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Abstract
3D structures of molecules are often required
to investigate atomistic phenomena accurately
in industries such as drug design. We propose
DiffMol, a novel method that utilizes diffusion
models to generate the 3D position of atoms and
utilizes the discrete denoising diffusion process
to generate the atom type. Compared to exist-
ing methods, our algorithm offers greater flexibil-
ity for post-processing and refining the generated
molecules and demonstrates faster performance.
We provide theoretical proof of the equivariance
of the diffusion process for molecule position gen-
eration. Our model achieved better than state-
of-the-art performance in molecule/atom stability
and molecule validity on benchmarks generating
3D molecules.

1 Introduction
Drug development is a complex and time-consuming pro-
cess that involves the discovery of small molecules that can
effectively bind to target proteins and slow or stop disease
progression while remaining non-toxic and not disrupting
other biological processes. Generative machine learning
models have become an important tool in this process by en-
abling the generation of new molecules with improved prop-
erties and binding affinities. Among the various generative
models available, diffusion-based models have emerged as
a promising approach, with demonstrated success in image
generation and molecule generation. In particular, Equiv-
ariant Diffusion Models (EDMs) (Hoogeboom et al., 2022)
use Equivariant Graph Neural Networks (EGNN) (Satorras
et al., 2021) to generate molecules with 3D structures. Many
studies have explored injecting prior knowledge for both
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the molecule generation process and the binding process
(Trippe et al., 2023; Corso et al., 2023; Lee et al., 2023;
Igashov et al., 2022).

Existing works usually use the same model to generate the
atom types and the atom positions, which consist of discrete
features and continuous features. For example, Hoogeboom
et al. (2022) encodes the atom type as a one-hot embedding
and learns the generation process for these one-hot features.
Such a generation process is not quite necessary for dis-
crete features. Inspired by Austin et al. (2021) and other
masked language generative models (Devlin et al., 2019;
Raffel et al., 2020; Clark et al., 2020), we propose using Dis-
crete Denoising Diffusion Probabilistic Models (D3PMs)
to generate the atom type while keeping the continuous dif-
fusion process to generate the atom positions as a separate
model. Besides that, we also give a theoretical justification
for the equivariance of the generated atom position, i.e., the
generation is not affected w.r.t the translation or rotation of
the molecules. Our contributions are summarized as follows

• We propose a unified framework to generate 3D
molecules where we incorporate the atom-type gen-
eration and atom-position generation using the Dis-
crete Denoising Diffusion Probabilistic Models and
continuous diffusion model, respectively.

• Our unified framework brings more flexibility to post-
process and refine the generated molecules. We demon-
strate the effectiveness of generating 3D molecules
with state-of-art molecule stability and validity.

Notation. Scalars and constants are denoted by lower and
upper case letters, respectively. Vectors are denoted by lower
case boldface letters x, and matrices by upper case boldface
letters A. We denote by [k] the set {1, 2, · · · , k} for positive
integers k. For a discrete random variable h ∈ [K], we
denote the onehot embedding of this random variable as
h = (0, · · · , 1, · · · , 0)⊤.We further define the categorical
distribution of discrete variable h as Cat(h,p). In particular,
P(h = i) = pi, where pi is the i-th element of the vector
p ∈ RK .
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2 Preliminaries and Related works
We provide the preliminary knowledge and the most related
works in this section, additional related works are provided
in Appendix A.

Equivariant models for 3D molecule structures. In a
molecule, the 3D position of each atom is denoted as a point
cloud {xn}Nn=1, where xn ∈ R3, and the type of each atom
is represented by {hn}Nn=1. The global scalar features of
the molecules, such as heat capacity and polarizability, are
represented by a feature vector f ∈ Rd. Obviously, the atom
type and the scalar features are invariant against the rotation
and translation of the molecules, and the spatial features,
like the atom positions, are equivariant by the aforemen-
tioned operations. To formally describe this observation,
we say a function zx, zh = f({xn}Nn=1, {hn}Nn=1, · · · ) is
SE(3) equivariant if for any R ∈ SO(3,R) and t ∈ R3 we
have

Rzx, zh = f({Rxn + t}Nn=1, {hn}Nn=1, · · · ), (2.1)

where the · · · represents other inputs in the function that
remain unchanged. A series of Equivariant Graph Neu-
ral Networks (EGNNs) (Fuchs et al., 2020; Satorras et al.,
2021; Thölke & Fabritiis, 2022) are proposed to implement
a SE(3) equivariant function defined in (2.1) .

Score-based generative models. We follow Song et al.
(2020) to learn the probability distribution of the atom posi-
tions P({xn}Nn=1). The forward process is described by the
following stochastic differential equations (SDEs)

dx = f(x, t)dt+ g(t)dw, (2.2)

where w is the standard Brownian motion. The reverse
process can be described as the following SDEs:

dx =
[
f(x, t)− g2(t)∇x logPt(x)

]
+ g(t)dw̄, (2.3)

where w̄ is the standard time reversal Brownian motion.
The reverse process can also be presented as the following
ODEs

dx =
[
f(x, t)− 0.5g2(t)∇x logPt(x)

]
, (2.4)

and it is also known as the ‘denoising process’ when
t → 0 (Song et al., 2021; 2020). When setting
f(x, t) = − 1

2βtx, g(t) =
√
βt, one can show that xt|x0 ∼

N (µtx0, σ
2
t I) where µt = exp

(
− 1

2

∫ t

0
β(s)ds

)
and σ2

t =

1−exp
(
−
∫ t

0
β(s)ds

)
. The score function ∇x logPt(x) is

approximated by a neural network sθ(x, t) which is trained
by minimizing the objective function

L = E
[
λt

[
∥sθ(xt, t)−∇xt

logP0t(xt|x0)∥2
]]

, (2.5)

where λt is a weight regularizer. The expectation is taken
over t ∼ Unif.([0, T ]), x0 is sampled from the initial distri-
bution P0(x), xt is sampled from the forward process (2.2)
given x0 and P0t is the corresponding normal distribution.
After getting sθ, the concerned distribution P0(x) can be
recovered by following the reversed process (2.3).

Discrete Denoising Diffusion Probabilistic Models. We
follow Austin et al. (2021) to handle the discrete distribu-
tion of the atom types P({hn}Nn=1). For the scalar discrete
random variables with K categories, the forward transition
is defined by the transition matrix Qt ∈ RK×K . Denoting
the one-hot embedding of the discrete random variable h
as h ∈ R1×K , then the one-step forward process is defined
by P(ht|ht−1) = Cat(ht,p = ht−1Qt). Thus the t-step
marginal distribution given h0 is defined by

P(ht|h0) = Cat
(
ht,p = h0

∏t
ι=1 Qι

)
, (2.6)

where
∏t

ι=1 Qι := Q1Q2 · · ·Qt. The reverse process is
sampled by hT ∼ PT (·) then for all t = T, T − 1, · · · , 1.

ht,0 ∼ P0|t(·|ht);ht−1 ∼ Pt(·|ht, ht,0). (2.7)

P0|t denotes the posterior distribution of h0 given ht and the
Pt denotes the posterior distribution of ht−1 given h0 and
ht. It’s easy to show that once we have a good estimation
of Pt,0 and Pt, ht−1 ∼ Pt−1|t(·|ht) is exactly the posterior
distribution of ht−1 conditioned on ht.

Usually, Pt(·|ht) can be readily derived once we know the
transition kernel Q. Thus we approximate the P0|t with a
neural network P̃θ,t. As discussed in Austin et al. (2021),
P̃θ,t can be trained by minimizing the following negative-
log-likelihood function

Lh = −Eh0

[∑T
t=0 Eht|h0

[
log P̃θ,t(h0|ht)

]]
, (2.8)

where the expectation is taken over the initial distribution
of h0 and the ht given the forward process (2.6).

3 Problem Definition
We consider the 3D-structured molecules with N atoms
and atoms index up to K, where the position of the atoms
are represented as a point cloud {xn}Nn=1 and the type of
atoms are represented by {hn}Nn=1. We aim to learn the
score function {snθ,t} and the distribution {P̃n

θ,t} for all
atoms n ∈ [N ] so that we can follow (2.3) and (2.7) to
generate the molecule structure {xn

0 , h
n
0}. We use xn

t to
denote the position of n-th atom at time t and use hn

t to
denote the type of n-th atom at time t. When applying
the generative model to atom positions, our objective is to
maintain the independence of molecule structure generation
from molecule translation.
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Assumption 3.1. Denote xc
t =

1
N

∑N
n=1 x

n
t as the geomet-

ric center of a molecule, we assume the probability distribu-
tion of the molecule structure {xn

t −xc
t}Nn=1 is independent

of the probability distribution of the massive center xc
t . In

other words, we have for all t ∈ [T ],

Pt({xn
t }Nn=1) = Pt({xn

t − xc
t}Nn=1)Pt(x

c
t). (3.1)

We also assume the probability Pt({xn
t −xc

t}Nn=1) is invari-
ant against the rotation Q ∈ SO(3), i.e. for all Q ∈ SO(3),
Pt({xn

t − xc
t}Nn=1) = Pt({Q(xn

t − xc
t)}Nn=1).

Under Assumption 3.1, it’s easy to show that for any xn
t , we

have

∇xn
t
logPt({xn

t − xc
t}Nn=1)

=∇xn
t
logPt({xn

t }Nn=1)−∇xn
t
logPt(x

c
t). (3.2)

Q∇xn
t
logPt({xn

t − xc
t}Nn=1)

=∇Qxn
t
logPt({Qxn

t −Qxc
t}Nn=1),

therefore we have that the score ∇xn
t
logPt({xn

t −xc
t}Nn=1)

is translation invariant and rotation equivariant, thus the
score function and the distribution P̃n

θ,t can be approximated
by an EGNN

{snθ,t(·)}, {P̃n
θ,t(·)} = EGNNθ({xn

t }, {hn
t }, t), (3.3)

where we use · to represent the formal parameter {xn
t },

{hn
t } and t which is the same with the input of EGNN.

4 Methodology
4.1 Equivariant diffusion model for position

generation

Following (2.5), the loss function is defined by

L1 = E
[
λt

N∑
n=1

∥∥snθ,t(·)−∇xn
t
logPt({xn

t − xc
t})

∥∥
2

]
,

(4.1)

where the expectation is taken over t ∈ Unif(t), {xn
0} fol-

lowing the initial distribution and {xn
t } following the for-

ward diffusion process described in (2.2) for each n ∈ [N ].
The score function of ∇xn

t
logPt({xn

t − xc
t}) is defined

by (3.2) and the following lemma shows that the decompo-
sition in (3.2) is similar with the zero-centered denoising
process in Hoogeboom et al. (2022) for estimating (4.1).

Lemma 4.1. Denote ϵnt = xn
t − µtx

n
0 ∼ N (0, σ2

t I). Then
for any (n, t) ∈ [N ]× [0, T ], we have that

∇xn
t
logPt({xn

t − xc
t}) = − ϵnt

σ2
t
+
∑N

n=1
ϵn,t

Nσ2
t
. (4.2)

After learning the score function of Pt({xn
t − xc

t}), under
Assumption 3.1, a new distribution of P′

0({xn,0}) can be

reconstructed by letting P′
t({xn

t }) = Pt({xn
t −xc

t})P′
0(x

c
t)

where P′
t(x

c
t) = N (0, σ2

c,tI). Thus the reverse process of
each atom n ∈ [N ] is

dxn
t ≈

[
− 0.5βtx

n
t − β2

t s̃θ,n(·)−
β2
t x

c
t

Nσ2
c,t

]
dt+

√
βtdw̄,

(4.3)

where term β2
t x

c
t/(Nσ2

c,t) corresponds to the translation of
the point cloud. Since s̃(·) is translation-invariant and the
absolute position of the generated molecule is irrelevant, we
can safely drop term β2

t x
c
t/(Nσ2

c,t) during the generation
process. The detailed proof of Lemma 4.1 and the reverse
process (4.3) are deferred into Appendix B.

4.2 Structured diffusion process for atom-type
generation

In this subsection, we learn the model for atom-type gen-
eration. We denote hn

t and hn,t as the atom type and the
one-hot embedding for n-th time at time t ∈ [T ]. Following
the setting of absorbing states in Austin et al. (2021), each
atom can be randomly turned into an absorbing state during
the diffusion process. We denote the absorbing state as ”#”.
Then the transition kernel for any (n, t) ∈ [N ] × [T ] is
described as follows:

Pt(h
n
t = #|hn,t−1 = #) = 1

Pt(h
n
t = hn,t−1|hn,t−1 ̸= #) = T−t

T−t+1

Pt(h
n
t = #|hn,t−1 ̸= #) = 1

T−t+1

Pt(h
n
t |hn,t−1) = 0

(4.4)

This transition kernel also corresponds to the one used in
Generative Masked Language Models (Chen et al., 2023; Li
et al., 2022) and it’s easy to prove that P0t(h

n
t = #|hn

0 ) =
t/T which means all atoms will be transited to absorbing
state # at time t = T . Based on the loss (2.8), P̃n

θ,t(·| · · · ) is
learnt by minimizing the following negative-log-likelihood
over all atoms m ∈ [N ]:

L2 = E
[∑N

m=1 log P̃m
θ,t(h

m
0 |{hn

t }, · · · )
]
, (4.5)

where the expectation is taken from t ∼ Unif.[T ], {hn
0}

from the initial distribution and {hn
t } is generated by the

diffusion process given by (2.6).

Given {P̃n
θ,t}(·) and the transition kernel (4.4), the reverse

process (2.7) starts from initializing hn
T = # for all n ∈ [N ].

Then for t = T, T − 1, · · · , 1, we first sample hn
t,0 from

{P̃n
θ,t}(·) for each n ∈ [N ]. After that, for each n ∈ [N ],

independently we sampled hn
t−1 following

Pt(h
n
t−1 = #|hn

t = #, hn
0,t) = 1− 1

t

Pt(h
n
t−1 = hn

0,t|hn
t = #, hn

0,t) =
1
t

Pt(h
n
t−1 = hn

t |hn
t ̸= #, hn

0,t) = 1

Pt(h
n
t |hn

t−1, h
n
0,t) = 0 otherwise

, (4.6)
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Algorithm 1 Generative model training
Input: Molecule position {xn

0} and type {hn
0}.

1: Sample t ∈ Unif.([T ])
2: Generate perturbation xn,t ∼ N (µtxn,0, σ

2
t I) for all

n ∈ [N ].
3: W.p. t/T , set hn,t = #, otherwise set hn,t = hn,0

4: Set {snθ,t(·)}, {P̃n
θ,t(·)} = EGNNθ({xn

t }, {hn
t }, t)

5: Optimize θ by minimizing L1(θ) + L2(θ)
Output: Return network EGNN(θ).

Algorithm 2 3D structured molecule generation
Input: Number of atom N .

1: Initialize xn
T ∼ N (0, I), hn

T = # for all n ∈ [N ].
2: for t = T, · · · , 1 do
3: Set {snθ,t(·)}, {P̃n

θ,t(·)} = EGNNθ({xn
t }, {hn

t }, t)
4: for n ∈ [N ] do
5: Sample ϵnt ∼ N (0, βt/T )
6: Let xn

t−1 = xn
t + [0.5βtx

n
t + β2

t s̃θ,n(·)]/T + ϵnt
7: Sample hn

0,t from P̃n
θ,t(·)

8: Sample hn
t−1 following (4.6).

9: end for
10: end for
Output: Return {xn

0}Nn=1, {hn
0}Nn=1

In simple terms, we take the sampled initial state hn
0,t with a

gradually increasing probability as t approaches 1. Detailed
proof of this reverse transition kernel can be found in Ap-
pendix B. Once hn

t−1 is assigned with a non-masked token,
it will not change during the generation process.
4.3 Proposed algorithms
Combining the score-based model for position generation
and the structured diffusion process for atom-type genera-
tion, the training algorithm and the generation algorithm are
presented in Algorithm 1 and Algorithm 2. In particular, we
use Equivariant-Transformer (Thölke & Fabritiis, 2022) as
our backbone network and use the Euler method with step
size 1/T to solve the reverse SDE (4.3) numerically and
we drop the term regarding the translation of the geometric
center xc

t in (4.3) since we do not care the absolute position
of the generated molecule.
4.4 Post-Generation Refinement
Besides the main algorithm for training and generating the
molecules, the following patches proved beneficial for gen-
erating high-quality molecules.

Denoising process with t → 0. As previously mentioned,
the diffusion process with t → 0 can be viewed as a denois-
ing process. In particular, the score-based generative model
using (2.4) can be viewed as canceling the perturbation of
the position, and the structured diffusion process using (2.7)
can be viewed as correcting the atom type. Thus, we can

refine the generated molecule further by iterating with t = 1
for an additional T ′ times using Algorithm 2.
Bond construction. After getting the position {xn} and
atom type {hn}, instead of using the distance between every
two atoms to determine the bond type, we use xyz2mol
provided in Rdkit (Landrum et al., 2016) to construct the
bond between atoms. This eliminates the need for bond
margin hyperparameters in Hoogeboom et al. (2022).

After generating the molecule structure, we can neutralize
any charged atom by changing the atom type with the correct
element to attain an octet in its valence shell. For example,
if there is only a double bond connected to a nitrogen atom,
we can replace it with an oxygen atom thus neutralizing
the molecule. It’s true that the molecule structure might be
changed by replacing some of the atoms. However, since
the atom type generation is based on the structured discrete
denoising diffusion probabilistic models, we can always
correct this by running Algorithm 2 to refine the structure.

5 Experiments
Unconditioned Molecule Generation. We trained our
molecule generative model using the QM9 dataset (Ramakr-
ishnan et al., 2014) as our benchmark in this paper. The
QM9 dataset comprises calculated properties of 134k or-
ganic molecules containing four kinds of heavy atoms (C,
N, O, F). We followed the train/validation/test split used in
(Hoogeboom et al., 2022), which consists of 100k/18k/13k
samples respectively for each partition.

The result of QM9 is presented in Table 1. We use the same
metric as provided in Hoogeboom et al. (2022) and other
related works. Here Atom Stability means the proportion
of atoms that have the right valency and Molecule Stabil-
ity means the proportion of molecules where all atoms are
stable. Validity means the proportion of molecules hav-
ing a valid SMILES representation. As the result suggests,
due to our structured discrete denoising diffusion proba-
bilistic models for atom types and the neutralization post-
processing, our model enjoys higher stability for both atoms
and molecules. For more experimental results, please refer
to C.1
Table 1. Selected result on unconditioned molecule generation
trained on QM9. Validity, Atom Stability and Molecule Stability
represent the percentage (%) of these metrics.

Models Validity
Atom

Stability
Molecule
Stability

G-Schnet 85.5 95.7 68.1
EDM 91.9 98.7 82.0

DiffMol(Ours) 98.03 99.62 95.41
QM9 Data 97.7 99.0 95.2

We also conducted several ablation studies regarding the
performance impact of each component in our model. We
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defer this discussion to Appendix C.3 due to page limits.

Conditional Generation. We conduct the conditional gen-
eration following the same setting as Hoogeboom et al.
(2022). Due to the page limit the details are deferred to
Appendix C.2

6 Conclusion
In conclusion, we have proposed a novel approach for 3D
molecule generation through our DiffMol Model, which
utilizes an equivariant diffusion model and splits the diffu-
sion process for atom types and positions. By incorporating
the neutralization check provided by RdKit, we were able
to achieve exceptional performance that surpassed previ-
ous state-of-the-art results. Our model’s ability to gener-
ate diverse and high-quality molecules with accurate atom
placements makes it a promising tool for drug discovery
and material science. Additionally, the unique combination
of our approach with the neutralization check provides an
added level of confidence in the validity and utility of the
generated molecules. Future work could explore further
enhancements to our model and extend its applicability to
protein applications.
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Fast and uncertainty-aware directional message passing
for non-equilibrium molecules. In Machine Learning for
Molecules Workshop, NeurIPS, 2020.

Hoogeboom, E., Satorras, V. G., Vignac, C., and Welling,
M. Equivariant diffusion for molecule generation in 3d.
In International Conference on Machine Learning, pp.
8867–8887. PMLR, 2022.

Igashov, I., Stärk, H., Vignac, C., Satorras, V. G., Frossard,
P., Welling, M., Bronstein, M., and Correia, B. Equivari-
ant 3d-conditional diffusion models for molecular linker
design, 2022.

Jing, B., Corso, G., Chang, J., Barzilay, R., and Jaakkola, T.
Torsional diffusion for molecular conformer generation.
ArXiv, abs/2206.01729, 2022.

Landrum, G. et al. Rdkit: Open-source cheminformatics
software. 2016.

Lee, J. S., Kim, J., and Kim, P. M. Proteinsgm: Score-based
generative modeling for de novo protein design. bioRxiv,
2023.

Li, X. L., Thickstun, J., Gulrajani, I., Liang, P., and
Hashimoto, T. B. Diffusion-lm improves controllable
text generation, 2022.

Lin, H., Huang, Y., Liu, M., Li, X. C., Ji, S., and Li, S. Z.
Diffbp: Generative diffusion of 3d molecules for target
protein binding. ArXiv, abs/2211.11214, 2022.

Liu, M., Luo, Y., Uchino, K., Maruhashi, K., and Ji, S.
Generating 3d molecules for target protein binding. ArXiv,
abs/2204.09410, 2022.

Lu, S., Yao, L., Chen, X., Zheng, H., and Ke, G. 3d molecu-
lar generation by virtual dynamics, 2023. URL https:
//openreview.net/forum?id=tZmqS73_07.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer, 2020.

Ramakrishnan, R., Dral, P. O., Rupp, M., and von Lilienfeld,
O. A. Quantum chemistry structures and properties of
134 kilo molecules. Scientific Data, 1, 2014.

Satorras, V. G., Hoogeboom, E., and Welling, M. E(n) equiv-
ariant graph neural networks. CoRR, abs/2102.09844,
2021. URL https://arxiv.org/abs/2102.
09844.

Satorras, V. G., Hoogeboom, E., Fuchs, F. B., Posner, I., and
Welling, M. E(n) equivariant normalizing flows, 2022.

https://openreview.net/forum?id=3itjR9QxFw
https://openreview.net/forum?id=3itjR9QxFw
https://openreview.net/forum?id=tZmqS73_07
https://openreview.net/forum?id=tZmqS73_07
https://arxiv.org/abs/2102.09844
https://arxiv.org/abs/2102.09844


DiffMol: 3D Structured Molecule Generation with Discrete Denoising Diffusion Probabilistic Models

Schneuing, A., Du, Y., Harris, C., Jamasb, A., Igashov, I.,
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A Additional Related Work
In previous years, the generation models are sequential models. Zang & Wang (2020) proposed a flow-based graph generative
model to learn invertible mappings between molecular graphs and their latent representations, MoFlow (Zang & Wang,
2020) generates bonds (edges) through a Glow-based model followed by generating atoms (nodes) with a final posthoc
validity correction. Shi* et al. (2020) proposed a flow-based autoregressive model for graph generation method to generate
molecules. However, these flow-based based methods can only generate graph structures and cannot generate 3D structured
molecules, and the sequential models are not time efficient.

With the development of molecular GNNs, a group of equivariant algorithms has come out. Fuchs et al. (2020); Schütt
et al. (2021); Thölke & Fabritiis (2022); Satorras et al. (2021); Gasteiger et al. (2020) In the Diffusion models, the invariant
property is used from the molecular GNN models (Hoogeboom et al., 2022).

In recent years, diffusion models have been playing an essential role in molecular generation tasks. Diffusion models have
been used on molecular conformer generation in computational chemistry; GeoDiff (Xu et al., 2022) treats each atom as
a particle and learns to reverse the diffusion process as a Markov chain, with equivariance property. Jing et al. (2022)
operates on the space of torsion angles via a diffusion process on the hypertorus and an extrinsic-to-intrinsic score model.
Satorras et al. (2022) is the first flow that jointly generates molecules features and positions in 3D with E(n) equivariant
normalizing flows. Hoogeboom et al. (2022) an equivariant network to deal with the movement such as rotation in the
molecules with allowance for the computation of likelihoods for molecules. Wu et al. (2022) proposed a method that
incorporates physical and statistical information to improve the training of diffusion-based generative models. The proposed
method employs a Lyapunov function to construct and determine these bridges, and offers several informative prior bridges
for molecule generation. A mixture of a graph neural network Satorras et al. (2021) and diffusion model also works on
molecule generation (Vignac et al., 2023), which jointly generates molecular graphs and corresponding 3D conformers.

Diffusion models are also useful a lot in drug discovery tasks such as target protein binding. Schneuing et al. (2022) proposes
a E(3)-equivariant 3D-conditional diffusion model to generate ligands on protein pockets. Lin et al. (2022) proposes a
non-autoregressive generative diffusion model for molecular 3D structures, which utilizes target proteins as contextual
constraints at a full-atom level. The model generates both element types and 3D coordinates of the molecule using an
equivariant network. Liu et al. (2022) uses a graph neural network to obtain informative representations from contextual
information, then a local reference atom is selected and a local coordinate system is constructed to place a new atom via a
flow model. Variables are generated sequentially to capture dependencies. Lu et al. (2023) proposed an end-to-end model
generating fine-grained 3D molecules with binding positions in the pocket cavity.

Computer vision methods are also used in the molecule generation for protein design, a score-based diffusion model (Lee
et al., 2023) generates de novo proteins using image-based representations of protein structure, and also inpaints plausible
backbones and domains into structures of predefined length.

B Proof of Concepts
We provide the proof of concepts for the diffusion processes discussed in Section 4 in this section.
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Proof of reverse process (4.3). From the decomposition (3.2), we can have that ∇xn
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where we use the fact that xc
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∑
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n
t /N . One can find that this term remains constant w.r.t different atom n ∈ [N ].

Therefore it describe the translation of the whole molecule and we can safely drop that in the algorithm.

Proof of the discrete reverse process (4.6). It’s trivial to show that Pt(h
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where the second equation comes from the Markovian assumption of the transition kernel and the third equation utilizes the
fact from (4.4). Immediately we have that Pt(h

n
t−1 = #|hn

t = #, hn
0,t) = 1− 1/t since there is no other possible token for

hn
t−1 given the initial token hn

0 .

C Additional Experiment Results
C.1 Comparison with other experiments

We provide more comparison with other baseline models as in table 2. In addition, we provide a collection of samples of the
generated molecules in Figure 1

Table 2. Unconditioned molecule generation trained on QM9. Validity, Atom Stability and Molecule Stability represent the percentage
(%) of these metrics.

Models Validity
Atom

Stability
Molecule
Stability

E-NF 40.2 85.0 4.9
G-Schnet 85.5 95.7 68.1
GDM-aug 90.4 97.6 71.6

EDM(onehot) 91.9 95.7 46.9
EDM 91.9 98.7 82.0

DiffMol(Ours) 98.03 99.62 95.41
QM9 Data 97.7 99.0 95.2

C.2 Conditional Generation

We conducted conditional generation experiments with varying values of polarizability, denoted as α, within the range of
[60, 120]. The results of these experiments, as shown in Table 3, indicate that our algorithm exhibits superior validity, atom
stability, and molecule stability compared to baseline algorithms (Hoogeboom et al., 2022). Figure 2 presents selected
samples of the generated molecules obtained with different α values.

Polarizability is a measure of a molecule’s tendency to acquire an electric dipole moment in response to an external electric
field. As α increases, we can expect the generation of molecules with less isometric shapes. This behavior is evident in the
molecules depicted in Figure 2.
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Figure 1. Some samples of unconditioned generated molecules

Figure 2. generated samples with different Polarizability values α = 60 (top) and α = 120 (bottom).

C.3 Ablation Study
We conduct the ablation study for each component of our algorithms.

Using Discrete Denoising Diffusion Probabilistic Models instead of Continuous Diffusion Models..

We would like to discuss if using the D3PMs can improve the quality of the molecule generation. Thus we change the first
layer of the network from token embedding (nn.Embedding()) to a linear layer (nn.Linear()) and use the one-hot
embedding for atom-type. The rest pipeline are the same as described previously.

As Table 4 suggests, using DiffMol with one-hot embedding and continuous generation process can achieve a similar
molecule stability with EDM (Hoogeboom et al., 2022). However, using D3PMs as we suggested can have better stability,
since during the diffusion process, using a discrete token can provide more sparse features compared with the one-hot
embedding.

Regarding the length of the diffusion process and the denoising process.

We would like to discuss the impact of the length T to the generation process. In particular, we compare the reverse process
with T = 1000 and T = 100. As Table 5 suggests, our algorithm can still maintain the superior performance given with a
shorter T = 100. This allows us to accelerate the molecule generation process.

Regarding the quality of the atom neutralization process and xyz2mol bond construction.
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Table 3. Conditional Generation trained on QM9 dataset with different Polarizability value α

Models Validity
Atom

Stability
Molecule
Stability

GDM - 75.0 -
GDM-aug 90.4 77.7 -
EDM 91.9 81.3 -
DiffMol (Ours) 97.60 97.59 84.45

Table 4. Ablation study on comparing the one-hot embedding and discrete tokens trained on QM9. Validity, Atom Stability and Molecule
Stability represent the percentage (%) of these metrics.

Models Validity
Atom

Stability
Molecule
Stability

EDM 91.9 98.7 82.0
DiffMol w/ one-hot embedding 92.5 96.7 81.6

DiffMol w/ discrete (Ours) 98.03 99.62 95.41
QM9 Data 97.7 99.0 95.2

Table 5. Ablation study on comparing impact of time T on the generation quality. Validity, Atom Stability and Molecule Stability
represent the percentage (%) of these metrics.

Models Validity
Atom

Stability
Molecule
Stability

EDM, T = 1000 91.9 98.7 82.0
DiffMol, T = 100 97.6 98.7 90.6
DiffMol, T = 1000 98.03 99.62 95.41

QM9 Data 97.7 99.0 95.2
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Since we do not use the bond construction method provided in Hoogeboom et al. (2022), it worth comparing our generated
bonds length with the typical bond length1. We report the mean absolute error (MAE) of between the generated bonds and
typical bond length. Table 6 to Table 8 provide the MAE for single, double, triple bonds after the neutralization process.
Table 9 to Table 11 provide the MAE for single, double, triple bonds after final denoising process.

Several observations can be made from the results provided in these tables. First, the bond length of the generated molecules
is close to the typical length. This error is compatible with the margin used in Hoogeboom et al. (2022)2. Second, after the
neutralization by modifying some of the atoms, doing a denoising process will refine the precision in terms of bond length.
Third, there exists some bonds which cannot be well predicted, even with the denoising process (e.g. O F, N F, N N,
O O). We doubt that this is because these bonds are rare in the QM9 dataset so that the diffusion model cannot learn the
bond length well.

1Following Hoogeboom et al. (2022), the typical bond length can be found at http://chemistry-reference.com/
tables/Bond%20Lengths%20and%20Enthalpies.pdf and http://www.wiredchemist.com/chemistry/data/
bond_energies_lengths.html

2In Hoogeboom et al. (2022), they use a error threshold m1 = 10pm for single bonds and m2 = 5pm,m3 = 3pm for double or
triple bonds

http://chemistry-reference.com/tables/Bond%20Lengths%20and%20Enthalpies.pdf
http://chemistry-reference.com/tables/Bond%20Lengths%20and%20Enthalpies.pdf
http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
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Table 6. MAE of single bonds before denoising process (pm)

H C N O F

H -3 1.13 2.74 2.85 -
C 1.13 3.70 4.86 4.21 13.23
N 2.74 4.86 10.87 8.31 12.89
O 2.85 4.21 8.31 10.51 17.23
F -3 13.23 12.89 17.23 -3

Table 7. MAE of double bonds before denoising process (pm)

C N O

C 4.93 2.73 2.05
N 2.73 2.47 -3

O 2.05 -3 -3

Table 8. MAE of triple bonds before denoising process (pm)

C N

C 1.40 2.07
N 2.07 -3

Table 9. MAE of single bonds after denoising process (pm)

H C N O F

H -3 1.07 2.47 2.76 -3

C 1.07 3.47 4.91 3.70 3.81
N 2.47 4.91 8.78 6.54 14.65
O 2.76 3.70 6.54 9.01 32.42
F -3 3.81 14.65 32.42 -3

Table 10. MAE of double bonds after denoising process (pm)

C N O

C 3.17 2.63 1.95
N 2.63 6.80 -3

O 1.95 -3 -3

Table 11. MAE of triple bonds after denoising process (pm)

C N

C 1.57 1.49
N 1.49 -3

3We use ’-’ to denote the bonds which is never appears in the generated molecules.


