
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VR-SAMPLING: ACCELERATING FLOW GENERATIVE
MODEL TRAINING WITH VARIANCE REDUCTION SAM-
PLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in text-to-image and text-to-video models, such as Stable
Diffusion 3 (SD3), Flux and OpenSora, have adopted rectified flow over traditional
diffusion models to enhance training and inference efficiency. SD3 notes increased
difficulty in learning at intermediate timesteps but does not clarify the underlying
cause. In this paper, we theoretically identify the root cause as a higher variance
in the loss gradient estimates at these timesteps, which hinders training efficiency.
Furthermore, this high-variance region is significantly influenced by the noise
schedulers (i.e., how we add noises to clean images) and data (or latent space)
dimensions. Building on this theoretical insight, we propose a Variance-Reduction
Sampling (VR-sampling) strategy that samples the timesteps in high-variance
region more frequently to enhance training efficiency in flow models. VR-sampling
constructs sampling distributions based on Monte Carlo estimates of the loss
gradient variance, allowing it to easily extend to different noise schedulers and
data dimensions. Experiments demonstrate that VR sampling accelerates training
by up to 33% on ImageNet 256 and 50% on ImageNet 512 datasets in rectified
flow models. Furthermore, VR-sampling could simplify the hyperparameter tuning
of logit-normal sampling introduced in SD3. The code is available anonymously
in https://github.com/AnonymousProjects/VR_sampling.git.

1 INTRODUCTION

Diffusion models (Song et al., 2021b; Ho et al., 2020; Dhariwal & Nichol, 2021; Song et al.,
2021a) have emerged as powerful generative models, showing remarkable potential in producing
high-quality data across various domains, such as image generation (Rombach et al., 2022), video
generation (Blattmann et al., 2023), and molecular design (Abramson et al., 2024). While traditional
diffusion models typically rely on a diffusion denoising loss for training, the latest state-of-the-art
models—such as Stable Diffusion 3 (SD3) (Esser et al., 2024), Flux1, and OpenSora2—have adopted
flow matching training loss (Lipman et al., 2022). This approach offers improved training efficiency
and a shorter sampling path, making it a preferred choice for modern generative models.

Generative modeling seeks to approximate and sample from a target probability distribution. A
prominent approach, diffusion models (Song et al., 2021b; Ho et al., 2020), generate samples by
simulating a stochastic differential equation (SDE) that gradually transforms a simple distribution into
the data distribution. Their success is largely attributed to a simple regression-based training objective,
which bypasses the need to simulate the SDE during training. Additionally, an ODE exists that has the
same marginal probability as the SDE, providing an alternative path for model training. Recent work
has extended the use of ODEs in generative modeling. For example, continuous normalizing flows
(CNFs) (Lipman et al., 2022) leverage flow matching, a method for directly regressing the ODE drift,
akin to the training process in diffusion models. Similarly, (Liu et al., 2022) introduced rectified flow,
a simplified ODE-based approach for transporting between two observed distributions. Expanding on
these advancements, SD3 (Esser et al., 2024) combines both diffusion and flow formulations to train
a state-of-the-art, open-source text-to-image model using flow models. SD3 also highlights a key

1https://github.com/black-forest-labs/flux.git
2https://hpcaitech.github.io/Open-Sora/

1

https://github.com/AnonymousProjects/VR_sampling.git
https://github.com/black-forest-labs/flux.git
https://hpcaitech.github.io/Open-Sora/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) CIFAR10 (b) ImageNet 256× 256 (c) ImageNet 512× 512

(d) CIFAR10 (e) ImageNet 256× 256 (f) ImageNet 512× 512

Figure 1: Here h2
tSt represents the derived upper bound on the variance of conditional loss gradient

estimates. Note that t = 0 indicates the pure Gaussian noise, and t = 1 refers to the data. The curves
are generated using Monte Carlo simulations under three noise schedulers: linear (Liu et al., 2022),
cosine (Nichol & Dhariwal, 2021), and traditional diffusion (Ho et al., 2020). (a)-(c) display these
curves for datasets with different dimensionalities: CIFAR10 with 3× 32× 32, ImageNet 256 with
latent spaces of 4× 32× 32, and ImageNet 512 with latent spaces of 4× 64× 64. (d)-(f) presents
the probability density function π(t) of VR-sampling distributions.

challenge in rectified flow, noting that the target ODE drift is more difficult to learn at intermediate
timesteps. To address this, SD3 introduces logit-normal sampling and mode sampling to sample
intermediate timesteps more frequently, thus improving the training efficiency of flow models.

In this work, we delve into a deeper understanding of why the target ODE drift function is particularly
challenging to learn at intermediate timesteps. In the optimization of diffusion models or flow models,
techniques such as conditional score matching or conditional flow matching losses are utilized, as
we can only obtain the ground truth regression target when conditioned on the given samples. It has
been proved in (Lipman et al., 2022) that the conditional and non-conditional losses are identical, up
to a constant that is independent of optimization parameters—making the gradients of conditional
loss an unbiased estimator of those from non-conditional losses. However, the practical optimization
process often involves stochastic estimates of the loss, leading to discrepancies between optimizing
conditional loss and unconditional loss. We theoretically analyze the variance of conditional loss
gradient estimates and demonstrate that at intermediate timesteps, it exhibits larger variances, and thus
influences the training stability of these timesteps. Furthermore, we identify that the high-variance
regions closely depend on the noise schedulers (which dictate how noise is added to clean images to
achieve a pure Gaussian distribution) and the dimensions of data or latent space. In Fig. 1 (a)-(c), we
present our derived upper bound on the variance of conditional loss gradient estimates under different
noise schedulers and datasets. The results show that the high-variance regions vary depending on
both the noise scheduler and the dataset dimensionality.

Building on this theoretical analysis, we propose a Variance Reduction-based sampling strategy
(VR-sampling) that samples the high-variance regions more frequently to accelerate the training.
VR-sampling distributions are constructed using Monte Carlo simulations of the derived upper bounds
on the variance and can adjust according to the noise schedulers and data dimensions. The probability
density function π(t) of simulated VR-sampling distributions are presented in Fig.1 (d)-(f). Unlike
previous acceleration methods, such as those in (Hang et al., 2023; Choi et al., 2022; Wang et al.,
2024), which primarily focus on noise schedulers and often identify important timesteps heuristically,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

VR-sampling provides a more precise identification of high-variance regions depending on various
noise schedulers and data dimensions. Experiments show that it significantly accelerates flow model
training across different noise schedulers and data dimensions. Futhermore, it can also simplify
the hyperparameter choices of logit-normal sampling introduced in SD3 training. In summary, our
contributions are as follows:

• We derive an upper bound on the variance of loss gradient estimates and theoretically prove
that the convergence rate of the loss value during training depends on this bound. Our
analysis reveals that high-variance regions are strongly influenced by the choice of noise
schedulers and the dimensionality of the data or latent space.

• Leveraging this insight, we propose a Variance-Reduction Sampling (VR-sampling) strategy
that prioritizes sampling from high-variance regions to accelerate training. The VR-sampling
distributions are constructed via Monte Carlo simulations of the variance bounds and easily
adapt to different noise schedulers and data dimensions.

• Extensive experiments on the ImageNet 256 and 512 datasets show that VR-sampling
accelerate training by 33% and 50%, respectively, with linear noise scheduler, by around 35%
with cosine noise scheduler, and by up to 50% with diffusion noise scheduler. Furthermore,
VR-sampling simplifies hyperparameter tuning for logit-normal sampling as introduced in
SD3. Employing logit-normal sampling with our recommended hyperparameters, detailed
in Table 3, achieves a 38% speedup over the default choice on ImageNet 512 with linear
noise scheduler.

2 PRELIMINARIES

In this section, we provide a brief overview of flow-based generative models, discussing their loss
functions and noise schedulers. We also show their connection to diffusion models.

Flow Models Denote x1 as a random variable distributed according to some unknown data distri-
bution q(x1). Let pt be a probability path generated by a velocity field ut such that p0 is a simple
distribution, e.g., the standard normal distribution p0(x) = N (x|0, I), and p1 = q. The velocity field
ut defines a time-dependent flow, which can be described by an ODE: dxt = ut(xt, t)dt.

A direct way to build the probability path pt is to regress the velocity field ut through a neural network
vθ. We can define the corresponding Flow Matching (FM) loss (Lipman et al., 2022) as

LFM (θ) = Et,pt(x)∥vθ(x, t)− ut(x)∥2, (2.1)

where t ∼ U [0, 1] (uniform distribution). Flow matching presents a simple and appealing objective;
however, it is impractical to use in practice due to the lack of prior knowledge regarding appropriate
choices of pt and ut.

Conditional Flow Matching A simpler way of constructing a probability path is via a mixture
of conditional probability paths. Explicitly, when given a data sample x1, we denote pt(x|x1) as
a conditional probability path such that it satisfies p0(x|x1) = p0(x) at time t = 0 and p1(x|x1)
at t = 1 to be q(x1). Marginalizing the conditional probability paths over q(x1) give rise to the
marginal probability path pt(x) =

∫
pt(x|x1)q(x1)dx1.

Denote ut(x|x1) as a conditional vector field that generates pt(x|x1). We also have that by marginal-
izing over the conditional vector fields in the following sense:

ut(x) =

∫
ut(x|x1)

pt(x|x1)q(x1)

pt(x)
dx1 = Ep(x1|x)[ut(x|x1)], (2.2)

we can obtain the marginal vector field ut(x). When we choose the conditional probability path as
Gaussian, i.e., pt(x|x1) ∼ N (x|atx1,m

2
t I), the velocity field can be solved in closed form. In this

case, we could regress the conditional velocity filed ut(x|x1) through a neural network vθ using the
Conditional Flow Matching (CFM) loss:

LCFM (θ) = Et,q(x1),pt(x|x1)∥vθ(x, t)− ut(x|x1)∥2. (2.3)

Besides, it can be theoretically proved that the gradients of θ, LFM and LCFM w.r.t. θ are equal.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Different choices of noise scheduler

Noise Scheduler at mt ut(x|x1)

Diffusion (Ho et al., 2020) e−
1
2

∫ 1−t
0 βsds

√
1− e−

∫ 1−t
0 βsds 1

2β1−tatx1 − a2
t

2mt
β1−tϵ

Linear (Liu et al., 2022) t 1− t x1 − ϵ

Cosine (Nichol & Dhariwal, 2021) sin(πt/2) cos(πt/2) π
2 cos(πt/2)x1 − π

2 sin(πt/2)ϵ

Theorem 2.1 (Theorem 2 (Lipman et al., 2022)). Assuming that pt(x) > 0 for all x ∈ Rd and
t ∈ [0, 1], then up to a constant independent of θ, LFM and LCFM are equal. Hence,

∇θLFM = ∇θLCFM .

Now we discuss the construction ut(x|x1) for a general family of Gaussian conditional probability
paths. Namely, we consider conditional probability paths of the form pt(x|x1) = N (x|atx1,m

2
t I),

where a0 = 0,m0 = 1 and a1 = 1,m1 = 0. This ensures that all conditional probability paths
converge to the same standard Gaussian noise distribution at t = 0. The above distribution can also
be formulated as

xt = atx1 +mtϵ, (2.4)
where ϵ ∼ N (0, I). This flow provides a vector field that generates the conditional probability path:
dxt = ut(xt|x1)dt. Then the unique vector field that defines xt has the following form (Lipman
et al., 2022):

ut(x|x1) =
ṁt

mt
x+

(
ȧt − at

ṁt

mt

)
x1. (2.5)

Consequently, ut(x|x1) generates the Gaussian path pt(x|x1).

Choices of at and mt We could have different choices of at and mt. Specifically, when we choose
at = t and mt = 1− t, it defines the forward process as straight paths between the data distribution
and a standard normal distribution. This is the rectified flow introduced in (Liu et al., 2022) and we
call it as linear noise scheduler thereafter. Another common choices of at and mt are sin(πt/2)
and cos(πt/2) (Nichol & Dhariwal, 2021) and we call it as cosine noise scheduler.

When we choose at = e−
1
2

∫ 1−t
0

βsds and mt =
√
1− e−

∫ 1−t
0

βsds where βt could be a linear
function between an interval, we have the probability path same as the traditional diffusion models,
such as (Ho et al., 2020), and we denote it as diffusion noise scheduler. Note that while traditional
diffusion models typically use the noise (i.e., ϵ) prediction, flow models instead use velocity (i.e.,
ut) prediction. Besides, in our experiments, the time definitions are reversed compared to traditional
diffusion models: t = 0 represents pure Gaussian noise, while t = 1 corresponds to the original data
points. We list the choices of at and mt and their conditional velocity field ut(x|x1) in Table 1 and
in this work, we validate our methods under these three noise schedulers.

3 METHODS

In Sec. 3.1, we derive an upper bound on the variance of the gradient estimates for conditional
flow matching loss at a fixed xt and t. This bound shows how variance is influenced by the noise
schedulers and the data dimension (or the latent space dimension in latent flow models). Then in
Sec. 3.2, we theoretically prove that the convergence rate of the loss value during training depends on
our derived bound. Thus, in Sec. 3.3, we simulate the upper bound of loss gradient variances using
the Monte Carlo method and show that the mean variance is more prominent in the intermediate
timesteps. Based on these observations, we propose the VR-sampling to mitigate the high variance
and thus accelerate training.

3.1 GRADIENT VARIANCE DURING TRAINING PROCESS

As demonstrated in Theorem 2.1, the gradients ∇θLFM and ∇θLCFM are theoretically identical.
It is easy to see that given x and t, the optimal minimum v∗θ(x, t) of Eqn. (2.1) is achieved at
v∗θ(x, t) = ut(x) and the optimal minimum of Eqn. (2.3) is achieved when

v∗θ(x, t) = Eq(x1),pt(x|x1)[ut(x|x1)] = Ept(x1|x)[ut(x|x1)] = ut(x).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

During the gradient descent optimization, by averaging ∇θLCFM (θ;x1, x, t) over x1 ∼ q(x1), it
becomes a good estimator ∇θLFM (θ;x, t) and will converge to the optimal solution ut(x). This
means that for fixed x and t, ∇θLCFM (θ;x1, x, t) is an unbiased estimator of∇θLFM (θ;x, t), i.e.,

Ept(x1|x)[∇θLCFM (θ;x1, x, t)] = ∇θLFM (θ;x, t).

However, in practice, flow-based models are trained using stochastic estimates of gradients. For
example, in stochastic gradient descents (SGD) optimization, we update the parameters as follows:

θ(l) ← θ(l−1) − η∇θLCFM (θ;x1,i, x0,i, ti),

where x1,i ∼ q(x1), x0,i ∼ N (0, 1), t ∼ Uniform(0, 1) and η is step size. Thus, in this case, for fixed
t and x, the variance of ∇θLCFM (θ;x1, x, t) w.r.t x1, i.e., Tr(Covp(x1|x)(∇θLCFM (θ;x1, x, t))),
influences the convergence rate of optimization.

Denote Vx,t = Tr(Covp(x1|x)(∇θLCFM (θ;x1, x, t))). Suppose our target distribution q is normal-
ized, i.e., Eq(x1)[x1] = 0 and 1

dEq(x1)[∥x1∥2] = 1. We could obtain the following lemma:
Lemma 3.1. We could upper bound the average total gradient variance as follows:

Et,pt(x)[Vx,t] ≤ 4dEt,pt(x)[∥∇θvθ(x, t)∥2]
∫

h2
t

(
1− S

(
at
mt

))
dt, (3.1)

where ht = ȧt − at
ṁt

mt
and S

(
at

mt

)
= 1

dEpt(x)∥Ept(x1|x)[x1]∥2, pt(x|x1) ∼ N (atx1,m
2
t I).

The proof of Lemma 3.1 is shown in Appendix C. Here, S ∈ [0, 1] is a function related to the signal-
to-noise ratio (SNR) at/mt, representing the average data separation scale at a given SNR. This
concept is also discussed in (Shaul et al., 2023), which highlights the difference between conditional
kinetic energy and system kinetic energy. To clarify the notion of data separation, consider a data
point x1,i ∼ q(x1). If this point is well-separated at the SNR at/mt, then the noised sample
xt = atx1,i +mtϵ will be closer to its originating data point x1,i than to any other data point x1,j

with j ̸= i. When all data samples are well-separated, we have S = 1, and it is evident that as
at/mt →∞, S → 1.

3.2 CONVERGENCE ANALYSIS

Now we have an analysis on the convergence of SGD and show that the convergence rate of the
loss value during training depends on ht and S. Before presenting our theorem, we introduce some
necessary assumptions.
Assumption 3.2. Suppose vθ(x, t) ∈ Rdout is L-smooth and twice differentiable w.r.t. θ ∈ Rd

(d ≥ dout), i.e., there exist a constant L such that∥∥∇2
θ(vθ(x, t))i

∥∥ ≤ L, ∀ θ ∈ Rd, x, t, i ∈ dout.

For any θ ∈ Rd, we further assume |(vθ(x, t)− ut(x|x1))i| ≤ δ <∞ is bounded for all x, x1 and t.

Assumption 3.2 assumes the smoothness of the neural network, which is quite common, mild, and
frequently used in the analysis of general non-convex problems (Guo et al., 2021; Arjevani et al.,
2022; Xie et al., 2024). Let Lθ be a constant that only depends on δ, dout, and L. Then under
Assumption 3.2, we have

∥∥∇2
θLCFM (θ)

∥∥ ≤ Lθ (see its proof in Lemma D.2 in Appendix. D).
Finally, we have the following theorem.
Theorem 3.3 (Linear Convergence). Suppose Assumption 3.2 holds. Consider {θk}k∈N a sequence
generated by the SGD algorithm, with a constant stepsize η satisfying 0 < η < 1

Lθ
. It follows that

E
[
LCFM (θk+1)

]
≤ (1− 2η)

kLCFM (θ0) + 2d

(
2δ +

L

2

)2 ∫
h2
t

(
1− S

(
at
mt

))
dt, (3.2)

where δ and L are the constants that depend on the boundedness and smoothness of vθ(x, t).

The proof of Thereom 3.3 is shown in Appendix. D. Although the loss component in the upper bound
from Eqn. (3.2) diminishes linearly, a noise term persists within the upper bound. Once the loss
reaches a certain threshold, the dominant term in the convergence upper bound effectively becomes
noise term. In contrast to conventional optimization theory, the magnitude of this noise is independent
of the optimization step size and is solely determined by the sampling policy.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 VARIANCE REDUCTION BASED SAMPLING STRATEGY (VR-SAMPLING)

Based on the above theoretical analysis, we design a sampling strategy that aims to reduce the
variance of loss gradient estimates. First, since we cannot obtain a closed-form expression for the
separation function S , we use the Monte Carlo methods to estimate it. The formulation for the Monte
Carlo estimation of S is

S
(

at
mt

)
=

1

Md

K∑
l=1

M∑
i=1

∥∥∥ M∑
j=1

x1,jpt

(
x1,j |x1,i +

mt

at
ϵl

)∥∥∥2, (3.3)

where M is the number of data samples and K is the number of Gaussian samples, x1,i ∼ q(x1) and
pt(x|x1,i) ∼ N (x1,i,m

2
t/a

2
t I). Besides, pt(x1,i|x) could be calculated based on Bayes’ theorem,

i.e., pt(x1,i|x) = pt(x|x1,i)q(x1,i)/pt(x).

We present the simulated values of St and h2
tSt under different noise schedulers and data dimensions

in Fig. 2 and Fig. 1(a)–(c), respectively. In these simulations, the dimensionality of CIFAR10 is
3× 32× 32, while the latent space dimensions for ImageNet 256 and ImageNet 512 are 4× 32× 32
and 4×64×64, respectively. We observe in Fig. 2 that the timesteps at which the separation function
St transitions from 0 to 1 differ depending on the noise scheduler and data dimension. This indicates
that the data samples transition from being completely inseparable to well-separated at different
timesteps across various settings. Accordingly, as shown in Fig. 1(a)–(c), the high-variance regions
also vary with different noise schedulers and data dimensions.

(a) S for CIFAR10 (b) S for ImageNet-1k 256 (c) S for ImageNet-1k 512

Figure 2: Separation Curves S and h2
tSt of different noise schedulers under different datasets. Here,

t = 0 indicates the pure Gaussian noise, and t = 1 refers to the data.

In this way, to balance the variance of the loss gradient estimates, we sample timesteps in hign-
variance region more frequently. Our VR-sampling strategy is designed based on the derived upper
bound to create a probability density function (PDF) π(t) over t. The process involves the following
steps: (1) we first normalize the simulated curve by calculating the total area under the curve (via
integration) and dividing the curve by the total area; (2) we compute the cumulative sum of the
normalized curve to derive the cumulative distribution function (CDF) F (t); (3) Using the CDF,
we construct an interpolation function to approximate its inverse F−1(u), u ∼ Uniform(0, 1); (4)
the inverse CDF maps a uniformly distributed random variable to the domain of t, ensuring that
the resulting samples follow the distribution defined by the probability density function (PDF) π(t),
where π(t) = F ′(t). Here the inverse CDF serves as a crucial tool for sampling from the desired
density. Besides, as we use Monte Carlo estimation, we cannot reach the exact point where St = 1,
but as t → 1, at/mt → ∞, causing the simulated variance curve to approach infinity. To address
this, we smooth the region near t = 1 during normalization to prevent the values from diverging. We
present the probability density function π(t) of simulated distributions in Fig. 1 (d)-(f).

Time Consumption on obtaining VR-Sampling The time required to compute the VR-sampling
distributions depends on the number of data samples and Gaussian noise samples selected for
the Monte Carlo simulations. For example, on ImageNet 256× 256, we set the number of data
samples M = 200 and sample 500 Gaussian noise samples to construct xt. This simulation takes
approximately 40 minutes using 8 A800 GPUs. This time is significantly shorter and acceptable
compared to the several days needed for full training (e.g., for ImageNet 256×256, training for 400K
iterations takes approximately 72 hours on 8 A800 GPUs in our setting). More details about the
choices of samples under each setting and time consumption are shown in Table 4 in Appendix A.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTS
We empirically investigate VR-sampling across a range of experimental settings. First, we describe the
basic experimental setup in Sec. 4.1, including the datasets, codebases, training details, and evaluation
metrics. Next, we present our experimental results in Sec. 4.2 and compare our performance to
current state-of-the-art methods for training diffusion models. Finally, we show that our sampling
strategy could benefit the hyperparameter choice of logit-normal sampling introduced in SD3 (Esser
et al., 2024) in Sec. 4.3.

4.1 EXPERIMENT SETTINGS

Datasets and Codebases To validate our theoretical analysis, we conduct experiments on datasets
of varying dimensions, including CIFAR10, ImageNet-1k 256, and ImageNet-1k 512, and evaluate
across three noise schedulers: linear, cosine, and diffusion. For CIFAR10, we use the TorchCFM
codebase 3, which leverages an U-Net to train flow models. For ImageNet 256 and ImageNet 512, we
employ the SiT codebase 4. SiT (Ma et al., 2024) is a flow model counterpart to DiT (Peebles & Xie,
2023) and uses the same Transformer architecture. To compare with state-of-the-art methods under
diffusion noise scheduler, we test our sampling strategy on the DiT codebase 5.

Training and Evalutions To validate the effectiveness of our methods, we adhere to the default
training settings across the different codebases and run 200K iterations for CIFAR10 and 400k
iterations for ImageNet-1k under each configuration. We use the default training results as the
baseline and compare them with our designed sampling strategies. The detailed training settings are
provided in Appendix A.2.

For evaluation, we primarily use the Frechet Inception Distance (FID) to assess the performance of
the trained models. For CIFAR10, we set the number of sampling steps to 100 and utilize ODE-dopri5
solvers, generating 50K images for FID calculation. For ImageNet 256 and ImageNet 512, we use
250 sampling steps with ODE-dopri5 solvers to generate 10K images for evaluation. We calculate
FID under both unconditional generation (with the classifier-free guidance (cfg) scale of 1.0) and
conditional generation (with cfg scale of 1.5).

4.2 RESULTS

In this section, we show the experimental results across various noise schedulers and data dimensions.
Fig. 3 shows the FID curves for the ImageNet-1k 256 dataset under both unconditional (cfg=1.0)
and conditional (cfg=1.5) generation when we employ SiT XL/2 network. We observe that, using
VR-sampling under linear noise schedule, we achieve the same FIDs (for both conditional and
unconditional generation) as the baseline at 400K iterations, but in only 270K iterations—representing
a 33% acceleration. Similarly, under a cosine noise schedule, we reach the same FIDs at around
250K iterations, achieving a 38% speedup. Notably, with the diffusion noise schedule, we see an
even greater acceleration of 50%, reaching the baseline FIDs at 200K iterations instead of 400K.

(a) Linear scheduler (b) Cosine scheduler (c) Diffusion scheduler

Figure 3: FID curves under different noise schedulers for ImageNet-1k 256×256

Fig.4 shows the FID curves for the ImageNet-1k 512 dataset under both unconditional (cfg=1.0)
and conditional (cfg=1.5) generation, using the SiT XL/2 network. Remarkably, with the linear

3https://github.com/atong01/conditional-flow-matching.git
4https://github.com/willisma/SiT.git
5https://github.com/facebookresearch/DiT.git

7

https://github.com/atong01/conditional-flow-matching.git
https://github.com/willisma/SiT.git
https://github.com/facebookresearch/DiT.git

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

noise scheduler, we achieve the same FID as the baseline at 400K iterations in just 200K iterations,
delivering a 50% speedup. Similarly, under the cosine noise scheduler, we observe a 33% speedup,
and with the diffusion noise scheduler, we once again achieve a 50% speedup. Additionally, we
report the FID and Inception Scores (IS) at 400K iterations on the ImageNet-1k dataset in Table2,
further demonstrating the efficiency and performance improvements of our approach.

We present the FID curves for CIFAR10 in Fig. 5 under three noise schedulers. For linear noise
schedulers, it achieves the same FIDs as the baseline at 200K iterations in 140K iterations, showing
a 30% speedup. It shows 10% speedup under cosine noise schedulers and 46% speedup under
diffusion noise schedulers. Note that our methods also generalize to different network size (see
Appendix B.1). In addition, our conclusions hold when using fewer sampling steps and other solvers
(see the Appendix B.2). We also present some qualitative results in the Appendix B.4.

(a) Linear scheduler (b) Cosine scheduler (c) Diffusion scheduler

Figure 4: FID curves under different noise schedulers for ImageNet-1k 512×512

Table 2: Comparison of FID and IS metrics for different noise schedulers on ImageNet 256 and
ImageNet 512. Here * denotes the results at 350K iterations and other results are at 400K iterations.

Noise Scheduler Method ImageNet 256 ImageNet 512
FID (↓) IS (↑) FID (↓) IS (↑)

cfg=1.0 cfg=1.5 cfg=1.0 cfg=1.5 cfg=1.0 cfg=1.5 cfg=1.0 cfg=1.5

Linear Baseline 21.56 8.47 71.19 157.33 31.58 14.98 49.44 103.60
VR-sampling 18.79 7.10 81.93 182.01 19.89 8.19 81.92 172.59

Cosine Baseline 21.18 8.34 71.87 159.40 33.74* 17.0* 46.25* 93.00*
VR-sampling 17.17 6.60 90.20 194.70 26.95* 11.40* 63.14* 132.2*

Diffusion Baseline 24.27 9.69 62.78 137.88 37.29 18.71 42.54 84.13
VR-sampling 18.88 7.61 75.93 159.21 23.60 9.64 66.80 140.68

(a) Linear scheduler (b) Cosine scheduler (c) Diffusion scheduler

Figure 5: FID curves under different noise schedulers for CIFAR10 datasets

4.3 LOGIT-NORMAL SAMPLING

Stable Diffusion 3 (Esser et al., 2024) introduces logit-normal sampling to accelerate training under
linear noise scheduler, a method that has been adopted in subsequent training frameworks, such as
OpenSora 6 and Flux. The density function for logit-normal sampling is given by:

πln(t;m, s) =
1

s
√
2π

1

t(1− t)
exp

(
− (logit(t)−m)2

2s2

)
,

6https://github.com/hpcaitech/Open-Sora.git

8

https://github.com/hpcaitech/Open-Sora.git

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

where logit(t) = log t
1−t , with a location parameter m and a scale parameter s. In practical training,

the values of m and s are usually set to 0 and 1, respectively.

Inspired by our VR-sampling strategy, we explore its potential to inform hyperparameter choices
for logit-normal sampling. We set the scale parameter s to 1 and align the location parameter m
with the distribution of our VR-sampling. Specifically, we perform a Kolmogorov-Smirnov (KS) test
to compare the VR-sampling distribution with various logit-normal distributions. We choose m in
steps of 0.25 (that is, . . . ,−0.75,−0.5, . . . , 0.5, 0.75, . . .), selecting the value of m that minimizes
the KS score, thus achieving a closer match between the two distributions. Based on our simulated
VR-sampling distributions shown in Fig. 1 (d)-(f), we conclude the optimal choice of m in Table 3
across various noise schedulers and data dimensions. Here we present a range of m as the two
distributions cannot be totally matched.

Table 3: Recommended choices of location parameters m under different settings. In our experiments,
we set t = 0 to be Gaussian noise and t = 1 be data samples. In the reverse case where t = 1 refers
to Gaussian noise and t = 0 refers to data, just set m′ = −m, where m is our listed choices.

Data dimensions 3× 32× 32 4× 32× 32 4× 64× 64

Linear Scheduler 0.25 ∼ 0.5 0 ∼ 0.25 −0.75 ∼ −1
Cosine Scheduler 0.25 ∼ 0.5 0 ∼ 0.25 −0.75 ∼ −1
Diffusion Scheduler 1.25 ∼ 1.5 0.75 ∼ 1 0.25 ∼ 0.5

Experiments demonstrate that logit-normal sampling with our recommended choice of m outlined
in Table. 3 could accelerate training much more effectively than default choice of m = 0 under
linear noise scheduler. Besides, we also find that it is also effective under cosine and diffusion noise
schedulers. For example, in ImageNet-1k 512×512 dataset, we determine through Kolmogorov-
Smirnov (KS) score comparisons that the optimal choice of m is −0.75 under linear noise scheduler.
We compare the FID curves under VR-sampling, logit-normal sampling with m = −0.75 and m = 0
in Fig. 6. The results show that logit-normal sampling with m = −0.75 achieves a 47% training
speedup over the baseline and a 38% speedup over the default m = 0. Moreover, logit normal
sampling with m = −0.75 achieves a speedup comparable to that of our VR sampling, indicating
that it offers an alternative. For future ease of use, if the data dimensions match those specified in
Table 3, the logit-normal sampling with the recommended m can be employed directly, eliminating
the need to simulate the VR-sampling distribution again.

Another example involves the ImageNet-1k 256×256 dataset with diffusion noise scheduler. We
compared the FID curves for VR-sampling, logit-normal sampling with m′ = −0.75 (in DiT,
m′ = −m), and the current SoTA method—SpeeD (Wang et al., 2024), designed specifically for
diffusion training. The SpeeD method was implemented using its official codebase7. As illustrated
in Fig.7, both VR-sampling and logit-normal sampling with our recommended m value converge
slightly faster than SpeeD. Unlike SpeeD, which relies on a complex heuristic sampling and weighting
strategy based solely on changes in SNR (as discussed in Theorem 1 of SpeeD), our methods target
the fundamental factors affecting training. This makes our methods easily applicable across various
noise schedulers and datasets and obtain good performance. In fact, it remains uncertain whether the
SpeeD method is still effective when applied to flow model training. We presents additional results
for other noise schedulers and data dimensions in Appendix B.3.

5 RELATED WORK

Flow and Diffusion Generative Models Diffusion models have emerged as a powerful class of
generative models, particularly effective in generating high-quality images. These models operate
by defining a forward process, where noise is incrementally added to data, and a reverse process,
which denoises the data to generate samples. Building on the principles of diffusion models, Lipman
et al. (2022) introduced flow matching, which constructs a probability flow ODE directly to generate
samples from learned distributions. Liu et al. (2022) propose rectified flow to learn the transformation
between Gaussian noise and a target data distribution, by creating a straight-line path between
them. Huang et al. (2024) proposes incorporating correlated noise instead of pure Gaussian noise
into deterministic diffusion models, which improves image quality. Similarly, Heitz et al. (2023)
introduces iterative α-blending, which blends and deblends samples between two densities. Further

7https://github.com/kaiwang960112/SpeeD.git

9

https://github.com/kaiwang960112/SpeeD.git

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 6: FIDs (cfg=1) with linear scheduler
in SiT XL/2 models for ImageNet 512.

Figure 7: FIDs (cfg=1) with diffusion sched-
uler in DiT XL/2 models for ImageNet 256.

advancing this line of work, SD3 (Esser et al., 2024) scales rectified flow to large-scale text-to-image
models, pushing the boundaries of diffusion-based generative models.

Training Acceleration in Diffusion Models To accelerate the training of diffusion models,
P2 (Choi et al., 2022) and Min-SNR (Hang et al., 2023) introduce two re-weighting methods.
P2 weighting prioritizes learning from key noise levels determined by observations, while Min-SNR
adjusts timestep loss weights based on clamped signal-to-noise ratios to balance conflicts. There are
also two re-sampling methods: Log-Normal (Karras et al., 2022) and CLTS (Xu et al., 2024) and a
method combining re-weighting and re-sampling: SpeeD (Wang et al., 2024). Log-Normal (Karras
et al., 2022) assigns high sampling probabilities at intermediate timesteps. CLTS (Xu et al., 2024)
proposes a curriculum learning based timestep schedule, which leverages the noise rate as an explicit
indicator of the learning difficulty and gradually reduces the training frequency of easier timesteps,
thus improving the training efficiency. SpeeD (Wang et al., 2024) design an asymmetric sampling
strategy that reduces the frequency of steps from the convergence area while increasing the sampling
probability for steps from other areas. Additionally, they propose a weighting strategy to emphasize
the importance of time steps with rapid-change process increments. All above methods only consider
the impact of noise schedulers on training and most strategies only rely on the change of SNR.

Our work builds on the concept of importance sampling to reduce gradient variance. As demonstrated
by (Katharopoulos & Fleuret, 2018), importance sampling can focus computational efforts on infor-
mative examples, effectively reduce gradient variance during training, and accelerate convergence.
Additionally, Jeha et al. explores variance reduction through a k-th order Taylor expansion applied
to the diffusion training objective and its gradient. In contrast to (Jeha et al.), our approach directly
identifies and targets high-variance regions during training, sampling them more frequently to reduce
variance and improve efficiency, without relying on approximations as in (Jeha et al.).

6 CONCLUSION

In this work, we propose VR-sampling to accelerate flow generative model training by sampling
timesteps in the high-variance region more frequently. We begin by theoretically analyzing the
upper bound on the variance of loss gradient estimates and identify that the high-variance region is
closely correlated with the noise schedulers and data (or latent space) dimensions. Based on this
theoretical insight, we design VR-sampling distributions based on Monte Carlo simulations of our
derived variance upper bounds. We validate the efficiency of VR-sampling under different noise
schedulers and different datasets. Furthermore, VR-sampling could simplify hyperparameter tuning
for logit-normal sampling proposed in SD3 and experiments show that logit-normal sampling with
our recommended choice of m also has a good training speedup.

Limitations and future work Due to the limitation of GPU resources, we do not test our sampling
strategy on larger model size, such as stable diffusion 3 and video generation models. Extending
our approach to larger-scale models, where computational demands are significantly higher, would
greatly enhance the value of our methods. Additionally, we observe that our theoretical analysis
can be applied to consistency flow model training, allowing for the design of a sampling strategy to
accelerate consistency training. We will leave this exploration for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pp. 1–3, 2024.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, pp. 1–50,
2022.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh Yoon.
Perception prioritized training of diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11472–11481, 2022.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In
Advances in Neural Information Processing Systems, volume 34, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first International Conference on Machine Learning,
2024.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. A novel convergence analysis for
algorithms of the Adam family. arXiv preprint arXiv:2112.03459, 2021.

Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and Baining
Guo. Efficient diffusion training via min-snr weighting strategy. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 7441–7451, 2023.

Eric Heitz, Laurent Belcour, and Thomas Chambon. Iterative α-(de) blending: A minimalist
deterministic diffusion model. In ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–8, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Xingchang Huang, Corentin Salaun, Cristina Vasconcelos, Christian Theobalt, Cengiz Oztireli, and
Gurprit Singh. Blue noise for diffusion models. In ACM SIGGRAPH 2024 Conference Papers, pp.
1–11, 2024.

Paul Jeha, Will Sussman Grathwohl, Michael Riis Andersen, Carl Henrik Ek, and Jes Frellsen.
Variance reduction of diffusion model’s gradients with taylor approximation-based control variate.
In ICML 2024 Workshop on Structured Probabilistic Inference {\&} Generative Modeling.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. arXiv preprint arXiv:2206.00364, 2022.

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with
importance sampling. In International conference on machine learning, pp. 2525–2534. PMLR,
2018.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
for generative modeling. In The Eleventh International Conference on Learning Representations,
2022.

Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In The Eleventh International Conference on Learning Representations, 2022.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Neta Shaul, Ricky T. Q. Chen, Maximilian Nickel, Matt Le, and Yaron Lipman. On kinetic optimal
probability paths for generative models. In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021b.

Kai Wang, Yukun Zhou, Mingjia Shi, Zhihang Yuan, Yuzhang Shang, Xiaojiang Peng, Hanwang
Zhang, and Yang You. A closer look at time steps is worthy of triple speed-up for diffusion model
training. arXiv preprint arXiv:2405.17403, 2024.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Tianshuo Xu, Peng Mi, Ruilin Wang, and Yingcong Chen. Towards faster training of diffusion
models: An inspiration of a consistency phenomenon. arXiv preprint arXiv:2404.07946, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A TRAINING DETAILS

A.1 DETAILS ON MONTE CARLO SIMULATIONS

Denote the number of samples as M and the number of Gaussian samples are K. Besides, we divide
the time range [0, 1] into 1000 discrete timesteps. We implement the Monte Carlo simulation on GPUs,
as most of the calculations involve matrix operations. The time consumption (in seconds) to compute
St for each timestep shown in Table. 4. We can find that the computation time are highly dependent
on the choice of M and K. However, since the computations for each timestep are independent, they
can be executed in parallel across multiple GPUs to reduce the time consumption. Furthermore, as
shown in Fig. 8, increasing M and K makes the high-variance region more pronounced, but also
increases time consumption. To balance this trade-off, we typically set M = 200 and K = 500
which has been experimentally shown to work well.

Table 4: Time consumption with different M and K

M K sec/per timestep

100 200 ≈ 3.8s
200 500 ≈ 17.5s
500 1000 ≈ 101.5s

(a) Simulated separation curves. (b) h2
tSt curves.

Figure 8: Separation curves and h2
tSt under different M and K with linear noise scheduler in

ImageNet 512×512.

A.2 TRAINING SETTINGS

In this part, we present the detailed setting of training across different settings. For experiments
related with CIFAR10, we implement the cosine noise scheduler and diffusion noise scheduler in the
TorchCFM codebase 8 and choose the “icfm” model as the model under linear noise scheduler. We
run each setting using one A800 GPU and the explicit training details are as follows:

Table 5: Training Parameters for CIFAR10

Parameter Value
Learning Rate (--lr) 2e-4

EMA Decay (--ema decay) 0.9999
Batch Size (--batch size) 128

Total Steps (--total steps) 200001

8https://github.com/atong01/conditional-flow-matching.git

13

https://github.com/atong01/conditional-flow-matching.git

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

For training in SiT 9 and DiT 10 codebase, we run each setting using A800 GPUs and the explicit
training details are:

Table 6: Training parameters for ImageNet 256 and 512

ImageNet 256 ImageNet 256 ImageNet 512

Model SiT-S/2 SiT-XL/2, DiT-XL/2 SiT-XL/2
Number of GPUs 4 8 8
Training Iterations 700K 400K 400K

Image size(--image-size) 256 256 512
Number of classes (--num-classes) 1000 1000 1000

Global batch size(--global-batch-size) 256 256 128
VAE (--vae) ema ema ema

CFG scale (--cfg-scale) 4.0 4.0 4.0
Optimizer AdamW AdamW AdamW

Learning rate 1e-4 1e-4 1e-4
Weight decay 0 0 0

B MORE EXPERIMENTAL RESULTS

B.1 GENERALIZE TO DIFFERENT NETWORK SIZE

The results presented in Sec. 4.2 show the performance across various data dimensions and noise
schedules using SiT XL/2, which contains 675 million parameters. In this part, we demonstrate that
our sampling strategy is equally effective with SiT S/2, which has 33 million parameters. We test this
case under ImageNet-1k 256 datasets and report the FIDs of unconditional generation. We could also
observe around 35% speedups under the linear and cosine noise scheduler and 50% speedup under
diffusion noise scheduler.

(a) Linear scheduler (b) Cosine scheduler (c) Diffusion scheduler

Figure 9: FID curves (cfg=1.0) under different noise schedulers when using SiT S/2

B.2 RESULTS ON FEWER SAMPLING STEPS

In Sec. 4.2, we calculated the FID values using 250 sampling steps with the ODE-dopri5 solvers.
In this section, we demonstrate that our conclusions remain valid even with a reduced number of
sampling steps using alternative solvers. We reduced the sampling steps to 30 and employed the
ODE-Euler solvers. The results shown in Table. 7 confirm that with fewer sampling steps and
different solvers, we can achieve comparable, and sometimes superior, improvements in both FID
and IS metrics.

B.3 CHOICES OF m

In this part, we provide additional experimental results about the choices of m. As it is time-
consuming to validate every setting, we only choose part of settings and try to cover all noise

9https://github.com/willisma/SiT.git
10https://github.com/facebookresearch/DiT.git

14

https://github.com/willisma/SiT.git
https://github.com/facebookresearch/DiT.git

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: Comparison of FID and IS metrics under different sampling step and method on ImageNet
256. Here we present the results when cfg=1.0 at 400K iterations.

Noise Scheduler Method
ImageNet 256

FID (↓) IS (↑)
ODE-dopri5

250 steps
ODE-Euler

30 steps
ODE-dopri5

250 steps
ODE-Euler

30 steps

Linear
Baseline 21.56 24.38 71.19 68.74

VR-sampling 18.79 21.39 81.93 80.42
improve 2.77 2.99 10.74 11.68

Cosine
Baseline 21.18 26.00 71.87 65.22

VR-sampling 17.17 21.55 90.20 81.95
improve 4.01 4.45 18.33 16.73

Diffusion
Baseline 24.27 33.47 62.78 51.95

VR-sampling 18.88 26.85 75.93 62.69
improve 5.39 6.62 13.15 10.74

schedulers and datasets. In ImageNet 512×512, we choose linear noise scheduler and present the
FID (cfg = 1) curves under SiT XL/2 networks in Fig. 10 (a). In this case, the KS-scores between our
simulated curves and logit-normal sampling is shown in Fig. 10 (b). We can find that in this case, the
recommended choices of m is −1 ∼ −0.75 outlined in Table. 3 has smaller KS scores and the FID
curves converge faster than other choices. Specifically, logit-normal sampling with our recommended
choices achieves a 47% training speedup over the baseline and a 38% speedup over the default m = 0.

(a) FID curves under linear noise scheduler. (b) KS scores under different m.

Figure 10: FID curves and KS score under linear noise scheduler in ImageNet 512×512.
In ImageNet 256× 256, we choose the cosine noise scheduler and present the FID (cfg = 1) curves
under SiT XL/2 networks in Fig. 11 (a). In this case, the KS-scores between our simulated curves
and logit-normal sampling is shown in Fig. 11 (b). We can find that in this case, the recommended
choices of m is 0 ∼ 0.25 outlined in Table. 3 has smaller KS scores and the FID curves converge
faster than other choices. Specifically, logit-normal sampling with our recommended choices of m
achieves a 37.5% training speedup over the baseline and an about 25% training speedup over the
other choices of m, such as m = −0.5 or m = 0.5.

In CIFAR10, we choose the diffusion noise scheduler and present the FID curves under Unet in
Fig. 12 (a). In this case, the KS-scores between our simulated curves and logit-normal sampling is
shown in Fig. 12 (b). We can find that in this case, the recommended choices of m is 1.25 ∼ 1.5
outlined in Table. 3 has smaller KS scores and the FID curves converge faster than other choices.

B.4 QUALITATIVE RESULTS

In this part, we present some qualitative results in Fig. 13, Fig. 14 and Fig. 15.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) FID curves under linear noise scheduler. (b) KS scores under different m.

Figure 11: FID curves and KS score under cosine noise scheduler in ImageNet 256×256.

(a) FID curves under diffusion noise scheduler. (b) KS scores under different m.

Figure 12: FID curves and KS score under diffusion noise scheduler in CIFAR10.

B.5 MORE QUANTITATIVE RESULTS

We include additional experimental results showing FID values with more training iterations (900K
iterations) in Fig. 19. We also show the gradient curve in Fig. 20. Additionally, we also show the
results with higher cfg values in Fig. 21. In this figure, we present the FID and IS curves under
cfg=3.0 and cfg=4.5 under linear noise schedulers for ImageNet256 datasets. A high classifier-free
guidance (cfg) scale introduces a trade-off between fidelity (alignment to conditional input) and
diversity/realism. Specifically:

• Inception Score (IS) improves with higher cfg values as the generated images become more
distinct and coherent with their class features, resulting in higher confidence predictions.

• FID, however, often suffers at high cfg values because the generated images deviate from
the natural statistics of the dataset due to overfitting to the class guidance.

In Fig. 21 (a), for higher cfg values (e.g., cfg=3.0 and cfg=4.5), the trends of the FID curves differ
from those at lower cfg values (e.g., cfg=1.0 and cfg=1.5). Initially, our method outperforms the
baseline in terms of FID, but with longer training, the FID eventually becomes worse than the baseline.
This occurs because the model fits the data better but becomes overly aligned to the class conditions
at higher cfg values, reducing diversity and realism.

However, as shown in Fig. 21 (b), the Inception Scores (IS) consistently outperform the baseline
methods across all cfg values, indicating better semantic alignment and class fidelity. Additionally,
at higher cfg scales, the differences between our method and the baseline are more pronounced,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

highlighting the advantages of VR-sampling in these settings. We also present the results on LSUN
bedroom-256 datasets in Table. 8.

Table 8: Comparison of Baseline and VR-sampling across iterations under LSUN Bedroom 256
datasets.

Iterations Baseline VR-sampling
50k 11.94 10.05
100k 4.91 4.50
150k 4.35 4.03
200k 4.23 4.01
250k 4.10 3.91
300k 4.09 3.98
350k 4.16 4.04

C PROOF OF LEMMA 3.1

We begin to prove Lemma 3.1. We have that

Covp(x1|x)
(
∇θ∥vθ(x, t)− ut(x|x1)∥2

)
= Covp(x1|x)

(
∇θ∥vθ(x, t)∥2 − (∇θvθ(x, t))

Tut(x|x1)
)

= Ep(x1|x)

[(
∇θ∥vθ(x, t)− ut(x|x1)∥2

) (
∇θ∥vθ(x, t)− ut(x|x1)∥2

)T]
− Ep(x1|x)

[(
∇θ∥vθ(x, t)− ut(x|x1)∥2

)]
Ep(x1|x)

[(
∇θ∥vθ(x, t)− ut(x|x1)∥2

)T]
.

For the second term in the RHS, we have

Ep(x1|x)
[(
∇θ∥vθ(x, t)− ut(x|x1)∥2

)]
= Ep(x1|x)

[(
∇θ∥vθ(x, t)− ut(x|x1)∥2

)]
= ∇θ∥vθ(x, t)∥2 − 2(∇θvθ(x, t))

TEp(x1|x)[ut(x|x1)]

(a)
= ∇θ∥vθ(x, t)∥2 − 2(∇θvθ(x, t))

Tut(x)

= ∇θ∥vθ(x, t)− ut(x)∥2,
where (a) is based on Eqn. (2.2). Then, we have

Covp(x1|x)
(
∇θ∥vθ(x, t)− ut(x|x1)∥2

)
= (∇θ∥vθ(x, t)∥2)(∇θ∥vθ(x, t)∥2)T − 4(∇θ∥vθ(x, t)∥2)Ep(x1|x)[ut(x|x1)]

T∇θvθ(x, t)

+ 4(∇θvθ(x, t))
TEp(x1|x)[ut(x|x1)ut(x|x1)

T](∇θvθ(x, t))

− (∇θ∥vθ(x, t)∥2)(∇θ∥vθ(x, t)∥2)T + 4(∇θ∥vθ(x, t)∥2)ut(x)
T∇θvθ(x, t)

− 4(∇θvθ(x, t))
Tut(x)ut(x)

T (∇θvθ(x, t))

= 4(∇θvθ(x, t))
TEp(x1|x)[ut(x|x1)ut(x|x1)

T − ut(x)ut(x)
T](∇θvθ(x, t)).

In this way,

Vx,t = Tr(Covp(x1|x)(∇θLCFM (θ;x1, x, t)))

= Tr
(
4(∇θvθ(x, t))

TEp(x1|x)[ut(x|x1)ut(x|x1)
T − ut(x)ut(x)

T](∇θvθ(x, t))
)

= 4Tr
(
Ep(x1|x)[ut(x|x1)ut(x|x1)

T − ut(x)ut(x)
T](∇θvθ(x, t))(∇θvθ(x, t))

T
)

= 4
〈
Ep(x1|x)[ut(x|x1)ut(x|x1)

T − ut(x)ut(x)
T], (∇θvθ(x, t))(∇θvθ(x, t))

T
〉
F

≤ 4∥Ep(x1|x)[ut(x|x1)ut(x|x1)
T − ut(x)ut(x)

T]∥F ∥(∇θvθ(x, t))(∇θvθ(x, t))
T ∥F

≤ 4Ep(x1|x)[∥ut(x|x1)ut(x|x1)
T − ut(x)ut(x)

T ∥F]∥(∇θvθ(x, t))(∇θvθ(x, t))
T ∥F

= 4∥∇θvθ(x, t)∥2Ep(x1|x)[∥ut(x|x1)∥2 − ∥ut(x)∥2].

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Recall that we have

ut(x|x1) =
ṁt

mt
x+

(
ȧt − at

ṁt

mt

)
x1.

Denote gt =
ṁt

mt
and ht =

(
ȧt − at

ṁt

mt

)
. Then we have that

Et,q(x1),pt(x|x1)[∥ut(x|x1)∥2] = Et,q(x1),pt(x|x1)[∥gtx+ htx1∥2]
(a)
= Et,q(x1),p0(x0)[∥gtmtx0 + gtatx1 + htx1∥2]

= Et,q(x1),p0(x0)

[∥∥∥∥ṁtx0 + ṁtat/mtx1 +

(
ȧt − at

ṁt

mt

)
x1

∥∥∥∥2
]

= Et,q(x1),p0(x0)[∥ṁtx0 + ȧtx1∥2]
(b)
= d · Et[ṁ

2
t + ȧ2t]

where (a) is because x = mtx0 + atx1 and x0 and x1 is independent, (b) is because x0 ∼ N (0, I)
and we assume q is normalized. We also have that

Et,pt(x)[∥ut(x)∥2] = Et,pt(x)

[
∥Ept(x1|x)ut(x|x1)∥2

]
= Et,pt(x)

[
∥gtx+ htEpt(x1|x)[x1]∥2

]
= Et,pt(x)

[
g2t ∥x∥2 + 2gthtEpt(x1|x)[x1] + h2

t∥Ept(x1|x)[x1]∥2
]

= Et,pt(x)

[
g2t ∥x∥2 + 2gthtEpt(x1|x)[x1] + h2

td− h2
td+ h2

t∥Ept(x1|x)[x1]∥2
]

= Et,pt(x)

[
g2t ∥x∥2 + 2gthtEpt(x1|x)[x1] + h2

td
]
− Et,pt(x)[h

2
td− h2

t∥Ept(x1|x)[x1]∥2].
For the first term in RHS, we have

Et,pt(x)

[
g2t ∥x∥2 + 2gthtEpt(x1|x)[x1] + h2

td
]
= Et,pt(x),pt(x1|x)

[
g2t ∥x∥2 + 2gthtx1 + h2

td
]

= Et,pt(x),pt(x1|x)
[
g2t ∥x∥2 + 2gthtx1 + h2

t∥x1∥2
]

= Et,pt(x),pt(x1|x)[∥gtx+ htx1∥2]
= Et,q(x1),pt(x|x1)[∥ut(x|x1)∥2].

Denote S
(

at

mt

)
= 1

dEpt(x)∥Ept(x1|x)[x1]∥2. Thus, the second term in RHS is

Et,pt(x)[h
2
td− h2

t∥Ept(x1|x)[x1]∥2] = Et

[
dh2

t (1− S
(

at
mt

)
)

]
.

Combining the above results, we have

Et,p(x),p(x1|x)[∥ut(x|x1)∥2 − ∥ut(x)∥2] = Et

[
dh2

t

(
1− S

(
at
mt

))]
,

which completes the proof of Lemma 3.1.

D CONVERGENCE GUARANTEE

To prove the main results, we first provide a auxiliary lemma.
Lemma D.1 (Polyak-Łojasiewicz (PL) Inequality). Suppose vθ(x, t) ∈ Rdout is differentiable w.r.t.
θ ∈ Rd and d ≥ dout. For all θ ∈ Rd, we have

LCFM (θ) ≤ 1

4

(
∥∇θLCFM (θ)∥2 +Var (∇θLCFM (θ;x1, x, t))

)
.

Proof. We separate the last layer learnable bias term from θ, namely, θ := [θ−b, b], where b is the
learnable bias of the last layer. And hence, there exists vθ−b

(x, t) such that vθ(x, t) = vθ−b
(x, t) + b,

we have

LCFM (θ) = Et,q(x1),pt(x|x1)∥vθ(x, t)−ut(x|x1)∥2 = Et,q(x1),pt(x|x1)

∥∥vθ−b
(x, t) + b− ut(x|x1)

∥∥2.
18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Note that the Jacobian matrix of vθ−b
(x, t) + b reads as:

Jv(θ;x, t) :=
[
Jvθ−b

(θ−b;x, t), Idout

]
∈ Rd×dout , (D.1)

where Jvθ−b
(θ−b;x, t) is the Jacobian of the function vθ−b

(x, t) w.r.t. θ−b. Since d ≥ dout, Jv(θ;x, t)

is full column-rank, i.e., J†
v(θ;x, t)Jv(θ;x, t) = Idout

.

Similar to the prove in (Lipman et al., 2022), to ensure existence of all integrals and to allow the
changing of integration order (by Fubini’s theorem) in the following, we assume that q(x1) and
pt(x|x1) are decreasing to zero at a sufficient speed as ∥x∥ → ∞ and that ut, vθ,∇θvθ are bounded.
Then we have:

∇θLCFM (θ) = ∇θEt,q(x1),pt(x|x1)

∥∥vθ−b
(x, t) + b− ut(x|x1)

∥∥2
= Et,q(x1),pt(x|x1)

[
∇θ

∥∥vθ−b
(x, t) + b− ut(x|x1)

∥∥2]
= Et,q(x1),pt(x|x1)

[
2Jv(θ;x, t)

(
vθ−b

(x, t) + b− ut(x|x1)
)]
.

Therefore, we get

LCFM (θ) = Et,q(x1),pt(x|x1)

∥∥vθ−b
(x, t) + b− ut(x|x1)

∥∥2
= Et,q(x1),pt(x|x1)

∥∥J†
v(θ;x, t)Jv(θ;x, t)

(
vθ−b

(x, t) + b− ut(x|x1)
)∥∥2

≤ 1

4
Et,q(x1),pt(x|x1)

∥∥2Jv(θ;x, t)
(
vθ−b

(x, t) + b− ut(x|x1)
)∥∥2

=
1

4

(
∥∇θLCFM (θ)∥2 +Var (∇θLCFM (θ;x1, x, t))

)
,

which finish the proof.

Lemma D.2 (Smoothness of LCFM (θ)). Suppose Assumption 3.2 holds, then we have∥∥∇2
θLCFM (θ)

∥∥ ≤ Lθ,

where Lθ <∞ is the constant that only depends on δ, dout, and L.

Proof. Given any i ∈ [dout], let fi(θ, x, t) := (vθ(x, t)− ut(x|x1))i. We already have boundedness
for the zeroth- and second-order, i.e.,

|fi(θ, x, t)| ≤ δ,
∥∥∇2

θfi(θ, x, t)
∥∥ ≤ L,

then, by the Taylor’s theorem with the Lagrange form of the remainder,we have

fi(θa, x, t) = fi(θ, x, t)+∇⊤
θ fi(θ, x, t)(θa − θ)+

1

2
(θa − θ)

⊤∇2
θfi(θξ, x, t)(θa − θ), ∀ θa, θ ∈ Rd,

where θξ is some point between θa and θ. Without loss of generality, we let ∥θa − θ∥ = 1, hence we
can get∣∣∇⊤

θ fi(θ, x, t)(θa − θ)
∣∣ ≤ |fi(θa, x, t)− fi(θ, x, t)|+

1

2

∣∣∣(θa − θ)
⊤∇2

θfi(θξ, x, t)(θa − θ)
∣∣∣ ≤ 2δ+

L

2
,∀ θa, θ.

Then we can get ∥∇θfi(θ, x, t)∥ ≤ 2δ + L
2 . Then we have

∥Jv(θ;x, t)∥ =

∥∥∥∥∥∥∥
 ∇θf1(θ, x, t)

...
∇θfdout

(θ, x, t)

∥∥∥∥∥∥∥ ≤ 2δ +

L

2
.

Now, we are ready to prove the smoothness of LCFM (θ). The Hessian of the LCFM (θ) is

∇2
θLCFM (θ) = ∇2

θEt,q(x1),pt(x|x1)

∥∥vθ−b
(x, t) + b− ut(x|x1)

∥∥2
= Et,q(x1),pt(x|x1)

[
∇2

θ

∥∥vθ−b
(x, t) + b− ut(x|x1)

∥∥2]
= 2Et,q(x1),pt(x|x1)

[
JvJ

⊤
v (θ;x, t) +

dout∑
i=1

(vθ(x, t)− ut(x|x1))i∇
2(vθ(x, t))i

]
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Note that, we already have∥∥(vθ(x, t)− ut(x|x1))i∇
2(vθ(x, t))i

∥∥ ≤ δL.

Then, by Jensen inequality, we can conclude that

∥∥∇2
θLCFM (θ)

∥∥ = 2

∥∥∥∥∥Et,q(x1),pt(x|x1)

[
JvJ

⊤
v (θ;x, t) +

dout∑
i=1

(vθ(x, t)− ut(x|x1))i∇
2(vθ(x, t))i

]∥∥∥∥∥
≤ 2Et,q(x1),pt(x|x1)

∥∥∥∥∥JvJ
⊤
v (θ;x, t) +

dout∑
i=1

(vθ(x, t)− ut(x|x1))i∇
2(vθ(x, t))i

∥∥∥∥∥
≤ 2E

∥∥JvJ
⊤
v (θ;x, t)

∥∥+ 2E

∥∥∥∥∥
dout∑
i=1

(vθ(x, t)− ut(x|x1))i∇
2(vθ(x, t))i

∥∥∥∥∥
≤ 2

(
2δ +

L

2

)2

+ 2doutδL := Lθ.

Proof of Theorem. 3.3. Due the the Lθ-smoothness from Lemma D.2 and together with the update
rule of SGD, we have

LCFM (θk+1) ≤ LCFM (θk) +
〈
∇θLCFM (θk), θk+1 − θk

〉
+

Lθ

2

∥∥θk+1 − θk
∥∥2

=LCFM (θk)− η
〈
∇θLCFM (θk),∇θLCFM (θk;x1, x, t)

〉
+

Lθη
2

2

∥∥∇θLCFM (θk;x1, x, t)
∥∥2.

By taking expectation conditioned on θk, and denote V := Var (∇θLCFM (θ;x1, x, t)), we can get

E
[
LCFM (θk+1)

]
≤ LCFM (θk)− η

∥∥∇θLCFM (θk)
∥∥2 + Lθη

2

2
E
∥∥∇θLCFM (θk;x1, x, t)

∥∥2
≤LCFM (θk)− η

∥∥∇θLCFM (θk)
∥∥2 + Lθη

2

2
∥∇θLCFM (θ)∥2 + Lθη

2V

2
(a)

≤LCFM (θk)− η

2

∥∥∇θLCFM (θk)
∥∥2 + Lθη

2V

2
(b)

≤LCFM (θk) +
η

2

(
V − 4LCFM (θk)

)
+

Lθη
2V

2

≤(1− 2η)LCFM (θk) + ηV

≤(1− 2η)
kLCFM (θ0) +

V

2
(c)

≤(1− 2η)
kLCFM (θ0) + 2dEt,pt(x)[∥∇θvθ(x, t)∥2]

∫
h2
t

(
1− S

(
at
mt

))
dt

≤(1− 2η)
kLCFM (θ0) + 2d

(
2δ +

L

2

)2 ∫
h2
t

(
1− S

(
at
mt

))
dt,

where (a) is due to η ≤ 1
Lθ

, (b) comes from Lemma D.1, and (c) comes from Lemma 3.1.

Theorem 3.3 shows that during training, the loss decreases rapidly until the model converges to
a local neighborhood around the global minimizer. Within this neighborhood, the training loss is
proportional to both the peak variance scale of the sampled regions under the sampling policy and the
dimensionality of the data (or, the latent space dimensionality).

As a result, for the same reduction in peak variance scale achieved by VR-Sampling, the impact on
training loss becomes more significant with higher-dimensional latents. This could explain why the
improvements are more noticeable in higher-resolution images or latents in our experimental results.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 13: Linear noise scheduler in ImageNet 512× 512 (zoom in to observe
details).

Figure 14: Cosine noise scheduler in ImageNet 256× 256 (zoom in to observe
details).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 15: Diffusion noise scheduler for CIFAR10

Figure 16: More qualitative results on linear noise scheduler in ImageNet 512× 512

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 17: More qualitative results on linear noise scheduler in ImageNet 512× 512

Figure 18: Qualitative results on CelebA datasets under linear noise scheduler at 40k iterations with
baseline FID 23.5 and VR-sampling FID as 22.8.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 19: FID values with more training iter-
ations.

Figure 20: Loss curves of linear noise scheduler
under ImageNet-256 at 400K iterations.

(a) FID under cfg=3.0 and cfg=4.5. (b) IS under cfg=3.0 and cfg=4.5.

Figure 21: FID and IS curves for higher cfg values under linear noise schedulers for ImageNet256
datasets.

24

	1 Introduction
	2 Preliminaries
	3 Methods
	3.1 Gradient Variance during Training Process
	3.2 Convergence Analysis
	3.3 Variance Reduction Based Sampling Strategy (VR-Sampling)

	4 Experiments
	4.1 Experiment Settings
	4.2 Results
	4.3 Logit-normal Sampling

	5 Related Work
	6 Conclusion
	A Training Details
	A.1 Details on Monte Carlo simulations
	A.2 Training settings

	B More experimental results
	B.1 Generalize to different network size
	B.2 Results on fewer sampling steps
	B.3 Choices of m
	B.4 Qualitative Results
	B.5 More Quantitative Results

	C Proof of Lemma 3.1
	D Convergence Guarantee

