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ABSTRACT

Spike Neural Networks (SNNs), a type of ordinary differential equation (ODE),
have evolved as a sophisticated approach for addressing challenges in dynamic
graph neural networks. They typically sample binary features at each time step and
propagate them using SNNs to achieve spike representation. However, spike ODE
remain discrete solutions, limiting their ability to capture continuous changes and
subtle dynamics in time series. An effective solution is to incorporate continuous
graph ODE into spike ODE to model dynamic graphs from two distinct dimen-
sions, i.e., the time dimension of graph ODE and the latency dimension of spike
ODE. The key challenge is to design a structure that seamlessly integrates spike
ODE and graph ODE while ensuring the stability of the model. In this paper,
we propose Graph-PDE (G-PDE), which combines spike and graph ODE in a
unified graph partial differential equation (PDE). Considering the incorporation
of high-order structure would preserve more information, alleviating the issue of
information loss in first-order ODE. Therefore, we derive the high-order spike
representation and propose the second-order G-PDE. Additionally, we prove that
G-PDE addresses the issues of exploding and vanishing gradients, making it eas-
ier to train deep multi-layer graph neural networks. Finally, we demonstrate the
competitive performance of G-PDE compared to state-of-the-art methods across
various graph-based learning tasks.

1 INTRODUCTION

Spike Neural Networks Ghosh-Dastidar & Adeli (2009a;b) (SNNs) are a type of artificial neural
network that mimic the behavior of biological neurons, enabling them to process information in a
manner similar to the human brain. Unlike traditional neural networks, which operate based on con-
tinuous activation values, SNNs utilize discrete spikes or pulses of activity for representation. The
unique characteristic of SNNs lies in their ability to capture temporal dynamics and process time-
varying information. SNNs are typically applied in tasks that involve event-based processing Yao
et al. (2021), such as sensory perception Kumarasinghe et al. (2021); Rapp & Nawrot (2020), real-
time data analysis Zhu et al. (2020b); Bauer et al. (2019), and graph machine learning Li et al.
(2023); Xu et al. (2021); Zhu et al. (2022).

While the application of SNN to graph-based time series prediction problems is increasingly diverse,
these approaches typically involve sampling the graph at each time step and employing discrete for-
ward propagation methods for training. However, such methods are unable to handle irregularly
sampled observations and require access to all node observations at every timestamp Huang et al.
(2020; 2021). In contrast, graph ordinary differential equation (ODE) techniques excel in capturing
the continuous changes and subtle dynamics of graphs Poli et al. (2019); Huang et al. (2020; 2021);
Gupta et al. (2022). Specifically, they leverage GNNs initially for state representation initializa-
tion and subsequently develop a neural ODE model that governs the evolution of both nodes and
edges within the dynamical system. Finally, a decoder is employed to generate predictions while
optimizing the entire generative model through variational inference.

However, combining the SNN and graph ODE for continuous graph learning is difficult due to the
following challenges. First, how to incorporate the SNN and graph ODE into a unified model? SNN
and graph ODE respectively integrate information along two different time dimensions, i.e., the
latency dimension in SNN and the time dimension in graphs. How to incorporate the dual process
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into a unified framework to preserve the advantages of low-power consumption from SNN and subtle
dynamics from graph ODE is a challenge. Second, how to alleviate the problem of information
loss of SNN? SNN achieves the requirement of low-power consumption by binarizing continuous
features, but a large amount of detailed information will be lost during the binarization process,
resulting in poor performance. Therefore, how to alleviate the problem of information loss in SNN
is another challenge. Third, how to guarantee the stability of the proposed method? Traditional
graph methods face the exploding and vanishing gradients problem for training deep multi-layer
GNNs. Therefore, how to design a stable model for graph learning is the third challenge.

In this paper, we identify SNNs as a form of ODE known as spike ODE and introduce Graph-
PDE (G-PDE), a novel approach that combines spike and graph ODEs within a unified graph partial
differential equation (PDE) framework. Considering the benefits of high-order structures to preserve
more information and overcome information loss in first-order ODEs, we derive the high-order spike
representation and introduce the second-order G-PDE. Additionally, we demonstrate that G-PDE
effectively tackles challenges related to exploding and vanishing gradients. This property facilitates
the training of deep multi-layer graph neural networks. We conduct comprehensive evaluations of
G-PDE against state-of-the-art methods across various graph-based learning tasks, showcasing its
effectiveness and broad applicability in the field. The contributions can be summarized as follows:

• Novel Architecture. Our approach incorporates the coupled ODE (spike ODE and graph ODE)
into a unified graph PDE, which reserves the advantages of low-power consumption from spike
ODE and extraction of continuous changes and subtle dynamics from graph ODE. In addition,
we propose the second-order graph PDE, which would alleviate the information loss issue in the
first-order PDE.

• Second-order Spike Representation. We first derive the second-order spike representation and
study the backpropagation of second-order spike ODE, which is further applied in the second-
order graph PDE.

• Theoretical Analysis of the Gradient. To guarantee the stability of the proposed G-PDE, we prove
that G-PDE mitigates the problem of exploding and vanishing gradients and improves the train-
ingability of deep multilayer GNNs.

• Extensive Experiments. We evaluate the proposed G-PDE on extensive datasets on a variety of
graph learning tasks. The results show that our proposed G-PDE outperforms the variety of state-
of-the-art methods.

2 RELATED WORK

2.1 SPIKING NEURAL NETWORK

SNNs have become a promissing solution in solving the graph machine learning problems. Cur-
rently, there are two primary directions of SNNs. The first is to establish a connection between
SNNs and Artificial Neural Networks (ANNs), which enables the ANN-to-SNN conversion Diehl
et al. (2015); Hunsberger & Eliasmith (2015); Rueckauer et al. (2017); Rathi et al. (2020), and
the optimization of SNNs using gradients computed from these equivalent mappings Thiele et al.
(2020); Wu et al. (2021); Zhou et al. (2021); Xiao et al. (2021); Meng et al. (2022b). However, these
methods usually require a relatively large number of time-steps to achieve performance comparable
to ANNs, suffering from high latency and usually more energy consumption. The second direction
is to directly train SNNs with backpropagation Bohte et al. (2000); Esser et al. (2015); Bellec et al.
(2018); Huh & Sejnowski (2018), which typically employs the surrogate gradients Shrestha & Or-
chard (2018) method to overcome the non-differentiable nature of the binary spiking. This follows
the backpropagation through time (BPTT) framework. BPTT with surrogate gradients can achieve
extremely low latency, however, it requires large training memory to maintain the computational
graph unfolded over time. However, there are few works that focus on the dynamic graph of spikes,
and the merely work Li et al. (2023) simply applies the SNNs into the dynamic graph, which cannot
capture the continuous changes and subtle dynamics in time series. Our work combines the SNN
with the graph ODE ingeniously, which reserves the advantages of low-power consumption from
SNN and extraction of continuous changes and subtle dynamics from graph ODE.
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2.2 GRAPH ODE

Recently, several ODE methods have been developed Chen et al. (2018); Dupont et al. (2019) to
model continuous depth by parameterizing the derivative of the hidden state. To enhance the ex-
pressive capability of graph models, many works have integrated neural ODEs into graph neural
networks (GNNs) Xhonneux et al. (2020); Rusch et al. (2022); Qin et al. (2023); Luo et al. (2023).
However, these methods primarily focus on designing continuous models to address over-smoothing
issues encountered in static graphs. In our work, we extend the concept of graph ODEs to graph
PDEs by incorporating an additional dimension, i.e., the latency dimension in spike ODEs. In this
way, we propose a flexible framework that enables continuous graph learning while preserving the
advantages of both spike and graph ODEs simultaneously.

3 PRELIMINARIES

3.1 SPIKING NEURAL NETWORKS

First-order SNNs. Different from traditional artificial neural networks, a spiking neural network
(SNN) samples input data into binary spikes over time, and each neuron in the SNN maintains a
membrane potential that integrates input spikes. A spike output is generated when the membrane
potential surpasses a predefined threshold. The leaky-integrate-and-fire (LIF) model is commonly
used to describe the dynamics of spiking neurons. In LIF, each neuron integrates the received spikes
as the membrane potential uτ,i, which can be formulated as a first-order differential equation,

LIF: λ̄
duτ

dτ
= −(uτ − urest) +R · I(τ), uτ < Vth , (1)

where uτ is the membrane potential, I(τ) is the input current, Vth is the spiking threshold, and R
and λ̄ are resistance and time constant, respectively. At time τ , when the membrane potential uτ

reaches the spiking threshold Vth, a spike is triggered, and uτ is reset to the resting potential urest,
which is typically assigned a value of 0. We consider a simple current model Iτ,i =

∑
j wijsτ,j + b,

where wij is the weight from neuron j to neuron i. Then, the general form of LIF is described as:

uτ+1,i = λ(uτ,i − Vthsτ,i) +
∑
j

wijsτ,j + b, sτ+1,i = H(uτ+1,i − Vth), (2)

where H(x) is the Heaviside step function, which is the non-differentiable spiking function. sτ,i is
the binary spike train of neuron i, and λ is a leaky term related to the constant λ̄ in the LIF model.
The constant R, λ̄, and time step-size are absorbed into the weights wij and bias b. The training of
SNNs follows the process of BPTT, and the gradients are calculated with:

∂L
∂W l

=

K∑
τ=1

∂L
∂sl+1

τ

∂sl+1
τ

∂ul+1
τ

(
∂ul+1

τ

∂W l
+
∑
k<τ

k∏
i=τ−1

(
∂ul+1

i+1

∂ul+1
i

+
∂ul+1

i+1

∂sl+1
i

∂sl+1
i

∂ul+1
i

)
∂ul+1

k

∂W l

)
, (3)

where W l is the trainable matrix on l-th layer and L is the loss. The terms ∂sl
τ

∂ul
τ

are non-
differentiable, and surrogate derivatives are typically used instead.

Second-order SNNs. The first-order neuron models assume that an input voltage spike causes an
immediate change in synaptic current, affecting the membrane potential. However, in reality, a spike
leads to the gradual release of neurotransmitters from the pre-synaptic neuron to the post-synaptic
neuron. To capture this temporal dynamic, the synaptic conductance-based LIF model is used, which
accounts for the gradual changes in input current over time. To solve this, Eshraghian et al. (2023)
propose the second-order SNN, which is formulated as:

Iτ+1 = αIτ +WXτ+1, uτ+1,i = βuτ,i + Iτ+1,i −R, sτ,i = H(uτ+1,i − Vth), (4)

where α = exp(−∆t/τsyn) and β = exp(−∆t/τmem), τsyn models the time constant of the
synaptic current in an analogous way to how τmem models the time constant of the membrane
potential.
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Figure 1: Overview of the proposed G-PDE. The model takes a graph with node features as input,
which are initially encoded using the spike ODE (first-order or second-order). Subsequently, a
differential graph equation (first-order or second-order) is employed to evolve the representation
over time. Finally, the representation is projected for downstream tasks.

3.2 GRAPH ODE

Given a graph G = (V, E) with the node set V and the edge set E . X ∈ R|V|×d is the node feature
matrix, d is the feature dimension. The binary adjacency matrix denoted as A ∈ R|V|×|V|, where
aij = 1 denotes there exists a connection between node i and j, and vice versa. Our goal is to learn
a node representation H for downstairs tasks.

First-order Graph ODE. The first graph ODE is proposed by Xhonneux et al. (2020). Considering
the Simple GCN Wu et al. (2019) with Hn+1 = AHn +H0, the solution of the ODE is given by:

dH(t)

dt
= lnAH(t) +E, H(t) = (A− I)−1(e(A−I)t − I)E + e(A−I)tE, (5)

where E = ε(X) is the output of the encoder ε and the initial value H(0) = (lnA)−1(A− I)E.

Second-order Graph ODE. The first second-order graph ODE is proposed by Rusch et al. (2022),
which is represented as:

X
′′
= σ(Fθ(X, t))− γX − αX

′
, (6)

where (Fθ(X, t))i = Fθ(Xi(t),Xj(t), t) is a learnable coupling function with parameters θ. Due
to the unavailability of an analytical solution for Eq. 6, GraphCON Rusch et al. (2022) addresses it
through an iterative numerical solver employing a suitable time discretization method. GraphCON
utilizes the IMEX (implicit-explicit) time-stepping scheme, an extension of the symplectic Euler
method Hairer et al. (1993) that accommodates systems with an additional damping term.

Y n = Y n−1+∆t[σ(Fθ(X
n−1, tn−1))−γXn−1−αY n−1], Xn = Xn−1+∆tY n, n = 1, · · · , N,

(7)
where ∆t > 0 is a fixed time-step and Y n, Xn denote the hidden node features at time tn = n∆t.

4 METHOD

In this section, we present the proposed G-PDE for modeling the continuous graph ODE. It learns
high-order spikes and continuous information to enhance the model capacity. Initially, we introduce
a simplified version of G-PDE, namely the first-order graph PDE. Next, we derive the second-order
spike representation and differentiation of the second-order SNN. Finally, we propose the second-
order graph PDE network, which leverages a coupled high-order structure to extract additional in-
formation. More details can be found in Figure 1.
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4.1 FIRST-ORDER GRAPH PDE NETWORK

The proposed G-PDE propagates along dual separate time dimensions, namely the spike ODE and
graph ODE. We integrate these dual processes and reformulate them into a graph PDE form with
corresponding parameters: the time step t in the graph ODE and the time latency τ in the spike
ODE. Intuitively, information is propagated interactively by both the SNN and graph ODE in dual
time dimensions. We proceed to transform this process into a combination of two individual integral
processes.

Proposition 4.1 Define the first-order SNNs ODE as duτ
t

dτ = g(uτ
t , τ), and first-order Graph ODE

as duτ
t

dt = f(uτ
t , t), then the first-order graph PDE network can be formulated as:

uN
T =

∫ T

0

f

(∫ N

0

g(uτ
t )dτ

)
dt =

∫ N

0

g

(∫ T

0

f(uτ
t )dt

)
dτ,

∂uτ
t

∂τ
= g(uτ

t ),
∂uτ

t

∂t
= f(uτ

t ).

where uτ
t denotes the neuron membrane on latency τ and time step t, N is the latency of SNNs, and

T is the time step length of graph ODE. Details of derivation are shown in the Appendix.

There are two perspectives to elucidate the proposition 4.1. Firstly, in terms of the temporal dimen-
sion (0 ≤ t ≤ T ), the graph PDE initially computes the spike representation at each time step t,
followed by evaluating the graph ODE process using this spike representation. Secondly, consider-
ing the latency dimension (0 ≤ τ ≤ N ), the graph PDE models the evolution of node embedding
along a time series t, and subsequently integrates it across the latency dimension.

Furthermore, in our implementation of the first-order graph PDE, we adopt the first method by
calculating the spike representation on each time step and then model the node embedding with
Eqs. 5.

dH(t)

dt
= lnAH(t) +

∑N
τ=1 λ

N−τsτ∑N
τ=1 λ

N−τ
, (8)

where sτ is the binary spike on latency τ , and λ = exp(−∆t
κ ) with ∆t ≪ κ. H(t) is the spike

representation on time step t,
∑N

τ=1 λN−τsτ∑N
τ=1 λN−τ is the initial encoding E.

4.2 SECOND-ORDER SPIKING NEURAL NETWORKS

Second-order SNNs forward propagation. In our work, we set the forward propagation layer of
SNNs to L. According to Eq. 4, the spiking dynamics for an SNN can be formulated as:

ui(n) = βiui(n− 1) + (1− βi)
V i−1
th

∆t

(
αiIi−1(n− 1) +W isi−1(n)

)
− V i

ths
i(n), (9)

where i = 1, · · · , L denotes the i-th layer, s0 and si denote the input and output of SNNs. Ii is the
input of the i-th layer, n = 1, · · · , N is the time step and N is the latency. αi = exp(−∆τ/τ isyn),
βi = exp(−∆τ/τ imem) and 0 < ∆τ ≪ {τ isyn, τ imem}.

Second-order spike representation. Considering the second-order SNNs model defined by Eqs. 4,

we define the weighted average input current as Î(N) = 1
(β−α)2

∑N−1
n=0 (βN−n−αN−n)Iin(n)∑N−1

n=0 (βN−n−αN−n)
, and

the scaled weighted firing rate as â(N) = 1
β2

Vth

∑N−1
n=0 βN−ns(n)∑N−1

n=0 (βN−n−αN−n)∆τ
. We use â(N) as the spiking

representation of {s(n)}Nn=1. Similarly to the first-order spiking representation Meng et al. (2022a),
we directly determine the relationship between Î(N) and â(N) using a differentiable mapping.
Specifically, by combing Eq. 4, we have:

u(τ + 1) = βu(τ) + αIsyn(τ) + Iinput(τ)− Vths(τ)

= β2u(τ − k + 1) + α

k−1∑
i=0

βiIsyn(τ − i) +

k−1∑
i=0

βi(Iinput(τ − i)− Vths(τ − i)).
(10)
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By summing Eq. 10 over n = 1 to N , we have:

u(N) =
1

β − α

N−1∑
n=0

(βN−n − αN−n)Iin(n)−
1

β

N−1∑
n=0

βN−nVths(n). (11)

Dividing Eq. 11 by ∆τ
∑N−1

n=0 (β
N−n − αN−n), we can get:

â(N) =
β − α

β

Î(N)

∆τ
− u(N)

∆τβ
∑N−1

n=0 (β
N−n − αN−n)

≈ τsynτmem

τmem − τsyn
Î(N)− u(N)

∆τβ
∑N−1

n=0 (β
N−n − αN−n)

,

(12)
since lim

∆τ→0

1−α/β
∆τ =

τsynτmem

τmem−τsyn
and ∆τ ≪ 1

τsyn
− 1

τmem
, we can approximate β−α

β∆τ by τsynτmem

τmem−τsyn
.

Following Meng et al. (2022a), and take â(N) ∈ [0, Vth

∆τ ] into consideration and assume Vth is small,
we ignore the term u(N)

∆τβ
∑N−1

n=0 (βN−n−αN−n)
, and approximate â(N) with:

lim
N→∞

â(N) ≈ clamp

(
τsynτmem

τmem − τsyn
Î(N), 0,

Vth

∆τ

)
, (13)

where clamp(x, a, b) = max(a,min(x, b)). During the training of the second-order SNNs, we
have Proposition 4.2, which is similar to Meng et al. (2022a), and the detailed derivation is shown
in the Appendix.

Proposition 4.2 Define â0(N) =
∑N−1

n=0 βN−n−2
i s0(n)∑N−1

n=0 (βN−n
i −αN−n

i )∆τ
and âi(N) =

V i
th

∑N−1
n=0 βN−n−2

i si(n)∑N−1
n=0 (βN−n

i −αN−n
i )∆τ

,

∀i = 1, · · · , L, where αi = exp(−∆τ/τ isyn) and βi = exp(−∆τ/τ imem). Further, define the
differentiable mappings

zi = clamp

(
τ isynτ

i
mem

τ imem − τ isyn
W izi−1, 0,

V i
th

∆τ

)
, i = 1, · · · , L. (14)

If lim
N→∞

âi(N) = zi for i = 0, 1, · · · , L− 1, then âi+1(N) ≈ zi+1 when N → ∞.

Differentiation on second-order spike representation. With the forward propagation of the i-th
layers, we get the output of SNN with si = {si(1), · · · , si(N)}. We define the spike representation

operator r(s) = 1
β2

Vth

∑N−1
n=0 βN−ns(n)∑N−1

n=0 (βN−n−αN−n)∆τ
, and get the final output oL = r(sL). For the simple

second-order SNN, assuming the loss function as L, we calculate the gradient ∂L
∂W i as:

∂L
∂W i

=
∂L
∂oi

∂oi

∂W i
=

∂L
∂oi+1

∂oi+1

∂oi

∂oi

∂W i
, oi = r(si) ≈ clamp

(
W ir(si−1), 0,

V i
th

∆τ

)
. (15)

4.3 SECOND-ORDER GRAPH PDE NETWORK

Considering that higher-order spike ODEs preserve more information, higher-order graph ODEs ef-
fectively capture long-term dependencies in complex dynamic systems Luo et al. (2023). Therefore,
to model graph evaluation, we leverage the efficient second-order graph PDEs while seamlessly in-
tegrating spike and graph ODEs. Although obtaining an analytical solution for the second-order
PDE is not feasible, we can still derive a conclusion similar to Proposition 4.1.

Proposition 4.3 Define the second-order SNNs ODE as d2uτ
t

dτ2 +δ
duτ

t

dτ = g(uτ
t , τ), and second-order

Graph ODE as d2uτ
t

dt2 + γ
duτ

t

dt = f(uτ
t , t), then the second-order graph PDE network is formulated

as:

uτ
t =

∫ T

0

h

(∫ N

0

e(uτ
t )dτ

)
dt =

∫ N

0

e

(∫ T

0

h(uτ
t )dt

)
dτ,

∂2uτ
t

∂τ2
+ δ

∂uτ
t

∂τ
= g(uτ

t ),
∂2uτ

t

∂t2
+ γ

∂uτ
t

∂t
= f(uτ

t ),

where e(uτ
t ) =

∫ N

0
g(uτ

t )dτ − δ(uN
t − u0

t ), h(u
τ
t ) =

∫ T

0
f(uτ

t )dt − γ(uτ
T − uτ

0),
∂e(uτ

t )
∂τ = g(uτ

t )

and ∂h(uτ
t )

∂t = f(uτ
t ).
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Similarly to the first-order graph PDE, we implement the second-order graph PDE by calculating
the spike representation on each time step and then model the node embedding with Eqs. 7.

Differentiation on second-order graph PDE. Denote the loss function as L =
∑
i∈V

∣∣XN
i − X̄i

∣∣2,

and X̄i is the label of node i. With the chain rule, we have: ∂L
∂W l = ∂L

∂oN
T

∂oN
T

∂ol
T

∂ol
T

∂W l . From Rusch
et al. (2022), we have the conclusion that the traditional GNN model has the problem of gradient
exponentially or vanishing, thus, we study the upper bound of the proposed G-PDE.

Proposition 4.4 Let Xn and Y n be the node features, and ∆t ≪ 1. Then, the gradient of the
graph ODE matrix Wl is bounded as 16, and the gradient of the spike ODE W k is bounded as 16:∣∣∣∣ ∂L∂Wl

∣∣∣∣ ≤ β
′
D̂∆t(1 + ΓT∆t)

v

(
max
1≤i≤v

(|X0
i |+ |Y 0

i |)
)
+
β

′
D̂∆t(1 + ΓT∆t)

v

(
max
1≤i≤v

|X̄i|+ β
√
T∆t

)2

,∣∣∣∣ ∂L
∂W k

∣∣∣∣ ≤ (1 + TΓ∆t)(1 +NΘ∆τ)Vth

vβ2∆τ

(
max
1≤i≤v

|XN
i |+ max

1≤i≤v
|X̄i|

)
. (16)

where β = max
x

|σ(x)|, β′
= max

x
|σ′

(x)|, D̂ = max
i,j∈V

1√
didj

, and Γ := 6 + 4β
′
D̂ max

1≤n≤T
||W n||1,

Θ := 6 + 4β
′
D̂ max

1≤n≤N
||W n||1. di is the degree of node i, X̄i is the label of node i. The first in-

equality can be obtained from Rusch et al. (2022) directly, and the derivation of the second inequality
is presented in the Appendix.

The upper bound in Proposition 4.4 demonstrates that the total gradient remains globally bounded,
regardless of the number of graph ODE layers T and spike ODE layers N , as long as ∆t ∼ T−1

and ∆τ ∼ N−1. This effectively addresses the issue of exploding gradients.

5 EXPERIMENTS

Our experimental evaluation comprehensively examines the effectiveness of the proposed frame-
work in various graph learning tasks, including node classification and graph classification. We eval-
uate two settings of the method: G-PDE-1st-order, which utilizes the first-order SNN and second-
order graph ODE, and G-PDE-2nd-order, which employs the second-order SNN and second-order
graph ODE.

5.1 EXPERIMENTAL SETTINGS

Datasets. For the node classification, we evaluate G-PDE on homophilic (i.e., Cora McCallum et al.
(2000), Citeseer Sen et al. (2008) and Pubmed Namata et al. (2012)) and heterophilic (i.e., Texas,
Wisconsin and Cornell from the WebKB1) datasets, where high homophily indicates that a node’s
features are similar to those of its neighbors, and heterophily suggests the opposite. The homophily
level is measured according to Pei et al. (2020), and is reported in Table 1 and 2. In the graph
classification task, we utilize the MNIST dataset LeCun et al. (1998). To represent the grey-scale
images as irregular graphs, we associate each superpixel (large blob of similar color) with a vertex,
and the spatial adjacency between superpixels with edges. Each graph consists of a fixed number
of 75 superpixels (vertices). To ensure consistent evaluation, we adopt the standard splitting of
55K-5K-10K for training, validation, and testing purposes.

Baselines. For the homophilic datasets, we use standard GNN baselines: GCN Kipf & Welling
(2017), GAT Velickovic et al. (2017), MoNet Monti et al. (2017), GraphSage Hamilton et al.
(2017), CGNN Xhonneux et al. (2020), GDE Poli et al. (2019), GRAND Chamberlain et al. (2021)
and GraphCON Rusch et al. (2022). Due to the assumption on neighbor feature similarity does
not hold in the heterophilic datasets, we utilize additional specific GNN methods as baselines:
GPRGNN Chien et al. (2020), H2GCN Zhu et al. (2020a), GCNII Chen et al. (2020), Geom-
GCN Pei et al. (2020) and PairNorm Zhao & Akoglu (2019). For the graph classification task, we
apply ChebNet Defferrard et al. (2016), PNCNN Finzi et al. (2021), SplineCNN Fey et al. (2018),
GIN Xu et al. (2019), and GatedGCN Bresson & Laurent (2017).

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Table 1: The test accuracy (in %) for node classification on ho-
mophilic datasets. The results are calculated by averaging the
results of 20 random initializations across 5 random splits. The
mean and standard deviation of these results are obtained. Bold
numbers means the best performance, and underline numbers
indicates the second best performance.

Cora Citeseer Pubmed
Homophily level 0.81 0.74 0.80

GAT-ppr 81.6±0.3 68.5±0.2 76.7±0.3
MoNet 81.3±1.3 71.2±2.0 78.6±2.3
GraphSage-mean 79.2±7.7 71.6±1.9 77.4±2.2
GraphSage-maxpool 76.6±1.9 67.5±2.3 76.1±2.3
CGNN 81.4±1.6 66.9±1.8 66.6±4.4
GDE 78.7±2.2 71.8±1.1 73.9±3.7
GCN 81.5±1.3 71.9±1.9 77.8±2.9
GAT 81.8±1.3 71.4±1.9 78.7±2.3
GRAND 83.6±1.0 73.4±0.5 78.8±1.7
GraphCON-GCN 81.9±1.7 72.9±2.1 78.8±2.6
GraphCON-GAT 83.2±1.4 73.2±1.8 79.5±1.8

G-PDE-1st-order 83.3±2.1 73.7±2.0 76.9±2.7
G-PDE-2nd-order 83.7±1.3 75.2±2.0 79.6±2.3

Implementation Details. For the
homophilic node classification task,
we report the average results of 20
random initialization across 5 ran-
dom splits. For the heterophilic node
classification task, we present the
average performance of the respec-
tive model over 10 fixed train/val/test
splits. The results of baselines are re-
ported in Rusch et al. (2022). In the
implementation of G-PDE, we inte-
grate the first and second-order SNN
with the second-order graph ODE, re-
ferred to as G-PDE-1st-order and G-
PDE-2nd-order, respectively. For G-
PDE-1st-order, we set the hyperpa-
rameter λ to 1. As for G-PDE-2nd-
order, we assign the hyperparameters
α and β values of 1. During training,
the hidden dimension is set to 64, the
dropout ratio set to 0.3, and we use
the Adam Kingma & Ba (2014) opti-
mizer and set the batch size to 1024.
The number of training epochs is 200,
and the learning rate is set to 0.001.

5.2 PERFORMANCE COMPARISION

Table 2: The test accuracy (in %) for node classification on
heterophilic datasets. All results represent the average perfor-
mance of the respective model over 10 fixed train/val/test splits.
Bold numbers means the best performance, and underline num-
bers indicates the second best performance.

Texas Wisconsin Cornell
Homophily level 0.11 0.21 0.30

GPRGNN 78.4±4.4 82.9±4.2 80.3±8.1
H2GCN 84.9±7.2 87.7±5.0 82.7±5.3
GCNII 77.6±3.8 80.4±3.4 77.9±3.8
Geom-GCN 66.8±2.7 64.5±3.7 60.5±3.7
PairNorm 60.3±4.3 48.4±6.1 58.9±3.2
GraphSAGE 82.4±6.1 81.2±5.6 76.0±5.0
MLP 80.8±4.8 85.3±3.3 81.9±6.4
GCN 55.1±5.2 51.8±3.1 60.5±5.3
GAT 52.2±6.6 49.4±4.1 61.9±5.1
GraphCON-GCN 85.4±4.2 87.8±3.3 84.3±4.8
GraphCON-GAT 82.2±4.7 85.7±3.6 83.2±7.0

G-PDE-1st-order 81.6±6.2 84.9±3.2 80.4±1.9
G-PDE-2nd-order 87.3±4.2 88.8±2.5 83.7±2.7

Homophilic node classification. Ta-
ble 1 shows the results of the pro-
posed G-PDE with the comparison of
the baselines. From the results, we
find that: (1) Compared with the dis-
crete methods, the continuous meth-
ods achieve better performance, in-
dicating that the continuous methods
would help to capture the continuous
changes and subtle dynamics from
graphs. (2) The first and second-
order G-PDE outperforms other base-
lines in most cases, which shows
G-PDE preserves the advantages of
spike and graph ODE for graph learn-
ing. (3) The second-order G-PDE
consistently outperforms the first-
order, we attribute the reason that
high-order structure would preserve
more information than the first-order
G-PDE.

Heterophilic node classification.
We show the results of different methods in Table 2, and we have the following observation: (1)
The traditional massage-passing-based methods perform worse than the well-designed methods for
heterophilic datasets, especially for GCN and GAT, this is because the assumption that the neighbor
feature is similar does not hold. (2) The G-PDE-2nd-order still outperforms G-PDE-1st-order,
which proves the effectiveness of high-order structure again. (3) The G-PDE-1st-order performs
worse than GraphCON, we attribute the reason that the first-order G-PDE loses the features of the
heterophilic dataset for node discriminate, which is more important than the homophilic.
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Table 4: Ablation results. Bold numbers means the best performance, and underline numbers indi-
cates the second best performance.

Cora Citeseer Pubmed Texax Wisconsin Cornell
Homophily level 0.81 0.74 0.80 0.11 0.21 0.3

G-PDE-1st-1st 82.8±0.8 72.5±1.3 75.4±1.7 81.1±4.4 83.8±3.1 80.7±2.6
G-PDE-2nd-1st 83.5±1.8 73.4±2.1 77.2±2.3 83.1±3.8 84.4±2.2 81.2±2.7

G-PDE-1st-order 83.3±2.1 73.7±2.0 76.9±2.7 81.6±6.2 84.9±3.2 80.4±1.9
G-PDE-2nd-order 83.7±1.3 75.2±2.0 79.6±2.3 87.3±4.2 88.8±2.5 83.7±2.7

Table 3: The test accuracy (in %) for graph classification
on MNIST datasets. Bold numbers means the best perfor-
mance, and underline numbers indicates the second best per-
formance.

Model Test accuracy

ChebNet Defferrard et al. (2016) 75.62
MoNet Monti et al. (2017) 91.11
PNCNN Finzi et al. (2021) 98.76
SplineCNN Fey et al. (2018) 95.22
GIN Xu et al. (2019) 97.23
GatedGCN Bresson & Laurent (2017) 97.95
GCN Kipf & Welling (2017) 88.89
GAT Velickovic et al. (2017) 96.19
GraphCON-GCN Rusch et al. (2022) 98.68
GraphCON-GAT Rusch et al. (2022) 98.91

G-PDE-1st-order 98.82
G-PDE-2nd-order 98.92

Graph classification. Table 3 shows
the comparison of the graph classifi-
cation results. From the results, we
find that: (1) The first- and second-
order graph PDE outperforms the tra-
ditional GNNs; we stress that the
continuous process both in the SNN
and graph ODE would help to extract
the continuous changes and subtle
dynamics from graphs. (2) The first-
order G-PDE performs worse than
the second-order G-PDE, indicating
that the high-order structure would
help to preserve more information
than the first-order, and will not take
much additional overhead. (3) The
first-order method performs worse
than GraphCON-GAT and better than
GraphCON-GCN. We attribute this
difference to the fact that although the spike ODE loses some information for graph representa-
tion, this part of the information is not crucial, and we can compensate for it through other technical
means, such as GAT.

5.3 ABLATION STUDY

We conducted ablation studies to assess the contributions of different components using two variants,
and the results are presented in Table 4. Specifically, we introduced two model variants: (1) G-PDE-
1st-1st, which utilizes the first-order spike ODE and first-order graph ODE, and (2) G-PDE-2nd-
1st, incorporating the second-order spike ODE and first-order graph ODE. Table 4 reveals that (1)
G-PDE-2nd-order consistently outperforms other variations, while G-PDE-1st-1st yields the worst
performance, validating the effectiveness of our proposed method. (2) In most cases, G-PDE-2nd-
1st exhibits better performance than G-PDE-1st-order, suggesting that the second-order spike ODE
contributes more to representation than the second-order graph ODE.

6 CONCLUSION

In this paper, we address the practical problem of continuous graph representation learning and
propose an effective method named G-PDE. G-PDE incorporates the spike ODE and graph ODE
into a unified graph PDE from two distinct time dimensions, which preserves the advantages of low-
power consumption and fine-grained feature extraction. Considering that the high-order structure
would help to relieve the problem of information loss, we propose the second-order G-PDE and
derive the second-order spike representation. To ensure the stability of G-PDE, we further prove that
G-PDE mitigates the gradient exploding and vanishing problem. Extensive experiments on diverse
datasets validate the efficacy of proposed G-PDE compared with various competing methods. In
future works, we will extend G-PDE to higher-order structure to explore more efficient structure for
continuous graph learning.
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A PROOF OF PROPOSITION 4.1

Proposition 4.1 Define the first-order SNNs ODE as duτ
t

dτ = g(uτ
t , τ), and first-order Graph ODE

as duτ
t

dt = f(uτ
t , t), then the first-order graph PDE network can be formulated as:

uτ
t =

∫ T

0

f

(∫ N

0

g(uτ
t )dτ

)
dt =

∫ N

0

g

(∫ T

0

f(uτ
t )dt

)
dτ.

Proof.
duτ

t

dτ
= g(uτ

t , τ),
duτ

t

dt
= f(uτ

t , t),

uτ
t is a function related to variable t and τ , we have ∂uτ

t

∂τ = g(uτ
t ) and ∂uτ

t

∂t = f(uτ
t ). Thus,

uτ
t =

∫ T

0

f

(∫ N

0

g(uτ
t )dτ

)
dt =

∫ N

0

g

(∫ T

0

f(uτ
t )dt

)
dτ.

B PROOF OF EQ. 13

Proof. From Eq. 10, we have:

u(τ + 1) = β2u(τ − k + 1) + α

k−1∑
i=0

βiIsyn(τ − i) +

k−1∑
i=0

βi(Iinput(τ − i)− Vths(τ − i)), (17)

u(N) = α

N−1∑
n=0

βnIsyn(N − n− 1) +

N−1∑
n=0

βn(Iinput(N − n− 1)− Vths(N − n− 1)). (18)

Due to:

Isyn(τ + 1) = αkIsyn(τ − k + 1) +

k∑
i=0

αiIinput(τ − i), (19)

we have,

u(N) =α

N−1∑
n=0

βN−n−1Isyn(n) +

N−1∑
n=0

βN−n−1 (Iinput(n)− Vths(n))

=α

βN−1α−1
(
1− (αβ )

N
)

1− α
β

 Iin(0) +

βN−2α−1
(
1− (αβ )

N−1
)

1− α
β

 Iin(1) + · · ·

+

βN−iα−1
(
1− (αβ )

N−i+1
)

1− α
β

 Iin(i− 1) + · · ·+ (β2α−1 + β + α)Iin(N − 3)

+(βα−1 + 1)Iin(N − 2) + α−1Iin(N − 1)
)
−

N−1∑
n=0

βN−n−1Vths(n)

=
1

β − α

((
βN

(
1−

(
α

β

)N
)
Iin(0)

)
+ · · ·+

(
βN−i+1

(
1−

(
α

β

)N−i+1
)
Iin(i− 1)

)

+ · · ·+ (β − α)Iin(N − 1))−
N−1∑
n=0

βN−n−1Vths(n)

=
1

β − α

N−1∑
n=0

(βN−n − αN−n)Iin(n)−
N−1∑
n=0

βN−n−1Vths(n).
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Define Î(N) = 1
(β−α)2

∑N−1
n=0 (βN−n−αN−n)Iin(n)∑N−1

n=0 (βN−n−αN−n)
, and â(N) = 1

β2

Vth

∑N−1
n=0 βN−ns(n)∑N−1

n=0 (βN−n−αN−n)
, we have:

â(N) =
β − α

β

Î(N)

∆τ
− u(N)

∆τβ
∑N−1

n=0 (β
N−n − αN−n)

≈ τsynτmem

τmem − τsyn
Î(N)− u(N)

∆τβ
∑N−1

n=0 (β
N−n − αN−n)

,

where α = exp(−∆τ/τsyn), β = exp(−∆τ/τmem).

C PROOF OF PROPOSITION 4.3

Proposition 4.3 Define the second-order SNNs ODE as d2uτ
t

dτ2 +δ
duτ

t

dτ = g(uτ
t , τ), and second-order

Graph ODE as d2uτ
t

dt2 + γ
duτ

t

dt = f(uτ
t , t), then the second-order graph PDE network is formulated

as:

uτ
t =

∫ T

0

h

(∫ N

0

e(uτ
t )dτ

)
dt =

∫ N

0

e

(∫ T

0

h(uτ
t )dt

)
dτ,

∂2uτ
t

∂τ2
+ δ

∂uτ
t

∂τ
= g(uτ

t ),
∂2uτ

t

∂t2
+ γ

∂uτ
t

∂t
= f(uτ

t ),

where e(uτ
t ) =

∫ N

0
g(uτ

t )dτ − δ(uN
t − u0

t ), and h(uτ
t ) =

∫ T

0
f(uτ

t )dt− γ(uτ
T − uτ

0).

Proof. Obviously,
∂2uτ

t

∂τ2
+ δ

∂uτ
t

∂τ
= g(uτ

t ),
∂2uτ

t

∂t2
+ γ

∂uτ
t

∂t
= f(uτ

t ),

so,
∂uτ

t

∂τ
+ δ(uN

t − u0
t ) =

∫ N

0

g(uτ
t )dτ,

∂uτ
t

∂t
+ γ(uτ

T − uτ
0) =

∫ T

0

f(uτ
t )dt.

Define e(uτ
t ) =

∫ N

0
g(uτ

t )dτ − δ(uN
t − u0

t ), and h(uτ
t ) =

∫ T

0
f(uτ

t )dt− γ(uτ
T − uτ

0), we have:

∂uτ
t

∂τ
= e(uτ

t ),
∂uτ

t

∂t
= h(uτ

t ),

thus,

uτ
t =

∫ T

0

h

(∫ N

0

e(uτ
t )dτ

)
dt =

∫ N

0

e

(∫ T

0

h(uτ
t )dt

)
dτ,

where ∂e(uτ
t )

∂τ = g(uτ
t ) and ∂h(uτ

t )
∂t = f(uτ

t ).

D PROOF OF PROPOSITION 4.4

∂L
∂W k

=
∂L
∂ZN

T

∂ZN
T

∂ZN
l

∂ZN
l

∂W k
=

∂L
∂ZN

T

T∏
n=l+1

∂ZN
n

∂ZN
n−1

∂ZN
l

∂W k

=
∂L
∂ZN

T

T∏
n=l+1

∂ZN
n

∂ZN
n−1

∂ZN
l

∂Zk
l

∂Zk
l

∂W k

=
∂L
∂ZN

T

T∏
n=l+1

∂ZN
n

∂ZN
n−1

N∏
i=k+1

∂Zi
l

∂Zi−1
l

∂Zk
l

∂W k
,

From Rusch et al. (2022), we have:∥∥∥∥ ∂L
∂ZN

T

∥∥∥∥
∞

≤ 1

v

(
max
1≤i≤v

|XN
i |+ max

1≤i≤v
|X̄i|

)
,

∥∥∥∥∂ZN
T

∂ZN
t

∥∥∥∥
∞

≤ 1 + TΓ∆t. (20)

Due to the second-order SNN has a similar formulation to second-order GNN, we have a similar
conclusion, ∥∥∥∥∂ZN

l

∂Zk
l

∥∥∥∥
∞

≤ 1 +NΘ∆τ, (21)
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with β = max
x

|σ(x)|, β′
= max

x
|σ′

(x)|, D̂ = max
i,j∈V

1√
didj

, and Θ := 6 + 4β
′
D̂ max

1≤n≤N
||W n||1.,

and with Eq. 15, we have:
∂Zk

l

∂W k
≈ r(Zk−1

l ) ≤ Vth

β2∆τ
. (22)

Multipling 20, 21 and 22, we have the upper bound:

∂L
∂W k

≤ (1 + TΓ∆t)(1 +NΘ∆τ)Vth

vβ2∆τ

(
max
1≤i≤v

|XN
i |+ max

1≤i≤v
|X̄i|

)
. (23)
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