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ABSTRACT

Understanding the energy landscape is key to discovering materials with targeted
properties since the landscape encapsulates system’s complete thermodynamic
and kinetic behavior, including its non-equilibrium properties, such as relaxation
and metastable phases. However, the curse of dimensionality prohibits one from
effectively visualizing the energy landscape. Here, we propose a method to visu-
alize the complex energy landscape of atomic systems. We demonstrate that the
proposed low-dimensional projection aligns well with the curvatures of the ac-
tual landscape, validated through Hessian analysis. Further, we show that we can
gain interesting insights into the behavior of different gradient-based and machine-
learned optimizers using the proposed visualization approach. We hope that the
study will enhance the understanding of the energy landscapes, and contribute
to a fundamental understanding of the physics of materials and accelerate their
discovery.

1 INTRODUCTION

Exploration of the energy landscapes of systems is a crucial method for investigating materials’
fundamental thermodynamic and kinetic behavior (Wales (2018); Frauenfelder et al. (1991); Mauro
et al. (2009); Wales & Doye (1997); Wales (2003)) and plays a vital role in understanding and pre-
dicting the behavior of materials. The energy landscape of atomic structures can often be character-
ized as rough, containing numerous local minima, barriers, and non-convex regions (Wales (2003)).
Navigating this complex landscape poses a significant challenge in efficiently exploring the search
space to identify low-energy configurations. Several optimization algorithms have been developed
or adapted to address this challenge in recent years, incorporating strategies such as population-
based metaheuristics, machine-learning techniques, and hybrid approaches (Mannan et al. (2024)).
However, the mechanisms involved in the optimization are not well understood. Visualizing the op-
timization trajectory on energy landscape can give insights into the behavior of different optimizers
and enable development of better optimization algorithms.

This research paper aims to propose a visualization framework for visualizing the energy landscape
of atomic structures. Further we validate the visualised landscape using hessian analysis, and show
that our visualisation captures the curvatures present in actual landscape.

The main objectives of this research paper are as follows:

• Develop a general visualisation framework for low-dimensional visualisation of energy
landscape of atomic systems.

• Validate the visualised landscape using Hessian based curvature analysis.
• Study the behavior of different optimizers on the visualised landscape.

By addressing these objectives, we aim to advance the field modeling and simulation of complex
materials by providing a tool for visualizing the complex energy landscape. The results and insights
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presented in this paper will serve as a valuable resource for researchers and practitioners working in
the field of materials discovery.

2 PROBLEM FORMULATION

The configuration θ(x1,x2, ...xN) of an atomic system is given by the positions of all the atoms in
the system (x1,x2, . . . ,xN ) and their types ωi. Each xi represents the position of the ith atom in
a d-dimensional space, where d is typically 2 or 3. The potential energy U of an N -atom structure
is a function of θ. Specifically, the energy of a system can be written as the summation of one-body
U(ri), two-body U(ri, rj), three-body U(ri, rj , rk), up to N -body interaction terms. However,
the exact computation of this energy is highly challenging and involves expensive quantum me-
chanical computations (Cohen et al. (2012)). Alternatively, empirical potential functions (Torrens
(2012)) can approximately capture this interaction while maintaining the minima associated with
these structures. These potentials are developed relying only on two-, three- or four-body interac-
tions and ignoring higher-order terms for computational efficiency. In this work, we rely on well-
validated empirical potential to compute the energy of the different atomic structures. The major
challenge in visualisation is the rough landscape featuring an enormous number of stable structures
(local minima) and a large number of degrees of freedom associated with an atomic structure (3N
for an N -atom structure in 3 dimensional space). Previous studies have attempted to map the energy
landscape using disconnectivity graphs for small clusters(Carr et al. (2016); Wales & Doye (1997);
De Souza & Wales (2016)). Dimensionality reduction using principal component analysis has been
used in studying the loss landscape of neural networks which also exhibits non-convexity(Gallagher
& Downs (2003); Li et al. (2018)) While characterizing the energy landscape of actual material is
challenging, several studies have focused on simple model systems. One of the classical systems ex-
tensively characterized includes the Lennard-Jones (LJ) system, which can be used to model noble
gases (Tsai & Jordan (1993); Wales & Doye (1997); Malek & Mousseau (2000); Doye et al. (1999)).
The energy of a system of N -atoms interacting through the LJ potential is given by:

U = ϵ

N−1∑
i=1

N∑
j>i

[(
σ

|xij |

)12

−
(

σ

|xij |

)6
]

(1)

where |xij | = |xi − xj| is the distance is between the atoms i and j, and ϵ and σ are constants de-
pending on the atom types. By extrapolating the studies on small LJ structures, the scaling of minima
with the number of atoms N can be obtained as e(k1+k2N) or e(k1+k2N+k3N

2), where k1, k2 and k3
are constants obtained by fitting (Wales & Doye (1997)). Thus, it becomes incredibly challenging
to visualise the energy landscape of a system with thousands of atoms. The problem of visualising
energy landscape can be stated as follows:

Problem: (Visualising Energy Landscape) Let the energy function be U(θ) = U(x1,x2, ...xN)
for any configuration θ of an N -atom system, then our goal is to find δ and η ∈ R3N such that
f(α, β) = U(θ∗+αδ+βη) approximates U(θ) , for θ near θ∗ using some interpolation parameters
α and β .

3 METHODOLGY

The goal is to find the directions δ and η ∈ R3N . As a first trial, one can pick two random unit
directions sampled from R3N . However as we show later in section 4.1 it doesn’t suffice our pur-
pose. We propose to use principal component-based dimensionality reduction to pick directions that
preserve the information about the actual landscape. First, we define the system and the energy
function. In this work, we use a 100-atom binary Lennard Jones (LJ) system. Next, we sample some
configurations from the energy landscape, either from Optimization trajectory or Molecular Dynam-
ics simulation. From the sampled configurations, we pick one configuration as the origin (θ∗) and
calculate the position vectors of all other configurations from the chosen origin θ∗. We then stack
these vectors to form a matrix. Next, singular value decomposition is performed to find the principal
components, along with the corresponding eigenvalues, λi’s. Principal components corresponding
to the two largest eigenvalues are chosen as projection directions δ and η. A grid of configurations
around θ∗ is formed using the interpolating parameters α and β. Finally, f(α, β) is evaluated to get
the projected landscape. The complete stepwise methodology is presented in Figure 1
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Figure 1: Steps followed in methodology for visualisation of energy landscapes

3.1 VALIDATION OF LOW DIMENSIONALITY USING EXPLAINED VARIANCE ANALYSIS

In order to evaluate whether the visualisation captures the actual landscape well enough, we
calculate the explained variance defined as λi∑

λi
where λi is the eigenvalue corresponding to

the i’th principal component. It captures how well the i’th principal direction preserves the
information of the sampled vectors from the actual landscape. In Figure 2 we show the cu-
mulative explained variance as function of principal components for the configurations sam-
pled from the gradient descent optimization trajectories. We observe that the first two prin-
cipal components capture around 75% variance, indicating the visualization’s usefulness.

Figure 2: Explained Variance vs Prin-
cipal Components for 100 atom LJ Sys-
tem, mean over 5 minimization trajecto-
ries. With only two component ≈ 75%
variance is captured

3.2 VALIDATION AGAINST ACTUAL CURVATURES

In this section, we ask ourselves whether the proposed
visualization captures the curvatures in the actual land-
scape; a completely convex region has positive semi-
definite Hessian, while non-convex regions have negative
curvatures. Since the principal curvatures in the projected
landscape are weighted averages of the curvatures of the
actual landscape, any non-convexity present in the visu-
alized landscape must also exist in the actual landscape;
however, vice-versa may not be true. Thus, to verify
whether convex regions of the visualized landscape cor-
respond to the convex regions of the actual landscape, we
study the curvature ratio obtained from the eigenvalues of
the Hessian of the actual landscape. Curvature ratio is de-
fined as | λmin

λmax
|. This ratio is lower near convex regions

as the near zero negative curvature eigenvalues become
insignificant compared to the positive curvature eigenval-
ues. In Figure 3 we show that the convex looking regions
in the visualised landscape do indeed correspond to the
convex regions of the actual landscape. .

4 EXPERIMENTS

4.1 RANDOM DIRECTIONS VS PCA DIRECTIONS

In this section, we study the effect of choosing random directions as the projection directions δ and
η. Figure 4 (a) shows the visualization of gradient descent optimization trajectory using random
directions, and Figure 4(b) shows the visualization of the same trajectory using principal component
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Figure 3: (a)2D Visualisation of Gradient descent optimization Trajectory, (b)Curvature Ratio
(| λmin

λmax
|) of the actual landscape. Curvature ratio plot matches with the visualized landscape

(a) Gradient Descent
(Random Dir.)

(b) Gradient Descent
(PCA Dir.)

(c) FIRE
(PCA Dir.)

(d) VeLO
(PCA Dir.)

Figure 4: Visualisation of (a) Gradient Descent with Random projection directions, (b) Gradient
Descent with PCA based directions, (c) FIRE(Bitzek et al. (2006)) with PCA based directions, (d)
Versatile Learned Optimizer (Metz et al. (2022)) with PCA based directions

analysis as proposed in section 3. We observe that random direction lead to chaotic trajectory in
the visualised landscape, whereas a smooth trajectory is observed in case of PCA based directions.
It shows that the PCA directions are indeed meaningful in representing optimization trajectories.
Visualisations showing configurations sampled from MD Simulations are presented in App. Section
A.1.

4.2 MACHINE LEARNED VS GRADIENT BASED OPTIMIZER

In recent years, several machine-learned optimizers for atomic systems have been proposed (Mer-
chant et al. (2021); Metz et al. (2022); Bihani et al. (2023)) exhibiting superior performance than
traditional classical optimizers. However, the exact behavior of the machine-learned optimizer is not
well understood. We apply our visualization methodology to see how the trajectory obtained using a
machine-learned optimizer is different than the one obtained from the gradient-based optimizer. In
Figure 4 (b), (c), and (d), we observe that trajectories obtained by VeLO (Metz et al. (2022)) follow
a very different path than the gradient-based optimizers.It shows that machine-learned optimizer
explores more in the energy landscape to find better minima.

Figure 5: 3D Plot of the visualised landscape from Gradient Descent and Machine Learned trajec-
tories
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5 CONCLUSION

In this study, we addressed the challenge of visualizing the complex energy landscape of materials
and proposed a method for low-dimensional projection of the energy landscape and validated our
approach through Hessian analysis, demonstrating that the low-dimensional projection aligns well
with the curvatures of the actual landscape. Additionally, we showcased the utility of our visualiza-
tion method in providing insights into the behavior of various gradient-based and machine-learned
optimizers. We believe that this visualization methodology will offer a fundamental comprehension
of the energy landscape and accelerate the discovery and development of materials with targeted
properties.
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A APPENDIX

A.1 VISUALISATIONS USING CONFIGURATIONS SAMPLED FROM MD SIMULATIONS

In this experiment we sample configurations from the MD simulation trajectories. First we sample
a minimized configuration and excite the system by giving velocities to the atoms corresponding to
low temperatures and allow the system to evolve in a constant energy(NVE) ensemble for large no.
of steps. Next at every 100 steps we sample a configuration, minimize it using gradient descent and
store the minimized configurations. We sample 10000 such configurations and use them to get the
projection directions as explained in Section 3. Finally we obtain the projected landscape as shown
in Figure 6

Figure 6: Visualisation of configurations sampled from MD simulation trajectories

We observe that the visualised landscape is able to capture clusters of different configurations present
in different basins of the landscape. Further we observe that some configurations are trapped in the
saddle points between two basins (Figure 6(c)). It shows that the proposed approach can be effec-
tively used to study the charecteristics of energy landscape like basins, saddle points and transitions
between them .
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