Under review as a conference paper at ICLR 2025

LEARNING ARBITRARY LOGICAL FORMULA AS A
SPARSE NEURAL NETWORK MODULE

Anonymous authors
Paper under double-blind review

ABSTRACT

NeSy (Neuro-Symbolic) predictors are hybrid models composed of symbolic pre-
dictive models chained after neural networks. Most existing NeSy predictors re-
quire either given symbolic knowledge or iterative training. DSL (Deep Symbolic
Learning) is the first NeSy predictor that supports fully end-to-end training from
scratch, but it learns a look-up table rather than arbitrary programs or formulas.
We propose the Logical Formula Learner framework, a general framework of net-
work modules that explicitly equate a logical formula after convergence. We then
propose 3 novel designs within the LFL framework with different levels of combi-
natorial search freedom: LFL-Typel learns arbitrary logical formula, LFL-Type2
learns a look-up table, and LFL-Type3 has combinatorial search freedom between
them. LFL-Typel and LFL-Type2 show improvements over previous designs,
and all three types can be wrapped into NeSy predictors. To our knowledge,
LFL-Typel-based NeSy predictor is the first NeSy predictor that supports full

end-to-end training from scratch and explicitly learns arbitrary logical formulas. ﬁ]

1 INTRODUCTION

In a special lecture of NIPS 2019, Yoshua Bengio suggested that studies in deep learning should
expand from System 1 to System 2 (Bengiol 2019), where System 1 means the intuitive, black-box
parts and System 2 means the symbolic, white-box parts of either human or artificial intelligence.
Works in multiple research directions can be seen as attempting to approach System 2 intelligence,
such as those combining deep learning with Symbolic Regression (SR) (Makke & Chawlal [2024) or
Inductive Logic Programming (ILP) (Zhang et al.| 2023)) methods, while the term Neuro-Symbolic
(NeSy) refers to the general research field of combining neural systems and symbolic reasoning
(Marra et al .| [2024).

A subset of NeSy methods is NeSy predictors defined in [Marconato et al.| (2024)), members of
which present hybrid models composed of symbolic predictive models chained after neural net-
works. Some NeSy predictors combine neural networks with a given symbolic program or knowl-
edge base so that the neural network can be trained by symbolic constraints (Manhaeve et al.,2018;
Huang et al., 2021} Badreddine et al., [2022; Winters et al., |2022; [Yang et al., 2023). Some other
NeSy predictors attempt to learn the symbolic predictor jointly with the neural networks, most of
them requiring iteratively training the symbolic predictor and the neural networks while fixing the
other (Duan et al.l [2022; |(Cunnington et al., 2022; [Liu et al., 2023); some of them also require
pre-training the neural networks beforehand. Then DSL (Deep Symbolic Learning) (Daniele et al.|
2022) presents a fully differentiable NeSy predictor that allows for end-to-end training of a differen-
tiable logic module chained after neural networks, both from scratch. The major limitation of DSL
is that its differentiable logic module equates a look-up table that maps each of the input concepts’
cartesian product to one of the possible output symbols, while many other NeSy predictors learn
arbitrary logical circuits or programs.

The idea of designing a differentiable module that becomes equivalent to a symbolic expression is
also seen in a line of research starting from EQL (Equation Learner) (Martius & Lampert, [2016), a
differentiable module designed for SR. An EQL network is a neural network module that equates
an arithmetic formula after convergence, archived by introducing diverse activation functions and

!Code available at: https://anonymous.4open.science/t/logical-formula-learner-693B

https://anonymous.4open.science/r/logical-formula-learner-693B

Under review as a conference paper at ICLR 2025

y= 2.0[(0.4.- 1.1x;) - 1.3 5in(0.5x; + 0.6x,)] o (AAE)V(ZAB)
= 1.144x, sin(0.5x; + 0.6x,)

(a) EQL (b) LFL

Figure 1: An intuitive illustration of how an EQL or LFL converges into symbolic expressions. In
all network architecture figures of this paper, red-colored objects represent input values, yellow ones
represent output values, orange ones represent intermediate values, green ones represent trainable
modules or neurons, and blue ones represent transformations that contain no trainable parameters.

DSL dNL
LFL-Type2 LFL-Type3 LFL-Typel
I I I
frozen AND layer + frozen AND layer + all neurons use
less OR layer with OR layer with sigmoid sigmoid membership more
freedom softmax membership membership freedom

Figure 2: Comparison of LFL variations in terms of freedom of their combinatorial search spaces.

sparsity constraints into an MLP network. Another method with a similar philosophy is dNL (dif-
ferentiable Neural Logic Network) (Payani & Fekri,[2019a)). A dNL network is composed of logical
neurons designed with Product t-norm that express AND or OR relationships and thus can be equiv-
alent to any arbitrary logical formula, experimented mainly on ILP tasks.

Inspired by them, in this work we propose a general framework of differentiable modules that equate
logical formulas after convergence, named Logical Formula Learner (LFL). An LFL network uses
customized neurons that relax binary logic symbols with fuzzy logic operations and converges into a
sparse network equating a relatively simple logical formula. Figure([T]shows an intuitive comparison
between EQL and LFL.

Both DSL and dNL fit into the LFL framework. Apart from them, we propose three novel designs
within the LFL framework with different levels of combinatorial search freedom (Figure [2): LFL-
Typel learns arbitrary logical formulas like dNL, LFL-Type2 learns a look-up table like DSL, and
LFL-Type3 has combinatorial search freedom between them. LFL-Typel works a little better than
dNL on learning logical formulas from binary data when the number of hidden neurons is limited.
LFL-Type2 and LFL-Type3 work as well as DSL’s logic module in NeSy predictors with better
consistency between training and inference behaviours. Although directly using LFL-Typel in NeSy
predictors makes the network struggle to converge, we tackle this problem by adding an MLP as
gradient shortcut. This, to our knowledge, results in the first NeSy predictor that satisfies: (1) Being
end-to-end differentiable; (2) Training all modules from scratch and achieving joint convergence in

Under review as a conference paper at ICLR 2025

a single run; (3) Explicitly learning arbitrary logical formula (within limited complexity) with its
symbolic module.

2 THE LoGICAL FORMULA LEARNER FRAMEWORK

2.1 RELAXING BINARY LOGICAL NEURONS INTO FUZZY, DIFFERENTIABLE ONES

It is straightforward to define binary neurons that describe the logical AND, OR or NOT relation-
ships:

fbinary,AND (w") = /\ (Wz V xz) (1)
foinary.or(x"™) = \/ (mi A xy) 2
fbinary,NOT(I) =T (3)

where f means the neuron’s output, z; € {0,1} means the neuron’s ith input, and m; € {0,1}
means the “membership” of the input which decides whether the input is a member of the AND/OR
operation. The NOT operation applies on a single input.

To make our logical neurons differentiable and trainable, we need to replace the binary logical
operations with fuzzy ones and the binary memberships with continuous values in range [0, 1]:

fanp(x™) = ® (=g (w)) &) = ® (1—g(wi) @1 —wz)) “4)
for(@") =D (g (w) @) =1 - Q) (1 - g (w;) @ ;))
Ivor(z) =1—2x (6)

where f means the neuron’s output, z; € [0, 1] means the neuron’s ith input, ® and (X) mean cho-
sen differentiable fuzzy t-norm operations, ¢ and € mean chosen differentiable fuzzy t-conorm
operations, w; means the control parameters for the membership value, and g means a chosen dif-
ferentiable function that maps w; into [0, 1]. An LFL network can be constructed by arbitrarily
combining these differentiable neurons. The selected g may produce soft, stochastic membership
values during training. During inference, we set the memberships to binary, deterministic values in
{0, 1} according to the trained parameters w; so that the LFL module strictly equates a fuzzy logical
formula.

2.2 HOW EXISTING METHODS FIT INTO THE LFLL. FRAMEWORK
2.2.1 DIFFERENTIABLE NEURAL LOGIC NETWORK (DNL)

The logical neurons proposed in dNL can be obtained by substituting Product t-norm and the corre-
S ond[isl]1 t-conorm as chosen fuzzy logic operations and the sigmoid function o as g into equations
and

fanranp(z™) = H (1—0(w) (1 —x;)) (7N
fanror(z™) =1— H (1 — o (ws) x;) ®)

A dNL network can thus be constructed by arbitrarily combining the AND/OR neurons defined
above and the NOT neurons defined in[6l

’The original design in dNL multiplies w; with a hyperparameter c, i.e. g (w;) = o (cw;). The hyperpa-
rameter ¢ seems redundant since scaling the trainable control parameters is equivalent to scaling the learning
rate.

Under review as a conference paper at ICLR 2025

2.2.2 DEEP SYMBOLIC LEARNING (DSL)

As a fully differentiable NeSy predictor, a DSL network consists of black-box neural classifiers
that map high-dimensional input to symbolic representations and a differentiable logic module that
equates a look-up table after convergence, indicating that the logic module should also fit into the
LFL framework. In this subsection, we describe an LFL. module that is equivalent to the original
definition of DSL’s logic module.

Say there are multiple neural classifiers with their number of classes denoted as {n1, na, ns, ...} and
the jth unnormalized prediction of the ith classifier as IV;; € R. Each classifier’s predictions are
sparsified by e-greedy policy:

9

o = softmax; (N,;), if jis the chosen symbol of classifier ¢
o, otherwise

where k € [1,), n;], softmax; means applying softmax on the j dimension, and z, € (0, 1) is the

LFL module’s kth input. For each classifier, its predicted class is chosen with probability 1 — €1,

and a random class is chosen with probability ;.

The LFL module uses Godel t-norm and t-conorm. Its first layer consists of AND neurons with
memberships frozen such that each AND neuron represents a member of the cartesian product of
the module’s input concepts:

hy :mkin (1 — min (mg;, 1 — x)) (10)

m {1, if the kth symbol is a member of the Ith cartesian product of all class symbols (1
Kl =

0, otherwise

where | € [1,]], ns], my is the ith AND neuron’s kth membership value, and h; is the neuron’s
output.

The second layer consists of OR neurons with trainable memberships generated with softmax and
e-greedy policy, producing the final class prediction from 7, classes:

Yp = mlax (min (myp, hy)) (12)

m {softmaxp (wip), if pis the chosen symbol of input /
lp —

. 13
0, otherwise 13)
where p € [1,n,], my, is the pth OR neuron’s /th membership value, wy, is the trainable control
parameter for m;,, softmax, means applying softmax on the p dimension, and ¥, is the neuron’s
output. For each input A, its maximal 1y, is chosen with probability 1 — €>, and a random one of
the memberships is chosen with probability e5.

During each individual input sample’s forward pass, the above design assures that only one value in
x, h or y is non-zero, so that the original definition of DSL could focus only on the non-zero values.
The non-zero value of y then defines the network’s predicted class and truth value. Furthermore,
the module can predict multiple class labels by concatenating outputs of multiple OR layers defined
above.

2.3 OUR NEW DESIGNS

One difference between dNL and DSL is that the latter uses noisy input symbols and memberships
with Godel t-(co)norm, which may allow the network to explore more of the possible combinatorial
search space. We also notice that the Concrete distribution (Maddison et al., [2016) provides an
elegant way of adding noise to soft symbolic values. So in this subsection, we introduce three
novel designs within the LFL framework, all of which utilize Godel t-(co)norm and the Concrete
distribution.

Under review as a conference paper at ICLR 2025

2.3.1 LFL-TYPEl: LEARNING ARBITRARY LOGICAL FORMULA LIKE DNL, BUT WITH
GODEL T-(CO)NORM AND NOISY WEIGHTS

Substituting Godel t-(co)norm as chosen fuzzy operations and the Binary Concrete distribution as g
into [and 5] we get:

frroanp(x™) = miin (1 — min (o (w; + n (log(u;) — log(1 — w;))),1 — x;)) (14)
frroor(@™) = max (min (o (w; +n (log(u;) —log(1 — u;))), z;)) (15)

where u; is sampled independently from uniform distribution in (0, 1) and 7 is a hyperparameter
controlling the noise scalg’} An LFL-Typel network can thus be constructed by arbitrarily combin-
ing them and the NOT neurons [6]

2.3.2 LFL-TYPE2: LEARNING A LOOK-UP TABLE LIKE DSL, BUT WITH DENSE, NOISY
SYMBOLS AND WEIGHTS

DSL used e-greedy policy to produce sparse, noisy symbolic input and predictions in [9] and In
LFL-Type2 we replace them with dense, noisy values generated by the Concrete distribution:

xy, = softmax; (N;; — no log (—log (ux))) (16)
my, = softmax, (wy, — m log (—log (wp))) a7

where uy, and w;, are sampled independently from uniform distrubution in (0,1), 1 and 7; are
hyperparameters controlling the noise scales. [I6]is also used when wrapping LFL-Typel or LFL-
Type3 into NeSy predictors.

2.3.3 LFL-TYPE3: USING FROZEN AND LAYER LIKE DSL, BUT WITH INDEPENDENT
WEIGHTS FOR THE OR LAYER

In LFL-Typel all memberships are independently trained, while LFL-Type2 consists of a frozen,
predefined layer of AND neurons and a layer of OR neurons where memberships correlate through
softmax. Then it’s natural to experiment with a third design, in which LFL-Type2’s OR layer|[I7]is
replaced by a layer of LFL-Typel’s OR neurons where all memberships are freely trainable:

myp =0 (wlp +m (IOg(ulp) - IOg(l - ulp))) (18)

2.4 NETWORK ARCHITECTURE FOR LFL-BASED DIFFERENTIABLE NESY PREDICTORS

In this subsection, we describe the network architectures that wrap LFL modules into NeSy predic-
tors for direct or recurrent NeSy tasks defined in DSL, such as MNIST Sum and MNIST Multi-digit
Sum. How these architectures are applied to the MNIST Arithmetic tasks is shown in Figure 3]

2.4.1 DSL’S VANILLA ARCHITECTURE

In DSL, the differentiable logic module is chained after CNN classifiers so that the whole network
works as a NeSy predictor. In this work, we add linear reconstruction models that allow us to
visualize the symbols learned by CNN classifiers, with stop gradient operations so that they don’t
affect other network components during training, as shown in Figure [3(a)}

For recurrent NeSy tasks, recurrent values (such as c¢) are passed forward through the recurrent
blocks, as shown in Figure [3(c)

3The original paper (Maddison et al.l [2016) wrote the Binary Concrete distribution in a slightly different
form, where log o replaced the control parameter w; and a “temperature” parameter A that divides both the
noise and the control parameter replaced 7. The same difference applies to the softmax-like Concrete distribu-
tion used in section[2.3.2}

Under review as a conference paper at ICLR 2025

-

Linear

[tinear]
7

CNN

MLP

-

(b) MNIST-sum with MLP gradient shortcut

T

Linea

<o

Linear

I
H

—~

I
-

b MLP H

[~ MEC~]

(d) MNIST Multi-digit Sum with MLP gradient shortcut

Figure 3: Network architectures for MNIST Arithmetic tasks, where N means real-valued CNN
predictions, “fuzzifier” means softmax-like transformation such as Hor@ x and y mean the LFL
module’s input and output symbols, ¢ means the carry symbols in MNIST Multi-digit Sum, “’stop
gradient” means detaching the tensor to block gradient backpropagation, “random choice” means
randomly choosing one of the input tensors as output for each sample, and each red square contains
a recurrent block for MNIST Multi-digit Sum. Parameters are shared among CNNs or linear recon-
struction layers. Similar to the membership values in LFL, the fuzzifier layers also output binary,
deterministic symbols during inference.

Under review as a conference paper at ICLR 2025

2.4.2 OUR NEW TRICK: ADDING AN MLP AS GRADIENT SHORTCUT

In our early experiments, we found that using freely trainable LFL variations like dNL or LFL-Typel
in the vanilla architecture results in a network that struggles to converge. A similar convergence
problem has been encountered in training deep CNNs, where it was resolved by adding ”shortcut”
connections that allow gradients to back-propagate through (He et al.l [2016). Inspired by this, we
add an MLP that shares the same input and output with the LFL module so that gradients can
back-propagate through the MLP, allowing the whole network to converge into an optimal or sub-
optimal solution, as shown in Figure[3(b)] The MLP uses sigmoid activation in its output layer for
consistency.

For recurrent NeSy tasks, the LFL and MLP predict two different versions of the recurrent values
¢, as shown in Figure[3(d)] During training, each of them is randomly selected at sample level with
probability 0.5 for the next recurrence; during inference, the LFL’s prediction is used for the next
recurrence.

2.5 LOSS FUNCTIONS AND REGULARIZATIONS

For all network architectures described above, the LFL’s supervision loss L., is measured by the
binary cross-entropy loss. For DSL, the loss applies only on its non-zero prediction values.

Another loss term is an L2 reconstruction loss L, that trains the linear reconstruction layer. The
stop gradient operation stops the reconstruction loss from affecting other modules.

Similar to EQL, we need sparsity constraints to make the LFL. modules learn logical formulas in
their relatively simple forms. In DSL and LFL-Type2 all trainable memberships are generated with
softmax-like transformations|13|[17]so that they are always sparse. For memberships generated with
sigmoid-like transformations [7|[8][14][T5|[T8] we apply a sparsity constraint loss:

Lrey =Y o S rlwiz) (19)
% I

where o (w;jx) is the median membership of the ith input of the jth neuron of the kth layer with
sigmoid-like memberships, and nj; means the number of such memberships in the kth layer.

For network architectures with the MLP gradient shortcut, another binary cross-entropy loss L/ p
applies on the MLP’s prediction. In these networks we also constraint the distribution of LFLs’
input symbol x such that the average of = in each batch is close to even distribution over each
neural classifier’s predicted labels:

Liabel = Z ni? Z BCE(%, % g Tijk) (20)
J

i

where BCE means the binary cross-entropy loss, x;;; means the normalized LFL input correspond-
ing to the jth class predicted by the ith classifier from the kth sample in a batch, b means the batch
size, and n; means classifier v’s number of predicted classes.

So the overall loss function used in our experiments is

L= Esup + Lrec + Blﬁreg + B2£NILP + 63£label (21)
for the network architectures with MLP gradient shortcut. Only Lgyp, Lrec and L4 are used for

those without the MLP gradient shortcut, and only L, and £,.. are used for those with DSL or
LFL-Type2. 31, 82 and 33 are hyperparameters adjusting the loss terms’ weights.

3 EXPERIMENTS

In previous works, dNL has been experimented on ILP tasks that require learning logical formu-
las from binary training data, and DSL has been experimented on MNIST Arithmetic tasks. We

Under review as a conference paper at ICLR 2025

[OR]

(a) Network for Experiment[3.1.1} (b) Network for Experiment[3.1.2]

Comparing dNL and LFL-Typel on binary single-digit sum Comparing DSL and LFL-Type2/3 on training mode accuracy

’\\/_/ /\\/w 1.0

o
@
o
@

2)
42)

g
o
=4
o

o
S

accuracy (seed
accuracy (seed

)
N
)
~

—— DSL
— dNL LFL-Type2
LFL-Typel —— LFL-Type3
0.0 0.0
100 120 140 160 180 200 220 240 0 20 40 60 80 100 120
number of hidden neurons epoch

(¢) Result of experiment[3.1.2} (d) Result of experiment[3.2}

Figure 4: Figures related to the experiments.

Table 1: Results of MNIST Arithmetic experiments. MLP means whether MLP gradient shortcut is
used, L;,pe; means whether L£;,p¢; is used, Correct formula means whether the LFL learns a correct
formula. For MNIST Multi-digit Sum two accuracies are evaluated on test datasets with ng;gi = 3
and Ndigit = 128.

MLP L.pe Task Accuracy(%) Correct formula
DSL X X Sum 97.8 v
LFL-Type2 X X Sum 98.1 v
X X Sum 98.1 v
LEL-Type3 | % X Multi-digit Sum 97.7/96.9 v
v v Sum 98.3 v
X v Sum 16.3 X
v X Sum 65.8 X
LFL-Typel | Y Multi-digit Sum 98.5/98.1 v
X v Multi-digit Sum 20.2/10.3 X
v X Multi-digit Sum 81.8/75.0 X

evaluate and compare LFL variations on these task types. Test set accuracies of MNIST Arithmetic
experiments are shown in Table [I] Note that difference in accuracies among successful MNIST
Arithmetic experiments doesn’t really matter because mistakes are caused only by CNN classifiers
when the LFL learns a correct formula.

Under review as a conference paper at ICLR 2025

3.1 COMPARING DNL AND LFL-TYPE1 ON LEARNING LOGICAL FORMULA FROM BINARY
DATA

Since dNL has been proven to work well on learning simple logical formulas with 2-layer network
architectures (Payani & Fekri, 2019a), we evaluate dNL and LFL-Typel on two possibly harder
tasks: learning a 3-layer logical formula with NOT neurons and learning MNIST Sum’s logical
formula with limited number of hidden neurons.

3.1.1 LEARNING A 3-LAYER LOGICAL FORMULA WITH NEGATION

The 3-layer logical formula to be learned has 8 input concepts and 2 outputs. The 8§ input concepts
and their negations form 16 input concepts, and the formula then requires at least 8 hidden neurons
in an AND layer and 4 neurons in an OR layer to learn (Appendix [B). Both dNL and LFL-Typel
learn it successfully with the architecture in Figure

3.1.2 LEARNING MNIST SUM’S FORMULA WITH LIMITED NUMBER OF HIDDEN NEURONS

The MNIST Sum task requires learning a 2-layer logical formula with 20 inputs, 19 outputs, and 100
hidden concepts. Both dNL and LFL-Typel can learn it from binary training data with 256 hidden
neurons, but LFL-Typel maintains higher accuracies when the number of hidden neurons reduces
towards 100 (Figure d(c)). The network architecture shown in Figure is used for this task and
the following experiments where LFL-Typel is used in NeSy predictors.

3.2 COMPARING DSL AND LFL-TYPE2 ON MNIST SuMm

LFL-Type2 has the same combinatorial search freedom as DSL’s logic module and converges as
well as the latter on MNIST Sum. A minor limitation of DSL is that its e-greedy search policy keeps
producing random label choices with probability e after convergence, creating a significant gap
between training and inference behaviors. The limitation doesn’t exist in LFL-Type2’s Concrete
noise distribution, as shown in Figure f(d)]

3.3 EXPERIMENTING LFL-TYPE3 AND LFL-TYPE1 ON MNIST SUM AND MULTI-DIGIT
Sum

LFL-Type3 and LFL-Typel have larger combinatorial search freedom than DSL, and we evaluate
them on MNIST Sum and Multi-digit Sum. LFL-Type3 converges well on MNIST Sum and Multi-
digit Sum using DSL’s vanilla network architecture, and it actually converges faster than DSL or
LFL-Type2 with automatically tuned hyperparameters, as shown in Figure A(d)} LFL-Typel also
converges well with our new architecture that contains the MLP gradient shortcut. In MNIST Sum
the formula learned by LFL-Typel is the same as that of LFL-Type3. In MNIST Multi-digit Sum
LFL-Typel learns a formula different from LFL-Type3 for predicting the next carry, proving LFL-
Typel’s ability to learn more arbitrary logical formulas in NeSy predictors. See Appendix [D]for the
learned formulas.

3.4 ABLATION STUDY

Two additional tricks have been used in NeSy predictors with LFL-Typel: the MLP gradient shortcut
and the classification label distribution loss Removing either of them results in failure of joint
convergence on MNIST-Sum and MNIST Multi-digit Sum.

4 RELATED WORKS

4.1 NEURO-SYMBOLIC PREDICTORS

The recent interest in NeSy predictors started with DeepProbLog (Manhaeve et al.,|2018), in which
programs written in ProbLog (De Raedt et all [2007) are translated into differentiable arithmetic
circuits connected with neural networks, allowing for end-to-end training. ABLSim (Huang et al.,
2021)) trains neural networks by minimizing the inconsistency between them and given background

Under review as a conference paper at ICLR 2025

knowledge. Logic Tensor Networks (Badreddine et al., [2022) encode symbolic knowledge into
differentiable regularizations for training neural networks. DeepStochLog (Winters et al., [2022)
extends DeepProbLog with stochastic definite clause grammars. NeurASP (Yang et al.| 2023) im-
proves pre-trained neural networks with given Answer Set Programs.

The above methods require given symbolic knowledge, while some other NeSy predictors require
iterative training. DeepLogic (Duan et al.| [2022) iteratively trains a non-differentiable Deep Logic
Module with neural networks. NSIL (Cunnington et al.| [2022) iteratively trains an ASP program
with neural classifiers. NTOC (Liu et al.| 2023) iteratively trains neural networks and symbolic rules,
where the symbolic rules can be translated into fixed differentiable circuits. Then DSL (Daniele
et al} |2022) is our most closely related work, in which a differentiable logic module that equates a
look-up table and fits into the LFL framework is wrapped into a NeSy predictor.

4.2 DIFFFERENTIABLE MODULES FOR SYMBOLIC REGRESSION

This work takes initial inspiration from EQL (Martius & Lampert, 2016). An EQL network equates
an arithmetic expression after convergence in a way similar to LFL networks, originally proposed
for Symbolic Regression. EQL™ (Sahoo et al., 2018) and GMEQL (Chenl 2020) explore different
EQL variations, while OccamNet (Dugan et al., [2020) and KAN (Liu et al., [2024) extend the idea
with more network designs. EQL’s differentiability allows people to connect it with CNNs for joint
learning (Kim et al.,|2020) and NeSy RL (Luo et al., [2024)).

4.3 INTEGRAGING NEURAL NETWORKS FOR INDUCTIVE LOGIC PROGRAMMING

As another closely related method, dNL fits into the LFL framework and has been experimented
on ILP tasks (Payani & Fekri, [2019a). NLN (Payani & Fekril [2019b) extends dNL with XOR
neurons, and [Payani & Fekri| (2020) uses dNL to incorporate symbolic knowledge for RL. Works
such as JILP (Evans & Grefenstettel, [2018), NLIL (Yang & Song| 2019), and DLM (Zimmer et al.}
2021) also integrate neural networks for ILP tasks. LNN (Riegel et al) [2020; Sen et al., [2022)
proposes customized neurons with Lukasiewicz t-(co)norm for ILP tasks, but their neuron designs
don’t strictly fit into the LFL framework.

5 CONCLUTION AND FUTURE WORK

In this work, we present the Logical Formula Learner framework and three novel designs within
it. The LFL framework summarizes previous designs into a general framework of network modules
that explicitly equate a logical formula after convergence. The proposed LFL-Typel and LFL-Type2
show improvements over previous designs, and LFL-Type3 works fine with combinatorial search
freedom between the two. Furthermore, by wrapping LFL-Typel into NeSy predictors with MLP
gradient shortcut, we obtain the first end-to-end differentiable NeSy predictor that converges from
scratch in one single run and explicitly learns an arbitrary logical formula.

Future directions based on this work include:

1. Experimenting with other possible neuron designs within the LFL framework, such as using
other t-(co)norm choices or introducing annealing schedules for the noise scales.

2. Using logical neurons defined in this work in layers other than fully connected ones. For
example, using them in convolutional layers may produce white-box CNNs with better
interpretability or adversarial robustness.

3. Integrating LFL networks into other neural network applications, such as image or video
caption, model-free RL, model-based RL, etc. Particularly, integrating LFLs into model-
based RL agents may allow such agents to describe their internal representations with sound
symbolic logic, opening up a new path toward reliable language generation and understand-
ing.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623-2631, 2019.

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor
networks. Artificial Intelligence, 303:103649, 2022.

Yoshua Bengio. From system 1 deep learning to system 2 deep learning. In Neural Information
Processing Systems, 2019.

Gang Chen. Learning symbolic expressions via gumbel-max equation learner networks. arXiv
preprint arXiv:2012.06921, 2020.

Daniel Cunnington, Mark Law, Jorge Lobo, and Alessandra Russo. Neuro-symbolic learning of
answer set programs from raw data. arXiv preprint arXiv:2205.12735, 2022.

Alessandro Daniele, Tommaso Campari, Sagar Malhotra, and Luciano Serafini. Deep symbolic
learning: Discovering symbols and rules from perceptions. arXiv preprint arXiv:2208.11561,
2022.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog and its
application in link discovery. In IJCAI, volume 7, pp. 2462-2467. Hyderabad, 2007.

Aaron Defazio and Samy Jelassi. A momentumized, adaptive, dual averaged gradient method.
Journal of Machine Learning Research, 23(144):1-34, 2022.

Xuguang Duan, Xin Wang, Peilin Zhao, Guangyao Shen, and Wenwu Zhu. Deeplogic: Joint learning
of neural perception and logical reasoning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(4):4321-4334, 2022.

Owen Dugan, Rumen Dangovski, Allan Costa, Samuel Kim, Pawan Goyal, Joseph Jacobson, and
Marin Soljaci¢. Occamnet: A fast neural model for symbolic regression at scale. arXiv preprint
arXiv:2007.10784, 2020.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal of
Artificial Intelligence Research, 61:1-64, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

770-778, 2016.

Yu-Xuan Huang, Wang-Zhou Dai, Le-Wen Cai, Stephen H Muggleton, and Yuan Jiang. Fast ab-
ductive learning by similarity-based consistency optimization. Advances in Neural Information
Processing Systems, 34:26574-26584, 2021.

Samuel Kim, Peter Y Lu, Srijon Mukherjee, Michael Gilbert, Li Jing, Vladimir Ceperié, and Marin
Soljaci¢. Integration of neural network-based symbolic regression in deep learning for scientific
discovery. IEEE transactions on neural networks and learning systems, 32(9):4166-4177, 2020.

Anji Liu, Hongming Xu, Guy Van den Broeck, and Yitao Liang. Out-of-distribution generalization
by neural-symbolic joint training. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 12252-12259, 2023.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljaci¢,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024.

Lirui Luo, Guoxi Zhang, Hongming Xu, Yaodong Yang, Cong Fang, and Qing Li. Insight: End-
to-end neuro-symbolic visual reinforcement learning with language explanations. arXiv preprint
arXiv:2403.12451, 2024.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

11

Under review as a conference paper at ICLR 2025

Nour Makke and Sanjay Chawla. Interpretable scientific discovery with symbolic regression: a
review. Artificial Intelligence Review, 57(1):2, 2024.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. Advances in neural information process-
ing systems, 31, 2018.

Emanuele Marconato, Stefano Teso, Antonio Vergari, and Andrea Passerini. Not all neuro-symbolic
concepts are created equal: Analysis and mitigation of reasoning shortcuts. Advances in Neural
Information Processing Systems, 36, 2024.

Giuseppe Marra, Sebastijan Dumanci¢, Robin Manhaeve, and Luc De Raedt. From statistical re-
lational to neurosymbolic artificial intelligence: A survey. Artificial Intelligence, pp. 104062,
2024.

Georg Martius and Christoph H Lampert. Extrapolation and learning equations. arXiv preprint
arXiv:1610.02995, 2016.

Ali Payani and Faramarz Fekri. Inductive logic programming via differentiable deep neural logic
networks. arXiv preprint arXiv:1906.03523, 2019a.

Ali Payani and Faramarz Fekri. Learning algorithms via neural logic networks. arXiv preprint
arXiv:1904.01554, 2019b.

Ali Payani and Faramarz Fekri. Incorporating relational background knowledge into reinforcement
learning via differentiable inductive logic programming. arXiv preprint arXiv:2003.10386, 2020.

Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus
Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma, et al. Logical neural
networks. arXiv preprint arXiv:2006.13155, 2020.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and
control. In International Conference on Machine Learning, pp. 4442—-4450. Pmlr, 2018.

Prithviraj Sen, Breno WSR de Carvalho, Ryan Riegel, and Alexander Gray. Neuro-symbolic induc-
tive logic programming with logical neural networks. In Proceedings of the AAAI conference on
artificial intelligence, volume 36, pp. 8212-8219, 2022.

Shuhei Watanabe. Tree-structured parzen estimator: Understanding its algorithm components and
their roles for better empirical performance. arXiv preprint arXiv:2304.11127, 2023.

Thomas Winters, Giuseppe Marra, Robin Manhaeve, and Luc De Raedt. Deepstochlog: Neural
stochastic logic programming. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 10090-10100, 2022.

Yuan Yang and Le Song. Learn to explain efficiently via neural logic inductive learning. arXiv
preprint arXiv:1910.02481, 2019.

Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into answer set
programming. arXiv preprint arXiv:2307.07700, 2023.

Zheng Zhang, Levent Yilmaz, and Bo Liu. A critical review of inductive logic programming tech-
niques for explainable ai. IEEE Transactions on Neural Networks and Learning Systems, 2023.

Matthieu Zimmer, Xuening Feng, Claire Glanois, Zhaohui Jiang, Jianyi Zhang, Paul Weng, Dong Li,

Jianye Hao, and Wulong Liu. Differentiable logic machines. arXiv preprint arXiv:2102.11529,
2021.

12

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

All experiments are implemented with Python. The neural network modules are implemented with
Pytorch, and symbolic expressions are extracted from LFL modules’ trained weights with SymPy.
MadGrad optimizer (Defazio & Jelassi, [2022)) is used for all trainable modules, with learning rates
independently tuned for CNN, LFL, and MLP modules. Random seed 42 is used for all experiments,
and hyperparameters are selected automatically with Optuna’s (Akiba et al., 2019) implementation
of Tree-Structured Parzen Estimator (Watanabe, [2023)). Pytorch’s GPU version is required to run
the experiments efficiently.

B DATASET DESCRIPTION

Experiment uses a binary dataset with size 28 = 256. The inputs and outputs are generated
with the following logical formula:

x = [z9,21,...,27]

hy = [xo A 21,29 A X3, 24 A X5, 26 A T7,To A T1, T2 N\ T3, T4 N\ T5,Tg A T7]
hy = [hio V h11,h12 V hig, hia V his, hig V hit]

Y = [hao A hat1, hao A has]

(22)

where means the dataset’s input, y means its output, h; and ho mean intermediate variables that
hidden neurons might learn to represent.

Experiment uses a binary dataset with size 10> = 100. The inputs and outputs are generated
with the following logical formula:

L=[lo,11,....,1o]
r =[ro,r1,...,79]
Y =[Yo,y1,. .., 18] (23)
Yk = \/ (i Ary)
i+i=k

where and r mean input symbols representing values of the two digits, y; means the output symbol
representing that the sum is k. This is the same formula that LFL modules are expected to learn when
wrapped into a NeSy predictor for MNIST Sum.

MNIST Sum is a standard benchmark for testing NeSy predictors, first used in |[Manhaeve et al.
(2018). Each sample of the MNIST Sum task takes 2 handwritten digits as input and requires a
model to predict their sum in [0, 18] as a 19-class classification task. For example, a sample of the
dataset has input (], B and classification label 11.

MNIST Multi-digit Sum is an extension of MNIST Sum that requires a model to predict labels for
summing two multi-digit handwritten numbers. The two numbers’ length 14,4 is a property of the
dataset. The inputs and labels are provided in reverse order. For example, a sample of the dataset
with n4;4is = 2 has input [(E)ED.(BED] and classification label [6,0,1] (since 59+47=106).

The MNIST Sum training dataset uses two MNIST images from its training set for each sample,
so its actual size is 600002 = 3.6 x 10, making it impractical to actually train a full epoch. In
our implementations, we take 8192 randomly generated samples as a pseudo-epoch of the dataset.
To generate a sample, we first randomly choose two digits in 0 to 9, then randomly select two
handwritten digit images that correspond to the chosen digits.

The MNIST Multi-digit Sum training dataset is implemented in a similar way, where 8192 randomly
generated samples are treated as a pseudo-epoch.

The MNIST Sum test dataset uses MNIST test set images instead of training set images and treats
65536 samples as a pseudo-epoch. The MNIST Multi-digit Sum test dataset also uses MNIST
test set images, treating 65536 samples as a pseudo-epoch for ng;q;; = 3 and 8192 samples as a
pseudo-epoch for ng;4;; = 128. The accuracies in Table E] are evaluated on one pseudo-epoch of
test datasets.

13

Under review as a conference paper at ICLR 2025

C HYPERPARAMETERS

Since the linear reconstruction layer and its reconstruction loss term don’t affect other network
components, we fix their loss weight to 1 and learning rate to 0.001. For our novel LFL variations,
we describe the manually chosen hyperparameters in text and put the hyperparameters chosen by
Optuna in tables. For DSL we use default hyperparameters found in the original implementation.

C.1 EXPERIMENT[3.1.]]
Both dNL and LFL-Typel are trained for 256 epochs, with 32 and 16 neurons in their hidden layers.
dNL’s Hyperparameters:

\ Meaning Value
lr learning rate 60.74940936219056
(1 | regularization loss weight 0.13347185900881423

LFL-Typel’s Hyperparameters:

\ Meaning Value
lr learning rate 28.353628505319445
71 | noise scale of the Ist layer 0.8044418562388825
72 | noise scale of the 2nd layer 0.09504842110818068
13 | noise scale of the 3rd layer 0.42150252547988554
B1 | regularization loss weight ~ 0.05891286543711857

C.2 EXPERIMENT[3.1.2]

Both dNL and LFL-Typel are trained for 4096 epochs in every run, allowing them to fully converge
with a limited number of hidden neurons. The hyperparameters are chosen with 256 hidden neurons
in each network.

dNL’s Hyperparameters:
\ Meaning Value

lr learning rate 3.721338105780261
B1 | regularization loss weight 0.5163968434483255

LFL-Typel’s Hyperparameters:

\ Meaning Value
lr learning rate 20.743324016859198
11 | noise scale of the Ist layer 0.9772471411825822
n2 | noise scale of the 2nd layer 0.8185423593180111
(B1 | regularization loss weight 0.1485845565420301

C.3 DSL oN MNIST Sum

The network is trained for 128 pseudo-epochs.

Meaning Value
lrprr | the logic module’s learning rate 0.11639833786002995
lreNN the CNN’s learning rate 0.001
€symbol € of the fuzzifier 0.2807344052335263
€rule e of the OR layer 0.1077119516324264

C.4 LFL-TYPE2 ON MNIST Sum

The network is trained for 128 pseudo-epochs.

14

https://github.com/dkm-fbk/DSL/blob/main/examples/mnistAddition/mnistAddition.py

Under review as a conference paper at ICLR 2025

Meaning Value
IrLrL the LFL’s learning rate 0.03233368589774149
IreNN the CNN’s learning rate 0.0013455349127554875
Mo noise scale of the fuzzifier 0.21398889643701835
m noise scale of the OR layer 0.9837843300240907

C.5 LFL-TYPE3 ON MNIST Sum

The network is trained for 128 pseudo-epochs.

Meaning Value
IrLrL the LFL’s learning rate 9.613947918454464
lreNN the CNN’s learning rate 0.0019151515603726996
Mo noise scale of the fuzzifier 0.9113745711049871
m noise scale of the OR layer 0.5785108825130485
051 regularization loss weight 0.07854073377893649

C.6 LFL-TYPE3 ON MNIST MULTI-DIGIT SUM

The network is trained for up to 256 pseudo-epochs on datasets with n4;4;:s = 1,2, 3 sequentially,
with early stopping if the average supervision BCE loss falls below 0.001 at any epoch.

Meaning Value
IrLrL the LFL’s learning rate 4.505968658051522
lrenn the CNN’s learning rate 0.0047565461690141616
Mo noise scale of the fuzzifier 0.8632755389984255
m noise scale of the OR layer 0.9467031818141409
51 regularization loss weight 0.09120659551465411

C.7 LFL-TYPEI oN MNIST SumMm

The network is trained for 128 pseudo-epochs, with 512 hidden neurons in the LFL-Typel module.

Meaning Value
IrLrL the LFL’s learning rate 3.4946338976075064
lrenn the CNN’s learning rate 0.0006208460070100641
Iryop the MLP’s learning rate 0.0627384382035572
Mo noise scale of the fuzzifier 0.3761108683081919

m noise scale of the AND layer 0.9385093053957093
N2 noise scale of the OR layer 0.5471963095839101
51 regularization loss weight 0.4498676093863323
Ba MLP loss weight 21.454211508035232
B3 label distribution loss weight 3.7151918234461507

C.8 LFL-TYPEI oN MNIST MULTI-DIGIT SUM

The network is trained for up to 256 pseudo-epochs on datasets with ng4;g1s = 2,3 sequentially
(training on ng;4its = 1 would allow LFL-Typel to completely ignore input carries), with early
stopping if the average supervision BCE loss falls below 0.001 at any epoch. There are 8192 hidden
neurons in the LFL-Typel module.

15

Under review as a conference paper at ICLR 2025

Meaning Value

Irrrr the LFL’s learning rate 11.331405298874264

lreNN the CNN’s learning rate 0.000571482276406197

IrypLp the MLP’s learning rate 0.012437761948519307
o noise scale of the fuzzifier 0.3115310029581702
m noise scale of the AND layer 0.8485090728796351

N2 noise scale of the OR layer 0.9770926024145439
51 regularization loss weight 0.13687607266487536
B2 MLP loss weight 8.473281653324152

B3 label distribution loss weight 1.266068955037883

D DETAILED EXPERIMENT RESULTS

Here we demonstrate what the NeSy predictors have learned with confusion matrices of their neural
classifiers and logical formulas learned by their LFL modules. In these logical formulas we repre-
sent digit symbols with their linear reconstruction layer’s reconstruction of corresponding one-hot
tensors. The reconstructed images are colored in yellow or cyan, representing symbols predicted
from two input images. In MNIST Multi-digit Sum we denote the carry symbols as Cj for input
carry being 0, C for input carry being 1, C{, for output carry being 0 and C for output carry being
1.

D.1 DSL oN MNIST Sum

Confusion matrices on MNIST training and test dataset:

MNIST-Sum DSL train MNIST-Sum DSL test
07000000503 0—001000200
~-0 0 2 0 0 0 O [¥M o o Hfooooooooo
~- 1 BEEY 19 6 0 2 0 31 1 8 ~- 0 pl}W 6 1 0 2 0 4 0 2

3

m- 0 1 1 0 2 0 1 [V 1005 a0}

0 4 0 0 0

n- 0 0 1 PAN 879 Y]! 0 5 B]

0 1 0 0 8 47 0 0 ~- 0 1 gl O 0 0 2 16 0 0
0 0 4 4 5 &7 2 8 - 0 0 1 Eay 1 3 4 2 1 1
5 BElE 15 0 ! o- 7 4 2 0 4 1 ELEE 6 0 0
]]] ! ' !]] ']] ' !

']])
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

original MNIST label
7 6 5 4
') \ -
IN) I w o EElE o
0
o
N
o
o
N
w
=
n
o
=
original MNIST label
4
H
=
~
o
o
=
o

8

9
.
)
- o
~
N
-

Learned formula:

vw=E HE

y=@EAIVvENE

v»=E\Bv@E B vda m

vy:=EH\DvE \Bvda avEa |

w=E\BvEarBvE Bvda rayvEr rm

R < A /)AVA(2 N 3)AVAK(5 Y O JRVA(O N < IIVAX(/ AN < AN 3 Y 2)
vo=ENBVvEBVYEDY@E \Byda ' BvEa rav@a eE
v=ENBvaBvEa ByvE BvEBvda |ayvEa Byanm
ys = (ENEDVENBYVEANDVERYEBE B EB Y|y E B [@ e

16

Under review as a conference paper at ICLR 2025

- @ErrpvEarva Bva/rbvEa/ BvEa |y @ m v

K
BE.\BD@E B

mn

yio = (BNEVENAVEBYENRYEBRYERY I |y EE (@ e

n=_E"BvEaravE BvEa 8ava Bva ava Bva |
e=ENBDvE/\BDvE "BvE"BvEa avEa Bva |
s=ENBvE BvE"BvEBvEa Bvada i
uw=H\BDvE BvEBvE BY@dE |
s=HNBYE B YEABRY@E N’
=H BvEa BvEa |

y17:(ﬂ/\.)\/(ﬂ/\)

ns=ENE

D.2 LFL-TYPE2 ON MNIST Sum

Confusion matrices on MNIST training and test dataset:

MNIST-Sum LFL-Type2 train MNIST-Sum LFL-Type2 test
07011001000 o-0 0o 0o o o flM1 1 1 o
~- 0@ o o 0o o 0 0 3 o0 ~-0piEH 0 0 0 0O 0 0 0 O
~- 0 12 1 0 3 1 4 10 0 ~-3 4 B 1 0 1 0 0 4 0O
gm01%310343 gm00100010
§v800020019 §¢1ooooooo3
%m—OllBlSlOl %m70001221100
Zo-2 2 0o 0o o 7Moo o o To-1 2 0o 1 1 41 o o0
~- 1 22 2 0 0 0 0 0 [ZER 2 ~- 0 6 2 0 0 1 0 2 gy 1
0019044729 oo10121712
»-6 6 0 3 5 8 0 2 7 [@-3 2 0 0 3 1 1 0 5 [N
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9

predicted label predicted label
Learned formula:
v=ENHE
yn=HrBvE NI
:(IAII)WAE)V(EAB)

-orsvanvamv@E g
=(!IAE)V(A)V(AH)V(EIAII)V(EA)
»=EDVEava asva ava aveng
v=ErBvda Bvapvaavanva -pvarm
v=-Eravarpva sva\avaava -ava mvE B
ys = (EWEVIINEvEDvEaBvVEBYE@ERY@EARYE@E Y (@)
y=E"Bvd ava ava - nva -BveaavarayvaEns

II) H B vE &

yi0 = (BNEVENAYEBYERYEBE\BY @ |yEa Y E BV (E)

17

Under review as a conference paper at ICLR 2025

=E3'avaavaBpvaBva BvaE rayvE BvE 8
=@ BvaavaBva pva BvEa BvE B
=@lavE/BvavEaBvd BvE@E g
=@ "Bv@a rBvanyvEd BvE, B
=@ avEa \BvE BvEa |
y16-(ﬂ/\)\/(/\)\/(ﬂ/\.)
yir=HANEVEANE
ns=ENE
D.3 LFL-TYPE3 oN MNIST Sum
Confusion matrices on MNIST training and test dataset:
MNIST-Sum LFL-Type3 train MNIST-Sum LFL-Type3 test
o 0 2 0 0 0 0 0 4 0 o- 0 1 0 0 0 0 0 1 0
— (VI 6741 0] 1 0 0 0 0 0 0 —~- 0 pEEE O 0 0 0 0 0 0 0
~ 0 2 0 0 0 0 1 2 0 ~- 0 2 0 1 plory O 0 1 0 1
2o 1 3 11 0 38 ksl O 3 0 0 Lm- 0 1 6 0 5 EE 1 1 0 0
gvf 0 2 0 1 0 0 0 0 0 ELEEl év— 2 0 0 0 0 0 0 0 1 B
%mfo 2 B o 0 2 1 0 14 0 %m— 0 0 EEER O 0 2 0 1 1 0
%uof 0 2 0 0 0 0 0 1 3 ém— 0 2 1 0 0 0 0 4 R 1
~- 2 66 1320 0 0 0 2 ~- 0 16 0111 0 2 0 1
©- 2 14 1 0 8 0 Erpe S 7 1 ©- 4 2 1 0 2 0 EEEf 5 1 1
o R 2 N
° ! 2 ’ pred‘:cted E?abel ° ’ ? ? ° ! 2 ’ pred?cted 5Ia bel ° ’ ? °
Learned formula:
vo=ENE
y=H"BvE I
T 7 TN /)AYA(2 PN O)AE(OB 2)
= NBvEaDvEa |y @A B
w=HBvEaBvEanv@Ea BvE B
A 7 AN <)AVA(5 AN O)AVAK(2 TN = JAVAN(3 N =)AVA(O A <)V < B /)
v=H "BvEDYEBYEByvEa - Bva \mveE 8
y=HNBvEaBvE BvEaBva Bv@Ea Bva myE 8
T 7 1 7)NV 5 TN 3 DAV 7 TN/ JOVA(2 TAY & AVAG 3 Y < DAV 2 Y O)N O T #)AL & 1Y =)AL < I <)]
yw=EH BV BvE - BvEa BvEarBva myv@E myve@ns
BvaravE g
yio = (ENDDV(INEV(E B VE B VEBvEa R YERY @8 ENa
=@ BvEapyvE BveaBvaBva Bva gV E gl
=-@BvEaBvAeaBvEarBva Byva pyvEa |
=@ BvE/BvEaBvEaBva By E g

18

Under review as a conference paper at ICLR 2025

ya=ENBVvEBYE BE \BYO@Aa |
ys=ENBVEHNBYE\BYAN|
vio=E RV EHNBYEH B
yir=ENBVEHNB

s =ENE

D.4 LFL-TYPE3 oN MNIST MULTI-DIGIT SUM

Confusion matrices on MNIST training and test dataset:

MNIST Multi-digit Sum LFL-Type3 train MNIST Multi-digit Sum LFL-Type3 test
o—ooooooooo o7100112100

0 0 0 0 0 0 0 0 —- 1 0 I 1129 a, 0 0 2 0
0 0 0 0 1! 0 0 0 ~N- 2 1 plak] 0 0 2 B] 2 4 0

m- 1 0 2 0 8 0 1 1 pdepd O

1

2

3

1 0 0 0 1 0 3

n- 0 1 1 0 EXEl 2 0 1 7 2

Two- 2 M 0 2 4 4 0 0 0 0
0 [E O 0 0 ~- 0 0 8 2 1 0 plok] 1 1 2
0 0 1 0 w- 0 0 1 0 3 0 0 m 5 1

original MNIST label
7 6 5 4
! u
H o o 'l - o o
piry
w
o I o
~
= o o
o o o
o o <)
o o
o =
o <)
L o
o o
original MNIST label
4
H
~
~
<)
o

8
-
-
o
o
—

o- 13 0 0 0 0 0 3 3 0 BEE o- 14 0 1 0 2 0 6 8 [V 978
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
predicted label predicted label

Learned formula:

y=CoNENB Vv Corn@A BV ConBANR) Y (CoNHNED) YV (ConBABR) V (Co A
(O O)AACEWA 7 TN = INACEPA # BN -)RACEWAY 3 K 7 IRNACEIWA < B / RACEWN ~ I <)AY
(G ¢ 1N 2 INAERN 2 TN 7 INAERA / BN 7 INACERN < 1N < INE@ERN o 1N 7)NA(ETN 7 I
2)RAVAEUN £ 1N / INAERN 3 IN -)NA(ERN 7 IN O)

y = (CoAEIANED V (ConBNE) VY (CornBINED) VY (CoNTNED) vV (Co ABARD V (Co A
(OFN / INACCATN 7 TN < INAERN # TN 2 INAOTN 2 TN 7 INA(ETN < TN 2 INA(GRN ~ IN <)\
(G < 1N < INA@GWN 2 TN 7)INA(ERA / BN 7 NGRS < 1N < IN@EWN o I o)NA(ETA 7 I
3)AEGEN 7 I 2)NA@WAN = I 7 INAEwN 7 IS |)

yo=(CoNEINED) Vv ConB@ B Y ConBAE) Y (Co NNV (ConBAED V (Co A
(O 2 INACETN 7 TN = INA(ETN © TN < IR 3 1N 7 IRAE@TN < 1N 3 INA(ETN < IN 7)Y
(G N < NG 2 T < INAETN | TN O INAETN 5 TN - INAETN O 1N | INAETN 7 I
[«)RVAEUN £ TN 2 INA@RN = IN 7)NA(ETN 7 1N 2)

ys = (Co NEIAED vV (ConBNED VY (ConBBAID) V (Co NANED V (Co ABARD V (Co A
(OFN 2 INAEATN 7 TN ¢ INAERN 7 T < INA@TN 2 TN © INA@YN < I < INAGRN ~ I 7)\
(G < PN ¢ INA@WN 2 1N O)NA(ERA / BN | INACERN < 1N 7 INE@ETN o TN 2)NA(ETA 7 I
<)IVAOWN 7 TN < INA@A = TN 7 INAEwN 7 IN 2)

yu=CoNENEV CornB@ R Y ConBAB) Y (Co NEANED) VY (ConBARD V (Co A
BB C AHENEY ConBrE Y ConBADY CornBANR) Y (CLAEINED) V
(SN I 7 INACERA 2 T / INACEWAY / I 2)RA(EWA < P 7 IVACGTA O N : IN(ETN 7 I
| ¢)AVA(EWN £ PN <)AA(SWN 3 FN O)AA(EGWA 7 B «)

ys = (CoNEIAD) vV (ConBANED) Y (ConBIAB) Y (CoNINED Vv (Co ABAE) V (Co A
(OFAY <)ACEPAY 7 PN #)AVACONWAY # PN 7 DAVACIWAN 3 PAY -)AVAICCIWAN < PAY ¢)AVACSWAY < PAY O)Y
(G < 1N 7 INAEGWN 2 TN 2)NA(ERA BN : NGRS < 1N < INE@ETN o I - INA(ETA 7 I
7)AVA(GWN 2 FN ¢)RA(GWN 3 J /)XW 7 1N <)

19

Under review as a conference paper at ICLR 2025

yo = (CoNEIANBD Vv (Con@NE) Y (ConBAANED V (ConBINE) V (Co ANBAID V (Co A
(ORN & RACEWA 7 TN 7 INACETA © PN # IRVACEPAN 3 PN = IVACERPAN < VY 7 VAW < I /)Y
ciorgr@y gy coAfmrBm Yy GoABAE) Y (G AERAR) Y (CL AR
2)NA(EGTN 2 TN 7)NAEGEN = TN 2)G < BN -)

yr = (CoAEIAED vV (ConBNED V (ConBBANER) V (CoNIANED) V (Co ABAED V (Co A
(O RN 7 IRACETA 7 TN O INACSWAN £ AN & IRVACPAN 3 VAN < IVACORWAN < VA = VRSN < WY 2)Y
(G < TN O INAEWN 2 TN < INA(ERA / BN < INACERN < 1N / IN@EWN o 1N -)NAETN 7 I
7)IVAOWN 2 I 7)NA@WA = BN : INAEwN 7 IN 7)

ys = (Co NEIANED Vv (ConBNED V (ConBIANE) V (Co NIAED V (Co ABAED V (Co A
ORN # |RA(EWA 7 I / INACEPA ¢ TN O IRNVACSPA 3 PN < IVACERPAN < VY < AVACEWA < PN :)Y
(OGN ¢ I /| INA(CWN 2 TN < INA(EWN | TN & INA(ETN = TN - INAEN O 1N 7 ISR 7 I
[O)RAEEN 2 TN 7 INA@RN = I <)NA(ETN 7 1N 7)

yo = (CoNEAINBD) vV Con@B@ANBR) Y (ConBAED) Y (Co NEANE) Y (CoNB AR V (Co A
A @V Al BV CorB IV CorB BV (CornEANE) YV (CAEANEDV
(SWN <IN 2 INAERN 2 1N -)NA(ERA / TN 7)NACEN < 1N 2 INA(ERN O TN 7 MA@ 7 I
[/)RAEEN 2 TN O INAGRN 3 IN <)NA(ETN 7 1N <)

Cy = (ConEANEDV (CoNEANBD V (Co NEINID) V (Co NEINED) V (Co NEAAED) V (Co AN
Bvccoangr B Y corn@ari v (CorB@n@E) v (ConBANR) Y (ConBINED) V (Co ABIA
BV B BV o B A Y (CorBAR) YV (CorBIANE) v (Co NBINED V (Co ANBIN
B\ o mnmvConlmnm Y (CorlNE) Y (CoAINID Y (CoAINRD) Y (CoNTINE) v
ConllrNE) v (CorllrNBA) Y (CorlINBD) Y (CoNBARD) Y (CoABABRD) Y (CoANBAID) V (CoA
B @)V, B AV (CorENED) VY (Cor@AE) Vv (CoNEINED V (Co ANEINED) V (Co ATIA
<)NA(GYA 0 T O)NA(GTA O T 7 IAAKEAN O T = IAVAKEYAY O YA 3 IAVACOTAY O Y < IAVA(eOTAY 7 IAY 2)Y
CornElN)V (CorE @)V (CorBA) Y (CorBAE) Y (CoNBINED V (Co ABINED) V (Co A
B BV CorBAl v (CoAnBANB) Y (ConBAE) Y (ConBINBRD) V (Co ANEIANE) V (C1 ABIA
<)N < T 2)NA(OON < 1N /)ACETN < I O)NACETN < T 3 INA(ERA & 1N =)A(OIN ¢ T |)Y
o, ngar@v e B Em v ABAR) Y (CiABAB) Y (CiABND) Y (CABIANB) V (Cr A
BEv . ABAR) v ABANE) Y (C AN Y (C AN Y (Ci AN vV (Cr AN
BV AmNE v Al Y CAmNB) Y (o ABABRD) Y (CiABAD Y (CrABAE) v
;A B BV CA @ AR Y (CioAE AR Y (CiAEBAR) Y (CiAB AV (C AERABR) V (Ch A
EANE Y ABAR) Y (G A AR Y (CiABAR) Y (CARIND Y (CARINE) v (Cr ABIA
Bvc. B gamvc, A8 B v CciABAY (G A BAB) Y (CiABAE) Y (G ABIAED

C; = (Con@ABV (CorNEINED V (ConEINBD Y (ConEINED V (ConBARD V (Co AN
BV, B BV o B ARV (CorBAR) YV (CorBARD) YV (ConBIANRD) V (Co NBIN
Bvicoan v B Yo B AV (Co B AR Y (CoABAE) VY (ConBA
9)NACOA 7 1 <)NACETA 7 T &)AACVAY 7 T = DAVACYAY 7 TY 7)AVACOTAY 7 Y = IAVACEOTAY 7 I\ =)Y
(Cond @V (CorBNED)V (ConBNR)V (CoNBNBDV (CoNBNR) VY (CoABINED V (Co A
B/ BV, B BV (Co B RV (CorBINED) YV (ConBINBD) Y (CoANBINED V (Co ABIN
<)NACGA 7 1 &)NACGA 7 T 2)AACVAY < T / IAVACEVAY < TN =)AVACOVAY < TAY 7)AVACEOTAY < I\ £)Y
(CorENBA) VY (CorBNED) Y (C AEIANE) Y (C A ABEINB) YV (CLABIANED) YV (CLABIANED) V (Cr A
(< I 7)WACGORRA & T ~)NACEA & TN & \NVAUORAY & TN = WACCRRA & I 7 \ACERN & I = \NVA(eA & I
3)NA(GTA & 1 7)NA(GTA 2 7 7)AACGA 2 T =)AVAKEPAY 2 TY <)AVACERAY 7 AN =)AVAC@Y / Y <)Y
ciABrEm) v CcoABAR) Y (CiABAR) Y (CiABARD) Y (CABAR) Y (CLABARD YV (Cr A
(O 7)WAGSRRN 7 I ~)NACEWA 7 I & \NACORAY 7 T = \WACRR 7 I = \NA(EWN 7 I 7 \NA(evA 7 I
2)NACGTA 7 1 3)NA(GTA 7 1 7)AACETA = T <)AACETA # T &)AVACEIA ¢ Y 2)AVA(GIA # 1Y / MY
A @ 8V (A AR Y (G A BAR) Y (CABABD) Y (CABARD) Y (CLABIANED) YV (Cr A
3 I 7 INACETA 3 1A =)IACOVA 3 I < INACEIAY < 1Y < INACERA < I < NACEIv < I = INI(ETA < I
1)NACEIPA < T\ <)AACEIRAY < I O)AACEIWAY < 1Y 7)AACCIRAY < 1Y #)AVACCIWAY < 1Y 3)AVACCIWAY < 1Y <)

D.5 LFL-TyYPE1 oN MNIST Sum

Confusion matrices on MNIST training and test dataset:

20

Under review as a conference paper at ICLR 2025

MNIST-Sum LFL-Typel train MNIST-Sum LFL-Typel test

o- 0 0 3 0 0 0 0 2 EEEE O o-1 ah 1 0 0 1 0 0 Ega o

Ll 0736 Y 1 1 0 4 0 0 0 0 Il 1132 Y] 0 0 0 2 0 0 0 1
~-2 1 1 0 0 3 BEES] 0 O 6 N*010206003

mn- 0 1 0 0 6 0 0 0 (V1003
2 Kl o 0]! a 0 0

n- 0 0 1 [Vl 8589 NV 0 0 0 2

original MNIST label

4

e

o

o

“

©

w

O

o

=

o

Sy

o

o
original MNIST label

4

o

o

© 2 BEEE 5 0 5 0 0 0 0 1 © 0 m 0 0 4 0 1 1 1 3
o 1 2 0 12 1 2 0 EEpAl 0 2 o 0 1 0 9 5 3 0 ek 1 1
))
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
predicted label predicted label

Learned formula:

v =ENHE

y=H "EBvE NI

= "IDvEANEY@ENB

p=HrBvEamv@E BvEa, |

w=H"BvEBavaav@a ByvE m

R 7 AN <)AVA(< Y /)AVAK(= Y O JRVAK(2 U = IRVA(O A <)IVAX(2 Y 2).

vo=H"BvE BvE BY@E DHyva\Bv@Ea \|mvEa B

e 7 VA &)AVA(& AN / JAVAC < PN = JAVA(< W 2 VAVAK(7 N O)IVA(2 Y =)AVA(O Y 7)AVAK(3 TN)]

ys = (NEVEBY@EBYEBYE B EDYE RV EBYENR

= "BvE DY@ ByEaBvEaBvEa Bvar lvEn,

E) (o0 7)AVA(3 P)

= avaavasvE|nyasevE ByEa Ry EmyE =
=(ﬂAl) (67 < VA< AN 7)AVAC 5 Y & DAV 7 TN <)AVAA 2 Y <)IVAK(2 TN =)AVA(3 Y #)
ec=EH\BvE \BDYvE"BvE\BYEd BvEa BvEa @
s=EH\BvAE \BvEBvE BvE BV E m
w=HBv@a BvEa BvdEd BvE B

IEEN(2 Y 7)RV & PN <)AVA(7 BN #)AVA(< B ¢)

ym—(ﬂAl)V(A)V(ﬂA)

=EHNBVvEANE

vs=ENE

D.6 LFL-TYPE1 ON MNIST MULTI-DIGIT SUM

Confusion matrices on MNIST training and test dataset:

21

Under review as a conference paper at ICLR 2025

MNIST Multi-digit Sum LFL-Typel train MNIST Multi-digit Sum LFL-Typel test

o-0 O O O O O O O pEPE O 07100200000
Ll 0742 Y 0 0 0 0 0 0 0 0 — -JREE] 1 0 1 0 0 0 0 0 0

~- 0 0 0 0 0 BEEX 0 0 0 0 ~- 1 0 2 4 0 pipE] 1 1 0 0

m- 1 3 1 0 0 1 0 plezy 0 0

1 0 0 0 0 ~- 3 0 1 plakE] 2 2 0 0 1 0
0 0 0 0 0 - 0 1 ElEE 0 0 2]! ah 1 0

o-1 0 0 1 peEg 1 0 0 0 0 cn7040201013

3

<)
-
<)
<)

1 0 0 [F¥E] O 0

5 4
o o
2
bl ©
O
o o
o =
o o
o o
o o
N o
o o
&
© B
i3

original MNIST label
6
o
o
o
o
o
o
w
o
=
(=)}
o
=
=

8 7
' }
- o
o o
&
Kl o
=)
]
© By
B
o o

) ']]])]))) ')]])]) '
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
predicted label predicted label

Learned formula:

yo = (@EANEDV (CornHNR) Y (ConBAR) VY (CorBANBD Y (ConEABD V (Co BN Vv
ConBANBR) VY (CornBNR) VY (ConEINRD) V (ConEAED) V (Co NEIANED V (CL AEANED V
(WY < T < INETN 2 [N /)NACGTA 7 I 2 INA(STA < I © INA(SRA 2 T 7)NACERA < 1Y = |h%
(W 3 TN ¢)AVA(EIWA O Y < INACEWAN < oY < JAVA(< TN 2 TN =)N = I < I & AV 7 Y = TAY I
(IO INAEWN 7 I 7 IS < INAL I s I < I < IR/ I 2 TN e O < A IN 2 N O Y
oyl a g/ gyvda g o\l a g @@ B = BV (CA
(2 N 7 I < A O AV 7 TAY 3 VN / TN < WY 3 DAVAC s TN 9 JAY 3 I/ N 3 VA S TN 2 Y 3 I /I < Y 3)
y1=CoNHNE Vv ConB B Y ConB ARV (CoNEANEDV (Co NBINED V (Co A
(2 PN 7 INACETA & B < INACETA 2 B 7 INACETN O RN / INACETN « I 7 INACGTN / 1N 7)%

—

(SN 5 TN < INAETN 7 TN 2 INAETN 7 1 2 INAEWN 7 I | INA(GTA 2 BN 7) AERN - I
TSN 3 I 7 INA(EWN O 1N © INA(EW < 1N & VAL / BA / I O)AL s Y & B 2 DN 7 I
N 7 INA(3 TN 2 I O INA(3 TN & Y < VA< TAY 7 TN 3 INAKEWAY = 7Y 7 Y < INVACEWA / 1N 7 I
vENA B/ BvEH BB EH A ' B VE E BBV EA
AHAH)V(HAIAHAAIIW(HA[IAAHAE)V(BA!IAAAII)

= (Con@mnm Vv (ConB NV (CorBNE VY (ConHINB) V (Co NEIANBD V (Co ABIA
con@r@ v (ConB/NR) Y (CornE ARV (CoNEINR) Y (Cr ARNE) v (C: ABA
oA BBV A RANE) Y (CiABNB) Y (CiABARD) Y (CoABAB) v (CLABLA
SWN OTAY 1)AVACEWA < AN 7)V 7 VY < Y = DAL 7 Y & Y 3)AL S T o TN = VA 2 Y 7 I
BB Bvil B8l g8/ 8yE B3/ 8 VE B a3
(7N 3N OW < (7 TN 3 I 7 BN 2)V 7 TN OTAY / I = ONA(3 N < TN 7 TN < I 7 I < I
N O IVAL 7 T 7 N 2 I O IR 7 T 2 I S IO/ I s N 2 T /N G NA(S I 7 I 2 Y 2 I O))

= (CorlNEA)V (CorBNA)V (CorBNA)V (CoNEFANE) YV (CoNEINED V (Co NBINED) vV
/\ﬂ/\.) (CorENE) VY (Cor@ BV (CoAEINED) Y (C1 ANV (CLABARD V (Cr A
/\)\/(Cl/\/\E)V(C’l/\ﬂ/\)\/(Cl/\ﬂ/\ﬂ)\/(Cl/\/\)\/(Cl/\ﬂ/\)\/(Cl/\ﬂ/\ﬂ)\/
(oA < T\ =) s TN 3 1Y = DA 7 Y+ T < DO o I o T < I3 T < T < DA < Y 2 I o I 7 [l O I
(< A/ I s 2 N2 (2 A s N2 3)NA(3 TN 2 Y e Y <)N < Tl 7 TN 7 I 2)NVACEAY 2 Y 2 T 7
O JNACEIVAY 3 TN / T 7 Y 3)NV 7 Tl TN 2 T 7 Tl < (9 Il e Y s I o T < IR(o T 2 TN 7 T 7 I 2)

= (Conl BV (CornB ARV (CornB ANV (ConENED Y (Co NEINB) V (Co ABIA
\v(ConBANA) YV (ConBIAND) V (ConEARD YV (CoAEINE) Vv (C: ANED Vv (C: ABA
IWAETN 7 1N < INAEEN 7 IN ¢ INAETN 7 1N <)NEEN 2 1N | IWACERN « 1N 7)NAETS
A O)NA(SIWAY O VoY <)NACEIWN O T = INVA(EWA ~ 1N < IAVA 7 Y 2 Y 7)OVAK(< 1N < Y 2 IRA(7 I
N OINA(= TN O TN <)AVA(2 PN = T © VA < TN < IS © IV 7 Y = I O)R 7 TAY 5 Y / Y & IR
(7N SIS IO 7 IS 2 IO TN O)RA(7 I & Y < TN <)AL < TN 3 IN O = I 7 N e I < I
O JAVA1 9 JAY / AN 7 AN 7)AVA(O JAY + JN < JAY ~ IRV O TN = AN < VAN O JAA((T / JAY 7 JAY 2)IVAK(5 I
(< AN 7 U 2 WA 7 JAVA(7 TN 2 VY 3 AN < VY 7 AL 2 N 3 TN / WY & IS O JRVAN(< PN = W 7 Y & JAY <)

Vv
v(Vv v
DV (Vv Vv
Vv (Vv vV
V(
V(

[oh IE!HHE N [w]e

Ya
2]
H
2|

22

Under review as a conference paper at ICLR 2025

ys = (CorlNED vV (ConBANE) Vv (CorBNE) V (Co AR V (Co ANEIARD V (Co ANBIN
BV B @V B B Y (Cor@AR) v (Co BNV (C: AEANBD V (C: ABA
BBy A AR Y AN Y (C ABABD) Y (CABNA) Y (C ABINED Vv
(G O < INAEN < I o I 7 IN 2 TN «)Y 7 I 2 I ©)NACERA 7 TN < Y = INA(OWA 2 TAY 7 I
ONA(2 I = W72)NA(eI / N = I 7 DIACEA < I < Y = T o INACEN o T = TN = AN =)IVA(2 I
2N NN ON U NI 72N INE@E s N s N2 I s I e N N I 7 I s N2 1 3)

ye = (CoNHNBR) vV (Co NB AV (ConBAR) YV (ConFNRD Y (CoNEINED V (Co ABIA
<)AACCAYAY & oY O AVAC@NVAY 3 TAY 5)AVA(@IWAY O Y &)AVAC@IWAY < TAY 2)AVAC@WAY / FAY < AVA(ETAY < I
(O)NAGEN 2 1N 7)INA@GEN 7 1Y 7 INA(EGRN 7 I &)@ 2 IN = NG ¢ N 7)NETN 3 I
2 INICETA O T < INACETAY ~ TN 7)V 5 7Y 7 TN 3)V & TN o Y < INVAC@wY / TN & TN = INVAL 7 I < I

PN 2 IAA(S TN 2 WY 9 Y O I 7 T O T < AN =)V 7 TN = Y 2 I © IRV 7 N = 1N 7 Y =)RR 9 TN
I 2N 7 I N S I 9 N 2 INA N SIS 7 1 & DNAGON 7 1N 3 IN O 1N 7 1Y
(/NSO < TN 3) s TN 7 TN 2 T 3 1 7)R 7 I 6 I < TN o Y < I 2 TN 7 T 7 T 2 T 7 IAY <)

yr = (ConHNE) V (ConB BV (ConBANR) Y (CoNEFINED Vv (Co ANEIARD V (Co ABIA
Bvic g mvco B @Yo B AV (Co BBV (C: ABNB) v (C: ABA
[/)AVACEIWA = T =)AVACCIwN 7 TAY < \AVACCRN < Y 7 INVACEN 2 T < INACETN & I © INACEGTA 3 I
3)AACCAY O TAY & AVAC@RWAY < TN = IAVA 7 Y = AN 7 DA 7 T e TN < DIV S 1 7 I < IR 2 TN O T <)Y
(IO & IV TN 7 I = OAC3 I 2 N O)R = I 7 1Y 2 DNVACORmA 3 TN < I 2 IRVACEAY 7 1Y = I
O/ Wz cNONA(S I 2 I8 3 N < INA(2 I 2 I / N < DA 7 Y 9 TN < TN = DR 7 I & 1Y 3 I
(9)AA(7 I 6 TN 3 AN O JAVA(7 TN 2 Y < TN < TN < VAL / TN 2 TN 2 T & Y = AR 9 I 6 TN < Y < I O))

ys = (CoAllNED) v (CoANEBANB) VY (CoANBNE) V (Co NN V (CoNEINED V (Co NBINED) vV
Con@m BV (CorBNBA) Y (Cor@AR) Y (CoNEINED) v (C: AlINE) v (C: ABABD V (C1 A
BBV A @) v C A BN Y (C.ABAB) Y (CoABEAID) Y (CiABIAED) Vv (Cr AN
|7 NVACETY < TN = IV 9 T & TN < DAV < WY 2 WY < DN / Y & TN =)RVALC = VY < WY & Y < JAYA(7 JY < I
BNB'Ea a5 0 8vaCDaayEoa By E o\ 8 Eml
(3 T O DAL 7 TN 7 TN 2 VY = VA 7 T 9 T 3 T O AVACOIWAY 7 I 2 T < TN O JAVA(& TN 3 TAY = I 2 1Y 5)

yo = (CoNHNE) V (Co B RV (Co BNV (Co NFINBD V (Co NEIANED V (Co ANBIA

P~~~

Bvconmg B v CorB BV (CornEAR) VY (ConENR) Y (Ci A AlNED v (C: ABA
3)NA(EWN 2 [N O INA(ETN 7 I / INACGWA 7 I 7)NACEWA 2 TN &)NACETN & I 2 INA(ETA 3 I
<)NAGWN O BN #)AVA(EWN < I < I s I O I / INK(O TN = TN © INA(7 1Y 3 BN © IRVA(ERN 1 I

2N 2)NAERN N I OGN 2 W 7 I/ INAC W SN 7N O S T 2 I 2 Y < A 2 I
(IO AN N s INO NG IN /TN 2 TN &)RA(O TN / 1Y 7 N o N 7/ I < I & I+)Y
(s 2 N 3 I O)NA(GWA 7 TN & TN 3 I O)NA(GWAN 7 TN 2 TN < N O)AVA(7 BN 7 I 2 P 3 TAY <)

Co = (Conf@)v (Corn@ Vv (HNBD) V (CorNTINID V (CoNlNR) Y (CoNTINRD) V (CoNTINED v
(CorlNB)V (CorlINA)Y (CorlINED) Y (CoNTNED Y (ConBAID) Y (CoABARD V (Con
BBV oA BNE Y (CornBN) Y (Cor N Y (CorENED) Y (CorBINID Y (Co NEANEL) V
(CorBINEDV (CorBINED V (ConBINED V (Co NEINED) V (Co ANBANED V (Co ANBAANERD) V (Co A
oy co@B v (CoAaNa) Y (CorBNID Y (ConBNE) Y (CorBINED Y (Co BN V
(CorENBD)V (CorBINED V (Cor@NRD V (Co NEINED V (Co ANEINED) V (Co ANEIANRD V (Co A
EE) Y (Co BV (CoNENR) Y (CoNEINED v (CoNEINED V (CoNEINED v (Co NEDNED) V
CciANmNm v A mNa) Y (coAlmNE) Y (O AN Y (CoAlBNE) Y (CABNBD V (Cr A
o@Evce.AmEy e AgNmy e A BANR Y (A BNB) Y (CoABANE) Y (C: B NE) vV
i AFAD) VY (A AE) Y (CoABARD) Y (CLABAB) Y (CLABINBD) Y (CLABIANED V (Cr A
B BV ABrE v BN Y AN Y (C B B Y (CoABANE) v (CL ABIA
7)NACGTA 3 7 <)NACGTA 3 T 2)AACETAY 3 T 3)AVACKEIAY 3 1Y O)AVACSIPAY 3 Y <)AVA(GIWA O 1Y /)Y
i@ B Vv (A AR Y (CrAEBARD) Y (CAEBABR) VY (CrAEBAR) V (CAE-RABRD) V (Cr A
(oI o IRA(EY o I < INA(EWA < 1 / INACEA < A = INACEITAY < 1Y = INACEITAY < I o INACEIAY < I
< A7 I 7 T e V7 Tt 9 TN < DA TN 3 I = IS TN < T 2 NG 7 T & 9 IRYA(7 f o T o)Ig(7 I
(2 Y < AV TN 2 Y < INVR(O T 7 TN & DAVA(JAY s Y # TN o DA 7 TN 7 TN & TN < DAV 7 TN 2 I 3 I G
(B"H EH'BVvE BB B EH B HBYE I BBl a aml 8

¢ =EH\DvEBVERYE B E RV Co O)Y (Co B NE) YV (CoA
B BV, B \E)V (CorB NV (CorBANR) YV (CorBNED) Y (CoABANRD) V (Co ABEIN
BV oo B R Y (CorBra) Y (CorB)V (CornBABR) Y (CornBAR)V (CoNFNE) vV
(CondNE)V (CoNdNED) V (ConNENE) VY (CoNENBD V (Co NARD) Vv (Co NN V (Co A
BBV o BNRY (CordNE Y (CorBNR) YV (CorBNED) Y (ConEINED V (Co AN

23

Under review as a conference paper at ICLR 2025

BvcoABAaYCornBAR Y (CoraNB) v (Cor@@r BV (CorlaNED) v (CorBNED vV
Con@NBV (CorBNED) v (ConBINAD) Y (CoNEINED V (Co NEIANRD V (Co AN V (Co A
B AV o BN v AmNa) Y (AN Y (CABAR) Y (CiABAR) VY (CiABA
Bvo.ABNav e ABANa Y. AB AR Y . ABARD) Y (C.ABAB) Y (CABANE) V
o, @ @)V Cc A AR Y (CioABNR) Y (CiABANB) Y (CLABNED Y (C A A-INB) V (Ch A
7 I 7)NACORN 7 I 7 \NACGTN 7 TN 2 INACETN 7 I &)N 7 T 3)N 7 TAY ~)NA(oPN 7 I
[7)MACORN < TAY =)NACORWA < 1A\ =)NVACCRWN < TAY <)NACEWA < A =)NVA(EWA < T <)NVACewA < 1A =)
N @@ v e @ Em v i ABAR) Y (CiABANE) Y (CiABINED Y (CABANB) V (Cr A
& I 2 INACETAY & I 7)NACEWA ¢ T < INACEIRY < T & INVA(@TA < I 5)IA(GIWA & I < INI(GT = I
2 IVACOIWA = T 7 INACETA = Y ¢)NAKETA O 1Y o)NACGTA < T4\ < \NVACEIY < T\ = INVACOIWAY < 1 7)Y
(SN < T4\ 7 INACEA < Y ¢ IRV 7 I 2 TN 7 DA s TN O 7Y = IR0 S TN < T = VA< Y < T = DR s A
SN A 2N < Y s N7 I < I 2 IRA(2 Y 7 N o I e T 3 I o IR e Y 7/ 1Y 5 A3 1 = T
3 INE(O TN 2 T o)AVA(7 AN 2 WY O)AVA(= WY 7 TN O)AVA & IAY = TAY < VAN = VY 2 VY < \AVA(@IWA & I
< WY 2 INACeA & I /I 2 INACETA o T + JY 3 INACETAY / I4Y 7 IY < INACEIRAY < I = I 2 JNA(Eip)
H B/ Bva a8 8viiddad a8ayidaEHEydaa ey s
B BBvE a8 BvE Bl avE B 88V (E B a8
Bngva o @ 8avEa B 3 ByEa B B 3 BE a8 5 EA
< 1O 7 AN 3 DAVA 7 I < Y 3 TN < DNV 7 TN 9 AN O TN < DAVAL 7 TN 7 TN 3 TN/ Y & DAL TN 2 TN 3 1Y 7 I
&)IA(7 I o TN & T < TN 7 AVA(7 Y & TN / Y 7 1Y 3)RV 9 T 2 TN < T 7 TN O JOVA(< Y = T & TN = T <)

—_— —

24

	Introduction
	The Logical Formula Learner framework
	Relaxing binary logical neurons into fuzzy, differentiable ones
	How existing methods fit into the LFL framework
	differentiable Neural Logic Network (dNL)
	Deep Symbolic Learning (DSL)

	Our new designs
	LFL-Type1: Learning arbitrary logical formula like dNL, but with Gödel t-(co)norm and noisy weights
	LFL-Type2: Learning a look-up table like DSL, but with dense, noisy symbols and weights
	LFL-Type3: Using frozen AND layer like DSL, but with independent weights for the OR layer

	Network architecture for LFL-based differentiable NeSy predictors
	DSL's vanilla architecture
	Our new trick: Adding an MLP as gradient shortcut

	Loss functions and regularizations

	Experiments
	Comparing dNL and LFL-Type1 on learning logical formula from binary data
	Learning a 3-layer logical formula with negation
	Learning MNIST Sum's formula with limited number of hidden neurons

	Comparing DSL and LFL-Type2 on MNIST Sum
	Experimenting LFL-Type3 and LFL-Type1 on MNIST Sum and Multi-digit Sum
	Ablation study

	Related works
	Neuro-Symbolic predictors
	Diffferentiable modules for Symbolic Regression
	Integraging neural networks for Inductive Logic Programming

	Conclution and future work
	Implementation details
	Dataset description
	Hyperparameters
	Experiment 3.1.1
	Experiment 3.1.2
	DSL on MNIST Sum
	LFL-Type2 on MNIST Sum
	LFL-Type3 on MNIST Sum
	LFL-Type3 on MNIST Multi-digit Sum
	LFL-Type1 on MNIST Sum
	LFL-Type1 on MNIST Multi-digit Sum

	Detailed experiment results
	DSL on MNIST Sum
	LFL-Type2 on MNIST Sum
	LFL-Type3 on MNIST Sum
	LFL-Type3 on MNIST Multi-digit Sum
	LFL-Type1 on MNIST Sum
	LFL-Type1 on MNIST Multi-digit Sum

