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ABSTRACT

Stochastic gradient descent with momentum (SGDM) has been widely used in
machine learning. However, in non-convex domains, high probability learning
bounds for SGDM are scarce. In this paper, we provide high probability conver-
gence bounds and generalization bounds for SGDM. Firstly, we establish these
bounds for the gradient norm in the general non-convex case. The derived con-
vergence bounds are tighter than the theoretical results of related work, and to our
best knowledge, the derived generalization bounds are the first ones for SGDM.
Then, if the Polyak-ELojasiewicz condition is satisfied, we establish these bounds
for the error of the function value, instead of the gradient norm. Moreover, the de-
rived learning bounds have faster rates than the general non-convex case. Finally,
we further provide sharper generalization bounds by considering a mild Bernstein
condition on the gradient. In the case of low noise, their learning rates can reach

(5(1 /n?), where n is the sample size. Overall, we relatively systematically inves-
tigate the high probability learning bounds for non-convex SGDM.

1 INTRODUCTION

Stochastic optimization plays an essential role in modern statistical and machine learning, as many
machine learning problems can be cast into stochastic optimization problems. The last decades have
seen much significant progress in the development of stochastic optimization algorithms, of which
stochastic gradient descent with momentum (SGDM) has drawn a lot of attention on a broad range
of problems due to its simplicity and its low computational complexity per update (Goodfellow
et al.l 2016} |Li & Orabona, [2020). As a fundamental algorithm for stochastic optimization, SGDM
has shown tremendous success in natural language understanding, computer vision, and speech
recognition (Krizhevsky et al.;|2012; Hinton et al.| 2012;|Sutskever et al.,2013). Particularly, SGDM
has been widely used to accelerate the back-propagation algorithm in the training of deep neural
networks (Rumelhart et al., 1986} Sutskever et al., |2013). Typically, SGDM adds a momentum term
to stochastic gradient descent (SGD) in updating the solution, i.e, the difference between the current
iterate and the previous iterate. The intuition behind SGDM is that if the direction from the previous
iterate to the current iterate is “correct”, SGDM utilizes this inertia weighted by the momentum
parameter, instead of just relying on the current point used in SGD. Much of the state-of-the-art
empirical performance has been achieved with SGDM (Huang et al.| 2017; Howard et al.||2017; He
et al., 2016; [Kim et al., 2021a). Yet, from a theoretical point of view, the analysis of the learning
bounds of SGDM is not sufficiently well-documented (L1 et al., [2022; |Li & Orabonal 2020).

The learning bound of SGDM can be studied from two perspectives: the convergence bound and the
generalization bound. The former focuses on how the learning algorithm optimizes the empirical
risk, and the latter concerns how the learned model from training samples performs on the testing
points (Lei et al., [2021b). From the perspective of the convergence bound, existing literature of
convergence for SGDM or deterministic gradient descent with momentum (DGDM) in the non-
convex domain mostly uses an analysis of expectation (Ochs et al.,[2014;[2015; |Ghadimi et al., 2015
Lessard et al., 2016} [Yang et al.| 2016; Wilson et al.l 2021} |Gadat et al., 2018} |Orvieto et al.| 2020;
Can et al., 2019;|L1 et al.,2022;|Yan et al., 2018} [Liu et al., 2020), to mention but a few. However, the
expected bound does not rule out extremely bad outcomes (Li & Orabonal, [2020; [Liu et al., [2023).
Moreover, in practical applications such as machine learning, it is often the case that the algorithm
is usually run only once since the training process may take a long time. Therefore, high probability
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bounds, as compared to expectation bounds, are preferred in the study of the performance of the
algorithm on single runs (Harvey et al.;|2019). To our best knowledge, there are only two works on
the high probability convergence bound of SGDM (L1 & Orabona, [2020; Cutkosky & Mehtal [2021).
Specifically, |Cutkosky & Mehtal (2021]) consider the case that the gradient follows a #-order moment

~ 0—1
condition, 0 € (1, 2], and presents a O(T~ 37-2 ) convergence rate for the gradient norm, where T

is the iterate number. |Li & Orabonal (2020) provide a convergence bound of the order O(1/v/T)
for the square gradient norm by considering the sub-Gaussian gradient noise. It is then discussed
in (L1 et al.l [2022)) that it is unclear if this convergence rate can be improved and can be extended
to more general settings beyond the sub-Gaussian gradient noise. In general, these convergence
bounds in (Li & Orabona, 2020} |Cutkosky & Mehta, 2021) are of the slow order, and there are no
generalization bounds are given in (Li & Orabona, [2020; [Cutkosky & Mehta, [2021]).

From the perspective of the generalization bound, existing generalization studies of SGDM and
DGDM are scarce. |Ong| (2017); |Chen et al.|(2018) provide expected generalization error bounds
for a specific quadratic loss function of DGDM by the lens of algorithmic stability (Bousquet &
Elisseeff, [2002; Hardt et al., 2016)). The analysis of (Ong}, 2017 |Chen et al.| 2018)) cannot be easily
extended to general loss functions. It is conjectured in (Chen et al.| 2018) that the uniform sta-
bility bound they derived may also be applicable to general convex loss functions. Motivated by
this, Ramezani-Kebrya et al.[(2024) study the generalization error bound of SGDM for the general
loss functions. Surprisingly, however, their analysis shows a counterexample for which the uniform
stability gap (in expectation, i.e., taking expectation over the internal randomness of the learning
algorithm) for SGDM running multiple epochs diverges even for the convex loss functions. It is
also revealed in (Attia & Koren, [2021) that in the general convex case, the uniform stability gap
of the deterministic Nesterov’s accelerated gradient algorithm (NAG) collapses exponentially fast
with the number of iterates. We remind the readers here that the uniform stability is only a suffi-
cient condition for generalization, and it is unclear how other weaker stability measures, such as
on-average stability (Shalev-Shwartz et al., 2010), would behave on the generalization analysis of
SGDM. Overall, there are known difficulties in developing generalization performance guarantees
of SGDM, especially for general loss functions. Furthermore, similar to the analysis of SGDM’s
convergence, high probability generalization bounds are also more challenging to derive compared
to bounds on expectations (Bousquet et al.| |2020; Bassily et al., 2020; [Feldman & Vondrak, 2019
Li & Liu, [2022).

Therefore, both the high probability convergence bound and generalization bound of SGDM are
far from being understood. Motivated by the problems we discussed above, this paper makes an
attempt to establish high probability convergence bounds and generalization bounds for SGDM,
particularly, in non-convex settings. For brevity, from now on, all bounds on the performance of the
learned model on testing data, such as the generalization error bound and the excess risk bound, will
be called generalization bounds. Our contributions can be summarized as follows:

1) On ahigh level, we study the case where the stochastic gradient noise follows a novel class
of sub-Weibull distribution (Vladimirova et al.| 2019; [2020; |Kuchibhotla & Chakrabortty),
2018), which generalizes the sub-Gaussian noise considered in (Li & Orabona, |2020) to
potentially heavier-tailed ones. Our learning bounds under this distribution can show the
impact of moving from sub-Gaussian/sub-exponential (i.e. light-tailed) variables to those
with heavy exponential tails on the rates of convergence and generalization.

2) We first provide a high probability analysis for SGDM in the general non-convex case.
In this case, we establish convergence bounds of the order 6(1 /T %) and generalization
bounds of the order O (d 3 / n%) for the square gradient norm, where d is the dimension and
n is the sample size. The convergence bounds are tighter than those of the related work.

Moreover, to our best knowledge, the high probability generalization bounds are the first
ones for SGDM.

3) We then perform a high probability analysis for SGDM with Polyak-E.ojasiewicz property
on non-convex objectives. In this case, we establish sharper convergence bounds of the
order O(1/T). Furthermore, the bounds are derived for the last iterate of SGDM and the
error of the function value, instead of the average iterate and the gradient norm studied in
the general non-convex case. Moreover, we provide generalization bounds of the faster

order O (%g(%)) for SGDM, which have never been given before.
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4) We finally consider a mild Bernstein condition on the gradient. In this case, we improve the

o( %‘g(%)) order generalization bound to the order O(1/n? + F*/n), where F* is the
optimal population risk. In the low noise case where F'* is tiny, this bound allows a faster
O(1/n?) learning rate, which shows a tighter dependency on the sample size n. Another
positive point of this bound is that we successfully remove the dimension parameter d,
allowing it to easily incorporate massive neural networks that are often high-dimensional.

In conclusion, by considering different conditions on the objective functions, we successfully estab-
lish improved learning bounds with different rates, which systematically demonstrates the learning
guarantee of SGDM from the perspective of convergence and generalization. The paper is organized
as follows. The preliminaries are given in Section [2] The main results are provided in Section
Numerical experiments are then reported in Section 4§} We conclude this paper in Section [5] The
proofs are postponed to the Appendix.

2 PRELIMINARIES

2.1 NOTATIONS

Let X be a parameter space in R? and [P be a probability measure defined on a sample space Z.
Denote f : X x Z — R. We consider the following stochastic optimization algorithm

min F(x) = E.vp[f(x; 2)],

where F’ is often referred to as population risk, f is possible non-convex, and E, p denotes the
expectation with respect to (w.r.t.) the random variable z drawn from P. In practice, IP is unavail-
able and what we get is a dataset S = {z1, ..., z,, } independently and identically drawn from the
underlying P. One typically instead optimize the following empirical risk

1 n
)I(rélng(x) == Z._Zlf(X7 2i).
To optimize the Fg(x), SGDM have been widely adopted (Polyak, |1964; Qian, [1999; |Sutskever
et al.|[2013;|Li & Orabona, [2020). In this work we focus on Polyak’s momentum, also known as the
Heavy-ball algorithm or classic momentum, which is arguably the most popular form of momen-
tum in current machine learning practice (Liu et al.l [2020). The pseudocodes of SGDM (Polyak’s
momentum) are shown in Algorithm |1} Vanilla SGD’s update is x;41 = x; — 7V f(X¢; 25,). In
step 3 of Algorithm |1} SGDM adds a momentum term m;_; weighted by a momentum parameter
« to the gradient estimate V f(x; z;,) of SGD. And in step 4, SGDM updates the solution with
X¢41 = X¢ — my. Thus, SGDM’s update is x;11 = x; — 7V f(X¢; 25,) + 7(Xe — X¢—1).

Let us introduce some notations to simplify the presentation. Let B = sup, .z |V f(0; z)||, where
V f(-; z) denotes the gradient of f w.r.t. the first argument and || - || denotes the Euclidean norm. For
any R > 0, we define B(xg, R) := {x € R? : ||x — x¢|| < R} which denotes a ball with center
xo € R? and radius R. Let x(S) € argminyex Fs(x) and x* € arg miny F(x). Denoted by
a = b if there exists universal constants ¢, ¢’ > 0 such that ca < b < ¢/a. In this paper, the standard
order of magnitude notations such as O(-) and O(-) will be used.

2.2 ASSUMPTIONS

We need some assumptions. The following assumptions are scattered in different Theorems.

Assumption 2.1. The differentiable function f is a (possibly) non-convex function and for any
z € Z,x > f(x;z)is L-smooth. A differentiable function g : X +— R is called L-smooth with
L > 0 if the following inequality holds for every x;, Xa:

IVg(x1) = Vg(x2)|| < Ll[x1 — x2]],
where V is the gradient operator. More properties on the smothness are shown in Lemma|B./
Assumption 2.2. The gradient at x* satisfies the Bernstein condition: there exists B, > 0 such that
forall2 < k <n,

E. [IVS6)IF] < GHE. (1976 2)I7) BE2
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Remark 2.3. The Bernstein condition is common in learning theory. It was shown in (Wainwright,
2019) that given a random variable X with mean p = E[X] and variance 0% = E[X?] — 1%, we
say that Bernstein’s condition with parameter b holds if for k& = 2, ..., there holds E [(X — p)*] <
%k!aQbk*Q. In fact, the Bernstein condition is nearly equivalent to being sub-exponential, refer to
a discussion in Remark 4 in (Lei, [2020). The classical sub-Gaussian and sub-exponential distribu-
tions all satisfy this condition. For these distributions, their k-order moments are bounded by the
second-order moment. In other words, the Bernstein condition is mild, for example, weaker than
the bounded assumption of random variables. Thus, Assumption [2.2]is a Bernstein condition on the
variable ||V f (x*; z)||, which is weaker than that ||V f(x*; z)|| is bounded, while the latter, bounded
gradient norm condition, is widely used in stochastic optimization (Zhang et al.,[2017).

Assumption 2.4. For all S € Z7, and for some positive G, we have
n||[VFs(x:)|| <G, VvteN.

Remark 2.5. In the literature of theoretical analysis of SGDM, a bounded gradient assumption as
IV f(x¢; 2)|| < G, also referred to as the Lipschitz continuity of f (Lei et al.,[2019), is standard (Li
et al., [2022; L1 & Orabona, 2020; |L1 & Liul [2023). Assumption @relaxes the bounded gradient
assumption by multiplying the stepsize 7; and replacing V f(x;; z) with V Fg(x;). The stepsize n;
would decrease to zero for the convergence of the algorithm. Moreover, typical decay rates of the
stepsize 7, are O(t2) and O(t~!) (Lei & Tang, [2021), in which case, the gradients of Fg can

respectively grow with the rate O(¢2) and O(t) without violating this assumption.

In the next, we introduce the Polyak-t.ojasiewicz condition.

Assumption 2.6. Fix a set X’ and let f* = minycx f(x). For any function f : X — R, we say it
satisfies the Polyak-Lojasiewicz condition with parameter x > 0 on X if forall x € X,

L1
fx) = f SEIIW(X)II?

Remark 2.7. Fastrates cannot be achieved for free. The Polyak-Lojasiewicz condition is widely used
in the optimization community to obtain fast convergence rates (Necoara et al., [2019; |Karimi et al.}
2016) and is one of the weakest curvature conditions to replace the strong convexity (Karimi et al.,
2016). This condition can be viewed as a specific instance of the Kurdyka-t.ojasiewicz condition.
The Kurdyka-Fojasiewicz condition is prevalent, as it has been shown that all analytic and semi-
algebraic functions satisfy such a condition (Bolte et al.l [2010; |Attouch & Boltel 2009 |Attouch
et al., [2010; Bolte et al., 2014).

In the sequel, we make an assumption on the noise of the stochastic gradient.
Assumption 2.8. The gradient noise V f(x¢; 2;,) — VFs(x;) satisfies

B, [exp(19 (x5 2,) = VEs(x)l/K) 7] <2 1)

for some positive K and 6 > 1/2.

Remark 2.9. |Li & Orabonal (2020) assume I, {exp(HV F(xe:2;,) — Vs (x1)|? /KQ)} < 2, which

implies that the tails of the noise distribution are dominated by tails of a Gaussian distribution.
As a comparison, Assumption [2.8] generalizes the sub-Gaussian noise to a richer class of distri-
butions, including the sub-Exponential distribution (i.e., # = 1) and heavier-tailed distributions
(i.e., 8 > 1). Indeed, the distributions in is called the sub-Weibull distribution (VIadimirova

et all, 2020): a random variable X, satisfying ]E{exp <(|X|/K)%)} < 2, for some positive K

and 6, is called a sub-Weibull random variable with tail parameter 6. The higher tail parameter 6
corresponds to the heavier tails (Kuchibhotla & Chakraborttyl 2018). Thus, the learning bounds
in this paper hold for a broad class of heavy-tailed distributions. Our motivation for studying the
heavy-tailed sub-Weibull noise of stochastic gradients is that it indicates the impact of moving from
sub-Gaussian/sub-exponential (i.e. light-tailed) variables to those with heavy exponential tails on
the rates of convergence and generalization and that many recent works suggest that stochastic op-
timization algorithms have heavier noise than sub-Gaussian (Panigrahi et al., |2019; Madden et al.,
2021} |(Gurbuzbalaban et al.| 2021} [Simsekli et al., 2019; [Simsekli et al., [2019; [Zhang et al., 2020;
2019; Wang et al., 2021} |Gurbuzbalaban & Hul [2021)).
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Algorithm 1 SGD with Momentum (SGDM)

Require: stepsizes {1, }:, dataset S = {z1, ..., 2z, }, and momentum parameter 0 < v < 1.
Initializtion: x; = 0, mg = 0,

1: fort=1,...,T do

2:  sample j; from the uniform distribution over the set {j : j € [n]},

3:  update my = ymy—1 + 1V f(x¢; 25,)s

4:  update X441 = X; — M.

5: end for

3  MAIN RESULTS
This section introduces our main theoretical results.

3.1 LEARNING BOUNDS IN GENERAL NON-CONVEX CASE

In the general noncovex case, we are interested in finding a first-order e-stationary point satisfying
[VFs(x:)||?> < e for the convergence bound and ||V F(x;)||> < e for the generalization bound,
since in this case we cannot guarantee that the algorithm can find a global minimizer. As the
standard measure in the general non-convex case, we will quantify the optimization performance

and generalization performance w.r.t. the average square gradient norm 7 Zthl |V Fs(x:)||? and
+ 23:1 |V F(x;)||?, respectively.

3.1.1 CONVERGENCE BOUNDS

We first provide convergence bounds with high probabilities for SGDM. The convergence bound
characterizes how the optimization algorithm minimizes the empirical risk F's.

Theorem 3.1. Let x; be the sequence of iterates generated by Algorithm Set the stepsize as

1(1-9)°
13L—L7"

(1.)If 0 = % we suppose Assumptionsand hold. For any 6 € (0, 1), with probability 1 — 6,
we have the following inequality

N = ct_%, where ¢ <

1< log(1/6)logT
7 L IVFsCl? = 02 22E5),

(2.) If + < 0 < 1, we suppose Assumptions andhold. For any § € (0,1), with
probability 1 — §, we have the following inequality

1 « ) log? (1/6)log T
T;”VFS(Xt)H :O(T)-

(3.) If 0 > 1, we suppose Assumptions andhold. For any 6 € (0, 1), with probability
1 — 6, we have the following inequality

1 — log” 1 (T/8) log(1/68) +log™(1/8) log T
7 L IVFsGf = 0 77 )

Remark 3.2. The convergence bounds established here are of the order O(1/+/T). Theorem
reveals that bigger 6 gives convergence bounds with slower rates, which confirms the intuition that
heavier-tailed gradient noise, i.e., bigger 6, results in worse convergence. We compare these bounds
with the related work (L1 & Orabona, [2020; (Cutkosky & Mehta, [2021). |Cutkosky & Mehtal (2021])
study a different setting which is a combination of gradient clipping, momentum (not Polyak’s mo-
mentum) and normalized gradient descent. Their Theorem 2 provides a convergence bound of the

order O (%) for £ Zthl |V Fs(x;)| under the smoothness condition and a #-order moment
T30—2
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condition of the gradient, where 6 € (1, 2]. In the case of 8 = 2, this bound achieves O (Tl —i7) rate.
According to the Jensen’s inequality, we have (7 Zt 1 HVFS(Xt)H) < 7 Zt L IVFs(x)]2.
Thus, the convergence bounds in Theorem [3.1{imply 7 Zt 1 IVFg(x¢) || = (Tl 77 ). It has re-

cently been shown that the expected O(1/ T1 4) rate is optimal in the worst case (Arjevani et al.,
2019). L1 & Orabona (2020) study Polyak’s momentum and their Theorem 1 provides a conver-

gence bound of the order O(%) for & Zt 1 IVFs(x)||* under the smoothness condi-

tion and the specific case § = 1/2. Theorem [3.1| slightly refines this bound to O(%)

under the same conditions. Although this improvement is marginal, other bounds of Theorem
[3.1) that generalize the sub-Gaussian case to heavier-tailed distributions are novel. Theorem 2 in
(Li & Orabona, 2020) also studies a variant of AdaGrad with Polyak’s momentum, called de-
layed AdaGrad whose stepsize doesn’t contain the current gradient (Li & Orabona, 2019). The
convergence bound of delayed AdaGrad established in (Li & Orabona, 2020) is of the order

3
max {O(‘“(’L\/%T/‘SO , O(%) } When dimension d is small, this bound shows a rate

of the order O(M\/(gm). As a comparison, convergence bounds in Theorem IZI are clearly

sharper. Note that this work studies Polyak’s momentum, so the results of (Li & Orabona, 2020) are
more comparable to ours.

There are many applications that validate the empirical advantages of SGDM compared with SGD.
Although the bound of Theorem [3.1]is optimal w.r.t. 7', our results fail to explain the advantage of
SGDM over SGD. In the convex setting, there have been relevant results proving SGDM’s superi-
ority over SGD [1]. However, in the non-convex setting, how to provide a bound that can explicitly
demonstrate that SGDM is still better than SGD is a known challenge, and this viewpoint has been
commonly elaborated in existing analysis, for example, the results for algorithms with Polyak’s mo-
mentum (Li & Orabonal, [2020;|Zou et al.,|2018)) and many analyses of Adam and their variants (Luo
et al., 2018; [Liu et al., [2019; [Shi et al., 2021} |Chen et al.l [2019; Zaheer et al., [2018)). In addition,
since our work considers the high probability bound, which implies the bound must hold for even the
worst-case value of the sample space, this strict requirement may make it more difficult to analyze
the advantages of SGDM over SGD. The main purpose of this work is to provide sharper bounds
than the existing results of SGDM. It would be our future work to strictly prove that SGDM is better
than SGD in non-convex learning.

3.1.2 GENERALIZATION BOUNDS

We then provide high probability generalization bounds for SGDM. Generalization characterizes
how the learned models from training samples perform on the underlying distribution.

Theorem 3.3. Let x; be the Sequence of iterates generated by Algorithm[I} Set the stepsize as

Ny = ct’%, where ¢ < iélL 7)° . We choose T' < ”

(1.) If6 = 3, we suppose Assumpnonsnand. hold Forany ¢ € (0, 1), with probability 1 — 6,
we have the following mequallty

fZHVFxt 12 =0((2)* tog(5) 108" (5))-

(2.) If § < 6 < 1, we suppose Assumptions' H and.hold For any § € (0,1), with
probabzltty 1 — 4, we have the following inequality

%Z HVF(Xt)Hz = O((%)% IOg(g) log(29+2)(%)).

(3.) If 0 > 1, we suppose Assumptions andhold. For any § € (0,1), with probability
1 — 6, we have the following inequality

fsz %)l = O((%)* (1oa(3) 108+ (5) +log (1) 10g2(;)))-
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Remark 3.4. The generalization bounds provided in Theoremare of the order O () 2 ) Clearly,
bigger 6 gives a slower generalization bound. Similar to Theorem Theorem suggests that
we no longer need Assumption when 0 = 1/2. To our best knowledge, these generalization
bounds are the first ones for SGDM. As discussed in the introduction, the uniform stability tool
seems to fail to establish generalization bounds for SGDM with general loss functions. This may
be explained as follows: the trade-off between convergence and stability of the algorithm implies
that a faster converging algorithm has to be less stable, and vice versa (Chen et all 2018)). Our
proof techniques to prove the generalization bounds in this paper belong to the class of the uniform
convergence approach (Bartlett & Mendelson, 2002} |Bartlett et al., 2005} |Xu & Zeevi, 2020; Xu
& Zeevil 2020} Mei et al., 2018; [Foster et al.l 2018} [Davis & Drusvyatskiyl 2021)). The uniform
convergence can be characterized as that the empirical risk of hypotheses in the hypothesis class
converges to their population risk uniformly (Shalev-Shwartz et al.l 2010). In the general non-
convex case, the dependence of the bound proved by this approach on the dimension d is generally
unavoidable (Feldman, 2016), see the results in Theorem We highlight here that in Section
we will successfully remove the dimension d from the generalization upper bound.

3.2 LEARNING BOUNDS WITH POLYAK-LOJASIEWICZ CONDITION

In the non-convex optimization with the Polyak-Lojasiewicz condition, we are interested in giving
upper bounds for the error of the function value. We will quantify the optimization performance and
generalization performance w.r.t. Fg(x741) — Fs(x(5)) and F(x74+1) — F(x*), respectively.

3.2.1 CONVERGENCE BOUNDS

We first present convergence bounds with high probabilities for SGDM under the Polyak-

Lojasiewicz condition.

Theorem 3.5. Let x; be the sequence of iterates generated by Algorithm Set the stepsize as
_ 1 12L—4L (8C,)L 8C, (Ly+L7(C,))

M = L) (trto) such that ty > maX{#(S)(l_,;){sa T—2u(5) +1, (1_’1{)#(75) — 1,1}, where

C, is a constant that depends only on 7.

(1.) If6 = %, we suppose Assumptions|2.1|and m hold and suppose the Fs satisfies Assumption
with parameter 2u(S). For any § € (0, 1), with probability 1 — 6, we have the following inequality

Fi(er i) - Fs(x(5)) = 020/,

(2.) If % < 0 < 1, we suppose Assumptions and hold and suppose theFs satisfies
Assumption [2.6| with parameter 2u(S). For any d € (0, 1), with probability 1 — 6, we have the
following inequality

log(9+%) (%) log% T)

Fs(xr11) - Fs(x(3)) = O 7

(3.) If 6 > 1, we suppose Assumptions[2.1} 2.4 and 2.8 hold and suppose theFs satisfies Assumption
with parameter 21(S). For any § € (0,1), with probability 1 — 8, we have the following
inequality

log(e'%)(%) 1og@ (T/0) log? T
Fs(xr41) - Fs(x(8)) = O( - ).

Remark 3.6. Theorem [3.5]suggests that if the Polyak-Fojasiewicz condition is satisfied, the conver-

gence bounds of SGDM can show fast rates. To be specific, Theoremimproves the (5(1 / VT

rate in Theorem n to faster O (1/T) rate. According to the smoothness property in Remark ,

we have ||V Fs(x741)||? < (2L)(Fs(x7+1) — Fs(x(S))). Thus, the upper bounds in Theorem

also hold for the squaradient norm ||V Fs(x741)||?. Moreover, Assumption [2.4]is not required
3

when 0 = % Theorem|3.5|also confirms that as # increases, the convergence bound gets worse. One
can verify easily that these convergence bounds are sharper than the theoretical results of related

York (L1 & Orabona, [2020; |Cutkosky & Mehta, 2021)), see Table E] for details. Also, for the fast
O(1/T) rate of SGDM in the nonconvex domain, we have not found related results in the literature.
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3.2.2 GENERALIZATION BOUNDS

We then present high probability generalization bounds for SGDM under the Polyak-Lojasiewicz
condition.

Theorem 3.7. Let x; be the sequence of iterates generated by Algorithm[I) Set the stepsize as

_ 1 12L—4L (8C,)L 8C., (Ly+L~(C,))
= ey Such that to > max{ eGS0 oty t L sy b1 where

C, is a constant that depends only on ~y. We choose T' < n.

(1.) If 0 = %, we suppose Assumptions ] and hold, assume the Fg satisfies Assumption @
with parameter 2u(S), and suppose the satisfies Assumption |2.6| - with parameter 2. For any
d € (0,1), with probability 1 — 0, we have thefollowmg inequality

d—l—log(%)

Flxri1) — F(x*) = (9( -

log (5)logn)

(2.)1If 5 L < 0 < 1, we suppose Assumptions|2. and|2.8|hold, assume the Fs satisfies Assumption
- wzth parameter 24(S), and suppose the satlsﬁes ssumption - 2.6|with parameter 2p. For any
0 € (0,1), with probability 1 — §, we have the following inequality

d—i—log(%)

F(xri1) - F(x') = 0( log 2 *+1)( 5) logn).

(3.) If 6 > 1, we suppose Assumptions 2.1 2.4 and 2.8 hold, , assume the Fs satisfies Assumption
with parameter 21(S), and suppose the F satisfies Assumption with parameter 2. For any
0 € (0,1), with probability 1 — §, we have the following inequality

* d+10g 1 1 3(9 by on
F(xry1) — F(x*) = (’)(Tw log(%“)( )

g)log (5)logn

Remark 3.8. F(xr4+1) — F(x*) measures the difference between the population risk of the last
iterate and the optimal population risk. It is referred to as excess risk in learning theory (London,
2017;|Feldman & Vondrakl 2019} Bassily et al.|[2020). Theorem@ shows that if the empirical risk
and population risk satisfy the Polyak-Lojasiewicz condition, the generalization bounds of SGDM

d+log()
are of the order O (7

) which improves the dependency on the sample size n compared to
Theorem Due to the smoothness property in LemmaE ||VF (x711)||? < (2L)(F(x741) —
3.1}

F(x*)), the bounds in Theorem also hold for ||VF(x711)||?. Note that in Section [3.2} the
bounds provided are for the last 1terate of SGDM rather than the average iterate of Section

3.3 LEARNING BOUNDS WITH BERNSTEIN CONDITION

In this section, we are interested in deriving sharper generalization bounds by considering the Bern-
stein condition. Towards this aim, we assume that the set X satisfies X C B(x*, R).

Theorem 3.9. Ler x, be the sequence of iterates generated by Algorithm[I| Set the stepsize as

_ 1 12L—4L (8C4)L 8C., (Ly+L~(C5))
M = ey Such that to > max{ 5% Toyrasy T 1 W(ljw?sf — 1,1}, where

C. is a constant that depends only on ~y. We choose T' < n?.

(1.) If 0 = 2, we suppose Assumpnonsq 2 and |2 8 hold, assume the Fs satisfies Assumption
- 2.6| with parameter 21(S), and suppose i satisfies Assumptlon m wzth parameter 2p. When

2 w
n > cL” (d+log( = )), where c is an absolute constant, for any 6 € (0,1), with probability

1 — 6, we have thefollowmg inequality

og’(3) | Folos(d)y

Flxri1) — F(x*) = 0( > .

(2.) If & 5 < 0 < 1, we suppose Assumptions n ! F and 2 8| hold, assume the Fg satisfies
Assumption - 2.6|with parameter 211(S), and suppose satzsﬁes ssumption @ with parameter
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2 Blow(2nR+2)
2u. When n > cL”(d-+log( 2 )

probability 1 — §, we have the following inequality

log(0+3 )( )logi‘n F(x*)log(1/6)
P )
n n

, where c is an absolute constant, for any 6 € (0, 1), with

Flxpi1) — F(x*) = 0(

(3.) If 0 > 1, we suppose Assumptions[2.1)[2.2] [2.4|and 2.8 hold, assume the F satisfies Assumption
- 2.6l with parameter 21(S), and suppose the F satisfies Assumption - 2.6| with parameter 2. When

Slog(nAt2)
n > cL? (d+log( = )), where c is an absolute constant, for any 6 € (0,1), with probability

1 — 6, we have thefOIIowmg inequality

log Ao (n/é)log(e+ )(%)log%n F(x*)log(1/4)
n? * n )

Fxri) — F(x*) = (9(

(4.) Furthermore, assuming F( *) = O(1/n), we obtain that F(xr41) — F(x*) is of the order
= o (9+ ) o n o oD ) 1o, o+3) 1 o ln
(’)(logg(}*)),(’)(lg (}1og’ )and(’)(lg 2 (§)los (3)log? ),respectively.

n2 n2 n
Remark 3.10. Theorem [3.9]suggests that, under the assumptions of Theorem [3.7]and the Bernstein

condition, the excess risk will be improved to O £ 4 1 L). The term F'(x*) is tiny since it is the
minimal population risk. Compared to Theorem [3.3|and Theorem“ Theorem [3.9]clearly presents
sharper bounds. Moreover, an obvious shortcoming of the uniform convergence approach is that it
often implies learning bounds with a square-root dependency on the dimension d when considering
general problems (Feldman, [2016), as shown in Theorem Another distinctive improvement
of Theorem is that we successfully remove the dimension d by considering Assumption [2.2]
allowing it to more easily incorporate massive neural networks that are often high-dimensional. The
assumption F'(x*) = O(1/n) we used just to show that we can get improved bounds under the
low noise condition. The term F'(x*) should be independent of n. It is notable that the assumption
F(x*) = O(1/n), or even F(x*) = 0, is common and can be found in (Zhang et al.|[2017; Zhang
& Zhou, 2019; |Srebro et al., [2010; |Le1 et al. 20214} [Liu et al.l 2018} |Le1 & Ying, 2020; L1 &
Liul 2022). In general, the O(1/n?)-type generalization bounds are scarce in the learning theory

community. Theorem successfully provides (5(1 /n?) order generalization bounds with high
probability for non-convex SGDM.

4 NUMERICAL EXPERIMENTS

We present numerical experiments to show how the generalization bound would behave versus dif-
ferent parameters 6. Let Fis(x) and Fis/(x) be the risk built on the training dataset S and the testing
dataset S’. Thus, Fs/(x) = ISil’I > .cg f(x;2), where |.S”| denotes the cardinality of the set S”. We

use Fs/(x) as a good approximation of the population risk . We consider six datasets available
from the LIBSVM dataset: Heart, Fourclass, German, Australian, Diabetes, and Phishing (Chang
& Lin, 2011)). For each dataset, we take 80 percents as the training dataset and leave the remain-
ing 20 percents as the testing dataset. According to Algorithm |1} the update of the momentum is
m; = ymy_1 + (VFs(x¢) + Vf(xs;25,) — VFs(x¢)) = ymy—1 + m(VFs(x¢) + e;), where
e; = Vf(xy; 2j,) — VFs(x;). In each update of the training process, for each dimension, we sample
a random variable from the sub-Weibull distribution independently and identically to model the gra-
dient noise e, of Assumption[2.8] We note that if each individual entry of the random vector e, fol-
lows a sub-Weibull distribution, then ||e;|| is a sub-Weibull random variable. This can be proved by
using Lemma 3.4 of (Bastianello et al., 2021) and part (c) of Proposition 2.1 of (Kim et al., 2021b).
Since we assume that the stochastic gradient is an unbiased estimator of the exact gradient, we shift
and scale the distribution in order to get a random vector with zero mean and the variance equal 1.
To show the effect of the parameter 6, we consider 6 € {1/2,1,5}. We consider a generalized linear
model £((x, z)) for binary classification where  is the logistic link function £(s) = (14+e~*)~1. We
first study the Huber loss, which takes the form f(x,z) = 3 ((((x,z)) — y)? if [{((x,z)) —y| < T

and 7(|¢((x,z)) — y| — 37) otherwise. We set 7 = 0.1, v = 0.9 and 1, = 0.1t~ 2, repeat ex-
periments 100 times, and report the average of results. The behavior of the generalization bound

T ZtT:I |V Fs(x;)||* versus the number of passes is presented in Fig. |1} In our experiments, the



Under review as a conference paper at ICLR 2025

results are consistent with the generalization bounds of Theorem[3.3] where an increasing 6 is shown
to result in a worse generalization bound. When 6§ = 5, the generalization result becomes clearly
worse, which also matches the theoretical finding of the regime # > 1. Our second experiment then
considers the square loss, which takes the form f(x, z) = (£({x,z)) —y)?. In this case, the behavior
of the bound £ Zthl |V Es(x¢)||? versus the number of passes is reported in Fig. [2| Similarly, the
results show that an increasing 6 leads to a worse generalization bound, which is consistent with
Theorem 3.3 as well.
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Figure 1: The generalization bound 7 Zthl |[VE(x;)||? versus the number of passes for different
choices of § € {1/2,1, 5} and some datasets in the setting of huber loss.

010

Average Square Gradient Norm

1] 20 a0 ) s 10 120 © 25 S0 75 100 125 130 175 200 [ 200 400 600 800 1000
Number of terations Number of terations Number of iterations

(a) Australian. (b) Diabetes. (c) Fourclass.

1) To 30 20 50 o 20 40 0 E) 100 ° 100 200 300 400 500
mber of terations

20
Number of terations Number of terations Number of I

(d) Heart. (e) German. (f) Phishing.

Figure 2: The generalization bound 7 Zle ||V F(x;)||? versus the number of passes for different
choices of # € {1/2,1,5} and some datasets in the setting of square loss.

5 CONCLUSIONS

This paper studies high probability convergence and generalization bound of stochastic gradient de-
scent with momentum in the non-convex regime, which shows SGDM’s performance in a joint view
of the optimization and generalization properties. The bounds are expressed in terms of different
rates and can show the impact of moving from sub-Gaussian/sub-exponential (i.e. light-tailed) vari-
ables to those with heavy tails on the rates of convergence/generalization. We believe our theoretical
findings can provide deep insights into the learning guarantees of non-convex SGDM.

10
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A SUMMARY OF RESULTS

We compare the results obtained in this paper with the relevant high probability results of related
work in Table[T]

Here, we provide some descriptions of Tablem [1] is the reference (L1 & Orabonal, 2020), and [2] is
(Cutkosky & Mehtal [2021)). The second result of [1] is derived for a variant of SGDM, i.e., delayed
AdaGrad with momentum whose stepsize doesn’t contain the current gradient. Assumption 6-order
moment means that the gradient satisfies E. [||V f(x; 2)||%] < GY for some G and 6 € (1,2]. S-
S means a second-order smoothnes (Cutkosky & Mehtal [2021). There are other two convergence
bounds in (Cutkosky & Mehta, 2021), derived for the last iterate of SGDM by considering the
popular warm-up learning rate schedule and other tricks, see Theorem 3 and Theorem 6 in (Cutkosky
& Mehtal [2021). The two bounds have the similar rate to the corresponding ones of (Cutkosky &
Mehta, 2021) shown in Table[I] But their assumptions are difficult to write in a concise form, we
thus omit it for brevity. LN means the low noise condition, i.e., F((x*) = (9(1 / n) 0 corresponds to
Assumption[2.8]

The comparison between our results and the results of related work has been discussed in previous
Remarks. We won’t repeat it here. However, one can see from Table[T|that we have provided a series
of high probability generalization bounds that the related work does not involve and high probability
convergence bounds with faster rates.

Table 1: Summary of Results.

REF. ASSUMPTION MEASURE LEARNING BOUND
" p.ifo—4 S 1V Es ()2 O lesttlylest )
0g2 (T/5 2 log?(T/5
p1lo=1 LT IV Fs(x)? max{o(dl g\’A’/(TT/ ))’O(d lgT(T/ ))}
2] 0-ORDER MOMENT (0 € (1,2]), AT IVEs(x)|l O(%)
T30—2
0-ORDER MOMENT () € (1,2]), S-S L3l IIVFs(x)] O(%)
T50—3
+ 50 IV Fs ()] O (Bl rsT )
LZT7 HVES‘(xt)HQ ) log?%(1/8) log T
T ;"_1 2 log? =1 (1/5) log(1g+logzu(l/5) log T
2 X0 IVEs G o( 4
LY IVFe)|? O((2) log(%)l0g*(3))
21[p4joe 3. E T IV O((£)* 1og(3) log*+2 (1))
1
OURS 2.1)2.4]6 > 1 2 VP 0((%)2(103; 2)10g®72)(3) +log” " (%) log (%)))
2.1[[2.6]6 =1 Fs(xr41) — Fs(x(S)) O(M
0e 0+ 3) (1) 1003
|2.1 2.4\2.6/6 € (1,1] Fs(xr41) — Fs(x(S5)) LML L LKA
1og(”+%>(l)1o ‘@(T/é)log%T
2.1)[2.4][2.6/ 0 > 1 Fs(xr41) — Fs(x(S)) @) e
2.1[f.6]o =1 F(xry1) — F(x*) O(%logz(%)logn)
og(L1
2.1|R.all2.6]0 € (2,1] F(xri1) — F(x*) O HesE) jog2041)( 1)1ogn)
2.1|[2.4 2.6|9>1 F(xri1) — F(x) 0(%“‘(6)1 291 (1) log ”(g)logn)
2.1[p.6l2.2] 6 =1 F(xr1) — F(x*) O(‘“gn# + M)
0s @+ 3) (1) 1053 n .
|2.1 2.4[2.6l[2.2[ 6 € (1,1] F(xri1) — F(x") ole 2 (PlsTn | e “;g“/‘”)
3(6-1) (0+3) (1) 1953 ) log
b.1lp.4|p.sll226 > 1 F(xri1) — F(x") e e e )
ogZ (L
2126l 2 LN, 6 =1 F(xrs1) — F(x") O(M)
o) ©+3) 1 o ln
|2.1 2.4l2.6|2.2| LN, 6 € (1,1] F(xr41) — F(x%) o %)
)] +3) (1) 1003
2.1|R.4|f2.6lf.2| LN, o > 1 F(xri1) — F(x*) 0(“’;‘ T /%oy 7 W“”“)

B PRELIMINARIES

This section provides preliminaries, consisting of some properties of the Sub-Weibull distribution
and some necessary auxiliary lemmas.
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B.1 SUB-WEIBULL DISTRIBUTION
Define the L, norm of random variable X as || X||, = (E|X|P)'/?, for any p > 1. A sub-Weibull

random variable X, which is denoted by X ~ subW (6, K), can equivalently be characterized using
the following properties.

Proposition B.1. (Viadimirova et al.| |2020; |Bastianello et al.| [2021) Given 6 > 0, the following
properties are equivalent:

« 3K, > 0 such that P(|X| > t) < 2exp (— (t/Kl)l/e), vt > 0;
* 3Ky > 0 such that | X ||, < Kok, Yk > 1;
e 3K3 > 0 such that Elexp (A|X|)/?)] < exp ((AK3)'/%), VA € (0,1/K3);
* 3Ky > 0 such that E [exp ((| X|/K4)'/%)] < 2.
The parameters K1, Ko, K3, K, differ each by a constant that only depends on 6.

We introduce some concentration inequalities of sub-Weibull random variables.

Lemma B.2. (Viadimirova et all 2020; Wong et al., 2020; \Madden et al| 2021) Suppose
X1, , X, are sub-Weibull(6) with respective parameters K, ..., K,. Then, forallt > 0,

P( Zn:Xi 2t> < 2exp <— <g(9)ztj:1m>w>’

i=1
where g(0) = (4¢)? for § < 1 and g(0) = 2(2¢0)? for 6 > 1.

The following two Lemmas provide concentration inequalities for the sub-Weibull martingale dif-
ference sequence.

Lemma B.3 (Theorem 2 in (Li, 2021)). (Fan & Giraudo, |2019) Let 6 € (0, 00) be given. Assume
that (X;,i =1,--- , N) is a sequence of R*-valued martingale differences with respect to filtration
Fi, ie. E[X;|Fi—1] = 0, and it satisfies the following weak exponential-type tail condition: for

some @ > 0andalli =1, ..., N we have for some scalar 0 < K;, E {exp (H )Igl 6)] < 2. Assume

that K; < oo foreachi = 1,...,N. Then for an arbitrary N > 1 and t > 0,
N 2 2 261+1
128> .1, K; t
(55 ) <o oo R ()

2 N

t 6437, K7
Lemma B.4 (Proposition 11 in (Madden et al., 2021)). [Sub-Weibull Freedman Inequality] Let
(Q, F,(Fi), P) be a filtered probability space. Let (§;) and (K;) be adapted to (F;). Let n € N,
then for all i € [n], assume K;_1 > 0, E[¢;|F;—1] = 0, and

B[ exp ((I6il/Kim0)""?) 1Fia| <2

where 6 > 1/2. If 0 > 1/2, assume there exists (m;) such that K; 1 < m,.
If0 =1/2, leta = 2. Then forall x,5 > 0, and o > 0, and \ € [0, i}

n

X,

i=1

k k k
P U {Z& > x and ZaKf_l < az& +5} < exp(—Az + 2)\%p). 2)
1 i=1 i=1

keln] © i=1

and for all x, 3, A > 0,

k k
P U{Z§i>xand;alﬁ_l<5} <exp(—)\:c—|—)\;5>.

keln] ~ =1

17
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Ifo € (%,1}, let a = (49)2962 and b = (49)06. For all z,3 > 0, and o > bmax;e[,) My, and
xe [0l

' 20
k k k
P U {Z& > x and ZaKf_l < aZfi +ﬁ} < exp(—Az + 2)\%p). 3)
ke[n] © i=1 i=1 i=1

and forall x,3 > 0, and \ € [O é],

> bmax;e(n) M

k k
P U{Z&->mand§al€fl<5} <exp(—)\x—|—/\22/3’>.

ke[n]  i=1

If0 > 1,1leté € (0,1), a = (22T +2)I' (20 + 1) + 20EOT) g p — 210g?~Y(n/6). For all
3
2,820, and a > bmax;cn) my, and X € [O, 721@]

k k k
rl U {Zgi >wzand » oK, <ad & +5} <exp(—Az +2)28) +26.  (4)
=1 =1

keln]  i=1

and forall x,3 > 0, and \ € [0 é],

7 bmax;e[n] M

k k
)\2
P U {Z& > x and ZaKi{l < ﬂ} < exp (—)\x—i— 26) + 26.
i=1

ken] i=1

B.2 AUXILIARY LEMMAS

Lemma B.5. (Lei & Tang, 2021|) Let e be the base of the natural logarithm. There holds the
following elementary inequalities.

(a)If0 € (0,1), then 35 k=0 <t'=9/(1 — 6);
(b)If0 =1, then Y, _, k=% < log(et);
(c)If0 > 1, then 22:1 k0 < %.

(d) >, e < log(t+1).
Lemma B.6. (Li & Orabona,|2020) For any T' > 1, it holds

T t T T T  t-1 T-1 T
Zathi:thZai and Zathizz:bt Z a;.
t=1 =1 t=1 =t t=1 =0 t=1

=1 i=t+1

Lemma B.7. Let (-, -) be the inner product. Two useful properties of smoothness are shown below
(Nesterov, [2014; [Ward et al., 2019):

gx1) — 9(x2) < (e1 — 32, Vglox) + 5 Lllxa — %
(2L)HIVg()[|* < g(x) — inf g(x).

The following two Lemmas belong to the results of uniform convergence, which characterizes the
gap between the population gradient VF' and the empirical VFg. We use them to prove the gener-
alization bounds in this paper.

Lemma B.8 (Corollary 2 in (Lei & Tang| [2021)). Denoted by B = B(0, R). Let 6 € (0,1) and
S ={z1,..., 2n} be a set of i.i.d. samples. Suppose Assumption holds. Then with probability at
least 1 — 0 we have

xs.eug)R IVF(x) — VEs(x)| < (LR\/—;B) (2 + 2\/486\/§(log2 + dlog(3e)) + \/210g((1$)> ,

where B = sup, ¢z ||V f(0; 2)| and L is the smoothness argument.
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Lemma B.9 (Lemma B.4 in (Li & Liul 2022), (Xu & Zeevi, [2020)). Suppose Assumptions[2.1|and
hold. Assume the population risk F satisfies F'(x) — F(x*) < ﬁ |VE(x)|*> with u > 0. For all

L2 (d+log( 8 105(2(;1R+2) )

x € X C B(x*, R) and any 6 > 0, with probability at least 1 —§, whenn > T ,

with probability at least 1 — 0,
* . 2

=+
n n

)

where c is an absolute constant.

C PROOF OF MAIN RESULTS

C.1 PROOF OF THEOREM [3.1]

Proof. According to Assumption 2.1} we have
FS(Xt+1) - FS(Xt)

1 1
<(xt41 — X4, VEs(x4)) + §L|\Xt+1 —x¢||* = —(my, VFs(x,)) + §L||mt||2- (5)

For the first term —(m;, V Fs(x;)), we have
— (my, VEg(x¢))
= —y(me_1, VFs(xt)) — (n:V f (%t 25,), VEs(x¢))
= —y(my_1, VFs(x¢-1)) +v(my—1, VFs(xe1) = VFs(x¢)) — (0 Vf (%43 25, ), VEs(xt))
< =y, VEs(xi-1)) = (0:V f (%45 25, ), VEs (%4)) + yl[my 1 [V Es (% -1) = VFs (x|
< —y{my_1, VFs(x¢-1)) + L’YHmt—1||2 — eV f(x¢525,), VEs(x4)), (6)
where the last inequality holds due to the smoothness assumption. By recurrence and using mgy = 0,

we derive
t—1

— (my, VFs(x;)) < LY 4" Jmy|* - Zwt HmiV f (x5525,), VFs(x4))- (7)
i=1 =1
Taking a summation from¢ = 1tot =T, we get

FS(XT+1) - FS(X1)

T t-1
SLY Y A ml? - Zth WiV f (x5 25,), VEs (x1)) + LZHmtII2 ®)
t=1 i=1 t=1 i=1
According to Lemma[B.6| we have
T t-1 ;7
LYY 4, H?<sz om? Zv <sz P2 = Y el
t=1 i=1 t=1

€))

Furthermore, using Lemma [B.6] we have

T t
= D AT iV F (x5 25,), VFs (x4))

t=1 i=1

T t T t
== ATV (x5 2,) = VEs(x4)), VEs(x:)) = > > 4" (i(VFs(x:)), VFs(x:))
t=1 i=1 t=1 1=1
T T

T T

Z’}/ 77t Vf Xt,Z]t) VFS(Xt)) VFS Xt Z’)/ — Z’}/ 77t VFS(Xt VFS Xt Z’YZ
i=t t=1 t=1

T T T

Zv

< - (me(V f (43 23.) = VFs(x0)), VEs(x)) D 7' = > mel VFs(x0)?
i=t t=1
T 7T t+1
Z (me(V £ (43 2,) = VFs(x1)), Vs (xt)) ZmHVFs(xt)HQ (10)
t=1 t=1
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Plugging (9) and (T0) into (8), we obtain

DSl VES G < Flor) = Fsoxs) + 1 3 il

t=1
T 1— 7T-t+1
-> ﬁ@?t(vf(xtv%) VFs(x¢)), VEs(xt)) + LZ [Fenles (11
t=1 t=1
It is clear that
1 —AT-t+1
B |~ (T i 23) — TFs(x)), V()| =

implying that it is a martingale differerTlcasequence (MDS). We thus use Lemma to bound

it.  Specifically, we set & = 1_'Yi(m(Vf(xt,zjt) — VFs(x¢)),VFs(x4)), Ki—1 =
= K| VEs(x). B = and z = 2alog(1/9).

- 20(’

Ifo = %, for all @ > 0, we have the following inequality with probability 1 — §

T T—t+1

1—
—Z T (m(V f(xii23,) — VEs(x:)), Vs (i)
aK>? e 2
< 2arlog(1/6) + 5 Zm(ﬁ) [V Fs ()l
t=1
aK2

< 2alog(1/8) +

T
22n IV Fs (o)1
t=1

Ifo ¢ (%, 1], according to Assumption we set m; = 1177 :’f KG,

we have the following inequality with probability 1 — §

T | _ T—t+1
- Z %Qﬁ(vf(xt; zj,) — VFs(xt)), VFs(x¢))

aK

T
<2alog(1/6) + 2277 IV Fs (x|
t=1

If 6 > 1, according to Assumption 2.4, we set m; = 1 7
b L K G, we have the following inequality with probablhty 1-36

T 1 _,YT t+1
- Z (me(Vf (%t 2j,) — VFs(xt)), VEs(x¢))
K2 1-7T 5 &
§2alog(1/5)+a QZUEHVFS X))
t=1
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Then, we consider the term 3, [|my]|2.

T T
S el =37 [y + (1 - ”W
t=1 t=1 Y

‘ 2

T B
< Z (a2 + (1 =) W ‘2)

= ZW”thQ +Z 1=y

ntvf(xt;z't) 2

thf(xt;zjt) ’2
1—~

);

HM’% I

where the first inequality holds due to the Jensen’s inequality and the second equality follows from
|lmgo|| = 0. Thus, we have

T T
>y ? < Z 2Hme(Xt,ZJt)IIQ- (12)
t=1 t=1
Then we have
ZII il? < ZmIIVf x1525,) — VFs (x| + ZmIIVFs(Xt)H-

(1=9)

Since ||V f(x¢; 2j,) — VFs(x;)|| is a sub-Weibull random variable, we get

exp (ntnvf(xt’”z”) VFS(Xt)HQ)ﬂ <2,

E 2K2

which means that 17 ||V f (x¢; 2;,) — VFs(x¢)||* ~ subW (26,17 K?). According to Lemma [B.2}
we get the following inequality with probability 1 —

T
2
2 2 2
t; = PV F (x5 25,) = VEs(x0)|* < Ak 9(26) log® (2/6) t:ZI i
Then, we plug the bound of — Zt 1 #(nt(Vf(xf,zjt) — VFs(x¢)), VFs(x;)) and the
bound of thl |m;||? into , we obtain
d L 1 2
> mlVEsGaI < Fsxr) = Fs(e(S) + (75 +51) 7=y 2o IVEsG)l?
t=1 N -7
aK d
+ 2alog(1/6) + QZ” |V Fs(x;)
t=1

T
+<L+1L)%K 9(20)10g™ (2/6) S 02,
t=1

l—v 27/ (1=9)?
implying that
T
L 1 2 akK? 1-97, 5
1-— —-L — F
tZ_;m( (1774'2 )(177)27% o (17)7%> [V Es(x:)]l
L 1 2 d
SFS(Xl)—FS(XS)+2a10g(1/5)+(ﬁ+§L)W 9(20) 1og? (2/6) Z
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(2 1n) a m< v (13)

Thus, if o > 4( ) naK? = 4( (i77))2 , we derive that

T

> mlVEs(xo)]®

t=1

T
<2(Fs (1) — Fs(x(5)) + dalog(1/5) +2(< fv b L) e K20(20) 1082 (2/5) Y .

, taking @ = 4(52-)%paK? =

N[ =

Putting the previous bounds together. Hence, if § =
8(+— L7 ) n1 K2, with probability 1 — 25, we have

_ AT
S mIVEs (I < 2(Fs(o) — Fo(x(5)) + 32(11 P log(1/0)
t=1
L 1 4 d

If%<9<1 takinga:max{

:max{(40)e L 'Y KG,A(5

A m aK?}
) n1(49)29 2K2} with probability 1 — 25, we have

T
Yol VEs(x)|? < 2(Fs(x1) — Fs(x(5)))

t=1
147 147 1
+4max{(4o)9e : _77 KG,4( _VW )2171(49)2%21(2}1og(5)

L 1 4

“ﬁ*imm

T
K?g(26)log™ (2/6) .
t=1

A

’(1;ffm“f“l+%ﬂw+1)+?%€f+”ﬂ@}

If 6 > 1, taking o = max{ ) nlaKQ} that is

a = max {QIOgG_l(T/(;) 17_7

Thus, with probability 1 — 44, we have
T
> il VEs(x)|* < 2(Fs(x1) — Fs(x(S5)))
t=1
L 1

+(ﬁ+§L)

_ 4 e
(1—7)?

e e

T
K2g(20)10g% (2/6) Z

T
T ka,
v

-7 230T(30 + 1
A5 _77 2 (224 4 2)0(20 + 1) + %)Kz}.
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Note that the dependence on confidence parameter 1/J in above bounds is logarithmic. One can
replace 4 to 6/2 or §/4. Through this simple transformation, we have the following results: (1.) if
¢ = 1, under Assumptions 2.1 and [2.8] with probability 1 — d, we have

T T T
1 1
=D IVEsx)|? < —= > mllVFs(x:)[> = O <log 1/6) Z )
T t—1 VT =1 t—1
1
=0 ( log(1/6)logT | ; (14)
VT
2 if l < 6 <1, under Assumptions and 2.8 with probability 1 — §, we have

T T
Z IV Es ()] < me IV Es(x)ll” = (jflog”’a/a)ijn?)

=0 (\/Tlog%(l/é) logT> ; (15)

(3.) if @ > 1, under Assumptions[2.1] 2-4] and[2.8] with probability 1 — 6, we have

T
;;HVFs(Xt)HQ \FZmHVFS(xt)W
0 <1og9—1<T/5) log(1/6) + 10g2(1/8) L )

VT
o log? 1 (T/8) log(1/8) + log®® (1/6) log T 16)
VT ’
where the bound of Zil n? follows from Lemma The proof is complete. O

C.2 PROOF OF THEOREM [3.3]

Proof. The proof is divided into three parts.

(1.) In the first part, we prove the bound of ||x¢||. ||x¢|| characterizes the bound of B(0, R), i.e., at
iterate t, R = R; = ||x¢||, because x; traverses over a ball with an increasing radius as ¢ increases.
Therefore one should apply Lemma [B-8] with an increasing R.

. . . t .
Since X441 = X; — my, by a summation and using m; = 0, we get x;41 = — Zz‘:l m,;. Since
m; = ym,;_q +1;V f(x;; 2;,), by recurrence, we have

m; =y 3 PV £ (s 2)-

k=1
According to Lemma|[B.6] this gives that

t 7 t .
i 1— ,ytferl
X1 = 7227 knkvf(xkizjk) = *Zﬁme(Xi;Zji). (17
i=1 k=1 i=1
Thus, we have
Ixesall = 7| Z YV i 2,
<1 HZ VTV f (%35 25,) — VEs(x:)) H+—HZ Y,V Fs ()

<1 H Z YN (V (x4 25,) — VFS(Xi))H + ﬁH ;(1 — YV Fs(x:)]|-
(18)
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Let’s consider the first term

‘Z§=1(1 — AN (V f (%45 25,) — VFS(Xi))H~ It is clear that

E;, [(1 =~ n(V f(x45 25,) — VFEs(x;))] = 0, which means that it is a MDS. Moreover, since
IV f(xi; 25,) — VFs(x;)|| ~ subW (6, K), we have

E [op (L2220 ) — TG ] <2

ni(1 =~ K

Then, we can apply LemmaB.3]to derive the following inequality

)

$2 201
exp{ —
(641(2(1 ) 77?)

} equal to 6, we getx = 810g(9+%)(%)K(17

t

Do =" (T i 25,) — V()

=1

P | max
1<t<T

<434 (30)

2

20 128K2(1 - 7)1 nf]

2

1
Setting the term 4 exp { (641{2(17%) ST ?72) 2071
i=1 "Iq

AT)2 (2F, n?)=. Thus, with probability 1 — 3§ — %6 we have

max
1<t<T

2771 Vf Wi 24, ) VFS(WZ))

T 1
1y, 4 1 3
<8log " DK1Y n?) . 9
i=1

Since § > 1/2 and 6 € (0,1), we have 10g29+1 % > 1. Thus, means that with probability
1 — 36 — 8(30)%965, we have

=

max
1<t<T

< 8log" ) (5)K(1 %(Zm)

Zm Vf(wis ZJL) VFS(Wi))

Now, with probability 1 — §, we can derive

D o m(VF(wiizg) - VFS(Wi))H
i=1

max
1<t<T
1) (43 +8(30)2) JZEANN
<stog@+ (MBI iy (5 ey 20
<8log 3 (1=77) 2. (20)
For the second term H 22:1 1;VFs(x;)||, we have

Hzt:mVFs(Xz (Zmnwsm ) < (Zm)(im||ws<xz—>||2). e
i=1 i=1

where the second inequality follows form the Schwarz’s inequality. For the sake of the presenta-
tion, we introduce a notation A(6, T, 8) = log? ' (T'/6) log(1/8)Is>1, where I~ is an indication
function. Thus with probability 1 — § we have the following inequality uniformly forall¢t = 1,...,T

Hi:WiVFS(Xi) “< (im)(i:mv&(xi)”?)

1=

=(Xm)o <A(9,T, 9) +1og*(1/0) an) : (22)

=1

where the last equation follows from the results of (I4)), (T3], and (I6).
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Plugging (20) and (22) into (I8), we have the following inequality uniformly for all ¢t = 1,...,T
with probability at least 1 — 2§

T ¢ ¢ 3
Ixesa]| = O <1og(9+§)(§)(1 —2 0 5) ((Zn) A(6,T,0) +10g29(1/5)2773)>

i=1 i=1 i=1
(23)

=0 (log(0+l)((15)(1 - T)% log? T) + (t%O(A(O,T, 8) +log?(1/6) logt)) :

<(9( t1(A3(0,T,5) +log®*3 )(5)10g2T)> (24)

where the second equation follows from Lemma B.5]

(2.) In the second part, we prove the bound of maxi<i<r |[VF(x;) — VFs(x;)||. According to
Lemma|B.8| with probability 1 — § we have

max. [VF(x:) — VEs(x)||

SM <2+2\/486\f2(10g2+d10g(36)) + 210g(1)>
7 5
S(L”XT\);B) (2 + 2\/48eﬂ(log2 + dlog(3e)) + /2 log((ls)> . (25)

Plugging into (25)), with probability 1 — 35 we have the following inequality uniformly for all
t=1,.T

max [VF(x:) — VFs(x:)]| <

1<t<
LO(T% (A%(0,T,8) +1og+2) (1) log? T)) + B
NG

which means that we have the following inequality uniformly for all ¢ = 1,...T" with probability
1-9

(2 + 2\/486\/5(105;2 + dlog(3e)) + 210g((1s)> ,

2
max [VF(x,) — VEs(x)|

1 (260+1) /1
:(9( (A(&,T,5)+l;)g (3)108T) <d+log(§))>, (26)

(3.) In the third part, we prove the bound of + Zthl |V F(x)||?. Firstly, we can derive the follow-
ing inequality with probability 1 — 2§

T
Yol VEG)|?

t=1

T T
<2 | VF(xi) = VEs (o)1 +2 ) el VEs(x0) |
t=1 t=1

T T
<2 lglfng IVF(x0) = VP50l + 23 il Vo)

A0, T,6) +1log®" ™ (L) log T)

<22m (2 : (+10(;)))

n O(A(a, T,6) +log® (1/6) log T),
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where the last inequality follows from (26) and the results of (T4), (I5), and (I6).

Therefore, we have

& > IVFG)|? < L > ne| V()|
T VT
t=1 t=1
( )(1
_o <\/T(A(9,T, 8) + log20H1 (3)1ogT) y (d—|— log((ls))>

n

A(6,T,6) +1og*(1/6) log T
o ( s ) |

Taking 7" < %, we have the following inequality with probability 1 — 29

*ZIIVF ol =0 ((2) (roa(5) 1062 5) + 20,5 6110501/ ).

which means with probability at least 1 — § we have

*ZIIVF x)I? =0 ((£)" (1oe) 10607525 + A0, 5.0)108(1/5)) )

1
= (2042) = 0—1 2
0 ((n) (IOg(d) log (5) +log (n/dé) log (1/5)H0>1)> .
The proof is complete. 0

C.3 PROOF OF THEOREM [3.3]

Proof. The proof of Theorem [3.3]is relatively complex and is divided into two parts.

(1.) In the first part, we prove the bound of ||x;41]|, characterizing the bound of B(0, R), i.e
2

at iterate t + 1, R = Ry41 = ||x¢41]|- Recall that in , we need n, < (=" Since

8 L +1L
8(:Z5+3L) _ - 1
N = H(S)(ltﬂo), when ty > st = 1(%(147{7)3, we have n; < & (L +) —. Thus, we can use

to bound [|x;41|. According to (23), we have the following inequahty with probability 1 — §
uniformly forall ¢t = 1,...T

el =0 (“g(%(fs“i"f () (3t 0 oy 5’@"@2)%))

t=1 i=1

<0 ((log(9+ )((5) +AZ(6,T, 5)) log? T> ) (27)

where A(60,T,6) = log? ' (T/8)1og(1/8)Is1, and where the last inequality follows from 7, =
m with tg > 1 and Lemma

(2.) In the second part, we prove the bound of Fis(x741) — Fg(x(5)). It is clear that
Fs(xt41) — Fs(xt)

1
S(xer1 = Xe, VEs(xe)) + 5 Ll|xe41 — 2

1
< —y(my_1, VEs(x¢-1)) + Lyllme_1 || — (n:V f (x4 25, ), VFs(x4)) + iLHthQ
= —y(my_1, VFs(x¢—1)) + Ly|me_1 || — (0:V f(x¢; 25,) — VFs(x¢), VFEs(xt))
1
— || VFs(xe)|” + §L||mt|\27
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where the second inequality follows from (6). We can derive that

1
§Ut||VFS(Xt)||2 + Fs(x¢11) — Fs(x¢)
< —y(my_1, VFs(x¢-1)) + Lylme_1 ||* = 0V f(x45 25,) — VFs(x¢), VFs(x))
1 1
- 577t||VFS(Xt)||2 + §L||mt||2-

Since 1; = m, it implies that

1
§Ut||VFS(Xt)||2 + Fs(x¢+1) — Fs(xs)

<(1- ) (Fs(xi) = Fs(xs)) = 2{mes, VPs(xi-)) + Dy e

1
— (mV f(x4:25,) = VFs(x¢), VFs(x¢)) + §L||mt||2-

Multiplying both sides by (¢ + to) (¢t + to — 1), we get
(t+to—1)

2u(5)
(4 t)(t to — 1)y(myy, Vs (1) + (£ 4 1)t + to — 1) Lylmy

IVFs(x¢)||* + (t + to)(t + to — 1)(Fs(x¢41) — Fs(xs))

1
+(t+10)(t +to — 1) Ly

+ (t + to - 1)(t +t0 - 2)(F5(Xt) — Fs(Xs))
— ([t +to)(t+to— DV f(xe;25,) — VFs(x4), VEs(x4)).

Taking a summation from ¢ = 1 to ¢ = 7', we derive that

Z t+t0 ||VFS(Xt)||2 + (T + 1) (T +to = 1)(Fs(xr+41) — Fs(xs))

t=1

T T
< — Z +t0 t+t0—1)’7<l’nt 1,VF5(X,5 1 +Z t-‘rto (t-l—to—l)L’yHmt 1H
t=1 t=1

1
+ (t+t0)(t+to—l)§L||th2

ITMH
I

+

to — 1)(to — 2)(Fs(x1) — Fs(xs))

T
Z(t +to)(t +to — Une(V (x5 25,) — VEs(xt), VEs(xt)).

< til( +to)(t+to— 1)y(my_1, VFs(x¢—1)) + j_ll(t +to+1)(¢ +to)L’y|\th2
T
+ 3 (t+to)(t+to — 1)5 L||my||?
+ (fa— 1){to - 2)(Fs(x1) = Ps(xs)
S+ o)t -+ to = (Vs 5) — P (x0), T Fs(x). a8)
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We first bound the term ZtT;ll (t + to + 1)(t + to)|lmy||?. Note that from the Jensen’s inequality,
we have

1—7v 1
Jmy |2 = [l + ﬁﬁtvf(XﬁZMP <Allme |* + m||mvf(xt;zjt)||2~

By recurrence, it gives that

t—1i

t
y
oy 12 <> 1_7H77ivf(xi%zji)
i=1

2

Thus, we have

T-1

(]

(t +to+ 1)(t + to)||my||?
t=1

T—1 t
<Yttt 1)+ 10) ) 7
1

t

17:V f (xi; ij) |2

-1
>
t=1

(xe; 217 ) Y (i +to+1)(i +to) (29)
1=t

Considering 37" (i + to + 1)(i + to)y", we have
T-1

Z (i + to + 1) (i + to)y

/ (i +to+1)(i +to)y'di

/ Z+t()+ ) dl

i=T—1 -1 _

to+ 1 —2 -+ to + 1)y'di

~r 0 =2 Gy
,yi i=T—1 7

= i+ to + 1)2
hw(H o+1)

i=t

—2[ T (itto+1)
In” ~

i=T-1 r-1
— / wldz} .
1=t t

Solving the above integral, and since Iny < 0, we get

T-1 '
Z(ithoJrl)(itho)Vl
1=t
Y 2 04 7t t 2
< — —(t+t 1 2 t+t 1—2—< t+t 1 30
ln7(+°+)+ln27(+0+) Iy (Cy)Y (t+to + 1), (30)

where Cy = 1+ 2

ln p ln , which is a constant only depend on «. Thus, according to ( , we
have
T-1 T-1 ()
(t+to + 1)(t + to)llmyl|* < Y (¢ +to + 1)? S 1meV f (a3 25, |
t=1 t=1 =7
— (t+to+ 1 N
< ( g t+t ||Vf(xt7zjt)” .
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And since CHotD” = (

(t+t0)2 1+ ﬁ) < 4, then we have

T—1
> (t+to+ 1)(t + to)|my |?

ST Z 19 £ e 2311

ToEE S s 23) — VEsGeI? + [ Fs(x)17).

) <2\ 39
Since ||V f(x¢; 25,) — VFs(x¢)|| ~ subW (0, K), we get E [exp (“vf(xt’ “LQVFS( all ) 26} < 2.
According to Lemma[B.2] we get the following inequality with probability at least 1 — §

S 195 (e ) — VEs(xo)|1? < (T — 1)K29(26) log™ (2/6).

Thus, with probability at least 1 — §, we have

S (¢t D+ toml? < T (7 - )g(26) g (2/0)
LN 8¢y

t=1 WHVFS(X,&)H?. N

Similarly, with probability at least 1 — §, we can derive

D (t+to)(t +to — 1)[my|?

t=1
(8C4) : .
SWTK 9(20)10g*°(2/0) +; ||VFS(xt)|| .

We then bound — Zthl(t +to)(t +to — 1){my_1, VFs(x¢—1)). Recall that from (7), we know

t—1

—(my, VFs(x))) < Ly 7' ml|* - th iV f (i3 25,), VEs(xi)).-

=1 =1
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Since mg = 0, we have

— Z(t + to)(t +tg — 1)<mt_1, VFs(Xt_l»
t=1

- z_:(t +to + 1)(t + to) (my, VFs(x;))

T-1 t—1
<Y (t+to+ D)(E+ )LD my|?
t=1 =1

T—-1

(t+to+ 1)(t+ to) th WiV f (%3 25,), VEs (%))

=1

—

(t+to+1)(t+to) LZ’yt |, |2

t=1 i=1
T-—1 t )
(t+to +1)(t +to) ZVt_z@?in(Xi; zj), VFs(x;))
t=1 =1
T-1 T-1 .
=D v me|PL Y A i+ to + 1)(i + to)
t=1 1=t
T-1 T-1 4
= T eV F(xe23,), VEs(x0)) (i + to + 1)(i + o)y
t=1 i=t
-1 T-1 .
=Yy lme 2Ly i+ to + 1)(i + to)
t=1 i=t
T-1 T-1 )
- Z Y m(V f (%45 25,) — VFs(x1)), VFs(x0)) D (i + to+ 1) (i +t)y'
1=t

T-1
—Zy (n:V Fs(x;), VFs(x;) Zz+to+1 (i + to)Y,

where the second equation holds by using Lemma
With a similar analysis to (31),, it is clear that with probability 1 — §

T-—1 T-—1 T-—1
D ATHmPL Y A i+t + 1)(i+to) < LCy Y [[my||* (¢ + o +1)°
t=1 1=t t=1
(8C4) -« (8C,)
<L(C,)——2 (T —1)K?%g(20) 10g*®(2/6) + Y L(C 7VFX 2,
And we also have
T—-1 T—-1 .
— Y v mVFs(x0), VEs(x0)) Y (i +to+1)(i +to)y'
t=1 1=t
T-1 T—-1 )
<= v+t + 1)+ o)V Es(xe), VEs(x4)) Y o'
t=1 i=t
T-—1
<= ) (t+to+ 1)t +10)(mVFs(xe), VEs(x¢))
t=1
T-1

= (t+to + 1)(t + to)ne|| VFs (x|

~
Il
—
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Thus, we have

T

- Z(t +to)(t +to —1)(my_1, VFs(x-1))
T-1

T-1
= T (V£ (x4 25,) — VFs(x4)), Vs (x1)) Z(i +to 4+ 1)(i + to)y*

(8C)

_ 2 og2?
W(T 1)K*g(26) log™ (2/6)

— > (t+to+1)(t+to)ml VEs(x)||* + L(C)

+§u@mfﬁ%WW&mW.

We now consider the term — Zt Y e (V f (%45 25,) — VFs(x4)), VFEs(x¢)) ZZ ; (i +to +
1)(i+to)y". Denoted by & = VT (Y (%45 25,) = Vs (%)), Vs (x4)) S, (i +to+ 1) (i +
to)y". We know that E;,&, = —Em—tm(v f(x4525,) — VFEs(xt)), VFs(x)) 371 0 + to +

1)(i +to)y* = 0, implying that it is a martingale difference sequence. We use Lemmato bound
this term.

From ,itis clear that [y~ (n;(V f (x¢; 2,) —VFs(xt)), VFs(x¢t)) ZZ . (z—l—to—l—l)(z—i—to)'y | <
(C)(t +to +1)°n [V f(xt5 25,) — VFs(x:)) ||V Fs ()| We set

K 1=C,(t+to+ 120, K||VFs(x;)|| = Cy(t+to+ 1)2 K| VFs(x)]|-

1
p(S)(t +to)
We also set 5 = 0, A = 52, and © = 2alog(1/0). For brevity, we denote = = 2C.,(t + to +
Du(S) 'K and E¢ = 20 (T +to + 1)u(S) LK. Moreover, according to the smoothness as-
sumption, we know ||VFS(xt)|| < (L||x¢|| + B).

Ifo = %, for all @ > 0, we have the following inequality with probability 1 — §

T-1 T-1
= AT V(%43 25,), VEs(x4)) D (i + to + 1) (i + to)y'
t=1 i=t
a T—-1
<2alog(1/8) + — > Z*||VEs(x)*
t=1

If L <6 <1, wesetmy = Z(L||x¢|| + B). Then for all @ > bZ7(L|x7| + B), we have the
following inequality with probability 1 — §

T—-1
— Z Y eV f(%6525,), VEs(x0)) > (i +to +1)(i + o)y’
1=t
a T-1
<2alog(1/0) + — > 22V Es (x|
t=1

If 0 > 1, we set my = Z(L||x¢|| + B) and 6 = 4. Then, for all &« > b=r(L||xr|| + B), we have the
following inequality with probability 1 — 34
T—1 T—1

=Y TV f(x4525,), VEs(x1)) > (i + to + 1)(i + to)y'
t=1 1=t
T-1

a —_
<2alog(1/6) + = ) =2 VFs ()|

t=1
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We now consider the last term —(t + o) (t + to — 1) (V f (x4 25,) — VFs(x¢), VFs(x¢)). With a
similar analysis, we set § = —(t + to)(t + to — 1)m(V f(x¢; 25,) — VFs(x;), VFs(x;)) and
)|

Koy = (t+1to)(t +to — VK[V Es (%) || = p(S) 7 (¢ + to — DKV Fs ().

We also set 3 = 0, A = -, and 2 = 2alog(1/§). According to the smoothness assumption, we
know ||V Fs (x,)|| < (ZlIxi]| + B).

Ifo = 5, for all & > 0, we have the following inequality with probability at least 1 — ¢

T
= > (t+to)(t +to — D (Vf (xe: 25,) — VEs(x), VEs (x0))

t=1

T
<2alog(1/8) + Z (t+to — 1)?||VEs(x,)]||%.
=1

If £ <60 <1, wesetmy = pu(S)"(t+to — 1)K (L|x|| + B). Then for all « > bu(S)"*(T +
to — 1)K (L||xr|| + B), we have the following inequality with probability at least 1 — §

T
= > (t+to)(t +to — D (Vf(xei 25,) — VEs(xe), VEs (x0))

t=1

T
<2alog(1/6) + Z (t+to — 1)?IVFs(x:)]|*.
=1

If0 > 1, wesetmy = u(S) 1 (t+to—1)K(L||x¢||+ B) and § = §. Then, for all o > bu(S) (T +
to — 1)K (L||xr|| + B), we have the following inequality with probability at least 1 — 34

- Z(ﬁ + to)(t + to — 1)’[]t<Vf(Xt; th) - VFs(Xt), VFs(Xt»
t=1 . . .
w(S)a D (t+to — 12|V Es(xe)|%.

<2alog(1/0) +

Finally, combining with these terms, we derive

T

(t+t0 ) 9 aK2 ) ,
;T()HVFS()Q)H m;(t'”o_l) |V Es(xq)||

L~ (8C,) ,
_§;WHVF5(XJH

. T—1 (8C,) or , T—1 s o 2
_ 715:1 WH s (x¢)]] +t§::1( +to+ 1)(t+to)me]| VEs(x4)]|

T—1
. B0 o

;LV(CV)O—V)M( S)2 3 [ VEs ()l

T-1
ST EYVES G+ (T 4 10) (T 1o — 1) (Fs(oerr) — Fs(x(5))

(8C5) 2 L (8C,) 2
gmm(y’ —1)K2g(20)10g*°(2/6) + §WTK 9(20)10g®*(2/6)
8C, X
+L«@NL¥MQPGUK%QM%%W®+%n%m@ym>fwﬂ$»
+ 2alog(1/6) + y2alog(1/9). (32)
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We want
(t+to—1)  aK? L L o)
(5 w®al T T T e 2
and
(t+to+1) CaN 80y aL,
W) T uee T e T 2

Thus, we assume that ¢ satisfies the following conditions
(tO — 1) > £ (8C’Y) .
21(5) = 2 (1—7)2u(5)?

and
(o + 1) (8C.) (8C,)
W(S) = e T Y T
which means that

Cen
PE e

and
8C,(Ly + Ly(Cy))

ET )

aK?2(t4+to—1)2

Thus, we can further derive that o« > e G and
2u(8) T2 (1=y)2u(5)2
> Ya(2C (t+to+1)u(S) "1 K)?
o = (t+to+1) (8C~) —Ly(Cy) (8Cy)
) T ZuEZ T T ZuE)?

aK?(t+tg—1)>

When 6 = %, the above lower bounds of « are: o >

(t+to—1) L (8C~) >
2u(S) 2 (1-7)2u(S)?
20, (t+to+1)u(S) 1 K)? L .
&> e 7a(2C (o DS K" and a > 0, which implies that we should choose
s — Ly L (Cy) e
n(S) (1—~)2u(S)2 Y (1—v)2u(S)2
a=0(T)
1 . aK?(t4to—1)>
When 5 < 6 < 1, the above lower bounds of « are: o > GFig-n L Gop O >
2u(5) T 2 (1=)2u(5)2
va(2C, (t+to+1)u(S) "1 K)? - 1
GrriD [ G0 oy ®oy @ > b=7(L|[xr| + B), and a = bu(S)~ (T + to —
() LT LIl A RN SR R B

1)K (L||xr|| + B), which implies that we should choose o = O (T log(9+%)(%) log? T) :

aK?(t4+tg—1)>
(t+to—1) L (8C~) s
2u(8) 2 (1-7)2u(8)2

a(2C Du(S) 'K)? —_ —
a > (t+t0+1)j ( W((zf;_t[))—i_ Jut5) ) o X 2 bEr(Lllxr| + B), and o > b ()~ (T +

i —_ —_—
#(5) Yasymez O amee

to — 1)K (L||xr|| + B), which implies that we should choose
T 1 1 — 1 1
a=0 (1og9_1(§)T(1og(9+2)(6) + log%(T/d) log§(1/5)> log? T) .

Note that the bound of ||x || comes from (27).

When 6 > 1, the above lower bounds of « are: o« >

Thus, we derive that
(T + to)(T +to — 1)(Fs(xe+1) — Fs(x(S5)))

(8¢,) 2 L (8¢ 2
SL’YW(T — 1)K?g(20) log>’ (2/6) + §WTK 9(20)1og> (2/9)

(()N)(SP(T —1)K?%g(20)10g®®(2/6)

+ Lv(Cy)
+ (to — 1)(to — 2)(Fs(x1) — Fs(x(5))) + 2alog(1/6) + 72 log(1/9).
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Putting the previous bounds together.

If 6 = 1, with probability 1 — 64, we have

Fstxr) - Fa(x(s) = 0 (L))

If 2 < 6 < 1, with probability 1 — 74, we have

10g(9+%) 1 log%T 1
Fs(XT+1)7Fs<X(S)):O ( (Tis) 5 .

If 6 > 1, with probability 1 — 104, we have

(tog ™5 (3) + A3(0,7,9)) log? T
T

Fs(xr41) - Fs(x(5)) = O(

The above bounds mean that with probability 1 — ¢, there holds
log(1/6) . 1
@) (%) if 0= 3

log(9+%)(l)log% T .
Fs(xr41) — Fs(x(S)) = O(T“ it 0e(z 1]
3(6-1)

1
2.1 (33)
3 ( 1
O(log<9+3><§>log = (T/6>log%T) 0> 1

The proof is complete. O

C.4 PROOF OF THEOREM[3.7]

Proof. According to Assumption [2.6] we know

1 1
F(xpy1) — F(x*) < @HVF(XTJA)”Q < E(HVF(XTJA) — VFEs(xp1)[|? + IVFs(xr41) ).

(34)
Furthermore, from and Lemma B.8] with probability 1 — § we have
d + log(%
9P Gersn) = VFsCernl? = 0 (S e 2)
d+log(3 1
0 <—’—mg(5)(log(20+1)(6) +A®O,T, 5)) log T> . (35)
n

From the smoothness property in Lemma[B.7] and the convergence bound in (33), with probability
1 — 4, there holds

IV Es(x741)1* < (2L)(Fs(x741) — Fs(x(5)))
O (=G if o=,

1og T3 (L) 10g3 T . 1
_ @<Ts it 0e (3,1, (36)
O<1og<"+§><é)log3:5”(T/éﬂog%T) it 0> 1.

Plugging and lb into , we derive that with probability 1 — 24, there holds: (1.) if § = %,

log(1/6) d—i—log(%)
+
T n

F(xr) - F(x") =0 < IOgQ(;)IOgT> ;
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2)if 6 € (3,1,

log(9+%)(%) log% T N d—+ log(%)
n

F(xr1) = F(x*) =0 ( log®* 1) ( 5) log T)

N

B)iff>1,
F(x741) — F(x")

3

_ O(log(9+2)(}s) log ™= (T/6) log? rod+ log(%) (
T n

We choose T' < n, then we get with probability at least 1 — , there holds

o <2‘9+1>(5) +A@O,T, 5)) 1ogT).

d+lo, 1
1) +Tg()10g( )logn> it =1,
Flxrqn) = F(x*) = { 0 (T80 1052041 (1 >1°g”) i 6€ (31,
O (D 10g 2+ (1) 10g T (#) logn) if 0> 1.

The proof is complete. O

C.5 PROOF OF THEOREM[3.9]
Proof. From Lemma[B.9] with probability 1 — ¢ we have
IVE(Wr41) = VEs(wri)|?
B, log(4/4) +2\/2E[||Vf(x*;
n

S( IVEs(wry1)| + g +2 Z)”Q] log(4/5))2

B2log?(4/6 E[|V f(x*; 2)||?] log(4/8 2
i2(/)+8 [V f(x";2)["] g(/)+u7)_

n n2

<4( [V Fs(wri)|* +4

From the smoothness property in Lemma if f is nonnegative and L-smooth, we have
|V f(x*;2)||? < 2LV f(x*;z), implying that E[||V f(x*; 2)||?] < 2LF(x*). Thus, with proba-
bility 1 — § we have

IVE(wri1) = VEs(wra)|?

B?log?(4/8)  16LF(x*)log(4/8) p?
2 + + 7) )
n n n

§4( IVFs(wri)[|* + 4 @37

Again, from the smoothness property in Lemma[B.7]and the convergence bound in (33), with prob-
ability 1 — 4, there holds

IVFs(xr41)|* < (2L)(Fs(XT+1) Fs(x(5)))
<log(1/5 ) if p=1

+3) (110
_ o (et i e ) a8)
3 (9 )
o) <log(9+2)(é)log - : (T/8) 10g2 T> if 0> 1.

Plugging (38) into (37), with probability 1 — 28, we have: (1.) if § = 1,
1/6)  log®(1/8) = F(x*)log(1/6
1/5) T4/ | P los())

T n? n

I
IVE(Wrir) — VEs(wri)|? = o( °8 (39)

(2)if 0 € (3,1],

IVF(wri1) = VEs(wri)|? = O

(1og(9+3)(§)log;T 1og2(1/5) F(X*)log(l/é))
+ + ;
T n? n
(40)
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(3. if6 > 1,
IVF(wry1) = VEs(wri)|?
o (1og<9+ )(L)log™ 7 (T/6)log? T 10g2(1 /9) | F) 10g(1/5)).

41
T n? n “h
According to the Polyak-Lojasiewicz condition, we know
. 1
Fwri) — F(x7) < @HVF(WTH)II2
<) HIVE(Wri1) = VEs(Wri1) | + [VEs(wr) ). (42)

Plugging the convergence bound in @P and the generalization bound in (39)-@I) into (@#2), with
probability 1 — 39, we have (1.) if § =

log(1/6) n log2(1/5) n F(x*)log(l/cS)).

F(wry1) — F(x*) = o( = = =

(2)if6 € (3,1],

log?+%) (L) log? T | log®(1/9) F(x*)log(1/5)>,

Fwpy) — F(x*) = o( - -

(3.)if 0 > 1,

S

(10g(9+3>(}s)10g = (T/8)log? T log2(1/(5)+F(x*)1og(1/5)).

F(wri) = F(x") =0 T 2 n

We choose T' < n?, then we can get the following inequality with probability 1 — &

O (120415) 4 P11/ g
(9+%)(1)10g% n

1
27
_ F(X*) — O log nZS + e 10g(1/5 ) if 6 6 % ]

(6-1) 3
O(log3 T /) 1og® B (ot n | Fix )I;gu/é))lfgﬂ.

n

The proof is complete. O
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