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Abstract

Synthetic face recognition (SFR) aims to generate synthetic face datasets that
mimic the distribution of real face data, which allows for training face recogni-
tion models in a privacy-preserving manner. Despite the remarkable potential of
diffusion models in image generation, current diffusion-based SFR models strug-
gle with generalization to real-world faces. To address this limitation, we out-
line three key objectives for SFR: (1) promoting diversity across identities (inter-
class diversity), (2) ensuring diversity within each identity by injecting various
facial attributes (intra-class diversity), and (3) maintaining identity consistency
within each identity group (intra-class identity preservation). Inspired by these
goals, we introduce a diffusion-fueled SFR model termed ID3. ID3 employs an
ID-preserving loss to generate diverse yet identity-consistent facial appearances.
Theoretically, we show that minimizing this loss is equivalent to maximizing the
lower bound of an adjusted conditional log-likelihood over ID-preserving data.
This equivalence motivates an ID-preserving sampling algorithm, which operates
over an adjusted gradient vector field, enabling the generation of fake face recog-
nition datasets that approximate the distribution of real-world faces. Extensive
experiments across five challenging benchmarks validate the advantages of ID3.
Code is released at: https://github.com/hitspring2015/ID3-SFR.

1 Introduction

With the introduction of various regulations restricting the use of large-scale facial data in recent
years, such as GDPR, synthetic-based face recognition (SFR) (Boutros et al., 2023) has received
widespread attention from the academic community (Qiu et al., 2021; Wood et al., 2021; Wang
et al., 2023). The goal of SFR is to generate synthetic face datasets that mimic the distribution of
real face images, and use it to train a face recognition (FR) model such that the model can recognize
real face images as effectively as possible.

There exist numerous efforts to address SFR, which can be categorized into GAN-based models and
diffusion models. GAN-based models utilize adversarial training to learn to generate synthetic data
for FR training. Recently, with the empirical advantages of diffusion models over GANs, many
works have attempted to use diffusion models to generate synthetic face data in place of authentic
data. However, the reported results by these state-of-the-art (SoTA) SFR generative models (Bae
et al., 2023; Boutros et al., 2022; Kolf et al., 2023; Qiu et al., 2021; Boutros et al., 2023) show

*Equal first authors. The order was determined by numpy.random.rand().
#Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



significant degradation in the verification accuracy in comparison to FR models trained by authentic
data. We deduce the degradation might be due to two reasons. First, while previous works adopt
diffusion models, they operate in the original score vector field without injecting the direction with
regards to identity information, which makes them unable to guarantee identity-preserving sampling.
Second, they fail to consider the structure of face manifold in terms of diversity during sampling.

We thus argue that the crux of SFR is to automatically generate a training dataset that has the fol-
lowing characteristics: (i) inter-class diversity: the training dataset covers sufficiently many distinct
identities; (ii) intra-class diversity: each identity has diverse face samples with various facial at-
tributes such as poses, ages, etc; (iii) intra-class identity preservation: samples within each class
should be identity-consistent. Also note that, critically, the SFR dataset generation process should
be fully automated without manual filtering or introducing auxiliary real face samples.

To this end, in this paper, we propose a novel IDentity-preserving-yet-Diversified Diffusion gen-
erative model termed ID3 and a sampling algorithm for inference. Jointly leveraging identity and
face attributes as conditioning signals, ID3 can synthesize diversified face images that conform to
desired attributes while preserving intra-class identity. Specifically, ID3 generates a new sample
based upon two conditioning signals: a target face embedding and a specific set of face attributes.
The target face embedding enforces identity preservation while face attributes enrich intra-class di-
versity. To optimize ID3, we propose a new loss function that involves an explicit term to preserve
identity. Theoretically, we show that with the addition of this term, minimizing the proposed loss
function is equivalent to maximizing the lower bound of the likelihood of an adjusted conditional
data log-likelihood. Consequently, this theoretical analysis motivates a new ID-preserving sampling
algorithm that generates desired synthetic face images. To generate an SFR dataset, we further pro-
pose a new dataset-generating algorithm. This algorithm ensures inter-class diversity by solving
the Tammes problem (Tammes, 1930), which maximally separates identity embeddings on the face
manifold. In the meantime, it encourages intra-class diversity by perturbing identity embeddings
randomly within prescribed areas. It works in conjunction with identity embeddings and diverse at-
tributes to ensure inter-/intra-class diversity while preserving identity. Extensive experiments show
that ID3 outperforms other existing methods in multiple challenging benchmarks.

To sum up, our major contributions are listed as follows:

• Model with Theoretical Guarantees: We propose ID3, an identity-preserving-yet-
diversified diffusion model for SFR. Theoretically, optimizing ID3 is equivalent to shifting
the original data likelihood to cover ID-preserving data.

• Algorithm Design: Motivated by this theoretical equivalence, we design a novel sampling
algorithm for face image generation, together with a face dataset-generating algorithm,
which effectively generates fake face datasets that approximate real-world faces.

• Effectiveness: Compared with SoTA SFR approaches, ID3 improves SFR performance by
∼ 2.4% on average across five challenging benchmarks.

2 Problem Formulation

The scope of this paper is synthetic-based face recognition (SFR), which focuses on generating
high-quality training data (i.e., face images) for FR models. Generally, we aim to address SFR
by generating face images that conform to diverse facial attributes while preserving identity within
each class, in an automated manner. Technically, we break down this objective into the following
two research questions (RQs) to be answered:

• RQ1: How can we effectively train a SFR generative model that preserves identity within
each class, while boosting inter-class and intra-class diversity?

• RQ2: Once the generative model is trained, what sampling strategy can be employed to
generate a synthetic face dataset that enables state-of-the-art face recognition models to
perform well on real face benchmarks?

The rest of the paper aims to answer these two questions, respectively, in order to improve synthetic
face recognition performance.
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Figure 1: The forward pass of ID3 in terms of loss computation. Given an image, its face attributes, and
its face embedding, ID3 obtains the image’s noised version after t diffusion steps and employs a denoising
network to denoise it. This denoising process is conditioned on the predicted attributes and the ID embedding.
Optimization proceeds by minimizing a loss function comprised of a denoising term, a one-step reconstruction
term, an inner-product term, and a constant.

3 Methodology

We propose ID3, a conditional diffusion model that generates diverse yet identity-preserving face
images. ID3 solves RQ1 by introducing two conditioning signals (identity embeddings and face
attributes) into a diffusion model which is trained using a novel loss function. The loss function,
together with identity embeddings, ensures intra-class identity preservation, while generation upon
various face attributes give rise to intra-/inter-class diversity of face appearances. Our theoretical
result regarding this loss function leads to an ID-preserving sampling algorithm and, further, an
effective dataset-generating algorithm.

Notations. Throughout the rest of the the paper, we let D denote a real face dataset that contains
face images x0 ∈ RH×W×3. Let y denote a desired identity embedding and s be face attributes.

3.1 Diffusion Models

We build up our generative model, ID3, upon denoising diffusion probabilistic models (diffusion
models for short) (Ho et al., 2020; Song et al., 2022; Rombach et al., 2022) as they empirically
exhibit SoTA performance in the field of image generation. Diffusion models can be seen as a
hierarchical VAE whose optimization objective is to minimize the KL divergence between the true
data distribution and the model distribution pθ, which is equivalent to minimizing the expected
negative log-likelihood (NLL), Ex∼D[− log pθ(x)]. However, directly minimizing the expected
NLL is intractable, therefore diffusion models instead maximize its evidence lower bound (ELBO),
where the ELBO term can further simply to a denoising task with several model assumptions:

log p(x) ≥ Eq(x1:T |x0)

[
log

p(x0:T )

q(x1:T |x0)

]
︸ ︷︷ ︸

ELBO

= Eq(x1|x0)

[
−1

2
∥x0 − x̂θ(x1, 1)∥22

]
− 1

T − 1

T∑
t=2

µt ∥x0 − x̂θ(xt, t)∥22

(1)

where µt :=
T−1
2σ2

q(t)
· ᾱt−1(1−αt)

2

(1−ᾱt)2
, ᾱt =

∏t
τ=1 ατ . Specifically, given a sample x0 (or interchange-

ably, x) from the image distribution, a sequence x1, x2, ..., xT of noisy images is produced by
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progressively adding Gaussian noise according to a variance schedule α1, ..., αT . This process is
called the forward diffusion process q(xt|xt−1). At the final time step, xT is assumed to be pure
Gaussian noise: xT ∼ N (0, I). The objective is to train a denoising network x̂θ that is able to
predict the original image from the noisy image xt and the time step t. To sample a new image, we
sample xT ∼ N (0, I) and iteratively denoise it, producing a sequence xT , xT−1, ..., x1, x0. The
final image, x0, should resemble the training data.

Although the naive diffusion models are powerful in generating images, they do not deliver the
promise of generating face images of the same identity (i.e. identity preservation) without direct
corresponding information; nor are they aware of diverse desired facial attributes during inference.
To achieve intra-class diversity and intra-class identity preservation, we would like to gain control
of generating desired identities, each of which exhibits various attributes, including poses, ages and
background variations. Hence, our aim is to design a diffusion model that conditions on specific
identities and attributes throughout the generation of face images.

3.2 ID3 as Conditional Diffusion Models

We propose a conditional diffusion model, ID3 (see Figure 1 for details). Specifically, we extend the
denoising network by conditioning it on two sources of signals: identity signals y and face attribute
signals s. The identity signals capture discernible faces in generated images, whereas face attribute
signals specify the identity-irrelevant attributes, including poses, ages, etc. We introduce how to
obtain these two conditioning signals, respectively, in the next two subsections.

3.2.1 Identity Conditioning Signal

To obtain identity conditioning signals, we assume access to a pretrained face recognition model fϕ :
RH×W×3 7→ Sd−1, which maps the domain of face images to a feature space Sd−1. This mapping
fϕ is parameterized by the learnable parameter ϕ, which is obtained by training the model on a real
face dataset in the face recognition task. We follow the latest advancement of face recognition by
setting the output space to be a unit hypersphere Sd−1. Then, given a face image x0 drawn from the
dataset D, we obtain its identity embedding y ∈ Sd−1 by feeding it into a face recognition model
fϕ: y = fϕ(x0), which serves as the identity conditioning signals for ID3.

3.2.2 Face Attribute Conditioning Signal

Face attributes capture identity-irrelevant information about face images, such as age, face poses, etc.
To obtain face attribute as conditioning signals, we employ pretrained attribute predictors (Serengil
and Ozpinar, 2021) which output these attributes when given a face image as input. The pretrained
attribute predictors are a collection of ad-hoc domain experts in age estimation and pose estimation.
After obtaining each of these attribute values, sage ∈ [0, 100], spose ∈ [−90◦, 90◦]3, we concatenate
them as the overall attribute s = [sage, spose] which is then fed into the diffusion model as condition-
ing signals.

3.3 Optimization Objective

Now the denoising network in Eq. (1) becomes x̂θ(xt, t,y, s) that takes as input the noised xt, the
time step t, and the conditioning signals y and s. To optimize ID3, we construct a training objec-
tive upon the ELBO of log p(x|y, s), ensuring that ID3 generates identity-preserving yet diversified
faces:

min
θ

E(x0,y,s)∼D′

[
Lθ,ϕ(x0,y, s)

]
(2)

Here, θ is the learnable parameter of the denoising network and the datapoint-wise loss is given by

Lθ,ϕ(x0,y, s)

= Et∼U [2,T ]

[
µt

∥∥∥x0 − x̂
(t)
0

∥∥∥2
2︸ ︷︷ ︸

denoising term

−λtκx0y
T fϕ

(
x̂
(t)
0

)
︸ ︷︷ ︸

inner-product term

]
+ Eq(x1|x0)

 1

2

∥∥∥x0 − x̂
(1)
0

∥∥∥2
2︸ ︷︷ ︸

one-step reconstruction term

+ C

(3)

4



Algorithm 1: Training Algorithm
Input: The training face images x0 ∼ D; The

pretrained face recognition model fϕ(·).
Output: The denoising network x̂θ .
Initialize D′ ← ∅
for x0 ∼ D do

y← fϕ(x0);
s← AttributePredictor(x0);
D′ ← D′ ∪ {(x0,y, s)};

end
Solve Eq. (2) using batched Backpropagation

algorithm with D′;
return x̂θ

Algorithm 2: ID-Preserving Sampling Alg.
Input: Denoising network x̂θ; recognition

model fϕ; conditioning signals y and s.
Output: A generated face x0

xT ← sample fromN (0, I);
for t← T to 1 do

Compute the score function∇ log p̃(xt|y, s)
as in Eq. (7);

Draw a Gaussian sample ϵ ∼ N (0, I);
Perform the update:
xt−1 ← xt + γ∇ log p̃(xt|y, s) +

√
2γϵ;

end
return x0

where x̂
(t)
0 is the output of the denoising network that takes as input the conditioning signals y, s,

the time t and the t-step noisified image xt:

x̂
(t)
0 := x̂θ(xt, t,y, s). (4)

Symbolically, x̂(t)
0 denotes the denoised image predicted by the denoising network when given the

t-step noisified xt, the time t and the associated conditioning signals y, s. The coefficients, κx0
and

λt are scalars depending on x0 and t, respectively, and C is a constant that does not depend on the
learnable parameters θ. The specific value of C will be elaborated in Appendix A.

To summarize, our proposed loss function consists of four terms: the one-step reconstruction term,
the denoising term, the inner-product term, and a constant. Intuitively, the denoising term, along
with the one-step reconstruction term, aims to improve the generative quality by denoising the t-step
noisified face images while the inner-product term encourages the face embedding of the denoisi-
fied images to get close to the groundtruth identity embedding. To understand this loss function
systematically, we theoretically find that minimizing this proposed loss function is equivalent to the
maximization of the lower bound of an adjusted conditional log-likelihood over identity-preserving
face images, which further leads us to an ID-preserving sampling algorithm.
Theorem 3.1. Minimizing L with regard to θ is equivalent to minimizing the upper bound of an
adjusted conditional data negative log-likelihood − log p̃(x|y, s), i.e.:

min
θ
L(x0,y, s) ≥ − log p̃(x|y, s) (5)

where

p̃(x|y, s) ∝ p(x|y, s) · p(y, s|x)
∑T

t=2 λt
T−1 (6)

Proof. The proof can be found in Appendix A.

Remark. We have just shown that our proposed loss is the upper bound of an adjusted conditional
negative data log-likelihood. This adjusted likelihood p̃(x|y, s) can be factorized into the original
likelihood p(x|y, s) and a reversed likelihood p(y, s|x) with some positive power. We term it as
“adjusted” since the original likelihood is discounted by the reversed likelihood. Intuitively, the re-
versed likelihood shifts the original likelihood such that the adjusted likelihood covers ID-preserving
data, which is attributed to the inner-product term we introduce into the loss function in Eq. (2).

3.4 ID-Preserving Sampling

Theorem 3.1 provides insights for designing a novel sampling algorithm in the spirit of Langevin
dynamics applied on the adjusted conditional likelihood p̃(xt|y, s). We note that Langevin dynamics
can generate new samples from a probability density p by virtue of its score function (i.e., the
gradient of the logarithm of the probability density w.r.t. the sample, ∇xlog p). Motivated by this
observation, we aim to find the score function of the adjusted likelihood for sample generation.
Specifically, taking the logarithm and the gradient w.r.t. x on both sides of Eq. (6) yields

∇ log p̃(x|y, s) = ∇ log p(x|y, s) +
∑T

t=2 λt

T − 1
∇ log p(y, s|x) (7)
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Algorithm 3: Synthetic Dataset Generation
Input: Denoising network x̂θ; recognition model fϕ; the

number of identities N .
Output: A synthetic dataset Dsyn.
Dsyn ← ∅;
Generate w1, ...,wN ∈ Sd−1 by solving the Tammes

problem;
for i← 1 to N do

Generate s1i, ..., smi ∼ U [lb, ub);
Calculate Yi by solving the optimization problem Pi in

Eq. (9);
y∗
i1, ...,y

∗
im ← unpack(Yi);

si1, ..., sim ← generate different attributes;
Di ← ∅;
for j ← 1 to m do

x0 ← Alg. 2(x̂θ, fϕ, norm(y∗
ij), sij);

Di ← Di ∪ {(x0, i)};
Dsyn ← Dsyn ∪ Di;

end
end
return Dsyn

Figure 2: Qualitative comparison
of face images generated by the ad-
justed score function ∇ log p̃(xt|y, s)
and the original score function
∇ log p(xt|y, s).

Then, our ID-preserving sampling algorithm first draws a Gaussian sample xT ∼ N (0, I). After-
wards, sequentially, the algorithm performs the following update for t iterating from T backwards
to 1:

xt−1 ← xt + γ∇ log p̃(xt|y, s) +
√

2γϵ

where

∇ log p̃(xt|y, s) = ∇ log p(xt|y, s)︸ ︷︷ ︸
original likelihood score

+

∑T
t=2 λt

T − 1
∇ log p(y, s|xt)︸ ︷︷ ︸

reversed likelihood score

(8)

Note that the original likelihood score in Eq. (8) can be evaluated by

∇ log p(xt|y, s) =
√
ᾱt√

1− ᾱt

(
x̂θ(xt, t,y, s)−

xt√
ᾱt

)
and the reversed likelihood score is given by a scaled inner product:

∇ log p(y, s|xt) = κxty
T∇fϕ(xt)

See Appendix B for the derivation of the above equations. As such, our ID-preserving sampling
algorithm performs sampling by searching a trajectory in the vector field ∇ log p̃(xt|y, s) that can
maximize the adjusted conditional likelihood p̃(xt|y, s). See Algorithm 2 for the specific procedure.

Remark. Our proposed adjusted likelihood score differs from the original score by adding an extra
scaled reversed likelihood score in Eq. (8). Consequently, as shown in Figure 2 , the resulting vector
field differs from the original vector field, which leads to different Langevin sampling trajectories
and thus different sampling quality.

3.5 Synthetic Dataset Generation

In terms of the second question (RQ2): after training ID3, with what sampling strategy is it possible
to generate a synthetic face dataset on which SoTA face recognition models can be trained and
perform well on challenging benchmarks?

Our proposed dataset-generating algorithm goes as follows: given N target identities, we generate
N anchor embeddings distributed on the sphere: w1,w2, ...,wN ∈ Sd−1 as uniformly as possible
in the sense that each pair of the embeddings are maximally separated on the unit sphere#. For each
anchor wi, we would like to generate m identity embeddings perturbed around wi while ensuring

#This is known as the Tammes problem (Tammes, 1930) for which there exists no exact solution for hyper-
sphere Sd−1, d > 3. However, one can use the optimization technique introduced in (Mettes et al., 2019).

6



that these m identity embeddings get close to but different than wi. Specifically, to find these m
identity embeddings, we solve the following optimization problem Pi:

min
yij ,j=1,...,m

∥∥∥∥∥∥∥∥∥∥
[
−wT

i −
]
norm

([ | | · · · |
yi1 yi2 ... yim

| | · · · |

]
︸ ︷︷ ︸

Yi

)
− [νi1, νi2, ...νim]

∥∥∥∥∥∥∥∥∥∥

2

2

(9)

where the operator norm is column-wise normalization which normalizes each column of Yi into
a unit vector, and the desired similarity scores νi1, νi2, ..., νim are randomly generated from a con-
tinuous uniform distribution U [lb, ub). After solving Eq. (9), we are able to retrieve the m optimal
unnormalized vector y∗

i1, ...,y
∗
im. These m vectors are then normalized, yielding m identity em-

beddings: norm(y∗
ij), for j = 1, ...,m. Then, the resulting identity embeddings, along with face

attributes, are fed into our generative models to generate face images. Finally, the entire dataset is
generated by solving each Pi, i = 1, ..., N , which yields N identities, each with m face images.
The entire algorithm is summarized in Algorithm 3.

4 Experiments

In this section, we verify the effectiveness of ID3 through empirical evaluation of the face dataset
that ID3 generates, and verify the performance of the SoTA face recognition model trained on this
dataset in comparison with other baseline methods.

4.1 Dataset

Training Dataset: We train our proposed ID3 on FFHQ (Karras et al., 2019) dataset. The FFHQ
(FaceForensics++) dataset is a large-scale dataset used for benchmarking and evaluating the perfor-
mance of deep learning models in the field of face forensics. It is an extension of the original Face-
Forensics dataset, which was designed to facilitate the development and comparison of methods for
detecting and preventing face manipulation and deepfakes. In order to compare with DCFace (Kim
et al., 2023), we also train ID3 on CASIA-WebFace (Yi et al., 2014). The CASIA-WebFace dataset
is used for face verification and face recognition tasks. This dataset contains 494,414 face images of
10,575 real identities collected from the web.

Benchmarks: The performance of face recognition models is evaluated on various benchmark
datasets: LFW (Huang et al., 2008), CFP-FP (Sengupta et al., 2016), CPLFW (Zheng and Deng,
2018), AgeDB (Moschoglou et al., 2017) and CALFW (Zheng et al., 2017). They are used to mea-
sure the impact of different factors on face image, such as pose changes and age variations.

4.2 Implementation Details

For our ID3, we implement the denoising network with a U-net architecture and the projection
module with a three-layer perceptron (hidden-layer size (512, 256, 768)) with ReLU activation. All

Figure 3: Uncurated samples generated by ID3 (Top) and those by IDiff-Face (Bottom).
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Table 1: SoTA Comparison. Face verification accuracy (%) of LResNet50-IR on different benchmarks when
trained on synthetic datasets from ID3 and state-of-the-art SFR generative models. For fairness, all methods
generate face datasets of 10K identities each of which has 50 face images.

Method Training set LFW CFP-FP CP-LFW AgeDB CA-LFW Average
ID-Net FFHQ 84.83 70.43 67.35 63.58 71.50 71.53

DigiFace FFHQ 88.07 70.99 66.73 60.92 69.23 71.19
SFace FFHQ 91.43 73.10 73.42 69.87 76.92 76.95

SynFace FFHQ 91.93 75.03 70.43 61.63 74.73 74.75
IDiff-Face FFHQ 97.10 82.00 76.65 78.40 86.32 84.09
ID3 (Ours) FFHQ 97.28 85.00 77.13 83.78 89.30 86.50

DCFace FFHQ+CASIA 98.55 85.33 82.62 89.7 91.6 89.56
ID3 (Ours) CASIA 97.68 86.84 82.77 91.00 90.73 89.80

models are implemented with PyTorch and trained from scratch using 8 NVIDIA Tesla V100 GPUs.
Specifically, we set λtκxt

= 0.5 · (1− 1/(1 + exp (−t/T )) for the loss coefficients in Eq. (3), and
use T = 1, 000 for the diffusion model; training batch size is set to 16 and the total training steps
500, 000. We directly use a pre-trained face recognition (FR) model sourced from pSp (Richardson
et al., 2021) as the identity feature extractor. Throughout the entire training process, these pre-trained
models are frozen. In addition, we set # of identity embeddings m = 25 in Eq. (9) for each ID and
match their embeddings with randomly selected attributes as conditioning signals for the diffusion
model. For face recognition, we use LResNet50-IR (Deng et al., 2019), a variant of ResNet (He
et al., 2016), as the backbone framework and follow the original configurations.

4.3 Performance Evaluation

We test the performance of the face recognition model trained on synthetic face data generated by
ID3 and compare against SoTA SFR generative models, including IDiff-Face (Boutros et al., 2023),
ID-Net (Kolf et al., 2023), DigiFace (Bae et al., 2023), SFace (Boutros et al., 2022), SynFace (Qiu
et al., 2021) and DCFace (Kim et al., 2023).

4.3.1 Qualitative Results

Here, we illustrate a collection of face images generated by ID3 as qualitative evaluation. Figure 3
shows the results for randomly sampled identities (IDs) under various attribute conditions; Obvi-
ously, when comparing different identities (inter-class), the essential intrinsic key information of
each identity is still retained and can be easily identified. Also, different samples of each identity
(intra-class) exhibit distinct diversity, stemming from variations in similarity scores (νij’s) and dif-
ferences in face attributes as conditioning signals. In terms of the effect of our proposed adjusted
score and the original score on the sampling algorithm, we observe that the face images generated
by our proposed ID3 exhibits much better quality and identity preservation than those generated by
the original score function, as shown in Figure 2.

4.3.2 Quantitative Results

We compare the accuracies of FR models trained on the synthetic face datasets generated by different
generative models and demonstrate the results in Table 1.
As shown in Table 1, ID3 demonstrates consistent superior performance, achieving the highest aver-
age accuracy of 86.50%, and outperforms other baselines in all benchmarks, notably scoring 83.78%
in AgeDB and 85.00% in CFP-FP. This demonstrates the effectiveness of ID3 in gaining pose and
age control. Other methods, while effective to varying degrees, attain average scores below 86.50%
and are inferior to ID3.
It is worth mentioning that ID3, apart from using real data during training, does not introduce any
real images as auxiliary data during the sampling phase. The synthetic data is directly used in
the training of the face recognition model without undergoing any secondary or manual filtering.
Additionally, when training the face recognition model using the synthetic data, no real images are
introduced as auxiliary data. On the other hand, DCFace, as described and reported in (Kim et al.,
2023), introduces real face images as auxiliary data during the training phase for face recognition.
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Table 2: Ablation Study. Face verification accuracy (%) of LResNet50-IR when trained on synthetic datasets
from ID3 and other model variants. ID3-[lb, ub] represents an ID3 variant using lb and ub as lower- and
upper-bound for sampling νij’s. ID3-random denotes a model variant that randomly sets anchors on the unit
hypersphere for sample generation. ID3-w/o-attribute denotes one that does not use attributes as conditioning
signals. ID3-w/o-reversed denotes one that removes the reversed likelihood score from Eq. (8) in the proposed
ID-preserving sampling algorithm.

Method LFW CFP-FP CP-LFW AgeDB CA-LFW Average
ID3-w/o-reversed 78.82 62.68 61.83 58.20 63.71 65.05
ID3-w/o-attribute 97.12 85.57 81.70 87.50 89.48 88.27

ID3-[0.7, 0.9] 97.28 84.26 81.48 86.25 89.63 87.78
ID3-[0.5, 0.7] 97.38 85.00 81.10 86.63 90.13 88.05
ID3-random 96.00 80.81 78.05 85.53 87.57 85.59
ID3 (Ours) 97.68 86.84 82.77 91.00 90.37 89.80

This helps enhance the diversity of the training data and leads to slightly better results than ID3 in
the two benchmarks.

Ablation study. We further investigate the impact of each contributing component of ID3 in gen-
erating a synthetic face dataset on SFR. This includes three ablation studies shown in Table 2: the
effect of the reversed likelihood score in Eq. (8) on ID-preserving sampling algorithm (ID3 vs. ID3-
w/o-reversed), the effect of using anchors in ID3 (ID3 vs. ID3-random), and the effect of lower- and
upper-bound of Uniform distribution for sampling νij’s.
In the first study, we compare ID3 with ID3-w/o-reversed, which removes the reversed likelihood
score from Eq. (8) in the proposed ID-preserving sampling algorithm. We observed ID3 consistently
outperforms ID3-w/o-reversed with large margins. This suggests the necessity of the inner-product
term in the proposed loss function Eq. (3) and the reversed likelihood score in the adjusted likelihood
score Eq. (8).
In the second study (cf. Appendix E), an appropriate smaller value of lb, if not exceeding a cer-
tain range, can increase the intra-class diversity, resulting in more diverse intra-class face images.
This aligns with our objective of increasing intra-class diversity in the generated data to enhance
the effectiveness of SFR. As per the constraints of Eq. (9), each generated identity embedding yij

maintains the same identity as the anchor wi. This, along with our proposed inner-product term in
Eq. (3), ensures consistent intra-class identities while introducing a significant amount of diversity.
In the third study, we demonstrate how effective it is to use maximally-separated anchors in ID3

as compared to ID3-random that randomly sets anchors on the unit hypersphere for sample gen-
eration. Clearly, ID3-random does not yield as good results as ID3. This is because the random
sampling method only introduces one identity signal per ID, while the model requires a combina-
tion of attributes and identity signals. Attribute signals can only control explicit attributes, whereas
identity signals control implicit properties. Introducing only one identity signal per identity implies
insufficient intra-class diversity. Additionally, ID3-random fails to regularize the relationship among
different identities, leading to inadequate diversity among classes or aliasing issues with different
identity signals. The identity signals obtained using ID3 resolves the problem of aliasing between
identity signals across classes, effectively improving intra-/inter-class diversity.

5 Conclusion

We have proposed ID3, an identity-preserving-yet-diversified diffusion generative model for SFR.
Our theoretical analysis regarding the training of ID3 induces a new ID-preserving sampling al-
gorithm and further, a dataset-generating algorithm that generates identity-preserving face images
with inter-/intra-class diversity. Extensive experiments show that ID3 outperforms existing methods
in challenging multiple benchmarks.

Limitations. While ID3, designed for the sake of privacy protection, achieves SoTA performance in
SFR, there remains clear margins as compared to the FR performance when training with real-world
face datasets such as MS1M. This suggests that the fake face dataset generated by ID3 does not fully
approximate the real-world faces. Future work might include closing this gap.
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ID3: Identity-Preserving-yet-Diversified Diffusion Models for Synthetic Face
Recognition

Supplementary Material

A Appendix A

We first present a lemma (Lemma A.1) that will be further used to prove Theorem 3.1.
Lemma A.1. Given any two conditional probability density functions, p(a|b) and p(b|a), and a
positive scalar w > 0, there exists another conditional probability density function p̃ such that

p̃(a|b) = 1

Zb,w
p(a|b)p(b|a)w,where Zb,w =

∫
p(a|b)p(b|a)wda. (A.1)

Proof. To show this result is equivalent to showing p̃(a|b) ∝ p(a|b) · p(b|a)w, w > 0, which is
equivalent to showing that, for any b = b0,

p̃(a|b = b0) ∝ p(a|b = b0) · p(b = b0|a)w, w > 0 (A.2)

Note that p̃(a|b = b0) is a function of a, i.e. there exists a function fb0,w such that p(b = b0|a)w :=
fb0,w(a). Let

Zb0,w :=

∫
p(a|b = b0)fb0,w(a)da (A.3)

Then,
p(a|b = b0) · p(b = b0|a)w

Zb0,w
=

p(a|b = b0) · fb0,w(a)
Zb0,w

(A.4)

is a proper probability density function of a with b = b0 given. Therefore, Eq. (A.4) can be written
as p̃(a|b = b0). The above proof holds true for any b0, which concludes the proof for p̃(a|b) ∝
p(a|b) · p(b|a)w, w > 0. Note that this result can be trivially extended to multivariate random
variables.

Theorem 3.1. Minimizing L with regard to θ is equivalent to minimizing the upper bound of an
adjusted conditional data negative log-likelihood − log p̃(x|y, s), i.e.:

min
θ
Lθ(x0,y, s) ≥ − log p̃(x|y, s) (A.5)

where

p̃(x|y, s) ∝ p(x|y, s) · p(y, s|x)
∑T

t=2 λt
T−1 (A.6)

and x0 and x both refer to a raw image interchangeably.

Proof. Recall that

Lθ(x0,y, s) = Et∼U [2,T ]

[
µt

∥∥∥x0 − x̂
(t)
0

∥∥∥2
2︸ ︷︷ ︸

denoising term

−λtκxy
T fϕ

(
x̂
(t)
0

)
︸ ︷︷ ︸

inner-product term

]
+ Eq(x1|x0)

 1

2

∥∥∥x0 − x̂
(1)
0

∥∥∥2
2︸ ︷︷ ︸

one-step reconstruction term

+ C

= Et∼U [2,T ]

[
µt

∥∥∥x0 − x̂
(t)
0

∥∥∥2
2︸ ︷︷ ︸

denoising term

]
+ Eq(x1|x0)

 1

2

∥∥∥x0 − x̂
(1)
0

∥∥∥2
2︸ ︷︷ ︸

one-step reconstruction term

+ C − Et∼U [2,T ]

[
λtκxy

T fϕ

(
x̂
(t)
0

)
︸ ︷︷ ︸

inner-product term

]
(A.7)

It can be shown that the reversed likelihood p(y, s|x) is a joint vMF density (Xu et al., 2023; Hasnat
et al., 2017):

p(y, s|x) (1)

= p(y|s,x)p(s|x) (2)

= p(y|x)p(s|x) (3)

= J2
κx

exp
(
κx(y

T fϕ (x) + sTFa(x))
)

(A.8)
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where Jκx is the normalizing constant and Fa is the pretrained attribute predictor. Note that Equality
(1) is obtained by the product rule of probability; Equality (2) is obtained by observing that y and s
are conditionally independent when x is given; and Equality (3) is obtained by assuming that

p(y|x) = Jκx exp
(
κx · yT fϕ (x)

)
, p(s|x) = Jκx exp

(
κx · sTFa(x)

)
(A.9)

Note that these reasonable assumptions are also held in (Xu et al., 2023; Li et al., 2021; Hasnat et al.,
2017). Now we can specify the value of the scalar C:

C = −Et∼U [2,T ]

[
λt

(
log J2

κx
+ sTFa(x)

) ]
− n

2
log(2π) +DKL (q(xT |x0)||p(xT )) + logZ

(A.10)
where n = 3HW is the dimensionality of x, and

Z =

∫
x

p(x|y, s) · p(y, s|x)
∑T

t=2 λt
T−1 dx = Z

(
y, s,

∑T
t=2 λt

T − 1

)
(A.11)

Note that Z only depends on y, s and
∑T

t=2 λt

T−1 and hence C is a scalar that does not depend on the
learnable parameter θ. Therefore, L can be rewritten into a sum of two parts: L = L1 + L2, where

L1 = Et∼U [2,T ]

[
µt

∥∥∥x0 − x̂
(t)
0

∥∥∥2
2︸ ︷︷ ︸

denoising term

]
+Eq(x1|x0)

 1

2

∥∥∥x0 − x̂
(1)
0

∥∥∥2
2︸ ︷︷ ︸

one-step reconstruction term

−n

2
log(2π)+DKL (q(xT |x0)||p(xT ))

(A.12)
and

L2 = −Et∼U [2,T ]

[
λt log J

2
κx

+ λtκxs
TFa(x) + λtκxy

T fϕ

(
x̂
(t)
0

)
︸ ︷︷ ︸

inner-product term

]
+ logZ

(A.13)

We recognize −L1 is the evidence lower bound (ELBO) of log p(x|y, s) (Luo, 2022), i.e.

L1 ≥ − log p(x|y, s) (A.14)

As for L2:

L2 = −Et∼U [2,T ]

λt

log J2
κx

+ κxy
T fϕ

(
x̂
(t)
0

)
︸ ︷︷ ︸

inner-product term

+κxs
TFa(x)


+ logZ

= − 1

T − 1

T∑
t=2

λt

log J2
κx

+ κxy
T fϕ

(
x̂
(t)
0

)
︸ ︷︷ ︸

inner-product term

+κxs
TFa(x)


+ logZ

(A.15)

Here we assume access to a perfect denoising module such that x̂(t)
0 = x0 = x, for all t’s. Hence,

L2 can be written as

L2 = − 1

T − 1

T∑
t=2

[
λt

(
log J2

κx
+ κxy

T fϕ (x) + κxs
TFa(x)

)]
+ logZ (A.16a)

= − 1

T − 1

T∑
t=2

[λt log p(y, s|x)] + logZ (A.16b)

= − 1

T − 1

(
T∑

t=2

λt

)
· log p(y, s|x) + logZ (A.16c)

= − log p(y, s|x)
∑T

t=2 λt
T−1 + logZ (A.16d)
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Figure A.1: An illustration of the dataset-generating algorithm.

Then,

L = L1 + L2 (A.17a)

≥ −
[
log p(x|y, s) + log p(y, s|x)

∑T
t=2 λt
T−1

]
+ logZ (A.17b)

= − log (Z · p̃(x|y, s)) + logZ (A.17c)
= − log p̃(x|y, s) (A.17d)

where Equality (A.17c) is obtained by applying Lemma A.1. This completes the proof.

B Appendix B

In this section, we show the derivations of the following equations:

∇ log p(xt|y, s) =
√
ᾱt√

1− ᾱt

(
x̂θ(xt, t,y, s)−

xt√
ᾱt

)
(A.18)

∇ log p(y, s|xt) = κxty
T∇fϕ(xt) + κ′

xt
sT∇Fa(xt) (A.19)

Recall that in the main text, we showed that the adjusted likelihood score is a summation of the
original likelihood score and the scaled reversed likelihood score:

∇ log p̃(xt|y, s)︸ ︷︷ ︸
adjusted likelihood score

= ∇ log p(xt|y, s)︸ ︷︷ ︸
original likelihood score

+

∑T
t=2 λt

T − 1
∇ log p(y, s|xt)︸ ︷︷ ︸

reversed likelihood score

(A.20)

For the original likelihood score, we note that our proposed ID3 itself is a conditional diffusion
model. By virtue of the relation between the score and the denoising module (i.e. the Tweedie’s
Formula) in diffusion models (cf. Equation (133) in (Luo, 2022)), we are able to show that

∇ log p(xt|y, s) =
√
ᾱt√

1− ᾱt

(
x0 −

xt√
ᾱt

)
(A.21)

Here, x0 can be approximated by denoising xt via the trained denoising module

x0 ≈ x̂θ(xt, t,y, s) (A.22)

C An Illustration of the Dataset Generating Algorithm

We illustrate the dataset generating algorithm in Figure A.1. First, N anchor embeddings are gen-
erated on the sphere as uniformly as possible. Then, for each anchor, m identity embeddings are
generated around the anchor. This strategy ensures inter-class diversity while intra-class identity
preservation is guaranteed. Colors show the correspondence between the generation procedure on
the left and the generated samples on the right.
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Figure A.2: The distribution of inter-class and intra-class similarities.

D Related Work

Face Recognition. Face Recognition (FR) is the task of matching query imagery to an enrolled
identity database. SoTA FR models are trained using margin-based softmax losses (Wang et al.,
2018; Deng et al., 2019) on large-scale web-crawled datasets (Guo et al., 2016; Zhu et al., 2021).
These datasets encompasses three characteristics in common (as mentioned in the introduction): (i)
sufficient inter-class diversity; (ii) intra-class diversity; (iii) intra-class identity preservation. How-
ever, due to the introduction of various regulations restricing the use of authentic face data, re-
searchers switch their attention to synthetic face recognition (SFR). We argue that the crux of SFR
is to generate a training dataset that inherits the three characteristics above.

GAN-based SFR models. Most of the deep generative models for synthetic faces generation are
based on GANs. DigiFace (Bae et al., 2023) utilizes a digital rendering pipeline to generate syn-
thetic images based on a learned model of facial geometry and attributes. SFace (Boutros et al.,
2022) and ID-Net (Kolf et al., 2023) train a StyleGAN-ADA (Karras et al., 2020) under a class-
conditional setting. SynFace (Qiu et al., 2021) extends DiscoFaceGAN (Deng et al., 2020) using
synthetic identity mix-up to enhance the intra-class diversity. However, the reported results shown
by these models show significant performance degradation in comparison to FR trained on real data.
This performance gap is mainly due to inter-class discrimination and small intra-class diversity in
their generated synthetic training datasets. Diffusion models for SFR. Recently, Diffusion Models
(DMs) (Ho et al., 2020; Lin et al., 2018; Song et al., 2020) gained attention for both research and
industry due to their potential to rival GANs on image synthesis, as they are easier to train with-
out stability issues, and stem from a solid theoretical foundation. Among SFR diffusion models,
IDiff-Face (Boutros et al., 2023) achieves SoTA performance. On the basis of a diffusion model, it
incorporates Contextual Partial Dropout to generate diverse intra-class images. However, IDiff-Face
fails to regularize the relationship among different identities.

Latent Diffusion Models. There exist many diffusion-based models (LDMs) (e.g., Face0 (Valevski
et al., 2023), PhotoMaker (Li et al.), FaceStudio (Yan et al., 2023), InstantID (Wang et al., 2024))
which use ID attributes to assist in generating images. However, we note that these LDMs are
designed for image generation but not for SFR. Our empirical findings further suggests these LDMs
do not perform reasonably well even when applied to SFR. We found that although these LDMs
claim to be ID-preserving in the pixel space, their feature embeddings are not discriminative enough
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Figure A.3: Pose distribution of datasets generated by different models.

Figure A.4: Pose distribution (pitch, yaw, roll) and age distribution on FFHQ

for face recognition, since there is no inductive bias (neither loss functions nor architectures) to
achieve face discriminativeness.

E Ablation Study (ii)

We show the inter-class and intra-class similarity in Figure A.2when using [0.5, 0.7] and [0.7, 0.9] as
the lower- and upper-bound [lb, ub] for sampling νij’s in our proposed dataset-generating algorithm.

F Attribute Analysis of Generated Datasets

In this section, we perform an attribute analysis of the generated face datasets by ID3. As shown
in Figure A.3 and Figure A.4, from the distribution, we observe that the highest age in our training
set is 70; the largest pose is 60 in degree and the smallest -60 in degree. Our model can interpolate
within these ranges but is less likely to extrapolate outside of these ranges. To generate face images
of large pose and high age, one can collect more such data and add them to the training dataset,
which increases their occurrences during training.

To examine whether the attributes we used in our paper are fit for SFR tasks, we perform the follow-
ing ablation study: as we increase intra-class pose variation, the SFR performances on cross-pose
test sets (including CFPFP and CPLFW) are boosted whereas the performances on cross-age test
sets (including AgeDB and CALFW) remain almost unchanged. Results and distribution plots are
shown in Table A.1, Figure A.3 and Figure A.4. From these results, we observe that the distribution
of pose angle on FFHQ, Dataset by IDiffFace, Dataset by ID PoseOnly 1 and 2 are all unimodal. And
their performances are inferior to Dataset by ID PoseOnly 3 which exhibits multimodal distribution
of pose angle.

Table A.1: Datasets generated by different models (Column 1), the attribute statistics for each dataset (Column
2, 3), and the FR performance of FR models trained on them, respectively (Column 4-8).

Pose Mean Pose Var LFW CFP-FP CPLFW AgeDB CALFW
FFHQ 11.44 233.97 — — — — —

IDiffFace 11.62 222.62 97.10 82.00 76.65 78.40 86.32
ID3 PoseOnly 1 8.21 109.76 95.33 78.41 73.48 79.76 86.03
ID3 PoseOnly 2 9.02 110.18 95.58 80.91 73.60 79.45 85.93
ID3 PoseOnly 3 14.14 247.05 95.83 82.87 75.77 79.45 86.90
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As shown in the abstract and introduction.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: As shown in the conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: As shown in the Appendix A and B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: As shown in the experiment and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: see Abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: As shown in the experiments and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [No]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

8

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As shown in the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: NA

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The creators or original owners of assets (e.g., code, data, models), used in
the paper, are properly credited. The license and terms of use are explicitly mentioned and
properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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