
Robust fine-tuning of zero-shot models

Mitchell Wortsman∗† Gabriel Ilharco∗† Jong Wook Kim§ Mike Li‡

Simon Kornblith� Rebecca Roelofs� Raphael Gontijo Lopes�

Hannaneh Hajishirzi†◦ Ali Farhadi† Hongseok Namkoong‡ Ludwig Schmidt†M

Abstract

Large pre-trained models such as CLIP or ALIGN offer consistent accuracy across
a range of data distributions when performing zero-shot inference (i.e., without
fine-tuning on a specific dataset). Although existing fine-tuning approaches sub-
stantially improve accuracy in-distribution, they often reduce out-of-distribution
robustness. We address this tension by introducing a simple and effective method
for improving robustness: ensembling the weights of the zero-shot and fine-tuned
models (WiSE-FT). Compared to standard fine-tuning, WiSE-FT provides large
accuracy improvements out-of-distribution, while preserving high in-distribution
accuracy. On ImageNet (in-distribution) and five derived distribution shifts, WiSE-
FT improves out-of-distribution accuracy by 4 to 6 percentage points (pp) over
prior work while increasing in-distribution accuracy by 1.6 pp. WiSE-FT achieves
similarly large robustness improvements (2 to 23 pp) on a diverse set of six further
distribution shifts, and in-distribution accuracy gains of 0.8 to 3.3 pp compared to
standard fine-tuning on seven commonly used transfer learning datasets. These
improvements come at no additional computational cost during fine-tuning or
inference.

For the complete version of this paper, refer to https://arxiv.org/abs/2109.
01903.

1 Introduction
A foundational goal of machine learning is to develop models that work reliably across a broad range
of data distributions. Over the past few years, researchers have proposed a variety of challenging
out-of-distribution benchmarks on which current algorithmic approaches to enhance robustness yield
little to no gains [23, 17]. While these negative results highlight the difficulty of learning robust
models, large pre-trained models such as CLIP [20] and ALIGN [12] have recently demonstrated
unprecedented robustness to these challenging distribution shifts. The success of CLIP and ALIGN
points towards pre-training on large, heterogeneous datasets as a promising direction for increasing
robustness. However, an important caveat is that these robustness improvements are largest in the
zero-shot setting, i.e., when the model performs inference without fine-tuning on a specific target
distribution.

In a concrete application, a zero-shot model can be fine-tuned on extra application-specific data,
which often yields large performance gains on the target distribution. However, in the experiments of
Radford et al. [20], fine-tuning comes at the cost of robustness: across several natural distribution
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Figure 1: (Top left) Zero-shot CLIP models exhibit high effective robustness and moderate in-
distribution accuracy, while standard fine-tuning—either end-to-end or with a linear classifier (final
layer)—attains higher ID accuracy and less effective robustness. (Top right) Our method linearly
interpolates between the zero-shot and fine-tuned models with a mixing coefficient α ∈ [0, 1].
(Bottom) On five distribution shifts derived from ImageNet (ImageNetV2, ImageNet-R, ImageNet
Sketch, ObjectNet, and ImageNet-A), WiSE-FT improves average OOD accuracy relative to both the
zero-shot and fine-tuned models while maintaining or improving ID accuracy.

shifts, the out-of-distribution accuracy of their fine-tuned CLIP models is lower than that of the
original zero-shot model. This leads to a natural question: Can zero-shot models be fine-tuned without
reducing out-of-distribution accuracy?

As pre-trained models are becoming a cornerstone of machine learning, techniques for fine-tuning
them on downstream applications are increasingly important. Indeed, the question of robustly fine-
tuning pre-trained models has recently also been raised as an open problem by several authors
[1, 4, 20]. Andreassen et al. [1] explored several fine-tuning approaches but found that none yielded
models with improved robustness at high accuracy. Furthermore, Taori et al. [23] demonstrated that
no current algorithmic robustness interventions provide consistent gains across the distribution shifts
where zero-shot CLIP excels.

In this paper, we conduct an empirical investigation to understand and improve fine-tuning of zero-
shot models from a distributional robustness perspective. First, we measure how different fine-tuning
approaches (last-layer vs. end-to-end fine-tuning, hyperparameter changes, etc.) affect the out-of-
distribution accuracy of the resulting fine-tuned models. Our empirical analysis uncovers two key
issues in the standard fine-tuning process. The robustness of fine-tuned models substantially varies
under even small changes in hyperparameters, but the best hyperparameters cannot be inferred from
in-distribution accuracy alone. In addition, more aggressive fine-tuning (e.g., using a larger step size)
yields larger in-distribution improvements but can also reduce out-of-distribution accuracy by a larger
amount.

Motivated by the above concerns, we propose a robust way of fine-tuning zero-shot models that
addresses the aforementioned trade-off and achieves the best of both worlds: increased performance
out-of-distribution while maintaining or even improving in-distribution accuracy relative to standard
fine-tuning. In addition, our method simplifies the choice of hyperparameters in the fine-tuning
process.

Our method (Figure 1) has two steps: first, we fine-tune the zero-shot model on application-specific
data. Second, we combine the original zero-shot and fine-tuned models by linearly interpolating
between their weights, which we refer to as weight-space ensembling. Interpolating models dates back
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Figure 2: Samples of the class lemon, from ImageNet [8] (in-distribution) and the derived out-of-
distribution datasets considered in our main experiments: ImageNet-V2 [21], ImageNet-R [10],
ImageNet Sketch [24], ObjectNet [2], and ImageNet-A [11].

to early work in convex optimization by Polyak and Juditsky [19]. Here, we empirically study model
interpolation for non-convex models from the perspective of distributional robustness. Interestingly,
linear interpolation in weight space still succeeds despite the non-linearity in the activation functions
of the neural networks.

Weight-space ensembles for fine-tuning (WiSE-FT) substantially improve out-of-distribution accuracy
compared to prior work while maintaining high in-distribution performance. Concretely, on ImageNet
[8] and five of the natural distribution shifts studied by Radford et al. [20], WiSE-FT applied to
standard end-to-end fine-tuning improves out-of-distribution accuracy by 4 to 6 percentage points
(pp) over prior work while maintaining or improving the in-distribution accuracy of the fine-tuned
model. Relative to the zero-shot model, WiSE-FT improves out-of-distribution accuracy by 1 to 9
pp. Moreover, WiSE-FT improves over a range of alternative approaches such as regularization and
evaluating at various points throughout fine-tuning. These robustness gains come at no additional
computational cost during fine-tuning or inference.

To understand the robustness gains of WiSE-FT, we first study WiSE-FT when fine-tuning a linear
classifier (last layer) as it is amenable to analysis. In this linear case, our procedure is equivalent
to ensembling the outputs of two models, and experiments point towards the complementarity of
model predictions as a key property. For end-to-end fine-tuning, we connect our observations to
earlier work on the phenomenology of deep learning. Neyshabur et al. [18] found that end-to-end
fine-tuning the same model twice yielded two different solutions that were connected via a linear
path in weight space along which error remains low, known as linear mode connectivity [9]. Our
observations suggest a similar phenomenon along the path generated by WiSE-FT, but the exact
shape of the loss landscape and connection between in- and out-of-distribution error are still an open
problem.

In addition to the aforementioned ImageNet distribution shifts, WiSE-FT consistently improves
robustness on a diverse set of six further distribution shifts including: (i) geographic shifts in satellite
imagery and wildlife recognition (WILDS-FMoW, WILDS-iWildCam) [13, 6, 3], (ii) reproductions
of the popular image classification dataset CIFAR-10 with a distribution shift (CIFAR-10.1 and
CIFAR-10.2) [21, 16], and (iii) datasets with distribution shift induced by temporal perturbations in
videos (ImageNet-Vid-Robust and YTBB-Robust) [22]. Beyond the robustness perspective, WiSE-FT
also improves in-distribution performance compared to standard fine-tuning, reducing the relative
error rate by 4-49% on a range of seven datasets: ImageNet, CIFAR-10, CIFAR-100 [15], Describable
Textures [7], Food-101 [5], SUN397 [25], and Stanford Cars [14]. Even when fine-tuning data is
scarce, reflecting many application scenarios, we find that WiSE-FT improves performance.

Overall, WiSE-FT is simple, universally applicable in the problems we studied, and can be imple-
mented in a few lines of code. Hence we encourage its adoption for fine-tuning zero-shot models.
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