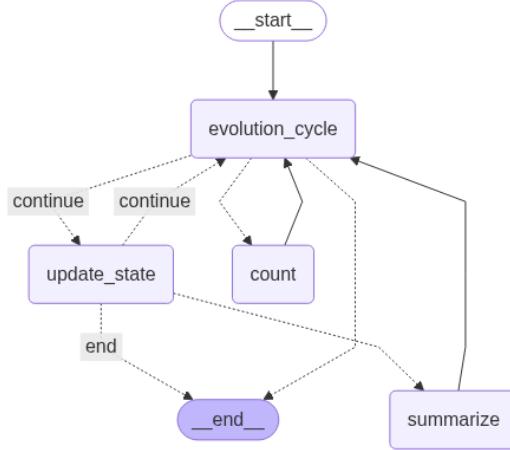


Figure 10: LLM standalone BO structure showing the **evolution node** which prompts the LLM to analyze and generate new variations for the next cycle, the **count node** which gives the LLM feedback if generations are duplicates or invalid, the **update state node** which labels the proposed variations, and a simple **summary node** which triggers if the message stream approaches context limit. The loop ends after a set number of cycles.

659 and TS acquisition function. From each trajectory, we drew 15 time points t with $P(X = t) =$
 660 $t^{-1} \sum_{i=1}^{40} i^{-1}, t \in [1, 40]$. For each time point, we created a prompt where the past trajectory
 661 selections were added in context with their assigned fitness, and the next batch selection in the
 662 trajectory was used as a ground truth optimal selection. To further increase variance between the
 663 prompts, we permuted all sequence positions in each prompt and shuffled the order of the sequences
 664 in-context. This step was crucial for successful training. We attempted both Supervised Fine-Tuning
 665 (SFT) with the ground truth as a label, and Direct Preference Optimization (DPO) [Rafailov et al.,
 666 2024] with the ground truth contrasted with a randomly generated string or a string in the set of
 667 accumulated observations.

668 SFT was run using SFTTrainer in TRL (trl 0.19.1, transformers 4.54.1, flash-attn 2.7.4, vllm 0.10.0)
 669 [von Werra et al., 2020] with `per_device_batch_size=8, gradient_accumulation_steps=2,`
 670 `dtype=bf16, gradient_checkpointing=True, max_grad_norm=1, weight_decay=0.1,`
 671 `learning_rate=5e-6, warmup_ratio=0.05, lr_scheduler_type=cosine` for 3 epochs, and
 672 with early stopping on evaluation loss. Training was only made on the responses and not
 673 prompts. DPO was run with `per_device_batch_size=1, gradient_accumulation_steps=16,`
 674 `dtype=bf16, gradient_checkpointing=True, max_grad_norm=1, weight_decay=0.1,`
 675 `learning_rate=5e-7, beta=0.9, lr_scheduler_type=cosine` for 2 epochs. The strong regu-
 676 larization to the reference model was essential for any results. DPO has been shown to work well
 677 for training LLMs to think like statistical models, but for this task, it performs poorly. The reason
 678 is likely that the difference between the chosen and rejected strings is too similar. The difference
 679 between an intelligently mutated string that deviates from most high performers by up to 2 positions,
 680 and a string generated at random can be almost identical. First training the model with SFT and then
 681 further with DPO reduces performance compared to only training with SFT.

682 Qwen2.5-7B-Instruct was loaded from HuggingFace. The off-the-shelf model underperformed
 683 random selection because of formatting issues and an inherently greedy behavior. Training on 4
 684 NVIDIA A100-SXM4-80GB with accelerate and DeepSpeed [Rasley et al., 2020] takes about 12 min
 685 for 0.5B models and 2 hours for 7B models.

686 The fine-tuned model was optimized to generate 10 sequences per batch and was run with a tempera-
 687 ture of 0.7 during inference. When the model generated an invalid sequence, the in-context data was
 688 reshuffled and the model re-prompted. When the model generated duplicates of the in-context data,
 689 temperature was incremented by 0.05 in that cycle. Running a small campaign (`batch_size=10,`
 690 `starting_size=10, budget=60`) takes 11.9 s without any time optimization compared to 15.6 s
 691 with onehot+GP+Thompson (Proper posterior sampling of posterior approximated with 1000 Fourier
 692 features) on a single NVIDIA A100-SXM4-40GB.

Algorithm 1 Synthetic Fitness Generation

```
1: Input: Sequences  $\mathcal{S}$ 
2: Tokenize:  $\mathbf{E} \leftarrow \text{ESM2}(\mathcal{S}), \mathbf{E} \in \mathbb{R}^{n \times d}$ 
3: Sample binary mask:  $\mathbf{m} \sim \text{Bernoulli}(p = 0.2)^d$ 
4: Sample log-weights:  $\log \mathbf{w} \sim \mathcal{N}(\mu = -6.5, \sigma^2 = 1.5)$ 
5: Apply mask:  $\mathbf{w} \leftarrow \mathbf{m} \odot \exp(\log \mathbf{w})$ 
6: Compute fitness:  $\mathbf{f} \leftarrow \mathbf{E} \cdot \mathbf{w}$ 
7: Add noise:  $\log \mathbf{f} \leftarrow \mathcal{N}(\log \mathbf{f}, 0.01^2)$ 
8: Normalize:  $\mathbf{f} \leftarrow (\mathbf{f} - \min \mathbf{f}) / (\max \mathbf{f} - \min \mathbf{f})$ 
9: Set 10% randomly to zero:  $f_i \leftarrow 0$  for  $i \in \mathcal{I} \subset \{1, \dots, n\}$ 
10: Set near-zero values to zero:  $f_i \leftarrow 0$  if  $f_i < 0.001$ 
11: while  $\text{Quantile}_{0.995}(\mathbf{f}) > 0.5$  do
12:    $\mathbf{f}_i \leftarrow \mathbf{f}_i^{1.5}$ 
13: end while
14: return Dataset  $\{(s_i, f_i)\}_{i=1}^n$ 
```

693 **A.3 Statistical Analysis**694 Statistical intervals were defined as margin of error for a 95% confidence in population mean, defined
695 as $e = \frac{\sigma}{\sqrt{n}} t_{0.975, n-1}$.696 **A.3.1 Bootstrap**697 Significance threshold was defined as 95% confidence in separation between a statistical method
698 and all LLM-based methods, or an LLM-based method and all statistical methods. When comparing
699 agents, or off-the-shelf models in the molecular task, to statistical methods, bootstrapping was made
700 on shared random seeds ($N = 10$ for agent-statistical comparisons, $N = 5$ for Qwen3-statistical
701 comparisons, $N = 3$ for GPT-5-statistical comparisons) because of the strong covariance between
702 trajectories with the same starting point. N random seeds were drawn with replacement, the mean of
703 the corresponding trajectories were compared between methods.704 When comparing statistical methods to off-the-shelf models in the protein task, bootstrapping was
705 made on trajectories as the off-the-shelf models here are completely starting-point independent. We
706 could therefore use a higher sample size for the statistical models. $N = 50$ random seeds and their
707 respective trajectories were drawn with replacement from the set of random seeds used to initialize the
708 statistical models, and $N = 10$ trajectories were drawn with replacement from the set of off-the-shelf
709 LLM trajectories. The mean of the corresponding groups of trajectories were compared between
710 methods.

711 All bootstrap iterations were repeated 10,000 times.

712 **A.4 Prompts and Responses**

713 **A.4.1 Prompts**

Prompt 1: In-context acquisition prompt. "Oracle" here refers to the predictive model

```
You are selecting ligands for validation in an active learning campaign for protein {protein}.

**OVERALL CAMPAIGN OBJECTIVE:** Maximize the total number of top high-affinity ligands in the training data at the end of the campaign. A top high-affinity ligand is in the top 2% of all ligand candidates.

**Campaign Status:**
- Cycle: {cycle}/{total_cycles}

**Historical Data:**
Used to train the Gaussian Process Regression oracle, sorted by RBFE:
<validated_ligands>
{self._compact_df(labeled_data, index=False)}
</validated_ligands>

3. **Candidates** [SMILES, predicted RBFE, std]:
Randomly ordered.
<candidates>
{self._compact_df(chunk)}
</candidates>

**Your task:**
- Reason about the chemical space, the candidates, the reliability of the oracle model, and the overall campaign goal. Describe the rationale behind your selection.
- Select exactly {budget} candidates to move on with (validate and add to training data for next cycle). Output format:
<selected_indices>
[index1, index2, ...]
</selected_indices>
```

714

Prompt 2: Prompt to summarize chemical space

```
You are a chemoinformatic expert working in a team of chemoinformatic experts selecting ligands for validation in an active learning campaign protein {protein}.

You have access to a set of validated ligands, and your junior colleague has access to a set of thousands of candidates to validate.

**Your task:**
- Create a concise summary of the validated chemical space that preserves all structural features, patterns, and structure-activity relationships,
- Your junior colleague will use the summary to select candidates from his large list. Include any crucial instructions for the selection process. Your junior colleague will not have access to the training data.
- Consider number of validated ligands, and number of cycles left. What are the most important features to preserve?

**Campaign Status:**
- Current cycle: {cycle}
- Total cycles: {total_cycles}
- Oracle model: {oracle_name}
- Overall Campaign Goal: Maximize number of validated high-affinity ligands in the training data at the end of the campaign
```

715

```

**Validated Training Data:**
{len(training_df)} ligands with measured RBFE values:
<validated_ligands>
{self._compact_df(training_df)}
</validated_ligands>

**Required output:**
<training_data_description>
Comprehensive but concise description of the training data to be used by the
junior colleague that fully encompasses the chemical space, and the
active learning context.
</training_data_description>

**Output Format:**
<training_data_description>
[Training data description that will be passed to the junior colleague]
</training_data_description>
Include exactly one instance of <training_data_description> tag in your
response

```

716

Response 2: Example of Qwen3 summary of chemical space

```

<training_data_description>
The validated ligand set (120 molecules) centers on **bipartite scaffolds**
linking aromatic/heteroaromatic rings via **amide/urea linkers**, with
key features:
1. **Core Architecture**: Two aromatic rings (often phenyl/pyridine) bridged
by amide/urea (-CONH/-NHC(0)N-) linkers. Common substructures include *ccnc(c)*-C(=O)N*-ccccX* (X = Cl/F/Br/0).
2. **Electron-Withdrawing Groups**: Para/meta halogens (Cl, F, Br) dominate
on terminal aromatics (e.g., *c(c(Cl)F)*, *c(c(Cl)Cl)*). Dual
fluorination (*c(c(F)F)*) improves RBFE (>9.5 kcal/mol).
3. **Hydrogen Bonding Motifs**: Urea/urethane linkers (*N=C(0)N*) enhance
activity (top 10% RBFE >9.5 kcal/mol). Terminal nitroso/amino groups
(*-N(H)C=O*, *-NH2*) reduce activity (<8.5 kcal/mol).
4. **Aliphatic Chains**: N-linked methyl/ethyl groups (*-CH3*, *-CH2CH2-* in
*N(C)C(=O)N*) stabilize topologies. Longer chains (*-CH2CH2CH2-*)
correlate with reduced affinity (TRBFE < -0.3 to -0.5 kcal/mol per CH2).
5. **Steric Constraints**: Bulky substituents (e.g., *Br*, *N(C)(C)C*)
tolerate modestly (RBFE > 9 kcal/mol if paired with strong π-stacking
partners); avoid *I* or *NO2* due to poor performance (median RBFE ~7
kcal/mol).
6. **Orthogonal Features**: Ether linkers (*-O-CH2-*) improve water
solubility without sacrificing activity (best performers retain Cl/F on
aromatic rings).

**Selection Priorities for Next Cycles**:
- Fill gaps in **meta-fluorinated aromatics** and **mixed X/Y halogen pairs**  

(e.g., *c(c(Cl)F)* vs *c(c(F)F)*).
- Test **shortened/cyclic spacers** (replace *CH2CH2* with *CH2* or *CH2OCH2*)
to optimize linker stiffness.
- Explore **triazine/triazole cores** as rigid alternatives to *ccnc(c)*
scaffolds.
- Avoid redundant modifications (e.g., additional Br/I substitutions or
longer aliphatic chains).
- Validate **heteroaryl replacements** (thienyl, furyl) adjacent to amide
linkers.

```

717

Candidates must align with existing SAR while introducing minimal scaffold novelty. Favor analogs expanding **fluorination patterns** and **alkylation balance** across the bipartite framework.

</training_data_description>

718

Response 3: Example of GPT5 summary of chemical space

```
<training_data_description>
Context and goal
- You will down-select candidates (no access to training data) for TYK2
  across 2 remaining cycles (currently 7/9). Oracle = Gaussian Process
  regressor (uncertainty-aware). Objective = maximize the number of
  validated high-affinity ligands in the training set by end of cycle 9.

What has worked (validated chemical space; 418 ligands; top RBFE up to ~12.2)
- Two privileged chemotypes dominate. Keep these intact unless explicitly
  exploring:
  1) "Triad" anilide series (majority, highest RBFE):
    Left: 6-membered diazine/pyridine core, most often a 4-aminopyrimidine/
    pyrimidinyl-pyridine, typically 5-alkyl (Me >> Et ~ iPr) and para-amine
    bearing a small basic side chain (see "Left-side chains" below).
    Middle: 2-aminopyridine (or 2-aminopyridinyl) most often 5-fluoro-
    substituted.
    Linker: secondary anilide/benzamide (--NH--C(=O)--Ar) with the amide NH
    on the "middle ring" side (do not reverse the amide).
    Right (distal aryl): dihalo phenyl; the recurring best pattern is ortho-
    chloro + meta/para-fluoro; di-F is also strong; o-Cl/o-Cl is acceptable;
    o-Br variants can be good. Occasional phenol tolerated but generally not
    top.
    Summary motif (abstract): [5-Me-(amino)pyrimidine/pyridyl]--NH--(5-F-2-
    aminopyridyl)--NH--C(=O)--[o-Cl, m/p-F phenyl].
  2) "Morpholine-tail heteroaryl amide" series (secondary cluster; many
    9.8--11.7):
    Acyl aryl similar to above (often F/Cl patterns).
    Hinge-facing heteroaryl is more N-rich (e.g., Nc--cnn(c)--) bearing a
    pendant N-morpholine or N-(2-oxa-5-azabicyclic) tertiary amine (--N4CCOCC4). Keep the tertiary amine and the heteroaryl arrangement
    together; they are synergistic.

Left-side chains (key to high RBFE, in order of priority)
- Small, conformationally constrained cations:
  A) Azetidine (--N1CCC1--) on the left ring amine: repeatedly among the top
    (~11--12.2).
  B) Cyclopropyl-bearing secondary amines (--NC1CC1--) and small hydroxylalkyl
    secondaries (--N--CH(CH3)--CH2OH or --N--CH2--CH2OH) are strong.
  C) 4-hydroxyazetidine and other compact "N,O" motifs are good compromises.
  D) Bulkier or more flexible amines (long chains, multiple heteroatoms) and
    heavily N-methylated cations tend to underperform vs A--C.

Substituent SAR you can apply directly
- Distal aryl (acyl side):
  Priority 1: o-Cl + m- or p-F (best-in-class recurring motif).
  Priority 2: o-Cl + p-Cl or o-Cl + p-Br (slightly lower on average, but
    still strong).
  Priority 3: di-F (good); di-Cl (acceptable; generally slightly lower).
  Deprioritize: strong donors (p-OMe/phenoxy), dense polar patterns, or
    removal of ortho-halogen.
- Middle ring:
  2-aminopyridine with 5-F consistently outperforms unsubstituted analogs;
    removal of the 5-F is generally a drop.
```

719

- Left heteroaryl core:
4-aminopyrimidine/related diazines with a 5-Me substituent are most common in top tier. Me > Et ~ iPr; larger alkyls drop off.
- Amide orientation:
Preserve the "middle ring --NH--C(=O)-- distal aryl" orientation. Amide reversal/urea/sulfonamide replacements are not supported by top data.
- Halogen count:
Retain at least one ortho-halogen on the distal aryl (Cl >> F for ortho); removing it usually costs 0.5--1.0 RBFE.
- H-bond pattern:
Keep exactly one amide NH donor and two ring nitrogens across the triad; adding extra strong donors/acceptors generally hurts.

What to avoid (seen repeatedly lower)

- Reversing the amide, swapping the amide for urea/sulfonamide, or breaking the triad topology.
- Overly flexible or bulky cationic tails; long aliphatic chains; multiple extra heteroatoms on the left side chain.
- Distal aryl without ortho-halogen; heavy electron-donation (e.g., para-OMe) unless paired with the optimal ortho-halogen pattern.
- Extra ring nitrogens that overpolarize the middle ring (e.g., turning the 2-aminopyridine into a more N-rich diazine) typically drops RBFE.
- Nitrile decorations and phenols appear in mid-tier but rarely at the top; deprioritize unless needed for diversity.

Concrete selection rules for your candidate list

- 1) Hard filters (must pass)
 - Contains the triad or morpholine chemotype:
 - a) Triad: left 6-membered N-containing ring (prefer 4-aminopyrimidine) linked to 2-aminopyridine (prefer 5-F), linked via --NH--C(=O)-- to a distal aryl.
 - b) Morpholine series: aryl amide paired with Nc--cnn(c)--(N-morpholine) heteroaryl tail.
 - Distal aryl includes an ortho-halogen (prefer Cl; Br acceptable; F only if paired with another F/Cl).
 - Exactly one amide linker (secondary amide; not reversed).
- 2) Prioritization scoring (apply additively; pick highest-scoring per cluster)
 - +3: Left side chain is azetidine (--N1CCCC1--).
 - +2: Left side chain is cyclopropyl secondary amine or small hydroxyalkyl secondary amine.
 - +2: Middle ring = 2-aminopyridine with 5-F.
 - +2: Distal aryl = o-Cl + p-F (or o-Cl + m-F).
 - +1: Distal aryl = o-Cl + p-Cl (or o-Cl + p-Br) or di-F.
 - +1: Left ring = 4-aminopyrimidine with 5-Me.
 - 2: Reversed amide, missing ortho-halogen, or bulky/flexible tertiary amines on the left.
 - 1: Extra strong donors (phenols, guanidines) or >1 extra heteroatom beyond the patterns above.
- 3) Diversity protocol (to hedge with GP uncertainty; 2 cycles left)
 - Cycle 7->8 (this round): 70% exploitation + 30% exploration
 - Exploitation: Pick close analogs within the triad keeping the features above; systematically vary ONE position at a time:
 - R-distal: swap p-F <-> p-Cl <-> p-Br; move F m<->p; di-F vs o-Cl/p-F.
 - R-middle: 5-F -> 5-H (limited set) to quantify the drop; 2-aminopyridine <-> 2-aminopyrimidine (very small set).
 - R-left chain: azetidine <-> hydroxyethyl secondary amine <-> cyclopropyl; Åsingle N-methyl; Ånone OH.
 - Exploration: 3-4 small clusters outside the densest neighborhood:
 - Replace distal phenyl with 2-pyridyl retaining o-Cl (on 3-position relative to amide) and a para-F where possible.
 - Swap 5-Me on the left ring to Et or iPr (single change) to probe steric tolerance.

- Morpholine-series pickups that match the same distal aryl patterns (o-Cl with F).
- Cycle 8->9 (final): 85--90% exploitation
 - Lock in the top 2--3 R-group patterns discovered; make nearest-neighbor analogs (1 change only; keep ortho-Cl and 5-F).
 - Reserve 10--15% for "safety" variants: same distal aryl but two best left-chain options; same left chain but two best distal patterns.

Quick triage checklist (yes/no)

- Amide present and correctly oriented? Yes -> proceed; No -> drop.
- Distal aryl has ortho-Cl (or Br)? Yes -> proceed; No -> only keep if di-F and everything else optimal.
- Middle ring is 2-aminopyridine with 5-F? Yes -> strong; No -> keep a few for diversity only.
- Left chain is compact cation (azetidine/cyclopropyl/hydroxyethyl)? Yes -> strong; No -> deprioritize.
- Left heteroaryl is 4-aminopyrimidine (5-Me)? Yes -> strong; No -> keep minority for exploration.

If you must choose one "safe" pattern to maximize hits now

- Pick candidates matching: 4-aminopyrimidine (5-Me) --NH-- 5-F-2-aminopyridine --NH--C(=O)-- 2,4-dihalo phenyl (o-Cl + p-F), with a left azetidine side chain. Then explore $\tilde{\lambda}$ (p-F->p-Cl), $\tilde{\lambda}$ (azetidine->cyclopropyl/hydroxyethyl), $\tilde{\lambda}$ (o-Cl/p-F->o-Cl/m-F).

What not to change this late

- Do not remove the ortho-halogen on the distal aryl or the 5-F on the middle ring across the bulk of your picks.
- Do not invert the amide or replace it with urea/sulfonamide.
- Do not add bulky solubilizing tails; prefer small, rigid cations.

Submission format suggestion (to help us review quickly)

- Group selected candidates into small R-group matrices:
 - Matrix 1 (triad, fixed left = azetidine; vary distal p-substituent): {o-Cl/p-F, o-Cl/p-Cl, o-Cl/p-Br, o-Cl/m-F}.
 - Matrix 2 (triad, fixed distal = o-Cl/p-F; vary left chain): {azetidine, cyclopropyl secondary amine, hydroxyethyl secondary amine, 4-hydroxyazetidine}.
 - Matrix 3 (morpholine series, fixed distal = o-Cl/p-F; vary heteroaryl N pattern minimally).
- Within each matrix, avoid >1 simultaneous change relative to the prototypical pattern.

Rationale link to RBFE observations

- The highest RBFE ligands co-occur with: compact left cations (especially azetidine), 5-F on the central 2-aminopyridine, and ortho-Cl plus F on the distal phenyl; Br is tolerated. When these features are removed, drops of ~0.3--1.0 RBFE are common; when combined, RBFE >=10.5--12 is frequent. The morpholine-tail chemotype is a reliable secondary path with the same distal aryl patterns.

Use this guide to pre-filter and prioritize; then, if you have a model to score uncertainty, allocate the exploration quota to the edges defined above.

</training_data_description>

721

Prompt 3: Strategist prompt. "Oracle" here refers to the predictive model

You are a senior medicinal chemist and expert in active learning performing an active learning drug development campaign. Your task is to evaluate

722

the current state of the campaign and delegate candidate selection to junior colleagues who have strong computational skills but limited chemical intuition. They need clear, specific instructions to filter the molecular database effectively.

****CONTEXT AND DATA EXPLANATION:****

- SMILES: Chemical structure representation of molecules
- affinity: Validated binding affinity from experiments (RBFE score, higher is better)
- predictions: Oracle model's predicted affinity for unlabeled candidates
- std: Oracle model's standard deviation in predictions
- max_per_cycle: Maximum affinity achieved in each cycle's selected compounds
- mean_per_cycle: Average affinity of selected compounds in each cycle
- oracle RMSE: Root Mean Square Error between oracle predictions and validated affinities for selected compounds at a given cycle (measurement of the oracle's performance on selected compounds, not necessarily the oracle's performance on the entire database. If we heavily favor exploitation one cycle, RMSE will appear lower because we are selecting candidates that the model is confident about, but not necessarily the best candidates.)
- Completed cycles: {cycles_completed}
- Total cycles: {total_cycles}
- Budget this cycle: {batch_size}
- Oracle model: Gaussian Process Regression
- Measure of affinity: RBFE (higher is better)

****Overall Campaign Goal****

From our ligand database, discover as many compounds as possible that would rank in the top 2% by binding affinity. Success is measured by recall: of all the truly high-affinity ligands in the database, how many can you find within your experimental budget?

****Previous cycles performance****

- Max affinity in selected candidates (starting from cycle 0, should increase over time): {max_per_cycle}
- Mean performance in selected candidates (starting from cycle 0, should increase over time): {mean_per_cycle}
- Oracle RMSE on selected candidates a given cycle (starting from cycle 0, not included in training data that cycle, should decrease over time): {oracle_rmse_per_cycle}

****Previous Cycles Summaries:****

All Validated Candidates Used for Training or Current Cycle Oracle. Here follows strategies implemented at previous cycles, and their respective performance. Use this to inform your new strategies in the context of the current cycle and campaign state, dont copy them.

```
<past_cycles_data>
{past_cycles_data}
</past_cycles_data>
```

****ANALYSIS:****

Analyze the current state of the campaign.

****CHEMICAL ANALYSIS REQUIREMENTS:****

Identify chemical regions for exploitation and exploration:

- Be specific: use chemical knowledge and terminology to describe patterns and potential binding motifs. Look for both simple and complex (multiple substructures) patterns.
- Similar targets: [Structural patterns in the training data that are promising]
- Potential targets: [knowledge about protein {protein} that could be used to guide the selection, hypothesis testing motifs]

- Coverage gap: "Training data covers a [small/medium/large] portion of the relevant feature space"
- What targets were explored in previous cycles? How did they perform?

****Active Learning Status:****

Identify if exploration or exploitation is more important:

- How are we doing towards the overall campaign goal?
- Passed progress: [is the current training data promising or is the oracle plateauing? Are we stuck in a local optimum?]
- Exploration vs exploitation: [can we afford to explore more or should we exploit more?]
- Is the oracle better or worse than our intuition?

****TASK:****

Design the optimal selection strategy for this cycle that your junior colleagues can execute independently. Your junior colleagues don't know about each other's work. This may be a single protocol or multiple complementary protocols, depending on what's most appropriate for the current campaign state. Design hypotheses for testing and informing coming cycles when suitable.

Provide only actionable filtering instructions - no explanations or chemical rationale needed.

YOUR JUNIOR COLLEAGUES' CAPABILITIES

They can filter candidates using:

- Computational approaches: Predictions
- Upper confidence bound (UCB): Predictions + beta * std, given beta
- Chemical approaches: Substructures (SMARTS or substructure names) and similarity metrics
- Diversity approaches: Tanimoto similarity metrics (pairwise between selected candidates or to training data)
- Hybrid approaches: Combining the above

EACH PROTOCOL SHOULD SPECIFY:

Exact number of candidates to select

Precise filtering criteria with numerical thresholds

Clear chemical and/or computational constraints

Ensure total candidate count across all protocols equals {batch_size}. Output your analysis and strategies as soon as you are confident in your selection.

724

Response 4: Example of cycle summary. "Oracle" here refers to the predictive model

```
Cycle 1:
# AL Campaign Acquisition Summary

## Implementation
All selection strategies were successfully implemented, yielding 60 total compounds:
- 25 compounds balancing exploitation/exploration (pred >7.5, UCB beta=1.5)
- 20 exploration-focused compounds (UCB beta=3.0, high uncertainty)
- 10 structurally diverse compounds (Tanimoto <0.3)
- 5 compounds exploiting known SAR (fluorinated pyrimidines with halogens)

No substructure filters failed or needed to be released. Database contained all requested chemical patterns.
```

Campaign Impact

725

The selections maintain a strategic 42/58 split between exploitation and exploration:

- Exploitation (30 compounds): Targeting high-affinity regions through predicted values >7.5 and known SAR patterns of fluorinated pyrimidines
- Exploration (30 compounds): Probing uncertain regions through high UCB scores and ensuring structural diversity

This balanced approach is appropriate for the early campaign stage with limited training data (60 compounds). The selections will expand chemical space coverage while still leveraging emerging SAR patterns around halogenated aromatics. The varying uncertainty thresholds ($\text{beta}=1.5$ vs $\text{beta}=3.0$) provide a gradient of exploration intensity, helping to systematically improve model reliability.

Strategy 1: Select 25 candidates with predictions >7.5 and UCB ($\text{beta}=1.5$) to balance high-affinity exploitation with moderate uncertainty

Number final selections: 25

RMSE: 0.76

Mean: 9.60

Max: 10.63

Strategy 2: Select 20 candidates with UCB ($\text{beta}=3.0$) to prioritize exploration of uncertain regions ($\text{std} >0.45$)

Number final selections: 20

RMSE: 1.14

Mean: 8.92

Max: 10.87

Strategy 3: Select 10 candidates with Tanimoto similarity <0.3 to the training set to enforce diversity

Number final selections: 10

RMSE: 1.56

Mean: 8.29

Max: 9.57

Strategy 4: Select 5 candidates containing fluorinated pyrimidine core [n]1 cccc([F])c1 and [Cl] or [Br] substitutions

Number final selections: 5

RMSE: 0.75

Mean: 10.04

Max: 10.33

Selected candidates from cycle 1 with oracle predictions and std:

SMILES|affinity|oracle_prediction|oracle_std

c1cc(c(cc1N)C(=O)Nc2cc(ncc2F)NC(=O)C3CC3)C1|8.96|9.84|0.173

CNC(=O)Nc1cc(ccn1)NC(=O)c2c(cccc2Cl)F|9.95|9.68|0.252

c1cc(c(cc1N)C1)C(=O)Nc2cc(ncc2F)NC(=O)C3CC3F|10.5|9.7|0.178

...

726

Prompt 4: Standalone Model Start Prompt

You are an expert protein engineer with deep chemical intuition leading a directed evolution campaign. Apply rigorous chemical principles to discover high-fitness variants within your experimental budget.

CAMPAIGN OVERVIEW:

- Target: Four-site region of `{self.protein}`
- Background: `{background}`
- Total Budget: `{self.total_budget}` experimental validations
- Batch Size: `{self.batch_size}` sequences per round
- Number of cycles: `{self.max_cycles}`

727

- Sequence Length: 4 amino acids

This is the START of your campaign. You have no prior data.

****STRATEGIC APPROACH:****

At every cycle, you'll receive previous results. Select `{3*batch_size // 2}` untested sequences using chemical logic and hypothesis testing.

****OUTPUT REQUIREMENTS:****

1. ****Chemical Reasoning****: Evaluate the past cycles and explain your mechanistic hypotheses and chemical logic for the next cycle. Add reasoning within `<reasoning>` tags.
3. ****Priority Ranking****: Sort by priority with chemical justification
4. ****Final List****: End with `{3*batch_size//2}` ranked sequences for next cycle validation for buffer, `{batch_size}` of which will be validated in the next cycle.

Design sequences that test well-reasoned chemical hypotheses. Balance thorough exploration with chemical principles to maximize discovery potential through systematic, chemistry-guided experimentation.

728

Prompt 5: Standalone Model System Message

You are an expert protein engineer with designing and controlling a directed evolution campaign. You must strategically select protein sequences to maximize fitness discovery within your experimental budget at the end of the campaign.

Current cycle `{state["current_cycle"]}` of `{state["max_cycles"]}`.
Select `{3*batch_size//2}` sequences, optimal for the campaign goal, to validate in next cycle.
Of these, `{batch_size}` will be validated in the next cycle, depending on experimental feasibility.
Sort your selection by priority.

Highest performing sequences so far:
`{validated_results.sort_values(by='fitness', ascending=False).head(10).round(3).to_string(index=False)}`

****Output format****: End your analysis with a list of `{3*batch_size//2}` sequences (STRICTLY 4-letter codes like 'AMHG', 'QPEI').

729

730 A.4.2 Response examples

Prompt 6: GPT5 TrpB BLIND full campaign example.

You are an expert protein engineer with deep chemical intuition leading a directed evolution campaign. Apply rigorous chemical principles to discover high-fitness variants within your experimental budget.

****CAMPAIGN OVERVIEW:****

- Target: Four-site region of unknown
- Background: No background available, we enter the campaign blind.
- Total Budget: 60 experimental validations
- Batch Size: 10 sequences per round
- Number of cycles: 6
- Sequence Length: 4 amino acids

731

This is the START of your campaign. You have no prior data.

****STRATEGIC APPROACH:****

At every cycle, you'll receive previous results. Select 15 untested sequences using chemical logic and hypothesis testing.

****OUTPUT REQUIREMENTS:****

1. ****Chemical Reasoning****: Evaluate the past cycles and explain your mechanistic hypotheses and chemical logic for the next cycle.
3. ****Priority Ranking****: Sort by priority with chemical justification
4. ****Final List****: End with 15 ranked sequences for next cycle validation for buffer, 10 of which will be validated in the next cycle.
4. ****Output format****: List 15 sequences (STRICTLY 4-letter codes like 'AMHG', 'QPEI') at the end of your response.

Design sequences that test well-reasoned chemical hypotheses. Balance thorough exploration with chemical principles to maximize discovery potential through systematic, chemistry-guided experimentation.

732

Response 5: GPT5 response

Chemical reasoning and strategy for Cycle 1 (blind start)

- With no prior data, we should maximize information gain per experiment by spanning orthogonal physicochemical axes: net charge (positive vs negative), hydrophobicity (aliphatic vs aromatic), polar H-bonding (Ser/Thr vs Asn/Gln), conformational rigidity/flexibility (Pro/Gly), redox/metal coordination (Cys/His, D-x-D), and secondary-structure propensities (Ala/Leu/Ile/Val).
- The set below implements a fractional-factorial-like sweep across these axes, so early results can reveal main effects and simple interactions by comparing closely related contrasts (e.g., cationic vs anionic; aromatic vs aliphatic; HXH vs D-x-D; rigid PxxP vs flexible PGPG).
- Prioritization favors maximal diversity first, then close contrasts to refine mechanistic hypotheses.

Priority ranking with brief chemical justification

- 1) KRRR → Strongly cationic, Arg/Lys-rich for electrostatic binding to acidic/negatively charged targets (e.g., nucleic acids or acidic protein patches).
- 2) DEED → Strongly anionic, acidic cluster probe; contrasts directly with KRRR to test electrostatic preference.
- 3) WFWY → Aromatic-rich, tests pi-phi/pi-phi cation interactions and hydrophobic packing using mixed F/W/Y.
- 4) LVIL → Aliphatic hydrophobic core motif; contrasts WFWY to separate aromatic-specific effects from generic hydrophobics.
- 5) STST → Ser/Thr H-bond network and turn/helix edge propensity; probes polar OH-mediated recognition.
- 6) HEGH → HExH-like histidine motif; tests metal coordination and pH-sensitive binding via His.
- 7) DADE → D-x-D acidic motif; canonical divalent metal-binding/chelation contrast to HEGH.
- 8) CAGC → Cys pair (CxxC) enables redox/disulfide or soft-metal coordination; probes thiol chemistry and structural constraint.
- 9) PGPG → Alternating Pro/Gly for high turn propensity and conformational flexibility; tests if tight turns are favored.
- 10) PAPP → PxxP motif to enforce rigidity and SH3-like motif geometry; contrasts PGPG for flexibility vs rigidity.
- 11) RKRK → Alternating cationic pattern to test charge spacing vs clustered cationic (KRRR).

733

- 12) QNQQ $\xrightarrow{\text{H-bond}}$ Amide-rich polar H-bonding without charge; probes polar recognition distinct from Ser/Thr chemistry.
- 13) FWLW $\xrightarrow{\text{H-bond}}$ Alternating aromatic/aliphatic to test interleaved hydrophobic/aromatic patterns vs clustered aromatics (WFWY).
- 14) AAAA $\xrightarrow{\text{H-bond}}$ Helix-prone neutral baseline; a clean reference for main-effect comparisons across positions.
- 15) LYKS $\xrightarrow{\text{H-bond}}$ Mixed motif (hydrophobic-aromatic-basic-polar) to sample heterogeneous interfaces and potential pi- δ cation (Y/K) interplay.

Final list of 15 sequences for next-cycle validation (top 10 prioritized above):

KRRR, DEED, WFWY, LVIL, STST, HEHG, DADE, CAGC, PGPG, PAPP, RKRK, QNQQ, FWLW, AAAA, LYKS

734

The validation experiment in cycle 0 is finished. These are the results:

sequence	fitness
AAAA	0.074
KRRR	0.045
LVIL	0.020
DADE	0.016
WFWY	0.013
STST	0.013
PAPP	0.010
RKRK	0.002
DEED	0.000
HEHG	0.000

735

Cycle 1 analysis and hypotheses from cycle 0 data

- Small/neutral wins: AAAA is top (0.074), suggesting minimal side-chain bulk and strong helix propensity (Ala) are beneficial. This points toward a preference for compact, low-steric side chains and possibly an alpha-helical segment.
- Cationic helps, especially Arg-rich clusters: KRRR is second-best (0.045), while alternating cationic RKRK is poor (0.002). This implies clustered or context-dependent cationic interactions are beneficial; Arg appears superior to Lys (guanidinium vs ammonium).
- Hydrophobic tolerated but suboptimal: LVIL (0.020) and WFWY (0.013) indicate hydrophobic packing/aromatics help but are inferior to A-rich.
- Acidic clusters and His motifs are disfavored: DEED (0.000), HEHG (0.000); DADE (0.016) shows that isolated/alternating acidity with small residues can be tolerated, but excess negative charge is detrimental.
- Polar OH acceptable but not optimal: STST (0.013) suggests limited benefit from Ser/Thr networks.

Working hypotheses for next designs

- 1) Ala-rich background is optimal; adding limited positive charge (preferably Arg) may boost fitness if positioned correctly. Test single-position Arg and Lys scans on AAAA.
- 2) Arg likely outperforms Lys; quantify this across positions.
- 3) Two Arg in an Ala background may be better than one but worse than fully charged; test spacing effects (AARR).
- 4) Small/polar (Ser) or smallest (Gly) substitutions might be position-sensitive; edge vs internal effects may differ.

736

- 5) Keep exploration limited for acidic/aromatic features; include one sentinel acidic variant to measure penalty of an isolated negative charge in an Ala carpet.

Priority ranking with justification

- 1) RAAA Single Arg at position 1 on AAAA; probes N-terminal placement of cationic charge with minimal steric penalty.
 - 2) ARAA Single Arg at position 2; tests internal Arg placement effect.
- [...]

737

The validation experiment in cycle 1 is finished. These are the results:

sequence	fitness
AAAG	0.279
AAAS	0.221

[...]

738

Cycle 2 analysis and mechanistic hypotheses

- Strong terminal preferences emerged:
 - Position 4: Gly and Ser are highly beneficial (AAAG 0.279 > AAAS 0.221 >> AAAA 0.074). This is signature of a C-terminal cap preference for small/flexible or H-bonding residues that relieve steric clash and/or stabilize a local turn/helix cap (G > S; next likely T, then Asn; bulkier polar like Gln expected weaker).
 - Position 1: Gly improves fitness (GAAA 0.119 > AAAA 0.074). N-terminal flexibility or reduced steric bulk appears favorable.
- Charges are generally detrimental, especially Arg at any position (RAAA, ARAA, AAAR all ~0.01). Lys is tolerated only internally (AAAKA & AAAA), but not beneficial; Lys at pos1 is harmful (KAAA 0.018). Acidic residues are strongly disfavored (AADA 0.000). Hydrophobics/aromatics also underperform.
- Therefore, the productive design space is: small/non-bulky residues, especially G/S at termini; possibly T/N as alternative C-caps; internal positions likely prefer A/S/G with caution about excessive flexibility from multiple Gly.

Design strategy for Cycle 2

- Test additivity/epistasis by combining the best terminal features: G/S at pos4 with G (and S) at pos1.
- Expand C-terminal cap chemistry: Thr and Asn; include Gln as a bulkier polar comparator.
- Probe whether added flexibility internally helps or hurts: single Gly scans at positions 2 and 3; single Ser scans at positions 2 and 3.
- Limit risky motifs (charge, aromatics, strong hydrophobics), reserving budget for the productive small/polar space.

Priority ranking with chemical justification

- 1) GAAG Combines the two strongest single effects (G1 + G4); tests near-maximal flexibility at termini; highest expected fitness.
 - 2) GAAS G1 + S4; probes if H-bond cap at 4 with flexible N-terminus rivals G1/G4.
- [...]

739

740

```
<0>The validation experiment in cycle 2 is finished. These are the results:  
sequence fitness  
    GAAS    0.315  
    SAAG    0.238  
[...]
```

Cycle 3 analysis and mechanistic hypotheses

- Clear SAR emerged: termini prefer very small/polar residues, centers prefer Ala.
- C-terminal cap: S4 and G4 are strongly beneficial (AAAS 0.221; AAAG 0.279). Thr4 is highly deleterious (AAAT 0.008). Asn4 is roughly neutral/slightly worse than baseline (AAAN 0.075).
- N-terminal: G1 improves baseline (AAAA 0.119). S1 is promising when combined with favorable C-caps (SAAG 0.238; SAAS 0.186), but S1 alone is unmeasured.
- Best family identified: X A A Y with X $\in \{G, S\}$, Y $\in \{G, S\}$; strongest observed GAAS (0.315) $>$ SAAG (0.238) $>$ GAAG (0.202) $>$ SAAS (0.186), indicating terminal epistasis (S4 best with G1; G4 best with S1).
- Internal positions penalize flexibility/polarity: introducing Gly/Ser at 2 or 3 reduces fitness (AGAA 0.071; AAGA 0.023; AASA 0.036), though a strong C-cap can partially rescue (AAGS 0.107). Centers prefer Ala.

Working hypotheses to guide next designs

- 1) The global maximum likely resides near XAA Y with X, Y $\in \{G, S\}$; we will probe whether modest, chemically plausible deviations at positions 2-3 (single Ser/Gly) can fine-tune the optimum under favorable terminal pairs.
- 2) N-capping alternatives: Pro or Asn at position 1 might sometimes stabilize local turns/caps; test them in the context of strong C-caps (S4/G4).
- 3) Cys as a small polarizable C-cap surrogate for Ser/Gly: test C4 with/without G1 to map tolerance. Include one Gln4 sentinel to bound amide-cap performance.
- 4) Complete missing single-mutant baselines: SAAA (S1 alone) and ASAA (S at pos2) for positional sensitivity.

Priority ranking with justification

[...]

741

```
The validation experiment in cycle 3 is finished. These are the results:  
sequence fitness  
    GPAS    0.341  
[...]
```

742

Cycle 4 strategy and chemical reasoning

- Confirmed terminal epistasis: Position 4 strongly prefers S or G but with context. G1 pairs best with S4 (GAAS 0.315 $>$ GAAG 0.202); S1 pairs best with G4 (SGAG 0.277 $>$ SAAS 0.186). Amide caps (N/Q at 4) and Thr4 are poor; Cys4 is mediocre. Keep 4 $\in \{S, G\}$.
- Internal positions favor Ala; introducing Gly or Ser at 2 or 3 depresses fitness even under favorable termini (e.g., GGAS 0.100, GAGS 0.093, GSAS 0.085). Key exception: Proline at position 2 gives a real boost on the G1

743

- /S4 ridge (GPAS 0.341 > GAAS 0.315), likely via local turn/helix capping and preorganization without over-flexibilizing the core.
- N-terminus: G1 and S1 are both good in the right context; S1-G4 and G1-S4 look like complementary optima. Nonpolar/hydrophobic or charged substitutions were uniformly harmful earlier.

Hypotheses to test now

- 1) Proline-at-2 as a transferable enhancer: Move P2 to the S1/G4 ridge to create SPAG; also test if P2 improves the weaker G1/G4 ridge (GPAG) and the weaker S1/S4 ridge (SPAS). Expect SPAG to be competitive with the current best.
- 2) Is P best kept at 2? Shift P to position 3 under strong terminals to quantify penalty vs benefit (GAPS, GAPG, SAPG), anticipating lower but mapping robustness.
- 3) N-cap alternatives: Thr1 can N-cap in helices; test TPAG/TPAS as conservative variants against S1 with both C-termini.
- 4) How much turn bias is too much? Introduce P2-G3 tight turn (GPGS, SPGS) and double-Pro core (GPPS, GPPG) as stress tests; expect reduced but informative.
- 5) Is G1 essential for P2 benefit? Compare APAS vs GPAS baseline (already known) to quantify the necessity of the G1 N-cap in the P2 motif.
- 6) Internal polarity under P2: Test GPSS to confirm S3 remains penalizing even with P2.

Priority ranking with justification

- 1) SPAG → Aligns with S1/G4 synergy; adds P2 which helped on G1/S4. Highest likelihood to meet or exceed current best.
- [...]

744

The validation experiment in cycle 4 is finished. These are the results:

sequence	fitness
TPAG	0.292
[...]	

745

Cycle 5 chemical reasoning and goals

- Clear terminal epistasis remains: position 4 prefers S or G, but the preference flips with N-terminus and with the presence of Pro at position 2.
- With G1 and P2 present, S4 is superior (GPAS 0.341 > GPAG 0.225).
- With T1 and P2, G4 is far superior (TPAG 0.292 >> TPAS 0.113).
- With S1 and P2, evidence from G3 sentinels suggests G4 > S4 (SPGG 0.172 > SPGS 0.071); we now test this in the optimal A3 background.
- P2 is a key enhancer when used with optimal terminals; P3 is deleterious. Internal polar/flexible residues at 2aS3 are generally harmful unless they are precisely Pro2 or Gly2 in the S1/G4 context (SGAG 0.277 > SAAG 0.238).
- A3 appears optimal; G3/S3 consistently reduce fitness, but we will probe whether a small hydrophobe (V3) can be tolerated/improve preorganization under strong termini/P2.
- N-terminal identity strongly modulates the best C-cap when P2 is present; we will systematically map X1 in {S,A,N} across Y4 in {G,S} with P2 fixed to locate the global maximum near the GPAS/SPAG/TPAG ridge.

Priority ranking with justification

746

1) SPAG → Tests S1/P2 with G4; predicted to be high due to S1+G4 synergy
and P2 enhancement (cf. SGAG 0.277; P2 likely boosts further).
[...]

747

The validation experiment in cycle 5 is finished. These are the results:
sequence fitness
GPVS 0.495
[...]

748