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ABSTRACT

Noisy labels pose a substantial challenge in machine learning, often resulting
in overfitting and poor generalization. Sharpness-Aware Minimization (SAM),
as demonstrated by Foret et al. (2021), improves generalization over traditional
Stochastic Gradient Descent (SGD) in classification tasks with noisy labels by
implicitly slowing noisy learning. While SAM’s ability to generalize in noisy
environments has been studied in several simplified settings, its full potential
in more realistic training settings remains underexplored. In this work, we an-
alyze SAM’s behavior at each iteration, identifying specific components of the
gradient vector that contribute significantly to its robustness against noisy labels.
Based on these insights, we propose SANER (Sharpness-Aware Noise-Explicit
Reweighting), an effective variant that enhances SAM’s ability to manage noisy
fitting rate. Our experiments on CIFAR-10, CIFAR-100, and Mini-WebVision
demonstrate that SANER consistently outperforms SAM, achieving up to an 8%
increase on CIFAR-100 with 50% label noise.

1 INTRODUCTION

The issue of noisy labels due to human error annotation has been commonly observed in many large-
scale datasets such as CIFAR-10N, CIFAR-100N (Wei et al., 2022), Clothing1M (Xiao et al., 2015),
and WebVision (Li et al., 2017). Over-parameterized deep neural networks, which have enough
capacity to memorize entire large datasets, can easily overfit such noisy label data, leading to poor
generalization performance (Zhang et al., 2021). Moreover, the lottery ticket hypothesis (Frankle &
Carbin, 2019) indicates that only a subset of the network’s parameters is crucial for generalization.
This highlights the importance of noise-robust learning, where the goal is to train a robust classifier
despite the presence of inaccurate or noisy labels in the training dataset.

Sharpness-Aware Minimization (SAM), introduced by Foret et al. (2021), is an optimizer designed
to find better generalization by searching for flat minima. It has shown superior performance over
SGD in various tasks, especially in classification tasks involving noisy labels Baek et al. (2024).
Understanding the mechanisms behind the success of SAM is crucial for further improvements in
handling label noise. Chen et al. (2024) explain SAM’s generalization within the benign overfitting
framework, showing that SAM outperforms SGD by mitigating noise learning in the early training
stages and facilitating more effective learning of features. In linear models, Baek et al. (2024) show
that SAM more effectively resists fitting noisy examples than SGD through an explicit up-weighting
mechanism that preserves strong gradient contributions from clean examples, thus slowing the learn-
ing of noisy instances.

Although SAM effectively mitigates the impact of noise on learning compared to SGD, it still over-
fits to noisy labels in the later stages of training, as evidenced in Andriushchenko & Flammarion
(2022); Baek et al. (2024). We reconfirmed this phenomenon by evaluating the noisy accuracy
metric, which measures how well the model overfits to noisy examples in each epoch as shown in
Figure 1(a). Baek et al. (2024) analyze SAM’s explicit up-weighting mechanism under a sample-
wise gradient view. However, in neural network settings, Baek et al. (2024) also admitted that this
mechanism fails to fully explain SAM’s generalization in tasks with label noise. Motivated by these
observations, we aim to investigate why SAM slows down noise learning compared to SGD through
a weighting mechanism under a component-wise gradient view in realistic training settings, and how
to further enhance SAM’s performance in the later stages of training.
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(a) The noisy training accuracy
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noisy training accuracy
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Figure 1: Performance comparison of SAM, SGD, and SANER (ours) trained on ResNet18 with
CIFAR-10 under 25% label noise. Noise accuracy indicates how well the model overfits to noisy
examples. SAM demonstrates the ability to slow down noisy fitting and increase the gap between
clean and noisy accuracy, and our method can further enhance this effect. As a result, SANER
outperforms SAM in test accuracy.

In this work, we investigate SAM’s capacity to mitigate overfitting to noisy labels and propose an
approach to enhance its robustness further, as illustrated in Figure 1. In particular, our investiga-
tion reveals two significant findings that motivate our proposed method: (1) During each iteration,
specific components in SAM gradient vector contribute significantly to its robustness against label
noise. (2) The ratio of these components in noise gradients larger than that in clean gradients, this
indicates that further reduction in these components may enhance resistance to noisy label fitting
without significantly harming the fitting of clean examples. Building on these insights, we propose
a new optimizer, SANER (Sharpness-Aware Noise-Explicit Reweighting), which explicitly controls
noisy fitting more effectively than SAM. This is achieved by further reducing the magnitude of the
components in SAM’s gradient that correspond to noisy label fitting in each iteration.

Our contributions can be summarized as follows:

• We empirically study the behavior of SAM in component-wise gradients. Specifically, in each
iteration, we identify components in the SAM gradient vector that significantly contribute to its
resistance against fitting noisy labels. These components have lower magnitudes and the same
signs as the corresponding components in SGD. We further analyze their impact on slowing down
noisy fitting compared to clean fitting, revealing that reducing the magnitudes of these components
has the potential to improve resistance to noisy fitting without significantly harming clean fitting.

• Based on the above idea, we propose SANER, a variant of SAM that has superior resistance to
fitting noisy labels compared to SAM. The efficiency of SANER is demonstrated across vari-
ous datasets, including CIFAR-10, CIFAR-100, and Mini-WebVision, under different settings of
noise. SANER consistently outperforms SAM, especially in three challenging overfitting scenar-
ios: increasing model layer width, training without data augmentation, and limited dataset sizes.

• We validate the robustness and efficiency of SANER when integrated with various SAM variants,
including ASAM (Kwon et al., 2021), GSAM (Zhuang et al., 2022), FSAM (Li et al., 2024), and
VaSSO (Li & Giannakis, 2024). This demonstrates that not only SAM but also its other variants
exhibit the characteristics identified in our study.

2 BACKGROUND AND RELATED WORKS

2.1 SHARPNESS-AWARE MINIMIZATION

Given a dataset D = (xi, yi)
n
i=1 consisting of i.i.d. samples drawn from a population data distribu-

tion. Let f(xi;w), parameterized by w ∈ Rd, represent a neural network, and let l(f(xi;w), yi)
(shortened as li(w)) denote the loss function between the prediction f(xi;w) and the ground-truth
label yi. The empirical training loss is typically defined as:

L(w) =
1

n

n∑
i=1

li(w). (1)

2
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To minimize this loss, one commonly employs optimization algorithms such as SGD. To enhance
generalization performance, SAM (Foret et al., 2021) proposed to seek a flat minimum of the training
objective (Equation 1) by minimizing the following robust objective:

min
w

max
||ϵ||2≤ρ

L(w + ϵ), (2)

where ρ represents the magnitude of the adversarial weight perturbation ϵ. Intuitively, the objective
seeks a solution within a neighbor region where the loss remains stable under any ϵ-perturbation.
To efficiently optimize this objective, SAM employs a first-order Taylor approximation of the loss,
approximating the worst-case ϵ using the formula as follows:

ϵ̂ ≈ arg max
||ϵ||2≤ρ

ϵ⊤gSGD = arg max
||ϵ||2≤ρ

ϵ⊤∇wL(w) = ρ
∇wL(w)

||∇wL(w)||
. (3)

Subsequently, the gradient is computed at the perturbed point w + ϵ̂, and the base optimizer (e.g.,
SGD) with a learning rate η is used to update the model parameters in each iteration according to:

w = w − ηgSAM = w − η∇wL(w)

∣∣∣∣
w+ϵ̂

. (4)

This update guides the model parameters towards a solution robust to perturbations, with only a
single extra gradient computation, thereby potentially enhancing generalization.

2.2 RELATED WORKS

SAM. In addition to the original SAM, several variants have been developed and have shown em-
pirically to improve generalization on datasets with label noise (Kwon et al., 2021; Kim et al., 2022;
Jiang et al., 2023; Li & Giannakis, 2024; Li et al., 2024). The convergence of SAM has been studied
within the Inexact Gradient Descent framework (Khanh et al., 2023; 2024b), where SAM’s perturbed
gradient is considered as an approximation of the unperturbed gradient (Khanh et al., 2024a). Sev-
eral efforts have been made to explain SAM’s generalization ability, including investigating SAM’s
implicit bias (Andriushchenko & Flammarion, 2022), examining the oscillations in SAM’s trajec-
tory toward flat minima (Bartlett et al., 2023), exploring how SAM regularizes the eigenvalues of
the Hessian of the loss (Wen et al., 2023), and analyzing SAM’s generalization through the lens of
the bias-variance trade-off (Behdin & Mazumder, 2023).

Shin et al. (2023) examined SAM’s performance in overparameterized classification tasks with noisy
labels, finding that it yields simpler, flatter solutions than SGD. Baek et al. (2024) attributed SAM’s
resistance to noisy fitting to gradient up-weighting via the perturbed step mechanism in linear set-
tings. Our work presents a different perspective, showing that SAM also down-weights certain
gradient components in realistic settings in each iteration, which helps slow down noisy fitting.

Label Noise. Many methods have been developed to enhance noise robustness in deep learning,
including (1) Designing loss functions that are less sensitive to noisy examples (Zhang & Sabuncu,
2018; Menon et al., 2020; Ma et al., 2020; Wei et al., 2023); (2) Implementing a sample weighting
mechanism ensures that the model prioritizes learning from clean data, reducing the impact of noisy
examples during training (Liu & Tao, 2015; Ren et al., 2018; Jiang et al., 2018; Wei et al., 2020); (3)
Utilizing regularization techniques to improve generalization in the presence of label noise (Lukasik
et al., 2020; Xia et al., 2021; Bai et al., 2021; Liu et al., 2022); and (4) Adopting training strategies
based on semi-supervised learning (Nguyen et al., 2020; Li et al., 2020), meta-learning (Ren et al.,
2018; Shu et al., 2019; Wei et al., 2020), or self-supervised learning (Li et al., 2022).

Our gradient-based approach focuses on explicitly identifying and reducing components of the gra-
dient vector that contribute more to learning from noisy examples in each iteration. A closely related
study is the CDR method by Xia et al. (2021), which isolates noisy (non-critical) and clean (critical)
parameters in each iteration based on the magnitude of the product of their gradients and corre-
sponding weights to prevent memorization of the noisy labels. The number of critical parameters is
determined by estimating the noise rate in the training data. Unlike their approach, our method does
not rely on estimating the noise rate but utilizes SAM’s behavior in each iteration to further enhance
the slowing down of noisy fitting.

3
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3 ANALYZING GRADIENT BEHAVIOR OF SAM

In this section, we empirically demonstrate that, in each iteration, the down-weighted gradient mag-
nitude in SAM contributes significantly to its resistance to label noise. We present various experi-
ments and provide the underlying intuition and motivation for our experiments. We conducted ex-
periments using ResNet18 on CIFAR-10 with 25% label noise, following hyperparameters detailed
in Appendix A.1. For a component-wise gradient analysis, we denote gi as the gradient component
corresponding to the i-th parameter of gradient vector g, and d is the number of parameters in the
neural network.

We raise two key questions: (1) How does SAM’s component-wise gradient differ from SGD in each
iteration? (2) Are there specific component-wise gradients that focus on preventing noisy fitting in
each iteration?

Gradient weighting in SAM. In each iteration, we categorize each gradient component into three
groups based on the ratio of its value in SAM and SGD, defined as ri = gSAM

i /gSGD
i , and analyze

their proportions during SAM’s training process as follows:

Group A: SAM increases SGD gradient component. SA = {i ∈ {1, 2, . . . , d} | ri ≥ 1}.

Group B: SAM decreases SGD gradient component. SB = {i ∈ {1, 2, . . . , d} | 0 ≤ ri < 1}.

Group C: SAM reverses SGD gradient component direction. SC = {i ∈ {1, 2, . . . , d} | ri < 0}.
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Figure 2: Parameter distribution (%) of
groups A, B, and C during training.

Figure 2 illustrates the percentage of three groups of gra-
dient components across all parameters of the neural net-
work model during SAM training. It indicates that Group
A, where gradient components are up-weighted, accounts
for 50% of the parameters. Group B, where gradient com-
ponents are down-weighted, covers around 30-40% of the
parameters during most of the training phase. Group C,
where parameters have gradients that are reversed in di-
rection, starts with a small portion but increases towards
the end of the training phase. This may be because the
model mostly converges and ends up in a rough land-
scape, causing the backward step to diverge from the di-
rection of SGD.

Analyzing Group C is particularly challenging due to the inconsistency between the objectives of
SAM and SGD. The divergence in gradient component directions complicates the learning process,
as reversed gradients may hinder effective learning from the data. Moreover, our study focuses
on the “memorization” phase (Arpit et al., 2017), where the transition from fitting clean examples
to overfitting noisy examples occurs. This typically happens during the middle stage of training,
when most clean examples have already been learned. During this period, Groups A and B are still
dominant compared to Group C. Therefore, in this section, we focus on comparing the effects of
Group A and Group B of SAM on noisy fitting, leaving the analysis of Group C for future work.

The experiment reveals that SAM not only up-weights gradients but also involves a significant
portion of down-weighted gradients. In linear models, Baek et al. (2024) suggested that the up-
weighting of gradients (Group A) helps maintain focus on clean examples for a longer period. How-
ever, they observed that this mechanism could not explain SAM’s ability to slow down noisy fitting
in neural networks. We hypothesize that Group B, due to its substantial presence, may play a cru-
cial role in addressing the issue of noisy fitting in realistic training settings. This study investigates
the role of Group B in mitigating noisy fitting, emphasizing its potential for directly manipulating
gradients to enhance resistance to noise.

Group B in SAM primarily mitigates noisy fitting. By design, SAM reduces the magnitudes of
gradient components in Group B compared to SGD, thereby inhibiting their movement toward local
minima. This mechanism is intended to decelerate the convergence of these parameters, prompting
the critical question: Is this down-weighting mainly responsible for the observed reduction in noisy
fitting in SAM? To address this question, we conduct experiments aimed at identifying which group
of components predominantly contributes to resistance against noisy fitting.

4
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In particular, we compared SAM with a SAM-variant gSAM’ by replacing value of the Group B’s
gradient components with value of the SGD gradient components while retaining SAM’s gradients
for the other parameters as follows:

gSAM’
i =

{
gSGD
i if i ∈ SB ,

gSAM
i otherwise.
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Figure 3: Comparison of the noisy ac-
curacy of SGD, SAM, and SAM vari-
ants where gradient components from
groups A and B are swapped with those
from SGD.

We trained on ResNet18 with CIFAR-10 with 25% la-
bel noise, following the experimental setup outlined in
Appendix A.1. As illustrated in Figure 3, when SAM
does not decelerate the gradients of Group B (denoted as
SGD-GrB in the figure), the noisy accuracy significantly
increases, potentially approaching the noisy accuracy of
SGD. This emphasizes that Group B contributes signifi-
cantly to the noisy fitting resistance of SAM.

To establish a comparison with Group B, a similar exper-
iment was carried out for Group A. The results from Fig-
ure 3 show that, the noisy accuracy does not increase to
the same degree as it does for Group B when SGD gradi-
ents (shown as SGD-GrA in the figure) replace SAM’s
up-weighting of gradients in Group A. These findings
suggest that Group B play a more significant role in mit-
igating noisy fitting than Group A.

4 ANALYZING THE IMPACT OF GROUP B MAGNITUDE REDUCTION ON
SLOWING DOWN NOISY VS. CLEAN LABEL FITTING

From Section 3, we know that Group B slows down the noisy fitting in SAM. As a natural modifi-
cation, we aim to further slow down Group B by reducing its magnitude. However, we first need to
determine if this reduction has a greater impact on fitting clean labels or noisy labels. In this section,
we observe that the ratio of Group B in noise-dominated components is significantly higher than
the ratio of Group B in clean-dominated components. To be more specific, these components are
defined as follows.

To begin, we represent the total gradient in Stochastic Gradient Descent (SGD) as:

gSGD = gclean + gnoise,

where gclean and gnoise denote the gradients derived from the backward passes of clean and noisy
examples within a mini-batch, respectively. gSGD is the aggregated gradient of both.

We focus on the gradient components gSGD
i , particularly when there is opposing interaction between

the clean (gclean
i ) and noisy (gnoise

i ) gradients. Our intuition is that when the gradient components of
clean and noisy samples align, it is difficult to determine whether the decrease in group B’s value
is beneficial for resisting noisy fitting. Conversely, when these components oppose each other, a
decrease in value will either slow down noisy fitting or slow down clean fitting. Therefore, we
define the set of indices where this opposition occurs as:

So = {i ∈ {1, 2, . . . , d} | gclean
i · gnoise

i < 0}.

Next, we classify gradient components into two sets: clean-dominated components Sc and noise-
dominated components Sn, based on the predominant influence, as follows:

Sc = {i ∈ {1, 2, . . . , d} | gclean
i · gSGD

i > 0︸ ︷︷ ︸
gSGD
i is dominated by clean

} ∩ So; (5)

Sn = {i ∈ {1, 2, . . . , d} | gnoise
i · gSGD

i > 0︸ ︷︷ ︸
gSGD
i is dominated by noise

} ∩ So. (6)

5
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To evaluate the influence of clean-dominated and noise-dominated components within group B,
we compute their proportions relative to the total number of components. Such an approach is
necessary to counterbalance the disparity between number of clean-dominated and noise-dominated
components in the gradient. Let pnoise and pclean denote the proportions of noise-dominated and
clean-dominated components, respectively:

pclean =
|Sc ∩ SB |

|Sc|
; pnoise =

|Sn ∩ SB |
|Sn|

.

We then compute the ratio pr, which compares the prevalence of noise-dominated components rel-
ative to clean-dominated components:

pr =
pnoise

pclean
.

The ratio pr offers insight into how group B influences the learning process. Specifically, pr > 1
indicates that adjustments to the group primarily affect noisy data fitting, while pr < 1 suggests a
greater influence on clean fitting. Furthermore, a higher value of pr indicates a stronger effect of
adjusting Group B on the noisy fitting rate.
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Figure 4: pr value during training,
showing that Group B has a greater in-
fluence on the noisy fitting rate.

Group B shows stronger impact on noisy fitting.
Figure 4 illustrates the pr values for Group B, using
ResNet18 trained on CIFAR-10 with 25% label noise, as
discussed in Section 3. The pr ratio in Group B is less
than 1 in the early stages of training. However, after 25
epochs, Group B consistently shows pr > 1, increasing to
values as high as 2 as the neural network begins to overfit
noisy labels in the later training phases. This finding re-
confirms the impact of Group B on noisy fitting, aligning
with the insights presented in Section 3, where replacing
Group B with SGD values leads to a dramatic increase in
noisy fitting due to the rising of pr value.

Furthermore, it demonstrates that Group B exerts a
stronger influence on noisy data fitting than on clean data
fitting as the noisy fitting rate increases. An appropriate reduction in Group B can potentially slow
down noisy fitting without hindering the ability to learn from clean samples, which motivates our
proposed method. The values of pnoise and pclean during each iteration and further analyses of Group
B are detailed in Appendix B.3.1.

5 REWEIGHTING GROUP B FOR ENHANCING NOISY LABEL FITTING
RESISTANCE

In this section, we present SANER (Sharpness-Aware Noise-Explicit Reweighting), a novel ap-
proach to address noisy fitting that builds on the insights from Sections 3 and 4. Our method demon-
strates superior generalization performance compared to SAM and various SAM-based optimizers
in noisy label environments across various datasets. We further investigate SANER’s effectiveness
in mitigating overfitting in three challenging scenarios, following Nakkiran et al. (2020): increasing
width of model layer, training without data augmentation, and limited dataset sizes.

5.1 SHARPNESS-AWARE NOISE-EXPLICIT REWEIGHTING

Based on finding in Section 3, our proposed method, SANER, aims to enhance SAM’s ability to
slow down the fitting of noisy labels by straightforwardly reweighting Group B. To achieve this, we
first compute a binary mask, mB, which is used to selectively update the gradients as follows:

mB =

{
1 if 0 ≤ ri < 1,

0 otherwise;
(7)

gSANER = (1−mB) · gSAM + α ·mB · gSAM. (8)

Here, the ratio r is calculated as gSAM/gSGD using component-wise operator. It is important to
note that SANER maintains the computational efficiency of SAM, as it does not require additional
gradient calculations. The complete procedure for SANER is described in Algorithm 1.

6
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Algorithm 1 Sharpness-Aware Noise-Explicit Reweighting (SANER)
1: Input: Learning rate η, initial parameters w0, number of iterations T , perturbation size ρ, noise

control parameter α
2: Initialize model parameters: w = w0

3: for t = 0 to T do
4: Sample a mini-batch of m training examples to calculate gradient: {x(1), . . . ,x(m)}
5: Compute the SGD gradient: gSGD = ∇wL(w)

6: Compute the SAM gradient: gSAM = ∇wL(w)

∣∣∣∣
w+ρ gSGD

||gSGD||

7: Calculate the gradient ratio: r = gSAM/gSGD (Component-wise operator)
8: Compute mB and gSANER by Eq. 7 and 8
9: Update parameters: w = w − ηgSANER

10: end for
11: Output: Final learned parameters w
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(a) SANER with 0 < α < 1.
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(b) SANER with α > 1.
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Figure 5: Effect of hyperparameter α on noisy accuracy in (a) and (b). Lower values of α enhance
noise resistance. In (c), compare clean accuracy of SANER with and without the α scheduler,
demonstrating that the scheduler improves clean training accuracy.

Value of α is directly proportional to noisy fitting rate. Based on the pr value of Group B
shown in Section 4, we hypothesize that Group B mitigates noisy fitting by down-weighting gradi-
ent components associated with noise-dominated parameters, suggesting that further reducing these
components could enhance resistance to noisy fitting. To verify this hypothesis, we conduct ex-
periments using SANER with varying α values {2, 1.5, 1.25, 1.1, 1 (SAM), 0.9, 0.75, 0.5, 0.25} on
ResNet18 and CIFAR-10, employing the hyperparameter settings detailed in Appendix A.1. The re-
sults, shown in Figure 5, demonstrate that α is directly proportional to the noisy fitting rate: higher
values of α (e.g., 2, 1.5, 1.25, 1.1) accelerate noisy fitting compared to SAM (α = 1). Conversely,
using lower values of α reduces the contribution of noise-dominated components, allowing SANER
to better resist noisy fitting and achieve improved generalization performance.

Stabilizing clean fitting via a scheduler for α. As shown in Figure 4, the value of pr is relatively
low during the early phase of training. This implies that employing a low α value during this phase
could impede the learning of clean examples. This phenomenon arises from the model’s tendency to
prioritize learning clean samples over noisy ones during the early iterations of training, as observed
in previous works (Liu et al., 2020; 2023). As a result, during these early iterations, clean-dominated
components make up a significant portion of the overall model, including Group B.

To address this issue and ensure robust learning of clean examples, we propose a simple yet effective
solution: a linear scheduler that gradually decreases α from 1 to a predetermined value over k
epochs. This strategy stabilizes the fitting of clean examples in the early training stages, resulting
in more consistent performance compared to training without a scheduler. As shown in Figure 5(c),
experiments on ResNet34 with CIFAR-100 under 50% label noise demonstrate that SANER without
the α scheduler (k = 0) significantly harms clean accuracy, reducing it by approximately 15%.
Increasing k improves clean accuracy in the initial phase, and the clean fitting rate remains stable
towards the end of training across various value of k, indicating that the performance is not overly
sensitive to k. This approach is particularly important in scenarios with high proportions of noisy
samples or slow clean fitting rate, as shown in Tables 7 and 8 in Appendix C.5.

7
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Table 1: Test accuracy comparison of SAM and SANER across different noise types and rates,
trained on CIFAR-10 and CIFAR-100 with ResNet18. Bold values highlight the highest test
accuracy for each noise type and rate.

Type Noise CIFAR-10 CIFAR-100
SAM SANER SAM SANER

Symm. 25% 93.05±0.17 94.08±0.11 (↑ 1.03) 69.68±0.07 72.90±0.21 (↑ 3.22)
50% 88.82±0.08 90.60±0.36 (↑ 1.78) 61.17±0.14 66.34±0.11 (↑ 5.17)

Asym. 25% 94.75±0.28 94.83±0.14 (↑ 0.08) 71.57±0.30 74.64±0.13 (↑ 3.07)
50% 81.94±0.71 82.25±1.43 (↑ 0.31) 39.11±0.50 40.05±0.51 (↑ 0.94)

Depen. 25% 92.84±0.18 93.67±0.30 (↑ 0.83) 69.46±0.24 72.93±0.29 (↑ 3.47)
50% 87.32±1.17 90.01±0.62 (↑ 2.69) 58.71±0.69 66.72±0.75 (↑ 8.01)

Real - 86.33±0.07 87.89±0.12 (↑ 1.56) 62.74±0.59 64.75±0.30 (↑ 2.01)

Table 2: Test accuracy comparison of different architectures using SGD, SAM, and SANER on
CIFAR-100 (Symmetric noise). Bold values indicate the highest test accuracy for each architecture
and noise level.

Architecture Param Noise SGD SAM SANER

ResNet34 21.3M 25% 69.07±0.53 71.10±0.83 (↑ 2.03) 74.02±0.22 (↑ 2.92)
50% 59.73±1.26 62.49±1.18 (↑ 2.76) 67.26±0.28 (↑ 4.77)

DenseNet121 7.0M 25% 69.13±0.48 71.61±0.49 (↑ 2.48) 73.89±0.64 (↑ 2.28)
50% 58.19±1.20 60.74±0.72 (↑ 2.55) 64.26±0.62 (↑ 3.52)

WideResNet40-2 2.3M 25% 67.81±0.27 69.75±0.26 (↑ 1.94) 70.35±0.10 (↑ 0.60)
50% 60.51±0.18 62.58±0.35 (↑ 2.07) 64.71±0.55 (↑ 2.13)

WideResNet28-10 36.5M 25% 70.78±0.20 72.56±0.18 (↑ 1.78) 76.20±0.41 (↑ 3.64)
50% 61.94±0.49 64.12±0.30 (↑ 2.18) 70.80±0.28 (↑ 6.68)

5.2 SETUP AND EXPERIMENTAL RESULTS

Dataset. To evaluate the effectiveness of SANER, we assess its performance on CIFAR-10/100
(Krizhevsky et al., 2009) and Mini-WebVision (Li et al., 2017) datasets. We specifically examine
four types of label noise—(1) symmetric noise, (2) asymmetric noise (Zhang & Sabuncu, 2018),
(3) instance-dependent noise Xia et al. (2020), and (4) real-world noise—on the CIFAR datasets.
Details of each noise type are provided in Appendix A.2.

CIFAR-10 and CIFAR-100. We validate that SANER can enhance the noise robustness over
SGD and SAM trained on ResNet18 (He et al., 2016), achieving the better test accuracy, shown in
Table 1. In particular, SANER can outperform SAM in all cases, about CIFAR-10, the improvement
over SAM is about 1% average, and the highest improvement is 2.7% for the case of dependent
noise type and 50% label noise. While the gap improvement of CIFAR-100 over SAM is about 3%
average, and the highest improvement is impressive about 8% for the case of dependent noise type
and 50% label noise. These results highlight that SANER effectively enhances model performance
by slowing down noisy fitting, particularly in cases like CIFAR-100, where fitting to clean samples
is more challenging. This slowdown extends the gap between clean accuracy and noisy accuracy,
contributing to better generalization.

Different architectures. The performance of optimizers can be highly dependent on the neu-
ral network architecture, as different architectures have unique characteristics in terms of depth,
width, and connectivity. By evaluating SGD, SAM, and SANER on CIFAR-100 across architec-
tures like ResNet34 (He et al., 2016), DenseNet121 (Huang et al., 2017), WideResNet40-2 and
WideResNet28-10 (Zagoruyko & Komodakis, 2017), we aim to compare their test accuracy and
assess how well SANER adapts to diverse architectures. The results illustrated in Table 2, SANER
consistently outperforms SAM across all tested architectures, with improvements mostly ranging
from 2% to over 6%. This significant enhancement provides strong evidence of SANER’s robust-
ness across various network designs.
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Table 3: Test accuracy comparison of different SAM-like optimizers with and without SANER
integration on ResNet18 and CIFAR-10/CIFAR-100 (Symmetric noise). Bold values indicate the
highest test accuracy for each optimizer and noise level.

Optimizer Noise CIFAR-10 CIFAR-100
Original +SANER Original +SANER

ASAM 25% 92.88±0.13 92.96±0.06 (↑ 0.08) 70.67±0.40 72.44±0.10 (↑ 1.77)
50% 88.70±0.18 88.80±0.10 (↑ 0.10) 63.04±0.25 66.62±0.13 (↑ 3.58)

GSAM 25% 93.10±0.12 94.09±0.16 (↑ 0.99) 69.65±0.39 72.97±0.27 (↑ 3.32)
50% 88.71±0.15 90.69±0.17 (↑ 1.98) 61.25±0.33 66.19±0.15 (↑ 4.94)

FSAM 25% 92.93±0.08 94.00±0.15 (↑ 1.07) 69.49±0.35 72.94±0.58 (↑ 3.45)
50% 88.71±0.13 90.47±0.01 (↑ 1.76) 61.24±0.32 66.25±0.15 (↑ 5.01)

VaSSO 25% 92.35±0.12 93.31±0.32 (↑ 0.96) 68.86±0.18 72.43±0.46 (↑ 3.57)
50% 87.93±0.06 89.66±0.57 (↑ 1.73) 60.46±0.05 65.55±0.51 (↑ 5.09)

Table 4: Top-1 validation accuracy (%) on the clean ImageNet 2012 validation set for ResNet18
models trained on WebVision under the Mini setting. Bold values indicate the highest performance
for each architecture.

Architecture Param SGD SAM SANER
ResNet18 11.2M 64.96 67.48 70.84

Integration with SAM-based optimizers. We evaluated SANER’s effect on SAM-based opti-
mizers using CIFAR-10 and CIFAR-100 with ResNet18. The SAM variants tested include ASAM
(Kwon et al., 2021), GSAM (Zhuang et al., 2022), FSAM (Li et al., 2024), and VaSSO (Li & Gi-
annakis, 2024), with and without SANER integration. Table 3 shows that integrating SANER con-
sistently enhances test performance across all noise levels. In challenging scenarios, such as limited
samples per class (CIFAR-100) and a high noise rate (50%), SANER integration significantly im-
proves accuracy by around 4-5%. This result suggests that not only does SAM benefit from SANER,
but its variants also exhibit similar characteristics related to Group B, which contribute to the miti-
gation of noisy fitting, as further detailed in Appendix E.1.

Mini WebVision. To evaluate SANER beyond the CIFAR benchmarks, we tested it on the large-
scale, real-world noisy dataset WebVision (Li et al., 2017). Following the “Mini” setting from
previous works (Jiang et al., 2018), we used the first 50 classes from the Google resized image
subset and evaluated the networks on the corresponding 50 classes of the clean ImageNet 2012
validation set (Russakovsky et al., 2015). We set up the experiment based on Wei et al. (2023). As
shown in Table 4, SANER outperforms SAM by 3% in test accuracy, demonstrating its effectiveness
in enhancing noise robustness in large-scale, real-world datasets.

5.2.1 EXPERIMENTAL RESULTS IN OVERFITTING SCENARIOS

We further examine SANER’s performance compared to SGD and SAM in overfitting environments,
by considering three challenging scenarios, following Nakkiran et al. (2020): increasing width of
model layers, training without data augmentation, and limited dataset sizes.

Increasing width of model layers. We investigate the performance of SANER in an overparam-
eterized regime by increasing the layer widths of the ResNet18 model trained on CIFAR-100. Ex-
panding the model capacity typically accelerates overfitting and memorization of noisy examples
(Belkin et al., 2019; Nakkiran et al., 2020; Zhang et al., 2021), leading to degraded performance.
This effect is evident from the decline in test accuracy for both SGD and SAM as the ResNet layer
width increases, especially with a 50% noise rate (Figure 6(a)). In contrast, SANER’s performance
improves with increased layer width, leveraging the added capacity more effectively. The perfor-
mance gap between SANER and SAM grows significantly, reaching approximately 15% in test accu-
racy when the ResNet18 width is doubled under 50% label noise. These results highlight SANER’s
robustness in overparameterized settings.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

11.2M 25.2M 44.8M
Parameter Size (Millions)

50

55

60

65

70

75

Te
st

 A
cc

ur
ac

y 
(%

)

Test Accuracy vs. ResNet18 Parameter Size

SGD (Noise=25%)
SAM (Noise=25%)
SANER (Noise=25%)
SGD (Noise=50%)
SAM (Noise=50%)
SANER (Noise=50%)

(a)

CIFAR-10 CIFAR-100
Dataset

40

50

60

70

80

Te
st

 A
cc

ur
ac

y 
(%

)

Test Accuracy on CIFAR-10/100 (No Data Augmentation)
SGD
SAM
SANER

(b)

5000 12500 25000 50000
Training Set Size

60

65

70

75

80

85

90

95

Te
st

 A
cc

ur
ac

y 
(%

)

Test Accuracy vs. Training Set Size for CIFAR-10
SGD
SAM
SANER

(c)

Figure 6: Test accuracy comparison of ResNet18 under different conditions and noise levels: (a)
increasing layer width with 25% and 50% label noise, (b) no data augmentation with 25% label
noise, and (c) varying CIFAR-10 training set size. SANER consistently outperforms other methods
across all settings.

Without data augmentation. To further investigate the impact of overfitting, particularly in the
presence of noisy examples, we conduct a comparative analysis of the test accuracy of SGD, SAM,
and SANER on the CIFAR-10 and CIFAR-100 datasets using ResNet18, under conditions without
data augmentation. Data augmentation is often employed to improve model generalization, but its
absence allows us to better understand the intrinsic behavior of optimizers when training on raw
data. The results, depicted in Figure 6(b), show that SANER achieves a substantial improvement
in test accuracy, outperforming both SGD and SAM by a significant margin—most notably, a 7.5%
increase on CIFAR-10 compared to SAM.

Limited dataset sizes. Finally, a key factor in overfitting is the relationship between the size of
the training set and the complexity of the model, which becomes especially pronounced when the
dataset is reduced in size. By varying the training set size to 10%, 25%, and 50% of the original
data, we aim to examine how SGD, SAM, and SANER respond to reduced data availability on the
CIFAR-10 dataset using ResNet18, while maintaining the full-size test set for evaluation. We only
test on CIFAR-10 because the number of samples per class in CIFAR-100 is already low, which can
lead to unstable training with further data reduction. The results, depicted in Figure 6(c), show that
SANER achieves a substantial improvement in test accuracy, outperforming both SGD and SAM
by a significant margin—most notably, a 7% increase on CIFAR-10 compared to SAM when the
training set is reduced by four times (12,500 examples).

6 CONCLUSION

In this work, we examine the effectiveness of the SAM optimizer in addressing label noise, noting
its advantages over SGD. However, SAM tends to overfit to noisy labels in later training stages. Our
analysis identifies specific down-weighted gradient magnitude components in the SAM’s gradient
vector that enhance its resistance to label noise. We introduce the concepts of noise-dominated
and clean-dominated components, and analyze the impact of Group B on both noisy and clean
fitting. Our findings suggest that reducing the magnitude of these down-weighted components can
further improve resistance to noisy labels. To this end, we propose SANER, a method designed
to reduce these components, resulting in enhanced model robustness. SANER outperforms SAM
across different architectures, datasets, and noise scenarios, and demonstrates superior performance
compared to other SAM variants when combined with them.

Our work utilizes SAM’s perturbed gradient and analyzes it through component-wise gradients to
understand their properties in the context of noisy label tasks. However, our design of Group B does
not fully separate noise-dominated components from clean-dominated ones, limiting our ability to
specifically target noisy label challenges. This overlap may inadvertently affect the clean fitting rate,
a drawback that is only partially mitigated by the scheduler we introduced. Additionally, we were
limited by the computational resources required to train on larger datasets, such as ImageNet, which
could further validate the scalability of our approach. Future research could explore better isola-
tion of noise-dominated components, advanced gradient techniques, or new ways of decomposing
SAM’s components to enhance label-noise robustness while preserving clean fitting performance.
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A IMPLEMENTATION DETAILS

A.1 TRAINING DETAILS

We train all neural networks from scratch using simple data augmentation techniques, including
RandomHorizontalFlip(.) and RandomCrop(.). Specifically, we train the network for
200 epochs using SGD with a momentum of 0.9, a weight decay of 0.0005, and a batch size of 128.
The initial learning rate is set to 0.1, and it is reduced by a factor of 10 after 100 and 150 epochs,
as suggested by Andriushchenko & Flammarion (2022); Shin et al. (2023). For the hyperparameter
perturbation radius of SAM, we use ρ = 0.1 in all experiments, following the setting in Foret et al.
(2021). For our SANER method, we experiment with different values for the hyperparameter α
in the set {0.9, 0.75, 0.5, 0.25, 0.1} and found that α = 0.5 is stable in most cases, making it our
recommended default value. As discussed in Section 5.1, we linearly reduced α from 1 to 0.5 over
the first quarter of the total epochs and maintained α at 0.5 for the remaining epochs. In each
experiment, we train a neural network on the training dataset and report the best test accuracy on the
test dataset during each epoch. We repeat the experiments three times with different random seeds
and report the mean and empirical standard deviation of these best results.

A.2 TYPES OF NOISE

In this work, we follows the experimental setup used in previous works for noisy label scenarios. In
particular, we used four types of noise as follows:

1. Symmetric noise: Each label is flipped to any other class with equal probability. In our
experiments, we uniformly flip labels to other classes with probabilities of 25% and 50%.

2. Asymmetric noise: Labels are flipped to similar, but not identical classes (Zhang &
Sabuncu, 2018). For CIFAR-10, we generate asymmetric noisy labels by mapping spe-
cific classes to their most similar counterparts: TRUCK to AUTOMOBILE, BIRD to AIR-
PLANE, DEER to HORSE, CAT to DOG, and leaving other labels unchanged, with prob-
abilities of 25% or 50%. For CIFAR-100, each class is shifted circularly to the next class
with probabilities of 25% or 50%.

3. Instance-dependent noise: The mislabeling probability of each instance depends on its
input features. In our experiments, we use instance-dependent noise from PDN (Xia et al.,
2020) with noisy rates of 25% or 50%, where the noise is synthesized based on DNN
prediction errors.

4. Real-world noise: Labels are taken from the mislabeling of real-world human annotations.
For CIFAR datasets, we use the ”Worst” label set from CIFAR-10N and the ”Fine” label
set from CIFAR-100N (Wei et al., 2022).

B GRADIENT BEHAVIOR IN SAM ACROSS ARCHITECTURES

B.1 DISTRIBUTION OF GROUPS A, B, AND C

In Section 3, we visualized the distribution of Groups A, B, and C, demonstrating that SAM gra-
dients not only include upweighted gradients, as noted in Baek et al. (2024), but also contain a
significant proportion of downweighted gradients. In this section, we extend the analysis by first
visualizing these distributions across different ρ values of SAM using ResNet-18 on CIFAR-10,
as shown in Figure 7. Next, we analyze the distributions across various architectures (ResNet-34,
WideResNet40-2, and DenseNet121) on CIFAR-100, presented in Figure 8. These results further
support our findings as outlined in Section 3.

B.2 ROLE OF GROUP B IN MITIGATING NOISY FITTING
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(b) ρ = 0.1
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(c) ρ = 0.15
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(d) ρ = 0.2

Figure 7: Parameter distribution (%) of groups A, B, and C with different ρ trained on CIFAR-10,
25% label noise.
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(a) ResNet34
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(b) WideResNet40-2
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(c) DenseNet121

Figure 8: Parameter distribution (%) of groups A, B, and C with different architectures trained on
CIFAR100, 25% label noise.

In Section 3, we also conducted experiments where the gradients in each group were replaced with
SGD gradients to analyze the contribution of each group in mitigating noisy fitting. In this section,
we extend these experiments to various datasets and noise ratios to further validate our finding that
Group B plays a primary role in this phenomenon.

As shown in Figure 9, in most cases, the performance of SGD-GrB in resisting noisy label fitting
is worse or comparable to SGD-GrA (see the notation in Section 3). An exception is observed with
DenseNet121, where SGD-GrA performs worse than SGD-GrB in resisting noise. However, during
the later training phase, the model is already overfitted to noise, which slightly impacts the overall
performance, as the model’s peak performance often occurs between epochs 100 and 150.
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(a) RN18, Noise=50%

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

No
isy

 a
cc

ur
ac

y

Noisy Train Accuracy (The lower the better)
SGD
SGD-GrB
SGD-GrA
SAM

(b) RN18-wi=2, No=25%
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(c) RN34, Noise=25%
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(d) RN34, Noise=50%
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(e) WRN40-2, No=25%
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(f) WRN40-2, No=50%
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(g) DN121, No=25%
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(h) DN121, No=50%

Figure 9: Comparison of noise accuracy: SGD, SAM, SGD-GrA, and SGD-GrB. The noise accuracy
of SGD-GrB is higher than that of SAM and is higher or nearly equal to that of SGD-GrA in most
cases. This indicates that Group B significantly contributes to the label noise resistance of SAM.
These experiments are trained on CIFAR-10.

B.3 pr-VALUES ACROSS ARCHITECTURES
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In Section 4, we introduced the pr value to analyze the impact of Group B on noise fitting and clean
fitting. A pr value greater than 1 indicates that Group B has a stronger influence on noise fitting.
We demonstrated that modifying Group B significantly affects the noise fitting rate, with pr values
reaching as high as 2.

To further observe this characteristic of Group B, we conducted experiments using various architec-
tures trained on CIFAR-10 and CIFAR-100 with 25% label noise. As shown in Figure 10, the pr
value consistently exceeds 1 across different architectures and rises to around 2 as the noisy fitting
rate increases, particularly after epoch 100.
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(a) ResNet34, Noise=25%
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(b) WideResNet40-2, Noise=25%
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(c) DenseNet121, Noise=25%
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(d) ResNet34, Noise=25%
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(e) WideResNet40-2, Noise=25%

0 25 50 75 100 125 150 175 200
Epoch

0.6

0.8

1.0

1.2

1.4

1.6

1.8

p n
oi

se
/p

cle
an

Ratio pr = pnoise/pclean for GrB

(f) DenseNet121, Noise=25%

Figure 10: pr value during training, showing that Group B has a greater influence on fitting noisy la-
bels compared to clean labels. Experiments in Figures (a)-(f) are trained on CIFAR-10, experiments
in Figures (g)-(i) are trained on CIFAR-100.

B.3.1 ADDITIONAL ANALYSES FOR SECTION 4

To further analyze the value of pr in SANER, we compare the pr during the training process of
both SANER and SAM to gain a deeper understanding of SANER’s effects on pr. Figures 11(a)
and 12(a) show that, during SAM training, the pnoise value for group B exceeds pclean during the
noisy label fitting phase. For CIFAR-10, as illustrated in Figure 11(b), SAM effectively mitigates
noisy fitting, resulting in a slower increase in pr compared to CIFAR-100 (Figure 12(b)). Notably,
in CIFAR-100, the pr value peaks much earlier (around the 115th epoch) compared to CIFAR-10
(around the 150th epoch), after which it decreases as the model reaches high accuracy on noisy
samples, as shown in Figures 11(c) and 12(c). In conclusion, pclean consistently remains larger than
pnoise during the noisy fitting phase when using SAM, and the rate of increase in pr indicates a faster
overfitting to noisy samples.

C HYPERPARAMETER ABLATION STUDY

C.1 IMPACT OF SAM’S ρ ON SANER PERFORMANCE

Our method builds upon SAM, which has demonstrated the ability to mitigate the effects of label
noise. To enhance SAM’s generalizability, Foret et al. (2021) suggests increasing the ρ value. In our
experiments, we evaluated the effectiveness of SANER across various ρ values, as recommended in
Foret et al. (2021). The results, summarized in Table 5, show that SANER consistently outperforms
SAM across all tested ρ values. Notably, increasing ρ improves the performance of both SAM and
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Figure 11: Analysis of Group B trained with ResNet-18 on CIFAR-10 under 25% label noise. (a)
Comparison of pclean and pnoise using SAM, (b) pr values with SAM versus SANER, and (c) noisy
training accuracy. The higher pclean compared to pnoise helps control group B to mitigate noisy fitting.
The pr value increases significantly more slowly for SANER, indicating a gradual increase in the
noisy fitting rate, eventually stabilizing at around 5%.
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Figure 12: Analysis of Group B trained with ResNet-18 on CIFAR-100 under 25% label noise. (a)
Comparison of pclean and pnoise using SAM, (b) pr values for SAM versus SANER, and (c) noisy
training accuracy. The rapid drop in pclean is due to the model achieving high noisy training accuracy
(nearly 80% by epoch 115). The pr value shows a significant increase with SAM, while it rises more
slowly with SANER, correlating with reduced noisy training accuracy.

SANER. However, on CIFAR-100, SANER surpasses SAM’s best performance even at the lowest
ρ value, with a significant boost in accuracy.

Table 5: Test accuracy comparison of SANER with across different perturbation radii ρ with various
noise types and rates, trained on CIFAR-10 and CIFAR-100 with 25% label noise using ResNet18.
Bold values highlight the highest test accuracy for each dataset and perturbation radius.

Dataset Opt ρ = 0.05 ρ = 0.1 ρ = 0.15 ρ = 0.2

CIFAR-10 SAM 91.93 93.25 93.46 93.71
SANER 93.32 94.18 94.09 94.23

CIFAR-100 SAM 68.33 69.60 70.30 70.86
SANER 72.57 72.78 73.15 73.72

C.2 EFFECT OF α ON PREVENTING NOISE OVERFITTING ACROSS ARCHITECTURES

In Section 5, we demonstrated the correlation between the reweighting factor α and the noisy fitting
rate. Specifically, we found that α is directly proportional to the noisy fitting rate, meaning a lower
α generally enhances the model’s ability to resist noisy fitting.

To further validate this relationship across different architectures, we conducted similar experiments
with various architectures, as shown in Figure 13. These results offer insights into how α can be
tuned during training to mitigate overfitting.

C.3 EFFECT OF k IN MITIGATING CLEAN UNDERFITTING ACROSS ARCHITECTURES
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(b) WRN40-2
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(c) DenseNet121
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(d) ResNet34
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(e) WRN40-2
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(f) DenseNet121

Figure 13: Noise accuracy, models in Figures (a)-(c) are trained on CIFAR-10 and in Figures (d)-(f)
are trained on CIFAR-100 under 25% noisy labels.

In Section 5, we introduced a linear scheduler for the first k epochs of α, allowing the model to
better fit to clean samples at the start of the training process, given the low pr value at the beginning.
This phenomenon is particularly noticeable when the model struggles to fit to clean samples, as seen
in CIFAR-100.

To demonstrate the consistency of this characteristic, we visualize the clean training accuracy for
different values of k across various architectures in Figure 14. The results show that with k = 0
in CIFAR-100, the clean fitting rate of some architectures (e.g., ResNet-34) is slower compared to
when k ≥ 25. Furthermore, in most cases, the k value is not sensitive across a wide range.
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(c) DenseNet121
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(d) ResNet34
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(e) WRN40-2
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Figure 14: Clean accuracy, models in Figures (a)-(c) are trained on CIFAR-10 and in Figures (d)-(f)
are trained on CIFAR-100 under 25% noisy labels.

C.4 INTERACTION BETWEEN α AND k IN DIFFERENT SETTINGS

To further explore the interaction between α and k in our proposed methods, we present the grid
search results for α and k using ResNet34 and WideResNet40-2 (WRN40-2) on CIFAR-100 with
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noisy labels in Table 6. At a low noise rate (25% label noise), models generally avoid underfitting,
and α remains robust across a wide range of values (0.25 to 0.75). In this scenario, the scheduler’s
impact is relatively minor, as the models achieve comparable performance regardless of k.

However, under a high noise rate (50% label noise), extremely low values of α (e.g., α = 0.25)
lead to instability when fitting clean samples, particularly in WRN40-2, where the accuracy drops
significantly with small value of k (45.78% at k = 25). The scheduler effectively mitigates this
instability, as seen in the significant improvement in accuracy with increasing k, achieving 55.79%
at k = 75. Similarly, ResNet34 benefits from the scheduler under high noise conditions, with
notable gains in test accuracy. These results demonstrate that while the scheduler has a minor effect
under low noise levels, it plays a critical role in stabilizing training and enhancing performance
under high-noise conditions as discussed in Section 5, especially when α is small.

Table 6: Test accuracy comparison of SANER trained on CIFAR-100 datasets with noisy labels
using ResNet34 and WideResNet40-2 for various α and k.

Noise = 25% Noise = 50%
k = 25 k = 50 k = 75 k = 25 k = 50 k = 75

ResNet34
α = 0.75 73.09 72.76 72.04 66.37 66.28 64.73
α = 0.5 73.96 74.03 74.01 66.93 67.17 66.73
α = 0.25 74.33 74.49 74.25 61.51 66.60 67.48

WRN40-2
α = 0.75 70.34 70.90 70.48 63.80 64.08 63.35
α = 0.5 71.55 71.93 71.70 64.94 64.73 65.70
α = 0.25 71.27 71.79 71.73 45.78 52.14 55.79

C.5 THE EFFECT OF SCHEDULING DURING TRAINING

To further support our analysis in Appendix B.3.1, we demonstrate the effectiveness of model when
α = 0.5 without using scheduler in more diverse setup. The results in Tables 7 and 8 reconfirm that
while the scheduler can improve performance in certain scenarios, its effectiveness varies depending
on the noise level and model architecture. Notably, SANER consistently outperforms SAM across
all cases, even without the scheduler.

Table 7 compares SANER with and without the scheduler under different noise types and rates
on CIFAR-10 and CIFAR-100. For datasets with a limited number of samples per class, such as
CIFAR-100, the scheduler consistently improves test accuracy, particularly under high noise levels
(e.g., 50% label noise). This is primarily because fitting clean samples is more challenging during
the initial training epochs in such noisy environments. However, for lower noise levels (e.g., 25%)
or datasets where clean fitting is inherently easier (e.g., CIFAR-10), the performance improvement
is marginal.

Table 8 evaluates the scheduler’s impact across various architectures. Generally, the scheduler en-
hances performance under high-noise conditions. For example, with WideResNet40-2 at 50% noise,
it increases accuracy by 2.69%. However, in some cases, such as DenseNet121 with 50% noise, the
scheduler offers little to no improvement and may even slightly underperform.

Overall, these results suggest that the scheduler is particularly beneficial for stabilizing clean fitting
in high-noise environments. Nevertheless, it may not be critical in all scenarios, with its utility being
most apparent when training on noisy datasets where fitting clean data poses a significant challenge.

D ABLATION STUDY ACROSS DIVERSE SETUPS

D.1 CLEAN DATASETS AND VARYING NOISE RATES

D.1.1 NOISE-FREE SCENARIOS
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Table 7: Test accuracy comparison of SANER with and without alpha scheduler across different
noise types and rates, trained on CIFAR-10 and CIFAR-100 with ResNet18, we report the highest
test accuracy in three different seed experiments. Bold values highlight the highest test accuracy for
each noise type and rate.

Type Noise
CIFAR-10 CIFAR-100

SAM SANER SAM SANER
k = 0 k = 50 k = 0 k = 50

Symm 25% 93.05 94.29 94.18 69.68 73.04 73.14
50% 88.82 90.09 90.93 61.17 64.78 66.41

Asym 25% 94.75 95.11 94.95 71.57 74.33 74.75
50% 81.94 83.85 82.44 39.11 40.64 40.90

Depen 25% 92.84 93.86 93.99 69.46 73.16 73.25
50% 87.32 90.41 90.58 58.71 66.72 67.22

Real - 86.33 87.78 88.02 62.74 64.71 65.07

Table 8: Test accuracy comparison of different architectures using SAM and SANER with and
without alpha scheduler, trained on CIFAR-100. Bold values indicate the highest test accuracy for
each architecture and noise level.

Architecture Param Noise SAM SANER
k = 0 k = 50

ResNet34 21.3M 25% 71.10 74.14 74.24
50% 62.49 64.85 67.57

DenseNet121 7.0M 25% 71.61 73.78 74.61
50% 60.74 66.04 64.04

WideResNet40-2 2.3M 25% 69.75 70.12 70.47
50% 62.58 62.41 65.10

WideResNet28-10 36.5M 25% 72.56 76.45 76.55
50% 64.12 69.41 70.68

In this section, we compare SAM and SANER in noise-free scenarios to evaluate SANER’s per-
formance without label noise. The hyperparameter settings are consistent with those outlined in
Appendix A.1. The results, shown in Table 9, indicate that SANER does not significantly outper-
form SAM when label noise is absent. This reinforces the idea that SANER is primarily designed to
address the challenges associated with noisy labels.

Nevertheless, SANER does not cause any performance degradation compared to SAM in clean
environments. This suggests that SANER’s mechanism of reducing Group B gradients, which target
potentially noisy or harmful updates, does not negatively affect overall model performance when
label noise is absent.

Table 9: Test accuracy comparison of SAM and SANER trained on clean CIFAR-10 and CIFAR-
100 datasets using ResNet18. Bold values highlight the highest test accuracy for each dataset.

Dataset Noise SAM SANER
CIFAR-10 0% 96.04±0.04 96.06±0.12

CIFAR-100 0% 79.19±0.22 79.63±0.36

D.1.2 SCENARIOS WITH DIFFERENT NOISE LEVELS

Table 10 presents a comparison of the test accuracy between SAM and SANER across different
noise levels (20%, 40%, 60%, and 80%) on the CIFAR-10 dataset using ResNet-32, following the
hyperparameter settings in Xie et al. (2024). The results indicate that SANER consistently outper-
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forms SAM across all noise rates, demonstrating its effectiveness in mitigating the impact of label
noise.

Table 10: Test accuracy comparison of SAM and SANER with various noise rates, trained on
CIFAR-10 using ResNet32. Bold values highlight the highest test accuracy for each noise rate.

Dataset Opt Noise rate
20% 40% 60% 80%

CIFAR-10 SAM 91.44 88.62 84.41 48.40
SANER 92.00 90.41 85.08 49.27

D.2 BOOTSTRAPPING WITH SAM AND SANER

We conducted experiments to compare the test accuracy of SAM and SANER trained on ResNet-18
with CIFAR-10 and CIFAR-100, integrated with hard bootstrapping (Reed et al., 2014), as used in
Foret et al. (2021). The overall results, as shown in Table 11, demonstrate that SANER consistently
outperformed both SAM and Bootstrap + SAM across all noise levels for both datasets. SANER
achieved higher accuracy compared to SAM at both 25% and 50% noise rates, and it also surpassed
Bootstrap + SAM, especially when integrated with bootstrapping.

Table 11: Test accuracy comparison of SAM, SANER integrated with and without Bootstrap trained
on CIFAR-10 and CIFAR-100 datasets using ResNet18. Bold values highlight the highest test
accuracy for each noise type and rate.

Dataset Noise SAM Bootstrap + SAM SANER Bootstrap + SANER

CIFAR-10 25% 93.25 93.26 94.14 94.25
50% 88.77 89.33 90.65 90.64

CIFAR-100 25% 69.60 71.01 72.78 73.45
50% 61.06 64.21 65.73 65.57

E TRAINING PROCESS VISUALIZATION

E.1 INTEGRATION WITH SAM VARIANTS

Experimental setup. To evaluate the effect of SANER on SAM-based optimizers, we conducted
experiments on CIFAR-10 and CIFAR-100 using ResNet18. The SAM variants used include ASAM
(Kwon et al., 2021), GSAM (Zhuang et al., 2022), FSAM (Li et al., 2024), and VaSSO (Li &
Giannakis, 2024), tested both with and without SANER integration. The models were trained with
label noise levels of 25% and 50%, and the SANER hyperparameter α = 0.5, and k = 50 for all
experiments as we setup when comparing with SAM. All other training configurations were kept
consistent for fair comparison between methods.

Modification of SAM-based optimizers. SANER was integrated into the SAM-variants by modi-
fying the update rules. Specifically, we replaced r and gSAM* as follows:

r =
gSAM*

gSGD , (9)

gSANER* = (1−mB) · gSAM* + α ·mB · gSAM*, (10)

where gSAM* refers to the gradient of the specific SAM variant and gSANER* denotes the modified
gradient under SANER integration. The mask mB is computed according to Equation 7.

Noisy accuracy. As illustrated in Figure 15, the integration of SANER into SAM variants signifi-
cantly reduces the number of noisy examples that are memorized during training compared to their
original variants. This is particularly evident in high-noise scenarios such as 50%, where the noisy
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fitting curve rises more gradually in SANER-integrated models compared to their original counter-
parts. This indicates that SANER helps slow down the memorization of noisy labels, allowing the
models to focus more on clean data, which leads to better generalization.
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(a) ASAM
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(b) GSAM
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(d) VaSSO

Figure 15: Performance comparison of ASAM, GSAM, FSAM, and VaSSO (with and without
SANER) trained on ResNet18 with CIFAR-100 under 25% label noise. The columns show the
noisy training accuracy, gap between clean and noisy accuracy, test accuracy, and generalization
gap from left to right respectively. Overall, integrating SANER with these SAM variants proves
beneficial by slowing the noisy fitting rate while preserving the clean fitting rate.

E.2 EFFECT OF INCREASING RESNET18 WIDTH

To demonstrate the effectiveness of our method, we conduct experiments in overfitting-prone sce-
narios by increasing model parameters, as detailed in Section 5.2. In this section, we visualize the
training process under overparameterization by increasing the width of ResNet18 to provide further
insights into the fitting rates of SGD, SAM, and SANER. As shown in Figure 16, increasing model
width enhances overfitting, causing SAM to match the noisy fitting rate of SGD. In contrast, SANER
maintains a slower noisy fitting rate while preserving the clean fitting rate, allowing the model to
better leverage overparameterization and achieve higher test accuracy.

E.3 VARIOUS ARCHITECTURES

To evaluate SANER’s robustness across different neural network architectures, we conducted ex-
periments using ResNet34, DenseNet121, and WideResNet28-10 on CIFAR datasets with 25% and
50% label noise. We analyze the impact of SANER on the training process, specifically its ability to
regulate noisy fitting rates, as shown in Figure 17. SANER consistently achieves better control over
noisy fitting, thereby reducing overfitting and enhancing generalization performance. These results
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(a) ResNet18 (Width=1.5)
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(b) ResNet18 (Width=2)

Figure 16: Performance comparison of SAM, SGD, and SANER (ours) when increasing width
of ResNet18 trained on CIFAR-100 under 50% label noise. The columns show the noisy training
accuracy (1st column), gap between clean and noisy accuracy (2nd column), test accuracy (3rd
column), and generalization gap (4th column), respectively. The noisy fitting rate of SAM reaches
that of SGD, whereas SANER keeps it low for a longer duration, resulting in better performance.

demonstrate SANER’s effectiveness in handling noisy data across diverse architectures, yielding
significant improvements over both SGD and SAM.
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(a) ResNet34
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(b) DenseNet121
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(c) WideResNet28-10

Figure 17: Performance comparison of SAM, SGD, and SANER (ours) across different models
trained on CIFAR-100 under 50% label noise. The columns show the noisy training accuracy (1st
column), gap between clean and noisy accuracy (2nd column), test accuracy (3rd column), and
generalization gap (4th column), respectively. SANER outperforms SAM in both noisy accuracy
and the clean-noisy accuracy gap, demonstrating better generalization through higher test accuracy.
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