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Abstract

Pretraining language models with extended context windows enhances their abil-
ity to leverage rich information during generation. Existing methods split input
sequences into chunks, broadcast them across multiple devices, and compute at-
tention block by block which incurs significant communication overhead. While
feasible in high-speed clusters, these methods are impractical for decentralized
training over low-bandwidth connections. We propose a compression method for
communication-efficient context parallelism in decentralized settings, achieving a
remarkable compression rate of over 95% with negligible overhead and no loss in
convergence. Our key insight is to exploit the intrinsic low-rank structure of activa-
tion outputs by dynamically constraining them to learned mixtures of subspaces
via efficient reparameterizations. We demonstrate scaling billion-parameter decen-
tralized models to context lengths exceeding 100K tokens on networks as slow as
300Mbps, matching the wall-clock convergence speed of centralized models on
100Gbps interconnects.

1 Introduction

Rapid scaling of large language models (LLMs) has made distributed training a necessity [23, 20, 11,
38]. As both model size and context length continue to grow, efficient training increasingly depends
on parallelization across multiple devices. Traditional distributed training paradigms assume high-
bandwidth, low-latency interconnects, typically available in centralized data centers. In contrast to
such centralized settings, the emerging paradigm of decentralized training [53, 39, 24, 22, 21] enables
collaborative and democratized machine learning by distributing computation across heterogeneous,
geographically dispersed nodes over the Internet, without requiring specialized networking hardware
or centralized orchestration.

However, decentralized training presents a core technical challenge: limited communication band-
width. When nodes are connected via commodity networks, communication quickly becomes a
bottleneck. Most prior work, has addressed this issue in the context of distributed data parallelism
(DDP), where each node maintains a full model replica and synchronizes gradients during training. A
variety of bandwidth-efficient techniques, such as gradient quantization [51, 31, 46], sparsification
[49, 44, 45], and delayed synchronization [40, 10, 27, 9], have been proposed to reduce overhead in
this setting. Pipeline parallelism (PP) [19], where model layers are partitioned across devices, has
also been explored to a limited extent [36, 50].
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A significantly more challenging – and, to our knowledge, entirely unexplored – setting is context
parallelism (CP) in decentralized environments. CP has become critical for pretraining frontier LLMs,
as it enables efficient training with extremely long sequences, often exceeding 100K tokens (e.g.,
LLAMA 3 [11]: 130K, LLAMA 4: 256K, DEEPSEEK [26]: 128K, QWEN 3 [52]: 128K), thereby
enhancing the model’s ability to capture long-range dependencies. In context-parallel training, each
node processes a local chunk of the input and broadcasts its attention activations to all other nodes
in every layer and at every step. This imposes substantial communication demands, as attention
mechanisms require global access to all key and value activations. While centralized systems handle
this using high-bandwidth interconnects, all-to-all communication becomes prohibitively expensive
in decentralized environments with low-bandwidth links.

In this work, we propose a method to drastically reduce the communication required for context-
parallel attention without sacrificing model quality, enabling decentralized systems connected via
standard internet-grade links to match the convergence performance of centralized systems with
datacenter-grade bandwidth. Our approach leverages the observation that attention activations
(queries, keys, and values) often reside on low-dimensional manifolds. We exploit this structure by
factorizing the attention weights so that outputs lie within dynamic mixtures of low-dimensional sub-
spaces. To ensure convergence, we optimize the factored weights on a Riemannian product manifold
and introduce an efficient reparameterization scheme that significantly reduces computational and
communication overhead. Additionally, we provide theoretical guarantees on the expressivity and
convergence of our method, offering principled justification for each design choice.

Crucially, this approach introduces only minor architectural changes with negligible training overhead,
and these components can be removed after training, yielding a standard transformer architecture
compatible with existing inference infrastructure and downstream deployment frameworks. We
employ our method up to billion-parameter scale models under various settings and demonstrate
that our method achieves over 95% communication compression without harming performance,
enabling training with long context windows across devices connected via commodity internet
(300Mbps), while matching the wall-clock convergence of centralized systems with high-speed
interconnects (100Gbps).

2 Background and motivation

2.1 Context-parallel training and the communication bottleneck

We begin with a brief exposition on CP training and refer the reader to [11] for an extended read.
Transformer attention requires each query to interact with all key-value pairs, resulting in a com-
putational complexity that grows quadratically with context window. This becomes particularly
prohibitive for long sequences, which makes parallelization strategies essential. In context-parallel
settings, the input sequence X ∈ Rn×d, where n is the context length and d is the model dimension,
is partitioned across m devices along the context dimension:

X =
[
X⊤1 · · · X⊤m

]⊤
, Xi ∈ Rni×d,

m∑
i=1

ni = n.

Each device i computes local queries, keys, and values per head. For clarity we suppress the head
index; all quantities are understood to be per attention head unless otherwise stated:

Qi = XiWq ∈ Rni×d, Ki = XiWk ∈ Rni×d, Vi = XiWv ∈ Rni×d.

Computing attention locally requires global access to keys and values:

Kg =
[
K⊤1 · · · K⊤m

]⊤∈ Rn×d, Vg =
[
V ⊤1 · · · V ⊤m

]⊤∈ Rn×d,

Typically, CP performs (some form of) all-gather, where each device broadcasts its local Ki, Vi to
form Kg, Vg, incurring communication cost O(nd) per device where d ≪ n. Recently proposed
Ring Attention [29] pipelines this communication in a ring topology, incrementally exchanging local
key-value blocks and computing partial attentions at each stage. Above methods fundamentally rely
on the costly communication of large K,V matrices.
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2.2 Attention Outputs Exhibit Low-Rank Structure

Our compression scheme is inspired by the observation that the attention outputs
of pretrained transformers lie on a low-dimensional manifold. To support this,
we analyze publicly available checkpoints of large-scale pretrained LLMs and ex-
amine their attention activations. Fig. 1 presents an illustration of LLAMA 70B.
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Figure 1: Attention outputs of LlaMa-
70B. Shown is the empirical rank of the
Q, K, and V activations, normalised by
their maximum possible rank, for ev-
ery layer of the official LLAMA 70B
checkpoint. All three projections are
extremely low-rank: Q and K sit at
roughly 0.1% of full rank, while V is
slightly larger at ∼ 0.5%.

Specifically, we measure the stable rank of the query (Q),
key (K), and value (V ) activations across each attention
layer. The stable rank of a matrix A ∈ Rn×d is defined as:
srank(A) =

∥A∥2F
∥A∥22

, where ∥A∥F denotes the Frobenius
norm and ∥A∥2 the spectral norm. Unlike the conven-
tional matrix rank – which is highly sensitive to small
perturbations and numerical noise – the stable rank offers
a robust, continuous measure of effective dimensional-
ity. This makes it particularly suitable for characterizing
learned neural representations, where numerous singular
values are typically small yet non-zero due to noise or
over-parameterization.

As depicted in Fig. 1, the stable ranks of attention activa-
tions remain low across all layers. Interestingly, Q and K
generally exhibit slightly lower ranks than V , indicating
a higher degree of compressibility 1. This observation
underpins our approach, leveraging low-rank factorization
for efficient compression. Further evidence of this phe-
nomenon in other architectures is provided in Appendix B.
Next, we formalize this idea.

3 Method

We now present our proposed method for efficient context-parallel transformer training. First, we
formalize how the empirically observed low-rank structure in attention activations enables effective
compression. Next, we explain why using a fixed subspace for compression can be overly restrictive,
motivating our joint learning strategy that adaptively optimizes both the projection subspace and
the attention weights (§3.1). We then introduce a computationally efficient reparameterization
approach that maintains optimality guarantees while significantly reducing overhead (§3.2). Finally,
we describe how to reduce communication costs by dynamically compressing attention activations
through per-chunk rotations and demonstrate how the model can seamlessly revert to a standard
transformer architecture at inference time (§3.3–3.5).

In §. 2.2, we saw that the Q, K, V activations of large pretrained transformers exhibit a pronounced
low-rank structure (Fig. 1). This finding implies that it is feasible to transmit only the low-dimensional
components of these activations between devices, thereby achieving near-lossless compression in
practice. Formally, let the columns of an orthonormal matrix U ∈ Rd×r, with r ≪ d, span
the dominant subspace of the activations. Rather than communicating the full local activation
matrix Z = X(i)W ∈ Rni×d, where Z ∈ {K,V } denotes key/value activations, W ∈ {Wk,Wv}
and X is the input to the attention layer, we can transmit only its compressed representation:
Zcomp = X(i)WU ∈ Rni×r. The original activations can then be reconstructed at the receiving
node as: Z ≈ ZcompU

⊤. This compression method preserves all information within the subspace
spanned by U , and is lossless when activations lie entirely in this subspace. Equivalently, this
projection can be folded onto the attention weights and be interpreted as factorizing them into a
low-rank representation: W = B(UU⊤), B ∈ Rd×d.

Sub-optimality of a fixed subspace. The formulation above implicitly assumes that an a priori
choice of U is sufficiently expressive for every layer and every chunk in every optimization stage. It

1We only need to compress K and V since Q can remain local.
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is straightforward to see where this assumption can break down. Even if there is an optimal low-rank
attention weight matrix, restricting weights to the form W = BUU⊤ limits the search to the column
space of U . If this space does not contain the true optimum, the model may converge to a suboptimal
solution. In short, fixing U can prevent the model from reaching the best possible performance.

3.1 Joint Optimization over a Product Manifold

To address the limitations of a fixed U , we propose jointly optimizing factorization W = B U U⊤.
Specifically, we simultaneously learn both the subspace representation U and the matrix B on the
product manifold: M = Rd×d × St(n, r). Here, B ∈ Rd×d is optimized in standard Euclidean
space, whereas U resides on the Stiefel manifold St(n, r), where updates can be naturally performed
via Riemannian gradient descent 2. The following result establishes that this joint optimization
achieves linear convergence under gradient descent.

Convergence. Let Φ(W,ϑ) be a smooth loss and consider the factorization W = B U U⊤

for attention weights where B ∈ Rd×d, U ∈ St(d, r), and ϑ ∈ Rp denotes all other parame-
ters. Minimizing the reparameterized objective Φ̂(B,U, ϑ) = Φ

(
BUU⊤, ϑ

)
over the product

manifold M := Rd×d × St(d, r) × Rp with Riemannian gradient descent, and under mild
assumptions, yields Q-linear (geometric) convergence to a first-order stationary point. For the
formal result and proof, see Lemma 1 (Appendix).

Note that since ∥U∥ = 1, the factorized objective remains Lipschitz smooth, and the convergence
result naturally follows from the standard gradient descent theory on both Euclidean and Riemannian
manifolds. We include a full proof in Appendix A for completeness, explicitly treating the product
manifold structure and assuming a Polyak–Łojasiewicz (PL) condition.

3.2 Reducing Computational Cost via Reparameterization of U

Direct optimisation of U on the Stiefel manifold St(n, r) via Riemannian gradient descent provides
strong theoretical guarantees but is costly: after every Euclidean update, U must be re-orthonormalised
(the standard “retraction” on to the manifold), which is performed with a QR or SVD factorisation
to restore U⊤U = Ir. To mitigate this, we use an efficient reparameterization of U using a fixed
orthonormal basis U and a learnable rotation R(θ) ∈ O(d):

U(θ) = R(θ)U,

where O(d) denotes the orthogonal manifold consisting of all d × d orthonormal matrices. If the
mapping θ 7→ R(θ) is sufficiently expressive, rotations R(θ) can fully parameterize O(d), preserving
the representational power of the manifold while significantly reducing computational overhead.

Preservation of geometry and stationary points. Reparameterizing U as U(θ) = R(θ)U moves
the orthonormal constraint onto an unconstrained Euclidean variable θ, eliminating expensive
QR/SVD steps and letting us run ordinary SGD/Adam in θ-space. A natural concern is that this
change of variables might distort the loss landscape and hinder optimization; however, we show
that this is not the case. The chain rule shows ∇θΦ̂(B, θ, ϑ) = DθU(θ)⊤ gradUΦ

(
B,U(θ), ϑ

)
, so

∇θΦ̂ is exactly the pull-back of the original Riemannian gradient. Thus, the first-order critical points
remain unchanged. The following statement formalizes this result.

Equivalence of stationery points. Under the reparameterization U = R(θ)U , minimizing
Φ̂ possesses exactly the same local minima and strict saddle points as minimizing Φ. For the
formal result and proof, see Theorem 1 (Appendix).

Thus, we can effectively represent and optimize the projection subspace implicitly through rotations
without compromising the quality or optimality of solutions.

2The Stiefel manifold St(d, r) is defined as the set of all d× r matrices with orthonormal columns, formally
given by St(d, r) = {U ∈ Rd×r : U⊤U = Ir}.
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3.3 Reducing the Communication Cost

The reparameterization U(θ) = R(θ)U allows us to locally cache the fixed orthonormal frame U
at each node, and transmit only the parameters θ. However, to fully parameterize rotations in the
orthogonal group O(d), one typically requires 1

2d(d− 1) parameters, i.e., θ ∈ Rd(d−1)/2. We show
next that in practice performing a dense search over all possible rotations is unnecessary. Specifically,
we can obtain a trade-off between the search space and the communication efficiency by controlling
the dimensionality of θ.

To achieve a more compact representation for the communication cost reduction, we select a small set
of fixed skew-symmetric matrices {A1, . . . , Ak} ⊂ o(d), ATi = −Ai (where o(d) denotes the Lie
algebra of the orthogonal group) and define the corresponding k-dimensional Lie subgroup [16, 12]:

Rk =
{
R(θ) = exp

(∑k
l=1 θ(l)Ai

)
| θ ∈ Rk

}
,

where θ(l) is the lth element of θ. Because the exponential map is a local diffeomorphism around
θ = 0, the set U(θ) = R(θ)U forms a k-dimensional submanifold of St(d, r) for sufficiently small
∥θ∥. Choosing k ≪ 1

2d(d− 1) thus provides a favorable trade-off between communication cost and
representational flexibility. Importantly, our earlier result on the absence of spurious minima remains
valid provided an optimal frame U⋆ lies within (or sufficiently close to) the reachable manifold
{RU : R ∈ Rk}, as the mapping θ 7→ U(θ) remains locally surjective onto this manifold.

3.4 Dynamic mixtures of subspaces via per-chunk rotations

§ 3.3 depicted that the rotation dimension k controls a trade-off between representational flexibility
and communication efficiency. With a well-chosen a priori U , it becomes feasible to use a small k,
restricting the optimization to a local neighborhood around U .

We generate this prior through a short, uncompressed warm-up phase, in which the model is trained
for a small number of iterations (< 500) using a reduced context length to avoid communication
bottlenecks. After this phase, each node computes the top r principal components of its local attention
weights and stores them as a fixed subspace basis U ∈ St(d, r). Empirical evidence from prior work
on weight–subspace stabilization (e.g., [13, 18]) suggests that dominant activation subspaces emerge
early in training, supporting this strategy.

Per-sample adaptation. Using a single global rotation for all inputs may underfit heterogeneous
data. To retain expressivity without increasing k, we introduce a lightweight mechanism to predict a
unique rotation parameter θ for each sequence chunk. Recall that, in context-parallel training, each
node i processes a distinct chunk Xi ∈ Rni×d from the input sequence. For an attention output chunk
Zi = WXi, we employ a small linear prediction head: ψ : Rd → Rk, θ = ψ (Zavg,i) , where
Zavg,i is the average attention output of the chunk, generating chunk-specific rotation parameters.
Given a set of preshared skew-symmetric generators {Al}kl=1 ⊂ o(d) cached locally on each node,

we construct the rotation as: R(θi) = exp
(∑k

l=1 θi(l)Al

)
∈ Rk ⊂ O(d). Locally, keys and

values are compressed as Zcomp,i = ZiR(θi)U ∈ Rn×r. (Z(comp,i), θi) is then broadcasted, and the

receiving nodes reconstructs the keys/values as: Zi ≈ Z(i,comp) U
⊤
R(θi)

⊤. Note that peak memory is
dominated by the attention computation, scaling as O(n2i ), making the linear head’s overhead O(dk)
negligible—an observation we also demonstrate empirically. The overall procedure is summarized in
Algorithm 1.

Bandwidth cost. In our method, each node transmits nr floats (activations) in Z̃ and k additional
scalars in θ. Typically, we have k ≪ nr ≪ nd, ensuring low communication overhead. Remarkably,
we found that even using k = 1 – a single rotation angle that defines a plane – is sufficient to preserve
training stability and input-adaptive flexibility, achieving bandwidth efficiency comparable to that of
a fixed global rotation.

In implementation, we set S ∼ N (0, 1)d×d to be fixed and define the skew-symmetric generator
A := θ

∥S−S⊤∥F (S − S⊤), A⊤ = −A, θ ≥ 0 . For θ ∈ R we set the rotation R(θ) =

exp(θA) ∈ O(d), so A fixes the rotation plane while θ sets its magnitude.
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Algorithm 1 Compression-aware context parallel attention (per node, per head)
Require: InputX ∈ Rni×d, Attention weightW ∈ Rd×d, Warm-started basis Ū ∈ Rd×r , learnable linear head ψ : Rd → Rm, sync

interval c, current step t
1: Compute local keys and values: Z ← XW
2: Zavg ← MeanToken(Z)

3: θ ← ψ(Zavg) ▷ Compute rotation param from local chunk
4: U ← R(θ) Ū ▷ Construct data-dependent subspace
5: Compress: Zcomp ← ZU

6: Broadcast (Zcomp, θ) to all other nodes
7: Receive (Z(comp,j), θj) from all other nodes j
8: for all received (Z(comp,j), θj) do
9: Uj ← R(θj) Ū

10: Zj ← Z(comp,j)U
⊤
j ▷ Decompress

11: end for
12: Aggregate global Zg ∈ {Kj , Vj}, ∀j from all nodes
13: Compute blockwise attention: A← Softmax(QK⊤/

√
d)V

14: if t mod c = 0 then
15: W ← AllReduceAvg(W ) ▷ Sparse sync of attention weights
16: end if

Second-order approximation. Since A is skew-symmetric, its spectral norm satisfies ∥A∥2 =
θ. For sufficiently small |θ| ≤ ϵ ≪ 1, the rotation matrix R(θ) admits a second-order Taylor
approximation:

R(θ) ≈ I + θA+ 1
2θ

2A2. (1)

This approximation provides two key advantages. 1) Computational cost: scaling as O(d2),
in contrast to the exact matrix exponential computation (e.g., by Padé or Schur decomposition),
which scales as O(d3). 2) Near identity bias: it induces a beneficial near-identity bias, effectively
acting as an approximately unbiased estimator of identity I when θ is small and centered around
zero (enforced via clipping). In this regime, higher-order terms vanish in expectation, yielding
E[R(θ)] ≈ I . This property allows rotations to remain close to the initial warm-start subspace U ,
facilitating controlled local adaptation without significant drift. By fixing A and using a scalar θ, we
achieve a communication complexity of O(nr), significantly lower than the naive O(nd).

Attention weights must still be synchronized across devices, but they evolve far more slowly than acti-
vations [6, 5]. We therefore average the corresponding weights only every c steps; in all experiments
we use c = 200, which incurs negligible communication overhead.

3.5 Unplugging the Projection Components

Our method augments the transformer architecture with two non-standard components: (i) a small
linear rotation head predicting the rotation parameters θ, and (ii) low-rank projection matrices
U used for compressing activations. Although these components pose minimal overhead during
training, strict API compatibility with off-the-shelf transformer models might be necessary for certain
downstream applications.

As training proceeds, the learnable weights associated with our auxiliary projection heads collapse
onto the data–dependent subspaces they steer. Once the model is close to convergence we can
therefore drop these heads entirely, reverting to a vanilla Transformer without losing the predictive
gains accumulated during training. The following result formalizes the collapse mechanism.

Bound on “idle” attention directions with data dependent projectors. Let the sample
projector be P (x) = U(x)U(x)⊤. Pick any other projector Q that projects onto an arbitrary
subspace. Define the average overlap pQ := Ex

[
∥P (x)Q∥2

]
∈ [0, 1]. Run stochastic gradient

descent with weight decay λ > 0. Then, the attention weights that lie inside the Q-subspace
obey limt→∞

∥∥W (t)Q
∥∥
F

≤ pQ L
λ for an L Lipshchitz bounded loss. Hence, if the data

almost never excites those directions (pQ≪1), the corresponding weights shrink away. That is,
idle directions are pruned for free. For the formal theorem and proof, see Theorem 3 (Appendix).

Once the weights have collapsed onto their data–aligned subspaces, both the rotation head and
its basis matrix U are redundant. We can therefore detach these components and perform a brief,
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low-learning-rate fine-tuning pass to polish the remaining parameters. As Fig. 4 shows, the loss curve
remains smooth across this transition, indicating that no optimisation shock is introduced.

At inference time the model is now indistinguishable from a standard transformer: it adds zero extra
parameters, requires no custom kernels, and is fully compatible with existing deployment pipelines.

4 Related Work

Decentralized training. Decentralized learning dispenses with a central coordinator, instead relying
on a collective of autonomous devices that cooperate over mesh-style networks to train large-scale
models. These devices are typically heterogeneous and geographically dispersed, confronting links of
nonuniform latency and bandwidth. The foundational theory on convergence and robustness has been
established by [24, 22, 21], while complementary systems work has demonstrated practical viability
on real clusters [41, 7]. Most prior art, however, is confined to DDP settings [24, 22, 21, 7], limiting
model size to the aggregate memory of an individual node. Note that this is a comparatively well
studied domain, and is orthogonal to the unexplored decentralized context parallel setting that we
explore. A notable work in DDP domain is Power Gossip [48], which replaces synchronous all-to-all
communication with gossip-style information exchange among neighboring replicas arranged in a
mesh. Its key insight is that, when each replica trains independently via local SGD, the pairwise
weight differences evolve in a low-rank sub-space, enabling them to efficiently compress the weight
differences during gossip. Another interesting DDP method is Photon [42], where its communication
savings stem primarily from infrequent gradient exchanges rather than from any explicit compression
scheme. Such skip-sync approaches are infeasible in context-parallel pipelines, where activations must
be transferred between nodes at every forward and backward pass. Nevertheless, these DDP-style
techniques are orthogonal to our method and could be combined with it in hybrid setups.

Scheduling-oriented approaches such as SWARM parallelism [39] and Tasklets [53] alleviate straggler
effects and network stochasticity, yet they still inherit the communication overhead intrinsic to the
decentralized setting. In contrast, we introduce the first communication-compression strategy tailored
to CP, removing a critical bandwidth bottleneck that has thus far hindered scaling decentralized
models across larger context windows.

Context-parallel attention. For single-device long-sequence processing, sparse approximations
such as BigBird [54] cut attention complexity to O(n), while IO-aware exact kernels like FlashAtten-
tion [33] maximize hardware throughput with tiling and on-chip caching. Recent systems research
parallelizes the sequence dimension itself [25, 37, 15]: Blockwise Parallel Transformers overlap
compute and ring-all-reduce to achieve near-linear speedups on sequences of 32K tokens [28], and
RingAttention extends the idea to virtually unlimited contexts via pipelined block exchanges [29].
These methods, however, still broadcast full key/value tensors. Our approach instead transmits a
compact low-rank representation plus a lightweight rotation, reducing bandwidth while preserving
exact attention semantics and thus complementing existing context-parallel frameworks.

5 Experiments
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Figure 2: Convergence in low-bandwidth settings. From left to right: Fineweb, C4, and BookCorpus.
The training curves are presented against wall-clock time for an 8-layer (800M) model trained
with a 132K context window parallelized across 8 GPUs. Decentralized models utilize 300Mbps
connections while the centralized model has datacenter-grade 100Gbps links. Our compressed model
achieves on-par convergence to the centralized model, even under a 300Mbps bandwidth budget. In
contrast, the non-compressed decentralized model with 300Mbps links suffers from significantly
slower convergence.
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Figure 3: Scaling across parallelism strategies.
Our compression based CP scheme can be seam-
lessly fused with other parallel training strategies.
We train a 3B-parameter model (32 layers) with
both pipeline parallel and CP enabled across 32
A100s. Our compressed approach yields substan-
tial throughput gains over uncompressed decen-
tralized CP and nearly matches the performance
of centralized CP.
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Figure 4: Unplugging projection components.
After sufficient training, the rotation head and
projection layers can be removed—reverting
the network to a vanilla transformer—without
impairing convergence. Training curves with
dashed lines marking projection removal points.
Late removal preserves convergence (see §. 3.5),
while early removal causes a temporary disrup-
tion followed by surprisingly rapid recovery.

5.1 Experimental Setup
We evaluate decoder-only models on three large-scale corpora – FineWeb (FW) [30], C4 [35], and
BookCorpus (BC) [56]. For each dataset, we reserve 10% of the training split for validation. All
model backbones follow LLAMA 3 [11]; exact model specifications are given in the corresponding
sections. We use a base-learning-rate = 3 × 10−4 with linear warm-up and decay, and apply
a weight-decay = 0.01. Every transformer layer is compressed except for the final block, where
K and V projections are compressed by 98% and 95% (overall 96.5%), respectively by choosing r
w.r.t. d appropriately. We use the GPT2 tokenizer for all models.

5.2 Bandwidth efficiency in decentralized settings

Table 1: Design ablations (val. perplexity ↓). All models
are trained for 10K steps with a 132K context. Second-order
approximations preserve performance, while overcompress-
ing V degrades it.

SETTING FW C4 BC
Ours 22.64 23.33 25.27
Ours + Fixed Ū 26.57 27.11 30.33
Ours + Rand. rot. R(θ) 24.93 25.17 29.58
Ours - 2nd-order approx. 22.64 23.33 25.27
Ours - No warm start 26.63 26.91 30.15
Ours (K,V → 98%) 24.74 24.99 29.46
Ours (K → 99%, V → 95%) 24.68 24.91 29.22

We train an 8-layer, 800M-parameter
model (embedding-size = 2048,
attention-heads = 8 ) under
two network settings: a centralized
100Gbps fabric and decentralized
300Mbps internet-grade links. Us-
ing CP, we process a sequence length
of 132K tokens across eight A100
GPUs connected at the respective
bandwidths. Fig. 2 shows that vanilla
CP over a 300Mbps link is more than
20× slower compared to a centralized
100Gbps mesh. With our compres-
sion, the same 300Mbps setup con-
verges almost as fast as the centralized
baseline.

Validation. Table 2 reports test-time performance of the trained models. To this end, we train each
model up to its compute-optimal point, following the Chinchilla scaling law [17]. Specifically, for
our 800M-parameter models, we use a 1 : 20 model-to-token ratio and train for 16B tokens on each
dataset. Remarkably, our compressed decentralized model matches, and even slightly outperforms,
the perplexity of the centralized model at the same number of training iterations, while delivering
significantly higher throughput than vanilla (uncompressed) CP over commodity links. Training
the uncompressed model to completion over low-bandwidth links is computationally infeasible
(estimated at over 150 days), so we report only its throughput (TPS) in this setting.
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Table 2: Validation perplexity (↓) and throughput (TPS). All models are trained with a 132K
context window to the compute-optimal point [17] (16B training tokens). Our method yields a 20×
TPS boost while slightly outperforming centralized CP in perplexity, with minimal memory overhead.

MODEL FW C4 BC TPS MEM (GB)/GPU
Cen. CP - 100Gbps 17.18 17.51 17.88 56K 38.4
Dec. CP - 300Mbps† – – – 2.7K 38.4
Dec. CP Comp. - 300Mbps (ours) 17.06 17.47 17.81 55K (×20) 38.7 (+0.7%)

† Training uncompressed models to convergence at 300Mbps is infeasible (>150 days); only
throughput is reported.

5.3 Ablations

We perform ablations on 800M-parameter models with a 132K context across eight A100
GPUs (see Table 1). Models using learned rotations outperform those with fixed or
random projections. The second-order exponential approximation does not impact per-
formance, confirming its adequacy. Omitting the warm-start initialization of princi-
pal directions (Ū ) noticeably degrades results, highlighting the importance of this prior.

Table 3: Effect of warmup steps (val. perplex-
ity ↓). All models are trained for 10K steps
with a 132K context. The method is not highly
sensitive to the number of warmup steps.

WARMUP-STEPS PERPLEXITY

0 26.63
100 24.44
300 22.66
500 22.64
1000 22.87
2000 22.64
5000 22.71

Scaling: Our compression based CP scales well
and can be seamlessly fusing with other parallel
training strategies. We scale the model to 32 layers
(3B parameters) with both pipeline parallel and
CP enabled over 32 A100s (Fig. 3) and achieve a
significant throughput gain.

Reparameterization: A key step of our method
is reparameterizing U which bypasses expensive
Riemannian operations (QR/SVD pullbacks). As
shown in Table 4, this reparameterization signifi-
cantly improves throughput (TPS). More ablations
against architecture choices are provided in Ap-
pendix C.

Warmup steps: To measure the effect warmup
steps of we conducted an ablation study varying the warm-up duration and evaluated the resulting
perplexity on the FineWeb dataset. The results are shown in Table 3. As demonstrated, even with a
reduced warm-up of 300 steps, the model achieves comparable performance, indicating no significant
degradation. In practice, we default to 500 steps to provide a safe and stable baseline. This study
further emphasizes the lightweight and robust nature of our warm-up strategy, especially in contrast
to the more elaborate scheduling mechanisms commonly employed in modern LLM pre-training.
Note that the perplexity differences are minor and stable, indicating performance is stable after 300
warm-up steps.

5.4 Unplugging Projections and Rotation Heads

As discussed in §. 3.5, practitioners may prefer reverting to a standard transformer after pretraining
for compatibility with downstream frameworks. We empirically validate our theoretical prediction
that attention weights progressively align with the projection subspace, allowing safe removal of
projection layers and rotation heads near the end of training. Fig. 4 shows that removing these
components late preserves convergence, while doing so prematurely disrupts training.

5.5 Comparison Against Baselines

As no prior baselines exist for CP compression, we construct two: (i) Sparsification—a Top-10%
scheme (90% compression), transmitting only the largest-magnitude entries of the K,V chunks,
inspired by common DDP compression methods; (ii) Quantization—a 4-bit quantization (75%
compression) of the K,V activations prior to transmission, following standard practices in activation
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compression. As shown in Fig. 5 (left), we outperform these baselines comprehensively (132k context
window) even when using a more aggressive compression rate of 96.5%.
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Figure 5: Baseline comparisons. Left:
Because no method currently compresses
context-parallel training, we build two base-
lines; Top-k sparsification and quantization.
Right: We also compare with long-context
models BigBird and CosFormer. Both are
limited to 32K tokens on A100 GPUs, so all
models are evaluated at that length. In both
panels, our compressed CP curve is nearly in-
distinguishable from the uncompressed refer-
ence, whereas every baseline falls well short.

For completeness, we also compare against long-
context models BigBird [54] and CosFormer [34],
which are not designed for CP and can handle at
most 32K tokens on an A100. For a fair compar-
ison, we apply our compression to CP across four
GPUs, each processing 8K tokens. As shown in
Fig. 5 (right), both baselines exhibit significantly
worse convergence than our method. All experiments
are performed on 800M parameter models.

6 Conclusion

We propose the first compression method that en-
ables context-parallel training of language models
in decentralized environments with low-bandwidth
interconnects. Our approach supports training with
context lengths over 100K tokens on isolated GPUs
connected via internet-grade links (e.g., 300Mbps),
while matching the wall-clock convergence of cen-
tralized systems with high-speed (100Gbps) connec-
tions. Additionally, our method preserves compatibil-
ity with standard transformer architectures by allow-
ing the projection layers to be removed after training,
facilitating seamless deployment in downstream frameworks. We provide a theoretical analysis of the
key properties of our method and validate its effectiveness through an extensive empirical evaluation.

7 Limitations

Table 4: TPS gain from design choices. Reparam-
eterization and second-order approximation yield
significant throughput improvements.

SETTING TPS (↑)
Ours 55K
w/o reparam. 37K
w/o 2nd ord. approx. 30K

Our compression method delivers near-lossless
convergence in context-parallel training, but sev-
eral open questions remain. First, alternative
reparameterisations beyond simple subspace ro-
tations may unlock further accuracy or efficiency
gains. Second, the method’s surprising ability
to locate good minima even as the search space
is heavily reduced (via very low-dimensional
θ) lacks a rigorous explanation; its ties to re-
cent work on implicit regularisation and lottery-
ticket-style phenomena deserve closer study. De-
spite these gaps, this work establishes the first baseline for context-parallel compression and we hope
it spurs deeper theoretical and empirical exploration.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 7

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14



Justification: Appendix
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 5
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Provided in supplementary materials

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5 and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Experiments are too expensive and therefore it is computationally expensive to
report error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 5

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Implications are discussed in Section 1

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No data or models that are of high rist of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Section 5

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human participants were used in the study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No study participants were used in the sudy.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
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Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.
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