
CombiGraph-Vis: A Curated Multimodal Olympiad
Benchmark for Discrete Mathematical Reasoning

Hamed Mahdavi1 Pouria Mahdavinia1 Alireza Farhadi4 Pegah Mohammadipour1
Samira Malek1 Majid Daliri3 Pedram Mohammadipour4 Alireza Hashemi2

Amir Khasahmadi5 Vasant Honavar1

1Pennsylvania State University 2City University of New York 3New York University
4Amirkabir University of Technology 5Autodesk

Abstract

CombiGraph-Vis is a 1,135-problem benchmark for discrete mathematical reason-
ing spanning 13 domains and three formats (short-answer, multiple-choice, and
yes/no). Notably, 35% of problems include images whose structure is essential for
finding solutions. Each problem comes with a verified solution and technique labels,
with the entire dataset curated and validated through agentic workflows under hu-
man oversight to ensure consistency and fidelity. Evaluations across diverse model
families reveal a wide performance range (16%–78% accuracy), with particularly
sharp drops on image-based problems. For standalone multiple-choice problems,
clear gaps emerge between correct-answer accuracy and among-choices accuracy,
indicating vulnerability to trap choices. The benchmark emphasizes reasoning over
graphs, grids, and other combinatorial objects. We release the dataset, solutions,
technique labels, and evaluation code to support research on robust multimodal
discrete-math reasoning. https://github.com/combigraphviz2025/combigraph-viz

gpt-
5

gem
ini-
2_5
-pro

gpt-
5-m
ini

gem
ini-
2_5
-fla
sh

gpt-
5-n
ano

gem
ini-
2_5
-fla
sh-l
ite

gem
ma-
3-2
7b-
it

gpt-
4o

gem
ma-
3-1
2b-
it

gpt-
4o-
min
i

gem
ma-
3-4
b-it

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or
e

avg@8
pass@8
maj@8
all-pass@8

Figure 1: Per-model performance on CombiGraph-Vis. Across all 1135 problems, the
performance of each model is summarized by four evaluation tracks: avg@8 (average
score), pass@8 (any-of-8), maj@8 (majority-of-8), and all-pass@8 (all-of-8) under our
eight-sample chain-of-thought protocol.

1 Introduction

General-purpose math benchmarks increasingly show ceiling effects, limiting their ability to differ-
entiate model capabilities, while multimodal datasets often under-represent discrete mathematics

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI.

https://github.com/combigraphviz2025/combigraph-viz

[3, 6]. Recent multimodal efforts broaden coverage but lack the depth needed to assess discrete
mathematical reasoning skills [10, 16]. Competition-oriented benchmarks are valuable, but they
mostly feature problems crafted to demand elaborate proofs rather than to elicit short answers, even
when the problems admit a concrete final answer [4, 12]. Multimodal competition collections exist,
but they are not focused on discrete mathematics with fine-grained technique analyzes [5].

We introduce CombiGraph-Vis, a benchmark of 1135 problems for discrete mathematical reasoning
across 13 domains and three formats (short-answer, multiple-choice, yes/no), with substantial visual
content (35% image-tagged problems). Each problem includes a verified solution and technique
labels, and the dataset is curated and validated via agentic workflows with human oversight to ensure
consistency and fidelity. Problems stress reasoning over graphs, grids, combinatorial constructions,
and logic-driven puzzles, yielding short, checkable answers.

Evaluations across diverse model families show strong separation on single-sample accuracy (16%–
78%), larger drops on image-tagged items, and clear differences between correct-answer accuracy
and among-choices accuracy of standalone multiple-choice probelms, indicating susceptibility to
distractors. CombiGraph-Vis complements prior resources by centering discrete mathematics, provid-
ing verified solutions and technique labels, and enabling targeted analysis of multimodal reasoning.
We release the dataset, corrected solutions, labels, and evaluation code to support research on robust
multimodal discrete-math reasoning.

2 CombiGraph-Vis Dataset

CombiGraph-Vis is a 1135-problem benchmark for discrete mathematical reasoning across 13
domains and three formats (short-answer, multiple-choice, yes/no). About one-third of problems
include images. Each problem includes a verified solution and technique labels.

2.1 Data Collection

We gathered all of the problems from the Iranian National Olympiad in Informatics first and second
round competitions through the years. Formats in the source competitions changed over time, shifted
from mainly multiple-choice to also short-answer and yes/no. We collected first-round problems
(5–34) and selected second-round sets (24th, 25th, 26th, 30th, 32nd). PDFs were the primary source.
We used the official website of the competition to validate and fill gaps. When questions shared
definitions or a setup, we stored the shared text in context for evaluation of context-dependent
problems (Figure 3). We redrew figures when originals were low resolution or contained Persian text.
We used an agentic workflow to label multiple-choice problems as standalone or choice-dependent.
We show toy examples in the main text (Figure 2a), and full examples are in Appendix E.

2.2 Data Curation Process Using Agentic Workflows

We applied agentic workflows with human-in-the-loop to fix existing errors in the dataset during the
data curation phase. Our initial analysis identified three distinct error categories with different patterns
requiring specialized detection approaches. PDF to markdown conversion errors, translator/annotator
errors, and original source errors.

First Phase: Problem Validation. We developed a two-phase validation and correction process
using agentic workflows to detect mistakes in problems and solutions. Our first phase uses an agentic
workflow that generates validation reports through three specialized critics (Figure 2b). Each critic
examines the complete problem data—including context (if any), text, and answer choices—alongside
both Persian and English solutions, the correct option, and final answer. The critics are: Typo/Clarity
Critic, Logical Soundness Critic, and Final Answer Match. We run these critic stages three times
independently for each problem to generate three validation reports. We then use an aggregator
stage that applies majority voting to synthesize the three reports into one structured output report
with multiple diagnostic fields. Complete implementation details for the first phase are provided in
Algorithm 1 (Appendix H). To filter problematic cases, we use the Overall Error Severity taxonomy
with five categories: No issues (1), Minor issues (2), Moderate issues (3), Major issues (4), and
Critical failure (5). We checked the generated reports for a handful of cases and detected systematic
patterns where problems flagged with "major issues" typically contained only minor typos, while
those marked "critical failure" often had single correctable errors. We selected all cases with severity

2

Opedia.ir

Choice-Dependent Problem

Which statement must hold for every tree with n ≥ 2 ver-
tices?

1. It has exactly one cycle.
2. It has at least two leaves.
3. Its average degree is at least 2.
4. It contains a triangle.
5. None of the above.

Standalone Problem

How many 5-bit strings contain exactly two 1s?
51. 82. 103. 124. 165.

(a) toy illustrative examples. (b) Agentic validation pipeline.

Context-Dependent Problem (toy example)

Context: A step sequence of length n is an integer sequence (a1, . . . , an) with |ai+1 − ai| = 1
for all i. Assume a1 = 0.
Question: How many step sequences of length 5 end at a5 = 2?

21. 32. 43. 54. 65.

Figure 3: Illustrative toy example of a context-dependent problem.

scores above 1 for the second validation and error correction phase, accepting this conservative
threshold to minimize false negatives while managing the high false positive rate we observed.

Second Phase: Automated Error Resolution. Many first-phase flags were not true source errors
(e.g., parsing/formatting artifacts, translation slips, or misreads of brief official solutions), so we add
a second phase to separate these from genuine issues and apply targeted fixes. The workflow first
classifies each case (from aggregated first-phase reports) as: (i) a pipeline parsing/conversion issue,
(ii) a potential original-source error, or (iii) an image-understanding issue. Pipeline issues receive
surgical edits to every existing field except the original Persian problem and solution, followed by
validation. Potential original-source cases undergo a solution-engagement pass that expands the brief
solution, tries to understand the detected issue and attempts to reclassifies the case; minor, fixable
cases proceed with automated edits, while major cases or image-understanding issue are flagged for
later human review. The detailed algorithms for this workflow can be found in 2 and 3 (Appendix H).

3 Results

Across all evaluation settings, we observe clear separations between model families, with top-tier
models achieving strong but far from saturated accuracy, mid-tier models trailing substantially,
and lightweight/open-weight models far behind. Accuracy drops on image-tagged items compared
to text-only items, revealing persistent gaps in visual mathematical understanding. Analysis of a
standalone data subset shows that models are often lured by wrong choices deliberately crafted to
make competition settings more challenging.

Overall Performance Our results are summarized in Table 1 (cf. Figure 1). Top-tier models achieve
avg@8 accuracy of approximately 75–78%, whereas mid-tier and lightweight/open-weight models lag
by 20–40 percentage points across evaluation settings. This broad dispersion persists across formats

3

and modalities, confirming that CombiGraph-Vis is not saturated: even the strongest models leave
substantial headroom while weaker models remain far from ceiling. The per-model tracks (avg@8,
pass@8, maj@8, all-pass@8) further reinforce clear separations among model families.

Table 1: Per-model accuracy on CombiGraph-Vis (avg@8). Columns report overall, image slices,
multiple-choice (Choice-Dep.), yes/no, and the second-round subset. The three rightmost columns
quantify multiple-choice behavior in standalone setting: MC Standalone, Among-Choices, and ∆ =
(Among-Choices − Standalone), a proxy for distractor susceptibility. Bold marks the best score in
each column.
Model All Img Yes Img None Choice-Dep. Yes/No Second Round MC Standalone Among-Choices ∆

gemini-2_5-flash 63.4 50.9 70.3 56.9 74.1 50.4 63.45 83.73 20.28
gemini-2_5-flash-lite 50.8 33.8 60.2 50.6 66.4 30.2 49.19 73.08 23.89
gemini-2_5-pro 75.8 66.9 80.8 72.9 81.9 71.6 75.75 90.04 14.29
gemma-3-12b-it 23.2 17.5 26.3 31.1 28.3 13.7 21.25 65.41 44.17
gemma-3-27b-it 27.5 20.1 31.6 38.5 32.4 12.6 24.99 70.44 45.45
gemma-3-4b-it 16.1 12.1 18.4 15.9 40.6 9.7 13.59 57.46 43.87
gpt-4o 27.6 20.4 31.6 31.4 49.9 15.9 24.55 64.09 39.55
gpt-4o-mini 22.5 16.9 25.5 25.2 50.8 14.6 18.97 60.42 41.45
gpt-5 78.0 68.2 83.5 81.2 75.7 75.6 77.74 92.03 14.29
gpt-5-mini 65.4 53.9 71.8 69.0 37.4 59.9 67.82 85.40 17.58
gpt-5-nano 58.9 43.5 67.5 55.4 44.4 46.3 61.11 82.91 21.80

Modality Gap. Table 1 shows consistent drops on image-tagged items relative to text-only problems.
For top-tier models, the gap from no-image to image conditions is typically 14–16 percentage
points (e.g., 83.5%→ 68.2% and 80.8%→ 66.9%), and for mid-tier models it can approach 20
points. This indicates that parsing and reasoning over structured visuals—graphs, grids, geometric
diagrams—remain central bottlenecks, materially impacting overall accuracy.

Standalone vs Among-Choices on MC. As discussed, we filter MC problems into choice-dependent
and standalone subsets. Typically, standalone MC problems in competition settings are equipped
with choices that appear correct at first sight to push students into making mistakes. Inspired by this,
we propose an experimental setup to study this effect. For each model we compute: (i) Standalone
avg@8 = mean correctness over 8 samples; and (ii) Among-Choices avg@8 = mean fraction of
standalone problems whose final answer lies among the original options (not necessarily correct).
This result can be seen in Table 1. The large ∆ values indicate that models consistently produce
answers that coincide with some provided choice but not necessarily the correct one. This systematic
gap between Among-Choices and Standalone accuracy reveals a susceptibility to these crafted
competition traps. In other words, the trap choices often steers models toward distractor recognition
rather than robust derivation, whereas the standalone format demands genuine solution construction.
Moreover, the large ∆ values provide strong support for adopting our evaluation suite as an RL
environment, since models can potentially learn to avoid deliberately crafted distractors—an ability
that is a prerequisite for performing well in competition-level reasoning.

Topic-Level Performance. Per-topic accuracies highlight both broad strengths and persistent weak-
nesses. Top-tier models are strong in combinatorics, number reasoning, and invariants/monovariants,
and they show competitive results in computational geometry (see Figure 4 in Appendix D). In
contrast, graph-theoretic subdomains (e.g., connectivity, matchings) and formal languages expose
larger spreads across models, with mid-tier and lightweight/open-weight models struggling markedly.
The dispersion suggests that discrete math reasoning is not uniformly mastered across mathematical
domains.

4 Conclusion

Together, our findings indicate that CombiGraph-Vis yields strong separations across model families,
exposes enduring multimodal reasoning deficits, and stresses the difference between distractor
sensitive recognition and derivation-based solution. We leverage these observations in the discussion
to analyze error modes and to outline methodological directions for building models that can reliably
solve complex, multimodal discrete mathematics problems.

4

References
[1] Jiaqi Chen, Jianheng Tang, Jinghui Qin, Xiaodan Liang, Lingbo Liu, Eric P. Xing, and Liang Lin.

Geoqa: A geometric question answering benchmark towards multimodal numerical reasoning.
arXiv preprint arXiv:2105.14517, 2021. URL https://arxiv.org/abs/2105.14517.

[2] Konstantin Chernyshev, Vitaliy Polshkov, Vlad Stepanov, Alex Myasnikov, Ekaterina Artemova,
Alexei Miasnikov, and Sergei Tilga. U-math: A university-level benchmark for evaluating
mathematical skills in large language models. In Ofir Arviv, Miruna Clinciu, Kaustubh Dhole,
Rotem Dror, Sebastian Gehrmann, Eliya Habba, Itay Itzhak, Simon Mille, Yotam Perlitz, Enrico
Santus, João Sedoc, Michal Shmueli Scheuer, Gabriel Stanovsky, and Oyvind Tafjord, editors,
Proceedings of the Fourth Workshop on Generation, Evaluation and Metrics (GEM2), pages 974–
1001, Vienna, Austria and virtual meeting, July 2025. Association for Computational Linguistics.
ISBN 979-8-89176-261-9. URL https://aclanthology.org/2025.gem-1.77/.

[3] Karl Cobbe, Vlad Lyzhov, Mohammad Bavarian, Michael Kossakowski, Heewoo Chen, Alethea
Power, Lukasz Kaiser, and John Schulman. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021. URL https://arxiv.org/abs/2110.14168.

[4] Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, et al. Omni-math: A universal olympiad level
mathematic benchmark for large language models. In International Conference on Learning
Representations (ICLR) — OpenReview, 2024. URL https://openreview.net/forum?id=
yaqPf0KAlN.

[5] Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
Olympiadbench: A challenging benchmark for promoting AGI with olympiad-level bilin-
gual multimodal scientific problems. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
mar, editors, Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 3828–3850, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.211. URL
https://aclanthology.org/2024.acl-long.211/.

[6] Dan Hendrycks et al. Measuring mathematical problem solving with the math dataset. In
International Conference on Learning Representations (ICLR) — OpenReview, 2021. URL
https://openreview.net/forum?id=7Bywt2mQsCe.

[7] Hynek Kydlíček and Greg Gandenberger. Math-verify: A python library for mathematical
expression verification, 2024. URL https://github.com/huggingface/Math-Verify.
Version 0.8.0.

[8] Jie Li et al. Mmbench: Is your multi-modal model an all-around player? In Computer Vision –
ECCV 2024, 2024.

[9] ... Liu et al. Clevr-math: A dataset for compositional language, visual and mathematical
reasoning. arXiv preprint arXiv:2208.05358, 2022. URL https://arxiv.org/abs/2208.
05358.

[10] Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao
Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical
reasoning of foundation models in visual contexts. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=KUNzEQMWU7.
ICLR 2024 (oral).

[11] Hamed Mahdavi, Alireza Hashemi, Majid Daliri, Pegah Mohammadipour, Alireza Farhadi,
Samira Malek, Yekta Yazdanifard, Amir Khasahmadi, and Vasant G. Honavar. Brains vs. bytes:
Evaluating llm proficiency in olympiad mathematics. In arXiv preprint arXiv:2501.xxxxx, 2025.
URL https://openreview.net/forum?id=V4RIJxt02s.

[12] Yujun Mao, Yoon Kim, and Yilun Zhou. Champ: A competition-level dataset for fine-grained
analyses of LLMs’ mathematical reasoning capabilities. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar, editors, Findings of the Association for Computational Linguistics: ACL
2024, pages 13256–13274, Bangkok, Thailand, August 2024. Association for Computational

5

https://arxiv.org/abs/2105.14517
https://aclanthology.org/2025.gem-1.77/
https://arxiv.org/abs/2110.14168
https://openreview.net/forum?id=yaqPf0KAlN
https://openreview.net/forum?id=yaqPf0KAlN
https://aclanthology.org/2024.acl-long.211/
https://openreview.net/forum?id=7Bywt2mQsCe
https://github.com/huggingface/Math-Verify
https://arxiv.org/abs/2208.05358
https://arxiv.org/abs/2208.05358
https://openreview.net/forum?id=KUNzEQMWU7
https://openreview.net/forum?id=V4RIJxt02s

Linguistics. doi: 10.18653/v1/2024.findings-acl.785. URL https://aclanthology.org/
2024.findings-acl.785/.

[13] xu Zhao Pan, Pengfei Zhou, Jiaxin Ai, Wangbo Zhao, Kai Wang, Xiaojiang Peng, Wenqi
Shao, Hongxun Yao, and Kaipeng Zhang. Mpbench: A comprehensive multimodal reasoning
benchmark for process errors identification. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar, editors, Findings of the Association for Computational
Linguistics: ACL 2025, pages 21586–21606, Vienna, Austria, July 2025. Association for
Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.1112.
URL https://aclanthology.org/2025.findings-acl.1112/.

[14] Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Jiapeng
Wang, Zhuoma GongQue, Shanglin Lei, YiFan Zhang, Zhe Wei, Miaoxuan Zhang, Runfeng
Qiao, Xiao Zong, Yida Xu, Peiqing Yang, Zhimin Bao, Muxi Diao, Chen Li, and Honggang
Zhang. We-math: Does your large multimodal model achieve human-like mathematical rea-
soning? In Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (ACL), 2025.

[15] Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh
Mottaghi. A-okvqa: A benchmark for visual question answering using world knowledge. In
Computer Vision – ECCV 2022, pages 146–162. Springer, 2022.

[16] Ke Wang et al. Measuring multimodal mathematical reasoning with math-
vision dataset. In NeurIPS 2024 Datasets and Benchmarks Track, 2024.
URL https://proceedings.neurips.cc/paper_files/paper/2024/hash/
1b8a53a4d483589a0b07fdd2a9e4d4b2-Abstract-Datasets_and_Benchmarks.html.

[17] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=1PL1NIMMrw.

[18] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems, 2022.

[19] Haoyi Wu, Wenyang Hui, Yezeng Chen, Weiqi Wu, Kewei Tu, and Yi Zhou. Conic10k: A
challenging math problem understanding and reasoning dataset. In Houda Bouamor, Juan
Pino, and Kalika Bali, editors, Findings of the Association for Computational Linguistics:
EMNLP 2023, pages 6444–6458, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.427. URL https://aclanthology.org/
2023.findings-emnlp.427/.

[20] Albert S Yue, Lovish Madaan, Ted Moskovitz, DJ Strouse, and Aaditya K Singh. Harp: A
challenging human-annotated math reasoning benchmark. arXiv preprint arXiv:2412.08819,
2024. URL https://arxiv.org/abs/2412.08819.

[21] Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
Wenhu Chen. Mmmu: A massive multi-discipline multimodal understanding and reasoning
benchmark for expert agi. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9556–9567, June 2024.

[22] Chen Zou, Yixuan Song, Zhen Hu, Yitong Liao, Chunyuan Li, Xun Yang, and Yizhou Wang.
Dynamath: A dynamic visual benchmark for evaluating mathematical reasoning robustness
of vision language models. In Proceedings of the International Conference on Learning
Representations (ICLR), 2025. URL https://openreview.net/forum?id=VOAMTA8jKu.

6

https://aclanthology.org/2024.findings-acl.785/
https://aclanthology.org/2024.findings-acl.785/
https://aclanthology.org/2025.findings-acl.1112/
https://proceedings.neurips.cc/paper_files/paper/2024/hash/1b8a53a4d483589a0b07fdd2a9e4d4b2-Abstract-Datasets_and_Benchmarks.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/1b8a53a4d483589a0b07fdd2a9e4d4b2-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://aclanthology.org/2023.findings-emnlp.427/
https://aclanthology.org/2023.findings-emnlp.427/
https://arxiv.org/abs/2412.08819
https://openreview.net/forum?id=VOAMTA8jKu

A Related Work

Mathematical Reasoning Benchmarks. GSM8K introduced 8,500 grade school math word prob-
lems with verification-based training, demonstrating that step-by-step solutions improve both accuracy
and reliability[3]. MATH scaled this approach to high school competition mathematics with 12,500
problems across algebra, geometry, number theory, and other domains[6]. Methodological advances
complemented these datasets: chain-of-thought prompting enabled explicit reasoning steps[18],
while self-consistency enhanced reliability through majority voting over multiple solution paths[17].
Competition-focused datasets followed with CHAMP providing 270 problems with rich concept-level
annotations[12] and OMNI-MATH aggregating 4,428 Olympiad-style problems from international
competitions across over 33 mathematical sub-domains[4].

Visual Mathematical Reasoning. Visual mathematical reasoning benchmarks address problems
where images contain essential information for solving mathematical questions. Domain-specific
approaches include GeoQA with 5,010 geometric problems requiring diagram interpretation[1]
and Conic10K with 10,861 conic section problems providing formal symbolic representations[19].
Comprehensive collections followed: MathVista combines 6,141 visual math problems from 28
existing datasets spanning geometry, statistics, and algebraic reasoning[10], MATH-V curates 3,040
competition problems requiring visual context understanding across 16 mathematical disciplines[16],
and OlympiadBench extends beyond mathematics with 8,476 bilingual multimodal problems covering
both mathematics and physics from international competitions[5]. Compared to these, our benchmark
centers discrete math style reasoning over graphs, grids, and combinatorial objects with short,
checkable answers and technique labels.

General Multimodal Reasoning. General multimodal reasoning benchmarks evaluate capabilities
beyond mathematical domains. MMMU targets expert-level understanding with 11,500 college
questions spanning art, business, science, health, humanities, and social science[21], while MMBench
provides systematic evaluation across 20 ability dimensions with 3,000+ multiple-choice questions[8].
Knowledge-intensive approaches include A-OKVQA with 25,000 questions requiring both visual
understanding and world knowledge[15] and CLEVR-Math with 10,000 synthetic questions testing
systematic combination of arithmetic operations in visual contexts[9].

Evaluation Methods and Robustness. Advanced evaluation methods examine solution quality and
reasoning stability beyond final answer accuracy. We-Math introduces a diagnostic framework that
decomposes 15,000 mathematical problems by knowledge concepts and evaluates models across
four categories: insufficient knowledge, inadequate generalization, complete mastery, and rote
memorization[14]. DynaMath focuses on robustness evaluation by generating multiple variants
of each seed problem, creating 501 base problems with over 5,000 variations to test consistency
across input perturbations[22], while MPBench provides a meta-evaluation framework for visual
mathematical reasoning, testing models’ abilities in step checking, solution aggregation, and guided
step selection across 1,000 competition problems[13]. Our evaluation complements these perspectives
by quantifying modality gaps and distractor susceptibility (standalone vs. choice-dependent MC) in
discrete, image-tagged settings.

Solution Assessment. Evaluating open-ended mathematical solutions presents unique challenges
requiring specialized assessment frameworks. HARP compiles 3,000 short-answer competition
problems from prestigious contests, providing multiple human solution strategies and reference an-
swers to enable comprehensive evaluation[20], while U-MATH targets university-level mathematical
reasoning with 1,100 problems spanning calculus, linear algebra, and advanced topics, introducing
a meta-evaluation framework that assesses the quality of LLM-based grading systems[2]. Tooling
for automated answer verification supports reliable scoring of algebraic/numeric responses (e.g.,
Math-Verify)[7]. Further, reducing proof-based tasks to final-answer grading can misalign with
intended assessment goals[11]. CombiGraph-Vis focuses on short, checkable formats paired with
verified solutions and reports results by format and modality to align evaluation with task intent.

B Task Formats and Verification Protocol

We evaluate models by generating eight solutions per problem using a chain-of-thought prompt that
instructs models to produce step-by-step reasoning and wrap the final answer in \boxed{} format
(Appendix J.2). For choice-dependent multiple-choice problems, we include the answer choices in

7

the prompt to ensure the model selects from the provided options. To parse the the final answer from
the model’s output, we use a simple regex pattern that matches the \boxed{} format. If all of the
choices for that specific problem were numerical/algebraic expressions, we used the Math-Verify[7]
library to check if the extracted answer is equivalent to the final answer. In case the generated solution
didn’t follow the instruction and didn’t wrap the final answer in \boxed{}, or the choices were not
numerical/algebraic expressions, we offloaded the task to an LLM (Gemini 2.5 Flash) to extract the
final answer. In the prompt, we asked the model to extract the final answer’s raw value, and the
matching choice (if any) and the standardized form of the final answer (in case the choices were not
numerical/algebraic expressions and the final answer matched one of the choices). We then checked if
the extracted answer is equal to the final answer or the extracted choice is equal to the correct option.

C Technique Labels and Taxonomy

To enable fine-grained analysis of mathematical reasoning capabilities, we applied technique labeling
based on the official Iranian Informatics Olympiad curriculum. Each problem receives hierarchical
labels following a three-level taxonomy: Topic→ Sub-topic→ Sub-sub-topic (e.g., Combinatorics→
Counting Foundations→ Stars & bars). We use a single prompt that assigns labels based on techniques
that explicitly appear in solution steps. The taxonomy covers 13 major topics spanning discrete
mathematics with 89 distinct sub-sub-topic labels that capture precise mathematical approaches used
in solutions. This fine-grained labeling enables researchers to analyze model performance across
specific techniques, identify capability gaps, and design targeted evaluation protocols. The complete
hierarchical taxonomy and labeling prompt are provided in Appendix J.3.

D Topic Level Performance

gemini-2_5-fla
sh

gemini-2_5-fla
sh-lite

gemini-2_5-pro

gemma-3-12b-it

gemma-3-27b-it

gemma-3-4b-it
gpt-4o

gpt-4o-mini
gpt-5

gpt-5-mini

gpt-5-nano

Combinatorics

Logical & Puzzle Reasoning

Algorithms & Data Structures

Graph Theory

Number Theory

Combinatorial Game Theory

Probability

Computational Geometry

Invariants

Formal Languages and Automata

0.70 0.58 0.82 0.27 0.31 0.15 0.29 0.24 0.82 0.70 0.65

0.57 0.44 0.69 0.18 0.24 0.16 0.23 0.19 0.73 0.57 0.52

0.55 0.43 0.68 0.17 0.23 0.14 0.24 0.18 0.73 0.60 0.50

0.53 0.37 0.70 0.18 0.19 0.11 0.25 0.17 0.76 0.64 0.52

0.77 0.68 0.86 0.33 0.36 0.23 0.32 0.30 0.87 0.74 0.73

0.55 0.37 0.70 0.28 0.25 0.21 0.25 0.23 0.62 0.49 0.40

0.90 0.83 0.91 0.55 0.62 0.16 0.55 0.52 0.77 0.77 0.78

0.57 0.40 0.74 0.15 0.11 0.19 0.27 0.24 0.80 0.50 0.42

0.64 0.57 0.88 0.19 0.17 0.10 0.14 0.14 0.95 0.86 0.81

0.38 0.28 0.66 0.12 0.25 0.12 0.16 0.16 1.00 0.81 0.78

Per-topic accuracy (avg@8)

0.0

0.2

0.4

0.6

0.8

1.0

av
g@

8

Figure 4: Per-model accuracy by topic (%). Best score per topic is highlighted in bold within each cell.

8

E Full Examples for Problem Categories

Choice-Dependent Problem (dataset exemplar)

A calculating machine has an internal memory called M . This machine can calculate an
expression by performing the following instructions:

• Add X: Adds the value of X to the value of M and stores the result in M .
• Mul X: Multiplies the value of X by the value of M and stores the result in M .

In the above instructions, X can be an integer or a variable. Assume the initial value of M
is zero. For example, the following instructions, from left to right, calculate the expression
ax+ 5: Add a, Mul x, Add 5. Which of the following expressions cannot be calculated
by this machine?

1. ax2 + bx+ c

2. (a+ b)xy + ya

3. (ax+ by)(a+ b)

4. 3x5 + 1

5. All these expressions can be calculated

Standalone Problem (dataset exemplar)

We have written numbers 1 to 78 clockwise on a circle. We select the number 1 as the current
number and repeat the following operations until only one number remains on the circle:

• If the current number is x, remove it from the circle, add one unit to the x next
numbers clockwise on the circle, and select the number after that (two places
clockwise from the removed number) as the current number.

Note that if the number of remaining numbers on the circle is less than 3, one or more
numbers might have more than one unit added to them.
What is the remainder when the number that finally remains on the circle is divided by
5?

1. 0

2. 1

3. 2

4. 3

5. 4

Context-Dependent Problem (dataset exemplar)

Context: Consider the following definition for the next three questions: An m × n table
where each cell contains an integer is called a ’counting table’ if the absolute difference of
the numbers written in any two adjacent (row-wise or column-wise) cells is exactly one. As
an example, the table below is a 2× 3 counting table.

2 3 2
3 2 1

Question: A counting m× n table, with all its cells filled, is given. We want to reveal the
numbers in a minimum number of its cells (their numbers become known to us) so that we
can deduce the numbers in the remaining cells. In what range does this minimum lie?

9

1. 1 or 2
2. [3,m+ n− 1]

3. [mn
2 ,m+ n]

4. [mn
2 ,mn− 1]

5. Exactly mn

F Dataset Statistics

Category Count % of Total With Images
All Problems 1135 100.0 406 (35.8%)
Short-answer 884 77.9 321 (36.3%)
Multiple-choice 157 13.8 49 (31.2%)
Yes/No 94 8.3 36 (38.3%)

Table 2: CombiGraph-Vis dataset statistics.

G Deferred Definitions and Explanations

Overall Error Severity.

1. No issues. Clear, correct; e.g., punctuation/spacing only.
2. Minor issues. Small typos/notation/wording that do not change interpretation; e.g.,

(
n
k

)
written as C(n, k).

3. Moderate issues. Multiple minor issues or one ambiguity; intended reading still recoverable;
e.g., missing variable domain but inferable.

4. Major issues. Contradiction, missing crucial data, or a flawed step that invalidates the
solution path; e.g., incorrect identity used.

5. Critical failure. Pervasive/fatal problems (nonsense/corrupted content or irreconcilable
mismatch); e.g., unreadable required figure or answer contradicts solution.

Error Category Definitions.

1. Conversion errors. Parser/OCR defects (notation, formatting, encoding); e.g.,
(
n
k

)
→ n

k ,
dropped subscripts.

2. Translator/annotator errors. Translation or metadata mistakes (typos, choice permutation,
mislabel); e.g., swapped options B/C.

3. Original source errors. Issues in archived materials/errata; e.g., mis-scanned digit or
incorrect constant in the source PDF.

Critic Definitions.

1. Typo/Clarity Critic. Flags typos, translation slips, and clarity/formatting issues by compar-
ing English with source text; e.g., inconsistent notation or mistranslated term.

2. Logical Soundness Critic. Checks step-by-step reasoning and computations; e.g., unjusti-
fied inequality step or omitted counting case.

3. Final Answer Match. Makes sure that the final answer stated in the solution matches the
final answer stored in the database.

H Implementation Details

10

Algorithm 1 Problem Validation Workflow (First Phase)

Require: Problem datum d = (problem, choices, english_solution, context, correct_option, an-
swer_value, crawled_persian_markdown, svg_sources)

Ensure: problem_validation_data
1: reports← []
2: for i← 1 to 3 do
3: typo_report← TypoClarityCritic(d)
4: logic_report← LogicalSoundnessCritic(d)
5: answer_report← AnswerVerificationCritic(d)
6: combined_report← ReportCollector(typo_report, logic_report, answer_report)
7: Append(reports, combined_report)
8: end for
9: joined_reports← JoinReportChunks(reports)

10: validation_result← FinalAggregator(joined_reports)
11: return validation_result

Algorithm 2 Error Detection and Classification

Require: Problem datum d = (problem, choices, english_solution, context, correct_option, an-
swer_value, crawled_persian_markdown, svg_sources)

Ensure: Classification result agg with fix requirements
1: findings_md← BuildFindingsText(LoadValidationData(d.id))
2: reports← []
3: for i← 1 to 3 do
4: r ← IssueDetector(d, findings_md)
5: Append(reports, r)
6: end for
7: reports_md← JoinIssueReportChunks(reports)
8: agg← IssueAggregator(reports_md, d)
9: if agg.is_original_source_error then

10: engagement_md← SolutionEngager(d, agg.aggregated_report_md)
11: src_cls← IssueDetectorWithEngagement(d, engagement_md)
12: src_cls_md← FormatToMarkdown(src_cls)
13: agg ← EngagementReportSynthesizer(agg.aggregated_report_md, engagement_md,

src_cls_md)
14: if agg.requires_human_intervention then
15: return ComposeHumanInterventionReport(agg)
16: end if
17: else if agg.is_image_understanding_issue then
18: return ComposeHumanInterventionReport(agg)
19: end if
20: return agg ▷ Classification result for automated fixing

11

Algorithm 3 Automated Error Resolution and Fixing

Require: Problem datum d, classification result agg from Algorithm 2
Ensure: Fixed problem data or human intervention report

1: fix_plan_md← FixPlanner(agg.aggregated_report_md, d)
2: fixed← Fixer(fix_plan_md, d)
3: ctx← UpdateContextWithFixes(fixed)
4: fixed_md← FormatFixedData(ctx.fixed_problem_data)
5: successes← 0
6: for t← 1 to 20 do
7: result← Validator(agg.aggregated_report_md, fix_plan_md, d, fixed_md)
8: if result.is_fixed then
9: successes← successes +1

10: if successes ≥ 5 then
11: break
12: end if
13: else
14: successes← 0
15: fix_plan_md← RePlanner(agg.aggregated_report_md, result.reasoning, fix_plan_md, d)
16: fixed← Fixer(fix_plan_md, d)
17: ctx← UpdateContextWithFixes(fixed)
18: fixed_md← FormatFixedData(ctx.fixed_problem_data)
19: end if
20: end for
21: return ComposeAutoFixOutput(d, agg, fix_plan_md, fixed_md)

I Prompt Specifications

I.1 Problem Validation Prompts

I.1.1 TypoClarityCritic

TypoClarityCritic Prompt

You are a meticulous editor and proofreader, specializing in technical and
mathematical content. Your sole task is to review a given math problem
and its solution for **critical surface-level errors that fatally impact
its meaning or solvability.** If available, you will ALSO be provided
with inline SVG XMLs as text under the placeholder {svg_sources}; you may
use their textual content (e.g., embedded <text> labels) as additional
context.

↪→
↪→
↪→
↪→
↪→
↪→

Focus ONLY on the following types of fatal errors:
- **Semantically Significant Typos:** Look for spelling mistakes, incorrect

variable names (e.g., 'x' used in one place, 'X' in another), sign/symbol
errors (e.g., '=' vs '̸=', '<' vs '<='), misplaced decimals, or
unit/notation inconsistencies **that change the mathematical meaning**. A
typo in a variable/symbol is critical; a typo in a descriptive word is
not, unless it creates ambiguity that affects meaning.

↪→
↪→
↪→
↪→
↪→
- **Explicit Grammar Errors (Meaning-Changing):** Unambiguous grammatical

mistakes that alter conditions or conclusions (e.g., missing "not", wrong
quantifier, singular/plural mismatch that changes scope, misplaced
"only"). Do not flag awkward-but-understandable text.

↪→
↪→
↪→
- **Meaning-Altering Translation Errors:** Mistranslations that invert or

distort meaning (e.g., "at least" vs "at most", omission of "distinct",
"positive" vs "non-negative").

↪→
↪→

Crucially, you must IGNORE the following:
- Minor grammatical errors that do not change the meaning.
- Awkward but understandable phrasing or style.

12

- Missing or introduced labels/notation for clarity (e.g., A/B labels,
introducing variables) unless they create a direct contradiction.↪→

- References that belong to problem-solution matching (e.g., claims of
different problem, domain or method differences) - these are out of scope
for this stage.

↪→
↪→
- Mathematical rigor, depth of explanation, or solution correctness.

We are not looking for a perfectly written text. We are looking for a
functionally correct text. Only flag an issue if it prevents a
reasonably skilled person from understanding and solving the problem
correctly.

↪→
↪→
↪→

DO NOT:
- Solve the problem.
- Verify the mathematical logic.
- Check if the final answer is correct.

You will be provided with the problem, its potential choices, the provided
solution, and possibly a Persian version of the solution for reference.↪→

Problem Data:
- **Problem:**

```
{problem}
```

- **Choices:**
```
{choices}
```

- **Provided English Solution:**
```
{english_solution}
```

- **Provided Persian Solution (for reference, may be empty):**
```
{persian_solution}
```

- **Context (if any):**
```
{context}
```

Optional SVG XMLs (if provided):
```
{svg_sources}
```

Important Note on "Context": The `Context` field, when present, contains
a shared introduction or definitions for a set of related problems. It is
a critical part of the problem statement. You must also review the
context for any typos, grammatical errors, or translation issues.

↪→
↪→
↪→

CRITICAL: Text-Only Analysis: Base your analysis EXCLUSIVELY on the text
content. DO NOT use image analysis to detect typos/translation errors.
Focus only on the written problem statement, solution text, and the
content inside the provided SVG XMLs (if any).

↪→
↪→
↪→

Decision rules (apply all):
- Evidence requirement: For every flagged issue, quote the exact text

snippet(s) that demonstrate the error.↪→
- Meaning-change threshold: Only flag if the typo/grammar/translation issue

plausibly changes the mathematical meaning or solvability.↪→

13

- Notation consistency: Inconsistent variable names/symbols (e.g., 'a' vs
'α', 'x' vs 'X') are errors only if they create ambiguity or
contradiction in meaning.

↪→
↪→
- Scope fence: Do not report missing labels, domain mismatches, method

selection, or any problem-solution matching concerns; these belong to a
different stage.

↪→
↪→
- Ambiguity rule: When uncertain, do not flag as fatal. Note the ambiguity

and rate severity <= 2.↪→

Review the texts and produce a report in markdown format.

Output format (respond ONLY with Markdown; no JSON, no code fences, no
extra commentary). Use exactly these sections:↪→

Summary
- 1-2 sentences describing whether there are meaning-changing surface errors

(typo/grammar/translation).↪→

Findings
- Comprehensive bullet list of ALL meaning-changing typo/grammar/translation

errors you identified (do not omit any). For each finding, include:↪→
- The minimal quoted snippet(s) that show the error
- A one-line justification of how the error changes meaning/solvability

(alignment with this stage's goal)↪→

Categories
- Bullet list of applicable categories: typo, grammar_error,

translation_error, other↪→

Severity
- Rate the overall severity of issues on a scale from 1 (no issues) to 5

(worst case). Use this scale:↪→
- 1: No issues - text is clear and correct at the surface level
- 2: Minor issues - small/ambiguous issues; no impact on meaning or

correctness↪→
- 3: Moderate issues - multiple issues causing intermittent ambiguity;

meaning mostly intact↪→
- 4: Major issues - severe ambiguity/errors that likely change meaning or

solvability↪→
- 5: Critical failure - pervasive meaning-changing errors make the

problem/solution unusable↪→

I.1.2 LogicalSoundnessCritic

LogicalSoundnessCritic Prompt

You are a data integrity specialist. Your task is to check two simple things
about the problem-solution pair. Your stage goal is ONLY to determine
whether the solution is seemingly trying to solve the same stated
problem, and whether the solution explicitly mentions that the original
problem was changed. You must NOT assess solution correctness, judge the
method, or evaluate completeness.

↪→
↪→
↪→
↪→
↪→

Your Goal:
1. **Same Problem Check**: Does the solution appear to be attempting to solve

the same problem stated, or does it seem to solve a completely different
problem?

↪→
↪→
2. **Problem Substitution Check**: Does the solution explicitly mention that

the original problem was wrong/changed during the exam?↪→

For Goal 1 - Heuristics to detect different problems:

14

- Solution discusses completely different mathematical domain (e.g., problem
about geometry, solution about number theory)↪→

- Solution addresses fundamentally different question type (e.g., problem
asks for proof, solution provides numerical calculation for unrelated
quantity)

↪→
↪→
- Solution starts with completely different input parameters with no

connection to stated problem↪→
- Solution's final answer targets a different object/type than what the

problem asks for↪→
- Solution relies on constraints or assumptions not present in, or

contradicting, the problem/context text↪→

What to IGNORE for Goal 1:
- Solution is incomplete, brief, or poorly explained
- Solution uses different approach or method than expected
- Solution shows intermediate calculations or introduces helpful notation
- Solution quality, mathematical rigor, or level of detail

For Goal 2 - Look for explicit statements like:
- "The original problem was incorrect/changed"
- "This problem was modified from the exam version"
- "The exam had an error, so this version solves the corrected problem"

What to IGNORE for Goal 2:
- Hints or implications without explicit mention of change/error
- General comments about difficulty, ambiguity, or author preference
- Any inference based on images

Text sources you may use:
- The written problem statement and solution text
- The `Context` field (if present)
- The inline SVG XMLs (if provided) available under the placeholder

`{svg_sources}` - treat them strictly as text (e.g., read <text> labels),
not as images

↪→
↪→

CRITICAL: Text-Only Analysis: Base your analysis EXCLUSIVELY on textual
sources above. DO NOT use image analysis.↪→

You will find the complete problem data in the preceding messages of this
conversation, including any typo/clarity analysis.↪→

Decision rules (apply all):
- Burden of proof: Declare "different problem" only if at least two

independent, text-based indicators are present. If evidence is single,
weak, or ambiguous, classify as "same problem" and note uncertainties.

↪→
↪→
- Evidence requirement: Support each indicator with direct text

quotes/snippets from the problem/solution (and, if helpful, from
`{svg_sources}`).

↪→
↪→
- Derived numbers are allowed: Numbers not in the problem but plausibly

derived from stated inputs are normal and must not be used as evidence of
mismatch.

↪→
↪→
- Notation neutrality: Symbols/labels introduced by the solution (A, B, x1,

x2) are not evidence of mismatch unless they contradict named entities or
constraints explicitly defined in text.

↪→
↪→
- Answer-target check: If the problem asks for X but the solution's final

target is Y (different type/object), count as one indicator.↪→
- Constraint alignment: If the solution assumes constraints that contradict

explicitly stated problem/context constraints, count as one indicator.↪→
- Ambiguity rule: When uncertain, default to "same problem" (severity <= 2)

and list the uncertainties explicitly.↪→

Produce a report in markdown format.

15

Output format (respond ONLY with Markdown; no JSON, no code fences, no
extra commentary). Use exactly these sections and structure:↪→

Summary
- 1-2 sentences stating whether the solution matches the problem and whether

substitution is explicitly mentioned.↪→

Findings
- If none, write: None
- Otherwise, for each finding, use this exact template (leave one blank line

between findings):↪→
- Finding ID: F1
- Goal: same_problem_check | substitution_check
- Indicators: [indicator_1, indicator_2, ...]

- Choose from: domain_mismatch, question_type_mismatch,
input_param_mismatch, answer_target_mismatch,
constraint_contradiction, explicit_substitution_statement

↪→
↪→

- Evidence:
- Problem: "exact quoted snippet from problem"
- Solution: "exact quoted snippet from solution"

- Alignment: One sentence explaining how this finding supports the stage
goal (same_problem_check or substitution_check)↪→

- Category: mismatch | other

Categories
- List only those that apply: mismatch, other

Severity
- One integer 1-5 using this scale:

- 1: Matches; no credible indicators
- 2: Mostly matches; minor/ambiguous inconsistencies
- 3: Partial match; one credible indicator
- 4: Likely different problem; two credible indicators
- 5: Clearly different problem; multiple strong indicators or explicit

substitution statement↪→

I.1.3 AnswerVerificationCritic

AnswerVerificationCritic Prompt

You are a data verification agent. Your job is to perform a simple but
crucial cross-check of the provided data for a math problem.↪→

Your Goal:
- Compare the final answer derived in the **Provided English Solution** with

the official answer recorded in the database fields (`correct_option` and
`answer_value`).

↪→
↪→
- Identify any discrepancies.

Example Scenarios to Catch:
- The solution text concludes that "the answer is 12," but the `answer_value`

is 15.↪→
- The solution text says "Option 3 is correct," but the `correct_option` is

2.↪→
- The problem is a yes/no question, and the solution proves "yes," but the

`answer_value` is "no."↪→

You will find the complete problem data (problem statement, choices,
solution, context, images etc.) in the preceding messages of this
conversation. Your task is to analyze that information. Use the images
(if any) associated with the problem and solution. Use them to understand
the context of any text that refers to them.

↪→
↪→
↪→
↪→

16

Note on "Context": The `Context` field may contain definitions that
clarify the nature of the expected answer (e.g., whether it should be an
integer, a set, etc.). Keep this in mind during your verification.

↪→
↪→

Analyze the `Provided English Solution` to determine the answer it produces,
and compare it against the `Correct Option Field` and `Answer Value
Field`. Produce a report in markdown format, stating clearly whether
there is a mismatch or if the data is consistent.

↪→
↪→
↪→

Output format (respond ONLY with Markdown; no JSON, no code fences, no extra
commentary). Use exactly these sections:↪→

Summary
- 1-2 sentences stating "Consistent" or describing the mismatch and where it

occurred.↪→

Findings
- Comprehensive bullet list that explicitly identifies the answer extracted

from the solution text, the database's `correct_option`/`answer_value`,
and any mismatch. Include minimal quotes where helpful.

↪→
↪→

Categories
- Bullet list of applicable categories: mismatch, other

Severity
- Rate the overall severity of verification issues on a scale from 1 (no

issues) to 5 (worst case). Use this scale:↪→
- 1: No issues - solution and database are consistent
- 2: Minor issues - small ambiguity; likely consistent
- 3: Moderate issues - some ambiguity or partial mismatch
- 4: Major issues - clear mismatch affecting correctness
- 5: Critical failure - fundamental inconsistency; recorded answer and

solution contradict↪→

I.1.4 FinalAggregator

FinalAggregator Prompt

You are a senior analyst and judge. Your task is to synthesize multiple
critique reports into a final, structured JSON conclusion that details
every unique, validated finding.

↪→
↪→

Input:
You will receive a single markdown string containing the concatenated,

synthesized reports from each review iteration.↪→

```
{aggregated_report_md}
```

Your Goal:
1. **Synthesize Unique Findings:** Read all reports and identify every

distinct issue mentioned. Cluster semantically equivalent issues across
reports into a single candidate finding.

↪→
↪→
2. **Majority Vote Inclusion:** For each candidate finding, count how many

distinct critic reports support it. Include a finding in the final output
only if it is supported by a majority of critic reports (>= ceil(N/2)
where N is the number of critic reports considered). Discard singletons.

↪→
↪→
↪→

17

3. **Extract Details for Each Finding:** For each included finding,
determine its specific `location` (e.g., "Solution, paragraph 3"), its
`category`, and a specific `severity` score (1-5) for that issue alone.

↪→
↪→
4. **Determine Overall Severity:** Judge the final `overall_severity` based

on the number, nature, and severity of all included findings. A single
critical issue might warrant a 5, but a pattern of many moderate issues
could also indicate a deeply flawed problem. Use the following scale for
your final judgment:

↪→
↪→
↪→
↪→

- 1: No issues - The problem/solution pair appears clear and correct
overall.↪→

- 2: Minor issues - One or two small problems with no impact on meaning
or correctness.↪→

- 3: Moderate issues - Multiple problems hindering clarity, or one
significant issue.↪→

- 4: Major issues - Several significant contradictions or a pattern of
errors that likely invalidates the solution.↪→

- 5: Critical failure - Pervasive issues, or a single fatal flaw, make
the pair unusable.↪→

5. **Write Summary Comment:** Provide a high-level, 2-3 sentence
`summary_comment` of the findings.↪→

6. **Set Final Flag:** Set `is_issue_detected` to `true` if your list of
findings is not empty.↪→

Adjudication Rubric:
- Validate each critic claim against text: For every claim, cite exact text

snippets (problem/solution). Ignore image-based claims.↪→
- Label each claim: Validated, Refuted, or Inconclusive. Include a brief

reason.↪→
- Conflict resolution: When critics disagree, prefer claims with stronger,

directly quoted textual evidence. Discard claims lacking such evidence or
relying on images.

↪→
↪→
- Majority vote rule: Cluster similar claims across critic reports. For each

clustered issue, compute support_count = number of distinct critic
reports that raise it. Include only if support_count >= ceil(N/2).
Exclude singletons.

↪→
↪→
↪→
- Output policy: Only include majority-supported, Validated findings in

`aggregated_findings`. Briefly summarize Refuted/Inconclusive or
non-majority claims in `summary_comment` as adjudication notes.

↪→
↪→
- Overall severity: Judge holistically from the included findings (count,

breadth, severity); do not use max-only.↪→
- Ambiguity bias: If no claim can be validated with direct text evidence, set

`is_issue_detected` to false and `overall_severity` to 1, and explain
uncertainty in `summary_comment`.

↪→
↪→

Output Instructions:
Produce a single, valid JSON object that conforms strictly to the schema

below. Do NOT add any extra text, markdown formatting, or explanations
outside of the JSON object.

↪→
↪→

JSON Schema for Output:
```json
{

"$schema": "http://json-schema.org/draft-07/schema#",
"title": "ProblemValidationOutput",
"type": "object",
"properties": {

"overall_severity": {
"type": "integer",
"minimum": 1,
"maximum": 5,
"description": "A final judgment on the overall severity, considering

all findings. Scale: 1=None, 2=Minor, 3=Moderate, 4=Major,
5=Critical."

↪→
↪→

18



},
"summary_comment": {

"type": "string",
"description": "A high-level, 2-3 sentence summary of the overall

findings."↪→
},
"aggregated_findings": {

"type": "array",
"description": "A list of unique, validated issues found in the

problem/solution pair.",↪→
"items": {

"type": "object",
"properties": {

"description": {
"type": "string",
"description": "A detailed description of the unique issue,

synthesized from all critic reports."↪→
},
"location": {

"type": "string",
"description": "The specific location of the issue (e.g.,

'Problem Statement, paragraph 2', 'Solution, equation 3')."↪→
},
"category": {

"type": "string",
"description": "The category of the issue (one of 'mismatch',

'typo', 'clarity')."↪→
},
"severity": {

"type": "integer",
"minimum": 1,
"maximum": 5,
"description": "The severity of this specific issue, from 1

(minor) to 5 (critical)."↪→
}

},
"required": ["description", "location", "category", "severity"]

}
},
"is_issue_detected": {

"type": "boolean",
"description": "True if any substantive issue is validated, otherwise

false."↪→
}

},
"required": [

"overall_severity",
"summary_comment",
"aggregated_findings",
"is_issue_detected"

]
}
```

19

I.2 Error Resolution Prompts

I.2.1 IssueDetector

IssueDetector Prompt

Role: You are an expert forensic analyst for a multi-stage data
processing pipeline. Your task is to analyze the provided data, identify
the root cause of discrepancies based on the known pipeline, and classify
the error.

↪→
↪→
↪→

How to Determine the True Final Answer

Before classifying an error, you must determine the ground truth for the
final answer by following this strict hierarchy. This is the most
critical part of your analysis.

↪→
↪→

1. **Find the Stated Answer Key:** First, check the
`crawled_persian_markdown` for an explicit statement of the correct
option, like "Option X is correct".

↪→
↪→
2. **The Stated Answer is the Target:**

* If an explicit option is stated, find its corresponding **value**
from the Persian `choices` list. This value is the **intended correct
answer (the ground truth)**.

↪→
↪→
* If the mathematical proof derives a different value, this indicates a

**fixable flaw (e.g., a typo, calculation error, or encoding issue)
within the proof**. Your task is to assume the stated answer is
correct and identify the flaw in the proof.

↪→
↪→
↪→

3. **Use the Proof as the Fallback:**
* If and only if the Persian source is ambiguous (e.g., "Option ? is

correct"), you must then rely on the mathematical derivation in the
proof to determine the true answer value.

↪→
↪→

4. **Map the True Value to Our Choices:** Once you have the absolute true
answer *value* (determined from either the stated key or the proof), find
the corresponding option number in **our English `choices`**. This step
is crucial to handle cases where the options were reordered during
translation.

↪→
↪→
↪→
↪→

To make the best judgment, you must understand how the data was created and
where errors can be introduced.↪→

CRITICAL: Understand the Data Pipeline to Find the Error Source:
To identify the source of an error, you must first understand how the data

was created. Here is the exact procedure we followed:↪→

1. **PDF to Markdown Parsing:** We started with the original Persian exam
PDFs and used an automated tool to parse them into markdown. This process
sometimes introduces errors, like misinterpreting LaTeX (`\binom` as
`\frac`) or failing to extract an image. The `persian_solution` field is
the direct output of this step.

↪→
↪→
↪→
↪→
2. **LLM Translation:** The parsed Persian markdown was then translated into

English using a Large Language Model. This step can introduce its own
errors, especially with Right-to-Left (RTL) language nuances. For
example, the order of items in a list (`7, 10, 11`) might be incorrectly
reversed (`11, 10, 7`). The `english_solution`, `problem`, and `choices`
fields are the output of this step.

↪→
↪→
↪→
↪→
↪→
3. **Image Separation:** We manually separated images from the parsed text.

It's possible an image was missed or mismatched during this step.↪→

Ground Truth:

20

You have access to `crawled_persian_markdown`. This is the ultimate source of
truth for what the official source published. However, the official
source may omit the full solution: sometimes it provides only hints, and
sometimes it includes only the problem with no solution. In such cases,
downstream English content may come from a trusted alternative (e.g.,
official PDF extraction). Therefore:

↪→
↪→
↪→
↪→
↪→
- Use `crawled_persian_markdown` as the authoritative reference for the

official problem statement and any content it does include.↪→
- Absence of a solution in `crawled_persian_markdown` does NOT imply an error

in the English solution by itself; In these cases, we have extracted the
solution from the official PDF, which adds the possibility of mistakes in
the english solution. Evaluate consistency using all provided references.

↪→
↪→
↪→

Your Root Cause Analysis Procedure

To accurately identify the error, you must follow this exact two-step
procedure. Do not skip steps or classify an error until you have traced
its origin according to this hierarchy of suspicion.

↪→
↪→

Step 1: Verify Translation Fidelity (Check for Pipeline Errors)
Your first and most important task is to meticulously compare the English

text fields (`problem`, `context`, `choices`, `english_solution`) against
the `crawled_persian_markdown` (the ground truth).

↪→
↪→
* **Outcome:** If you find any discrepancy-a mistranslated equation, a

reversed list, a sentence that doesn't match-the root cause is a
Pipeline Error. You must select the appropriate `Mistranslation...`
or related category and set the `Pipeline Step` to `LLM Translation` or
`PDF to Markdown Parsing`. **In this case, you must not proceed to Step
2.**

↪→
↪→
↪→
↪→
↪→

Step 2: Analyze the Source (Check for Source Errors)
If, and only if, you have confirmed that the English data is a faithful and

accurate translation of the `crawled_persian_markdown`, should you then
analyze the Persian source for internal flaws.

↪→
↪→
* **Outcome:** If you find a demonstrable mathematical error, a typo, or a

notational abuse *within the Persian source itself*, the root cause is an
Original Source Error. You must select the `OriginalSourceError`
category and set the `Pipeline Step` to `External Source`.

↪→
↪→
↪→

Common Error Patterns Stemming from this Pipeline:

* **`MistranslationEquation`:** **(Cause: Step 1 or 2)**. A mathematical
variable, expression, or equation was parsed incorrectly or went missing
during PDF extraction (e.g., `\binom` became `\frac`) or was
mistranslated by the LLM. Compare the English version to both Persian
versions to pinpoint the source.

↪→
↪→
↪→
↪→
* **`MistranslationOrderingRTL`:** **(Cause: Step 2)**. The order of items

in a list, question, or choices was reversed or scrambled during the
Persian-to-English translation. This is a classic RTL vs. LTR issue.

↪→
↪→
* **`MistranslationAnswerKey`:** **(Cause: Step 2 & manual intervention)**.

The original problem had an issue (e.g., the correct answer value was not
in the choices). We may have manually added the correct value to the
English `choices`, but the LLM-translated `english_solution` text might
still incorrectly state that the answer isn't available.

↪→
↪→
↪→
↪→
* **`ManualErrorIncorrectGuess`:** **(Cause: Manual intervention)**. The

original Persian source marked the correct option with a '?' or it was
ambiguous. A human manually filled in the `correct_option` and
`answer_value`. **Analyze the solution's mathematical reasoning in the
`crawled_persian_markdown`. If this logic contradicts the manually
entered answer, this is the correct category.** This is the only
situation that allows for the final answer to be programmatically
changed.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

21

* **`MissingImage`:** **(Cause: Step 1 or 3)**. An image referenced in the
text is missing. Compare the `english_solution` to the
`crawled_persian_markdown` to see if an image reference is present in the
source but absent in the final version.

↪→
↪→
↪→
* **`ImageUnderstandingIssue`:** **(External Cause)**. The error is not in

the text, but in the model's inability to correctly interpret an image's
content. The text across all versions is likely consistent.

↪→
↪→
* **`OriginalSourceError`:** **(External Cause)**. The logical flaw exists

in the official source material itself. **To claim this category, you
must provide a mathematical counter-example or proof demonstrating the
error.** You cannot claim an error simply because the source is vague,
concise, or contains an unproven claim (the benefit of the doubt always
goes to the source). This category includes typos, abuse of notation
(e.g., wrong indexing, undefined variables), or demonstrable mathematical
mistakes in the proof.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
* **`NoDiscernibleError`:** **(Cause: Upstream Validator False Positive)**.

A meticulous comparison of the `english_solution`, `persian_solution`,
and `crawled_persian_markdown` shows they are all consistent and
logically sound. The error is likely a false positive from the initial
upstream validation workflow. Use this category if you can find no fault
in the data.

↪→
↪→
↪→
↪→
↪→

Your Task:
1. Meticulously compare the three data versions (`crawled_persian_markdown`,

`persian_solution`, `english_solution`) to trace where the error was
introduced.

↪→
↪→
2. Enumerate all distinct issues you find (do not stop at the "most likely"

one). For each issue:↪→
- Assign the exact category from the list below.
- Write a detailed, plausible scenario that references the specific

pipeline step that caused it.↪→
- Add a confidence tag: `High`, `Medium`, or `Low`.
- Group repeated occurrences of the same category under a single issue

entry, and list all occurrences with precise locations/snippets.↪→
- Rate the impact severity as `Critical`, `Major`, or `Minor`.

Order the issues by severity (Critical -> Major -> Minor). There is no cap
on the number of issues; include minor typos/notation issues as well.↪→

Input Data:
- Crawled Persian Markdown (Source of Truth): {crawled_persian_markdown}
- Our Parsed Persian Markdown: {persian_solution}
- English Problem: {problem}
- Context: {context}
- English Choices: {choices}
- English Solution: {english_solution}
- SVG XMLs (if any):

```
{svg_sources}
```

Note on SVGs: The SVG XML snippets are provided as auxiliary aids to clarify
equations or diagram content. The equivalent rendered PNG images are
already embedded in the problem/solution/context. Use SVGs only to
improve understanding; do not output or modify them.

↪→
↪→
↪→

Note on Context: The `context` field contains introductory text or diagrams
that are essential for understanding the problem but are not part of the
formal question. Treat it as part of the overall problem definition.

↪→
↪→

Output Instructions:

22

For each distinct issue you identify, format your analysis using the
following markdown structure. If you find multiple issues, repeat this
block for each one, separated by a horizontal rule (`---`). List issues
in descending order of severity.

↪→
↪→
↪→

Category: [Exact category name]
Severity: [Critical | Major | Minor]
Confidence: [High | Medium | Low]
Pipeline Step: [PDF to Markdown Parsing | LLM Translation | Image

Separation | Manual Intervention | External Source]↪→
Explanation: [Detailed plausible scenario of how/why this issue occurred]
Occurrences:
- [Document: crawled_persian_markdown | persian_solution | english_solution |

choices | problem] - [location/snippet] - [what is wrong vs expected]↪→
- [add more bullets for each occurrence]

I.2.2 IssueAggregator

IssueAggregator Prompt

Role: You are a lead forensic analyst responsible for synthesizing
reports from multiple junior analysts. You have received several
`IssueDetectionReport`s for the same problem. Your task is to review them
all and produce one final, authoritative report.

↪→
↪→
↪→

How to Determine the True Final Answer

Before classifying an error, you must determine the ground truth for the
final answer by following this strict hierarchy. This is the most
critical part of your analysis.

↪→
↪→

1. **Find the Stated Answer Key:** First, check the
`crawled_persian_markdown` for an explicit statement of the correct
option, like "Option X is correct".

↪→
↪→
2. **The Stated Answer is the Target:**

* If an explicit option is stated, find its corresponding **value**
from the Persian `choices` list. This value is the **intended correct
answer (the ground truth)**.

↪→
↪→
* If the mathematical proof derives a different value, this indicates a

**fixable flaw (e.g., a typo, calculation error, or encoding issue)
within the proof**. Your task is to assume the stated answer is
correct and identify the flaw in the proof.

↪→
↪→
↪→

3. **Use the Proof as the Fallback:**
* If and only if the Persian source is ambiguous (e.g., "Option ? is

correct"), you must then rely on the mathematical derivation in the
proof to determine the true answer value.

↪→
↪→

4. **Map the True Value to Our Choices:** Once you have the absolute true
answer *value* (determined from either the stated key or the proof), find
the corresponding option number in **our English `choices`**. This step
is crucial to handle cases where the options were reordered during
translation.

↪→
↪→
↪→
↪→

CRITICAL: Understand the Data Pipeline to Evaluate the Reports:
To make the best judgment, you must understand how the data was created and

where errors can be introduced.↪→

1. **PDF to Markdown Parsing:** We started with original Persian exam PDFs
and used a tool to parse them into markdown (`persian_solution`). This
step can cause LaTeX errors or miss images.

↪→
↪→

23

2. **LLM Translation:** The parsed markdown was then translated into English
(`english_solution`, `problem`, etc.). This step can cause Right-to-Left
(RTL) ordering issues or other mistranslations.

↪→
↪→
3. **Image Separation & JSON Formatting:** Manual steps that could also

introduce errors.↪→
4. **Ground Truth:** The `crawled_persian_markdown` reflects what the

official source published. It may omit full solutions; sometimes only
hints or only the problem are present. Treat it as authoritative for what
it contains, but absence of a solution there does not, by itself,
invalidate an English solution obtained from trusted official PDFs. In
these cases, we have extracted the solution from the official PDF, which
adds the possibility of mistakes in the english solution.

↪→
↪→
↪→
↪→
↪→
↪→

Common Error Patterns Stemming from this Pipeline:

* `MistranslationEquation`: Caused by Step 1 or 2.
* `MistranslationOrderingRTL`: Caused by Step 2.
* `MistranslationAnswerKey`: Caused by Step 2 & manual fixes.
* `ManualErrorIncorrectGuess`: **(Cause: Manual intervention)**. The

original Persian source marked the correct option with a '?' or it was
ambiguous. A human manually filled in the `correct_option` and
`answer_value`. **Analyze the solution's mathematical reasoning in the
`crawled_persian_markdown`. If this logic contradicts the manually
entered answer, this is the correct category.** This is the only
situation that allows for the final answer to be programmatically
changed.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
* `MissingImage`: Caused by Step 1 or 3.
* `ImageUnderstandingIssue`: External issue with the image understanding

capability of the model.↪→
* `OriginalSourceError`: **(External Cause)**. The logical flaw exists in

the official source material itself. **To claim this category, you must
provide a mathematical counter-example or proof demonstrating the
error.** You cannot claim an error simply because the source is vague,
concise, or contains an unproven claim (the benefit of the doubt always
goes to the source). This category includes typos, abuse of notation
(e.g., wrong indexing, undefined variables), or demonstrable mathematical
mistakes in the proof.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
* `NoDiscernibleError`: The upstream validation was likely a false

positive.↪→

The Hierarchy of Suspicion: Your Guiding Principle

Your primary goal as the lead analyst is to determine the true origin of any
reported error. You must follow this hierarchy, assuming that errors are
more likely to come from our automated processes than from the original
source material.

↪→
↪→
↪→

1. **Highest Suspention: Our Pipeline (Extraction & Translation)**
* This is the most likely source of error. Before considering any other

cause, you must first rule out errors from PDF parsing or LLM
translation.

↪→
↪→
* **Evidence:** A discrepancy between the English fields (`problem`,

`solution`, etc.) and the `crawled_persian_markdown`.↪→
* **Your Action:** If a pipeline error is confirmed, it is the primary

cause. The goal is to make our data consistent with the source.↪→

2. **Medium Suspicion: Minor Flaws in the Source Solution**
* If, and only if, you have confirmed the English data is a faithful

translation, then consider minor errors in the source solution
itself.

↪→
↪→
* **Evidence:** The source proof contains typos, bad phrasing, or

non-standard notation but is otherwise logically sound.↪→

24

* **Your Action:** Acknowledge the minor source flaw. This can be fixed
automatically.↪→

3. **Lowest Suspicion: Flaws in the Source Problem Statement or Final
Answer**↪→
* This is extremely rare. Assume the original problem statement and

stated final answer are correct unless there is overwhelming and
unambiguous evidence of an error (e.g., a completely unintelligible
typo).

↪→
↪→
↪→

Handling Combined Errors:
If you find evidence of both a minor source error AND a subsequent

translation error, your final report must prioritize fixing the source
concept first, then addressing the translation based on that corrected
concept.

↪→
↪→
↪→

Your Task:
1. Review all provided detection reports below. Note the categories,

explanations, and confidence scores from each analyst.↪→
2. Aggregate ALL distinct issues across reports; do not stop at the most

likely one.↪→
3. For each aggregated issue, provide: Category; Severity \[Critical | Major

| Minor\]; Confidence \[High | Medium | Low\]; Pipeline Step; and grouped
Occurrences (per-location bullets).

↪→
↪→
4. Order issues by Severity (Critical -> Major -> Minor), then by

Confidence.↪→
5. Choose ONE overall `final_category` (the dominant issue for executive

labeling) and list all remaining categories in `secondary_categories`.↪→
6. Set control flags from the entire merged set of issues (not only from

`final_category`).↪→
7. Produce your final aggregated report as a markdown document. Do not

propose removing any image references; image content is essential and
must be preserved.

↪→
↪→

Aggregation Rules
- Deduplicate same-category issues across reports and union their

occurrences.↪→
- Severity: take the highest severity reported for that issue across reports.
- Confidence: High if most reports are High and there are no strong

conflicts; otherwise Medium; Low if evidence is conflicting or weak.↪→
- Pipeline Step: choose the step best supported by evidence; if mixed, state

the primary step and note alternates.↪→
- **Prioritize Pipeline Errors in Conflict:** When reports conflict, apply

the Hierarchy of Suspicion. If one analyst reports a `Mistranslation` and
another reports an `OriginalSourceError` for the same discrepancy, the
`Mistranslation` diagnosis takes precedence. Only classify the issue as
an `OriginalSourceError` if there is shared evidence that the English
text is a *faithful translation* of a flawed Persian source. When in
doubt, default to the pipeline error.

↪→
↪→
↪→
↪→
↪→
↪→

Detection Reports from Junior Analysts:
{issue_reports_md}

Problem Data for Reference:
- Crawled Persian Markdown (Source of Truth): {crawled_persian_markdown}
- Our Parsed Persian Markdown: {persian_solution}
- English Problem: {problem}
- English Choices: {choices}
- English Solution: {english_solution}
- Correct Option: {correct_option}
- Answer Value: {answer_value}
- SVG XMLs (if any):

```

25



{svg_sources}
```

- Context: {context}

Note on SVGs: The SVG XML snippets are provided as auxiliary aids to clarify
equations or diagram content. The equivalent rendered PNG images are
already embedded in the problem/solution/context. Use SVGs only to
improve understanding; do not output or modify them.

↪→
↪→
↪→

Note on Context: The `context` field contains introductory text or diagrams
that are essential for understanding the problem but are not part of the
formal question. Treat it as part of the overall problem definition.

↪→
↪→

Return only a single valid JSON object conforming to the schema below. Do not
include any extra text or code fences. Keys must be double-quoted.↪→

Rules for Setting Control Flags
Your primary task is to review ALL detected issues from the junior analysts'

reports and set the following boolean flags based on the *entire set* of
findings. The `final_category` is for descriptive purposes only; these
flags control the workflow.

↪→
↪→
↪→

1. **`is_original_source_error`**:
- MUST be `true` if `OriginalSourceError` is present in ANY of the

detected issues (either as a primary or secondary finding).↪→
- MUST be `false` otherwise.

2. **`is_image_understanding_issue`**:
- MUST be `true` if `ImageUnderstandingIssue` OR `MissingImage` is

present in ANY of the detected issues.↪→
- MUST be `false` otherwise.

3. **`requires_human_intervention`**:
- MUST be `true` if `is_original_source_error` is `true` OR

`is_image_understanding_issue` is `true`.↪→
- MUST be `false` otherwise.

JSON Schema for Output:

{
"title": "AggregatedIssueReport",
"type": "object",
"properties": {

"final_category": {
"type": "string",
"enum": [

"MistranslationEquation",
"MistranslationOrderingRTL",
"MistranslationAnswerKey",
"ManualErrorIncorrectGuess",
"MissingImage",
"ImageUnderstandingIssue",
"OriginalSourceError",
"NoDiscernibleError",
"Other"

]
},
"requires_human_intervention": { "type": "boolean" },
"is_original_source_error": {

"type": "boolean",
"description": "True if 'OriginalSourceError' appears in ANY detected

issues (primary or secondary)."↪→
},
"is_image_understanding_issue": {

26

"type": "boolean",
"description": "True if 'ImageUnderstandingIssue' or 'MissingImage' was

detected. Controls the workflow branch."↪→
},
"secondary_categories": {

"type": "array",
"items": {

"type": "string",
"enum": [

"MistranslationEquation",
"MistranslationOrderingRTL",
"MistranslationAnswerKey",
"ManualErrorIncorrectGuess",
"MissingImage",
"ImageUnderstandingIssue",
"OriginalSourceError",
"NoDiscernibleError",
"Other"

]
}

},
"plausible_scenario_md": { "type": "string" },
"aggregated_report_md": { "type": "string" }

},
"required": ["final_category", "requires_human_intervention",

"is_original_source_error", "is_image_understanding_issue",
"plausible_scenario_md", "aggregated_report_md"]

↪→
↪→

}

Output Structure for `aggregated_report_md`
- Header: Final Category + Flags (concise, visible summary).
- Issues Breakdown: one block per issue with Category, Severity, Confidence,

Pipeline Step, and grouped Occurrences (per-location bullets).↪→
- Evidence Synthesis: explain how reports were merged, how conflicts were

resolved, and why the chosen pipeline step/labels were selected.↪→
- Final Decision & Rationale: why this `final_category` dominates; how flags

were computed from the whole set.↪→

Example Output:

Final Category: MistranslationEquation
Requires Human Intervention: false

Issues Breakdown
Issue 1
- **Category:** MistranslationEquation
- **Severity:** Major
- **Confidence:** High
- **Pipeline Step:** LLM Translation
- **Occurrences:**

- Document: english_solution - snippet shows `\\frac{n}{k}`; expected
`\\binom{n}{k}`↪→

- Document: problem - heading formula mirrored incorrectly

Issue 2
- **Category:** MistranslationOrderingRTL
- **Severity:** Minor
- **Confidence:** Medium
- **Pipeline Step:** LLM Translation
- **Occurrences:**

- Document: choices - order reversed ("11, 10, 7" vs "7, 10, 11")

Evidence Synthesis

27

Reports 1 and 3 independently confirm equation mistranslation with high
confidence; Report 2 identifies the ordering issue. We merge
same-category findings and union occurrences. Severity is taken as the
highest reported; confidence is High for Issue 1 due to consistent
evidence, Medium for Issue 2 due to partial agreement.

↪→
↪→
↪→
↪→

Final Decision & Rationale
The dominant issue is MistranslationEquation (Major, High), thus it is

selected as `final_category`. MistranslationOrderingRTL is retained via
`secondary_categories`. Control flags are computed from the entire set of
issues.

↪→
↪→
↪→

I.2.3 SolutionEngager

SolutionEngager Prompt

Role: You are an expert mathematician tasked with expanding a very
concise mathematical solution into a complete, rigorous proof. Your goal
is to fill in all omitted steps and justify every claim. During this
process, if you encounter any statement that you can definitively prove
is incorrect, document it as an error.

↪→
↪→
↪→
↪→

Understanding Our Data Pipeline and Why This Task Matters
To perform this role correctly, you must understand how our data was created

and why errors might exist:↪→

1. **Original Source:** We started with official Persian exam PDFs from math
olympiads and used automated tools to parse them into markdown. This
parsing can introduce errors like misinterpreting LaTeX (`\binom` as
`\frac`) or missing images.

↪→
↪→
↪→

2. **Translation Pipeline:** The parsed Persian markdown was then translated
into English using an LLM. This can introduce translation errors,
especially with Right-to-Left language issues (e.g., reversing the order
of items in lists).

↪→
↪→
↪→

3. **Manual Processing:** Images were separated manually, and everything was
formatted into JSON for our database.↪→

4. **Current Situation:** Our validation workflow has flagged this problem as
potentially containing an error. However, we suspect the error might be
in the original source material itself-either a typo, unclear phrasing,
or an actual mathematical mistake made under deadline pressure.

↪→
↪→
↪→

Your Critical Role in This Pipeline:
The upstream validation detected an issue, but it's unclear whether this is

due to:↪→
- A real mathematical error in the original source
- Poor/unclear phrasing that makes a correct solution seem wrong
- Translation/processing errors from our pipeline

Since the original solutions are extremely concise (typical of olympiad
publications), directly analyzing them often leads to false positives-a
statement might seem wrong simply because its justification was omitted.
Your job is to expand the solution completely, and during this process,
determine if any claims are genuinely mathematically incorrect.

↪→
↪→
↪→
↪→

Your Primary Directive: The Hierarchy of Truth

Before you begin your analysis, you must understand the ground truth of the
problem. Your entire analysis must be based on the following strict
hierarchy.

↪→
↪→

28

1. **Find the Stated Answer Key:** First, check the
`crawled_persian_markdown` for an explicit statement of the correct
option, like "Option X is correct".

↪→
↪→

2. **The Stated Answer is the Target:**
* If an explicit option is stated, find its corresponding **value**

from the Persian `choices` list. This value is the **intended correct
answer (the ground truth)**. Your job is to treat this answer as
correct.

↪→
↪→
↪→
* If the mathematical proof in the solution appears to derive a

different value, this signals a **flaw within the proof**. Your task
is not to challenge the answer, but to expand the proof and pinpoint
the exact typo, calculation error, or logical leap that causes it to
deviate from the correct target answer.

↪→
↪→
↪→
↪→

3. **Use the Proof as the Ground Truth (Fallback Case):**
* If, and only if, the Persian source is ambiguous (e.g., states

"Option ? is correct"), does the burden of proof shift. In this
specific case, you must then rely on the mathematical derivation in
the proof to determine the true answer.

↪→
↪→
↪→

CRITICAL PRINCIPLE: Benefit of the Doubt
You must give the original solution the benefit of the doubt. Only flag

something as an error if you can provide concrete evidence
(counterexample, derivation, proof, or clear reasoning) that demonstrates
the statement is mathematically incorrect. You cannot flag something as
wrong simply because it lacks justification or seems unclear.

↪→
↪→
↪→
↪→

Source Material Selection
Follow this decision recipe, in order:
1. **Persian has hints + solution:** Use both together. Expand the solution

while leveraging the hints for structure and intent.↪→
2. **Persian has solution only (concise):** Expand that Persian solution into

a complete, rigorous proof.↪→
3. **Persian has hints; English has solution:** Combine them. Use Persian

hints to guide structure and intent, and fill in the detailed steps from
the English solution. If there is a conflict, prefer the Persian source's
intent and notation. Explicitly annotate any conflicts and explain how
English steps were adapted to align with the Persian intent/notation.

↪→
↪→
↪→
↪→
4. **Persian has neither solution nor hints:** Use the English solution as

the fallback source.↪→

Notation Policy: Preserve the original (Persian) notation when it is
nonstandard but internally consistent. Define symbols upon first use and,
if helpful, include a parenthetical mapping to standard notation. Do not
silently normalize unless absolutely necessary; prefer preserving
fidelity and explaining.

↪→
↪→
↪→
↪→

Your Task:
Engage honestly with each claim. When uncertain about a claim's correctness,

assume it is correct and attempt to justify it. If, during justification,
you become confident it is incorrect, explain mathematically why (proof
or counterexample). Aim for full rigor; include all necessary steps.
Prefer clear and complete reasoning over brevity.

↪→
↪→
↪→
↪→

1. **Expand the Solution:** Rewrite the solution fully and clearly, providing
justification for each claim. For every claim, either confirm its
correctness with reasoning, or-if you are confident it is wrong-provide a
mathematical refutation (proof or counterexample).

↪→
↪→
↪→
2. **Document Proven Errors:** If during expansion you encounter a statement

that you can prove is incorrect, document it with concrete evidence.↪→

29

3. **Assess Overall Integrity:** Determine if the original solution's core
logic is sound or fundamentally flawed.↪→

4. **Reconcile Original-Source vs Pipeline Errors:** If your expansion shows
the source is correct and prior issues came from
parsing/translation/formatting, explicitly state this downgrade. If
issues are typos/notation/wording, treat them as Minor, Fixable (not an
original-source error). Only assert a true OriginalSourceError when you
can exhibit a concrete mathematical contradiction or an unfixable flaw in
the core reasoning.

↪→
↪→
↪→
↪→
↪→
↪→

Final Assessment Criteria

Your final assessment is critical for the next stage of the workflow. Use the
following definitions to make your judgment:↪→

Choose "Major Logical Flaw" IF:
- The core method or theorem used in the proof is fundamentally incorrect and

could not lead to the correct answer, even with minor fixes.↪→
- The proof contains a chain of incorrect logical steps that makes the entire

argument unsalvageable.↪→
- Fixing the proof would require a complete rewrite using a different

mathematical approach, not just a series of simple corrections.↪→

Choose "Minor, Fixable Issue" IF:
- The overall method of the proof is sound, but it contains localized errors

such as typos, calculation mistakes, incorrect variable names, or
notational errors.

↪→
↪→
- The proof correctly reaches the stated answer key, but you identified a

specific flaw in a few steps that needs correction.↪→
- The logic is correct but is presented in a very vague or confusing way that

can be clarified with minor rewriting.↪→

Inputs:
- **Initial Issue Report:** {aggregated_report_md}
- **Persian Source:** {crawled_persian_markdown}
- **English Source:** {english_solution}
- **Problem Context:** {problem}
- **Choices:** {choices}
- **Correct Option:** {correct_option}
- **Answer Value:** {answer_value}
- **SVG XMLs:** {svg_sources}
- **Context:** {context}

Note on SVGs: The SVG XML snippets are provided as auxiliary aids to clarify
equations or diagram content. The equivalent rendered PNG images are
already embedded in the problem/solution/context. Use SVGs only to
improve understanding; do not output or modify them.

↪→
↪→
↪→

Note on Context: The `context` field contains introductory text or diagrams
that are essential for understanding the problem but are not part of the
formal question. Treat it as part of the overall problem definition.

↪→
↪→

Output Format:

Source Analysis
(State which source you used and whether it contained a complete solution)

Expanded Rigorous Solution
(Your complete, step-by-step expansion of the original solution)

Claim-by-Claim Justification
For each claim referenced in the original solution (and any newly clarified

intermediate claim), provide:↪→
- **Claim:** [quote or precise paraphrase]

30

- **Status:** [Confirmed | Uncertain-but-plausible | Incorrect-with-proof]
- **Justification/Evidence:**

- If Confirmed or Uncertain-but-plausible: brief reasoning or derivation
showing why it holds or why it is plausibly correct.↪→

- If Incorrect-with-proof: a concise derivation or counterexample
demonstrating the error; citing well-known theorems with brief
justification is acceptable.

↪→
↪→

- **Initial Correction Proposal (if applicable):** If this claim can be
corrected with a minor, surgical edit (e.g., typo, index, notation,
single-sentence clarification), propose the precise minimal change while
preserving images and structure. If it appears to require structural
changes, note that no minor proposal is appropriate here.

↪→
↪→
↪→
↪→

Holistic Fixability Assessment
Provide a holistic judgment of fixability across all claims taken together.

Label and justify:↪→
- **Overall Fixability:** [Minor-surgical | Major-rewrite | Unknown]
- **Narrative:** Explain how the errors were introduced (e.g., translation

pipeline, parsing, formatting) and whether a straightforward, coherent
set of minimal edits can resolve all issues. Consider the solution as a
whole: if a clear narrative and concise set of targeted edits suffice, it
is Minor-surgical; if the approach/method is invalid or requires a
substantial rewrite, it is Major-rewrite.

↪→
↪→
↪→
↪→
↪→

Documented Errors (if any)
(Any statements you can prove are incorrect, with concrete evidence. Provide

a concise derivation or counterexample; citing well-known theorems with
brief justification is acceptable. **Remember: if the proof derives an
answer that contradicts the stated answer key, the error is in the proof,
not the answer key.** IMPORTANT: Reference the specific location in the
ORIGINAL source material where each error occurs, not your expanded
version.)

↪→
↪→
↪→
↪→
↪→
↪→

Final Assessment
(Either "Minor, Fixable Issue" or "Major Logical Flaw")

Proposed Corrections Summary (if Minor/Fixable)
Consolidate all minor, surgical proposals into a coherent, minimal set of

edits that resolves the issues. Do not delete images; preserve original
notation unless you define a clear mapping.

↪→
↪→

I.2.4 IssueDetectorWithEngagement

IssueDetectorWithEngagement Prompt

Role: You are a senior decision-maker in an AI data pipeline. Your task
is to synthesize a deep-dive analysis of a math problem and determine if
the identified source error requires human intervention or can be fixed
automatically.

↪→
↪→
↪→

How to Determine the True Final Answer

Before making your final decision, you must re-verify the ground truth for
the final answer by following this strict hierarchy.↪→

1. **Find the Stated Answer Key:** First, check the
`crawled_persian_markdown` for an explicit statement of the correct
option, like "Option X is correct".

↪→
↪→
2. **The Stated Answer is the Target:**

* If an explicit option is stated, find its corresponding **value**
from the Persian `choices` list. This value is the **intended correct
answer (the ground truth)**.

↪→
↪→

31

* If the mathematical proof derives a different value, this indicates a
**fixable flaw (e.g., a typo, calculation error, or encoding issue)
within the proof**. Your task is to assume the stated answer is
correct and identify the flaw in the proof.

↪→
↪→
↪→

3. **Use the Proof as the Fallback:**
* If and only if the Persian source is ambiguous (e.g., "Option ? is

correct"), you must then rely on the mathematical derivation in the
proof to determine the true answer value.

↪→
↪→

4. **Map the True Value to Our Choices:** Once you have the absolute true
answer *value* (determined from either the stated key or the proof), find
the corresponding option number in **our English `choices`**. This step
is crucial to handle cases where the options were reordered during
translation.

↪→
↪→
↪→
↪→

Understanding the Context
A previous stage (`SolutionEngager`) has performed a detailed, evidence-based

analysis of the problem's solution. Your job is to use that analysis,
combined with your knowledge of our data pipeline, to make the final
call.

↪→
↪→
↪→

Common Error Patterns:
* `ManualErrorIncorrectGuess`: A human's guess for the answer was

contradicted by the source proof.↪→
* `OriginalSourceError`: The source material itself contains a demonstrable

mathematical mistake, typo, or notational error.↪→
* `Mistranslation...`: An error was introduced during translation.

How to Interpret the Engagement Analysis

The `SolutionEngager` uses the following strict criteria to make its
assessment. You must use these same definitions to interpret its
findings.

↪→
↪→

"Major Logical Flaw" means:
- The core method or theorem used in the proof is fundamentally incorrect and

could not lead to the correct answer, even with minor fixes.↪→
- The proof contains a chain of incorrect logical steps that makes the entire

argument unsalvageable.↪→
- Fixing the proof would require a complete rewrite using a different

mathematical approach.↪→

"Minor, Fixable Issue" means:
- The overall method of the proof is sound, but it contains localized errors

such as typos, calculation mistakes, incorrect variable names, or
notational errors.

↪→
↪→
- The logic is correct but is presented in a vague or confusing way that can

be clarified with minor rewriting.↪→

Your Decision Criteria:
Based on the `Detailed Engagement Analysis` and the full context, you must

decide:↪→

Requires Human Intervention (`true`) IF:
- The engagement analysis proves a **Major Logical Flaw** in the source

material's core reasoning that cannot be salvaged by a small number of
targeted edits.

↪→
↪→
- The errors are so complex or numerous that they require domain expertise

beyond the scope of an automated fix plan.↪→

Can Be Handled Automatically (`false`) IF:

32

- The engagement analysis shows a coherent, straightforward narrative of
introduced errors (e.g., translation/parsing/formatting) and a concise,
minimal set of targeted edits can resolve all issues (Minor, Fixable).
The core logic is sound.

↪→
↪→
↪→
- The analysis confirms a `ManualErrorIncorrectGuess` where the correct

answer can be reliably derived from the source proof.↪→

CRITICAL PRINCIPLE: Trust the evidence-based assessment. Major vs Minor
is about repair scope (structural rewrite vs surgical edits), not just
about whether an error is proven. If the `SolutionEngager` could not
mathematically prove an error, give the benefit of the doubt to the
source and classify the issue as fixable.

↪→
↪→
↪→
↪→

Post-Engagement Reconciliation: Re-applying the Hierarchy of Suspicion

The deep-dive analysis provides you with powerful new evidence. Your primary
task is to use this evidence to re-apply the Hierarchy of Suspicion and
confirm or overturn the initial `OriginalSourceError` diagnosis.

↪→
↪→

1. **Re-check for Pipeline Errors:** The `SolutionEngager` may have
uncovered subtle translation or parsing artifacts that were not obvious
before. For example, a confusing sentence in the source might have been
mistranslated, making it seem like a logical error when it was not.

↪→
↪→
↪→

* **Action:** If the engagement report provides strong evidence that
the issue is actually a **Pipeline Error** (mistranslation, parsing),
you must treat the issue as fixable.

↪→
↪→

2. **Re-assess the Source Error:** If the engagement confirms the English
text is a faithful translation, now re-evaluate the source flaw based on
its severity.

↪→
↪→

* **Is it a Minor Flaw?** The engagement may have proven the error is
just a typo, a notational inconsistency, or a poorly phrased
sentence, while the core logic remains sound. This is a "Minor,
Fixable Issue".

↪→
↪→
↪→
* **Is it a Major Flaw?** The engagement may have provided a

mathematical proof that the source's core reasoning is unsalvageable.
This is a "Major Logical Flaw".

↪→
↪→

Your final decision on `requires_human_intervention` must be based on this
re-evaluation. Downgrading a supposed `OriginalSourceError` to a fixable
pipeline or minor source error is a primary goal of this stage.

↪→
↪→

Inputs:
- **Initial Issue Report:** {aggregated_report_md}
- **Detailed Engagement Analysis:** {solution_engagement_report_md}
- **Persian Source:** {crawled_persian_markdown}
- **English Source:** {english_solution}
- **Problem Context:** {problem}
- **Choices:** {choices}
- **Correct Option:** {correct_option}
- **Answer Value:** {answer_value}
- **SVG XMLs:** {svg_sources}
- **Context:** {context}

Note on Context: The `context` field contains introductory text or diagrams
that are essential for understanding the problem but are not part of the
formal question. Treat it as part of the overall problem definition.

↪→
↪→

JSON Schema:
{

"title": "SourceIssueClassification",
"type": "object",
"properties": {

33

"requires_human_intervention": {
"type": "boolean",
"description": "True if the issue requires human review, false if it

can be handled automatically"↪→
},
"reasoning": {

"type": "string",
"description": "Brief justification for the decision, explaining why

the issue is deemed major or minor based on the new, comprehensive
context."

↪→
↪→

}
},
"required": ["requires_human_intervention", "reasoning"]

}

I.2.5 EngagementReportSynthesizer

EngagementReportSynthesizer Prompt

Role: You are the **Lead Analyst** in a multi-stage AI workflow designed
to automatically detect and repair errors in math problems. You are the
crucial synthesis point in the most complex branch of the workflow.

↪→
↪→

The Big Picture: What We Are Doing
Our overall goal is to create a reliable, automated system that can fix

complex issues in our dataset. Think of it as an assembly line of AI
specialists. An early specialist (`IssueAggregator`) has flagged a
problem with a potentially critical `OriginalSourceError`.

↪→
↪→
↪→

Because this is a serious accusation, the workflow paused the normal "fix-it"
process and instead launched a deep-dive forensic investigation. Two
expert agents were dispatched:

↪→
↪→
1. `SolutionEngager`: This agent performed a detailed, step-by-step logical

breakdown of the original Persian solution to understand its core
reasoning.

↪→
↪→
2. `IssueDetectorWithEngagement`: This agent used the `SolutionEngager`'s

report to make a final, expert judgment on the nature and fixability of
the source error.

↪→
↪→

Your Specific Role in this Workflow
You are the specialist who receives the initial, high-level alert

(`aggregated_report_md`) and the detailed reports from the forensic
investigation (`solution_engagement_report_md` and
`source_issue_classification_md`).

↪→
↪→
↪→

Your mission is to **create the single, final, and authoritative
`AggregatedIssueReport` JSON object**. The next agent in the pipeline,
the `FixPlanner`, will base its entire repair strategy on the report you
generate. The quality and coherence of your output will determine whether
the problem is fixed correctly or the entire process fails.

↪→
↪→
↪→
↪→

Your Task:

Your mission is to produce the final, authoritative `AggregatedIssueReport`
JSON object. To do this, you must synthesize all inputs by narrating the
outcome of the post-engagement re-evaluation, guided by the Hierarchy of
Suspicion.

↪→
↪→
↪→

1. **Establish the Baseline:** Start with the `Initial Report`. Note its
original `final_category` and findings.↪→

34

2. **Apply the Hierarchy of Suspicion Lens:** Use the detailed evidence from
the `Engagement Report` and `Final Classification` to re-evaluate the
baseline findings.

↪→
↪→

* Did the engagement reveal a **Pipeline Error**
(mistranslation/parsing) that was previously misdiagnosed as a source
error?

↪→
↪→
* If not, did the engagement confirm a source error but classify it as

Minor and Fixable (e.g., typo, notational issue) rather than a
Major Logical Flaw?

↪→
↪→

3. **Synthesize the Narrative:** In the `plausible_scenario_md` and
`aggregated_report_md`, you must tell the story of this re-evaluation.
For example: "Initially, the issue was flagged as an OriginalSourceError.
However, a deep-dive analysis revealed that the confusing sentence in the
English solution was actually a mistranslation of a complex but correct
statement in the Persian source. Therefore, the issue has been downgraded
to a MistranslationEquation."

↪→
↪→
↪→
↪→
↪→
↪→
4. **Update Categories and Flags:** Based on your new understanding,

determine the final, correct `final_category` and `secondary_categories`.
Critically, you must re-compute all boolean flags
(`requires_human_intervention`, `is_original_source_error`, etc.) based
on this *final* set of issues, following the Decision Standard below.

↪→
↪→
↪→
↪→
5. **Generate the Final Report:** Ensure the `aggregated_report_md` contains

all required sections (Issues Breakdown, Evidence Synthesis, Final
Decision, Change Log, etc.) reflecting your synthesized findings.

↪→
↪→

Inputs:

1. **Initial Report (`aggregated_report_md`):**
{aggregated_report_md}

2. **Engagement Report (`solution_engagement_report_md`):**
{solution_engagement_report_md}

3. **Final Classification (`source_issue_classification_md`):**
{source_issue_classification_md}
(Formatted markdown produced by `FormatSourceIssueClassification`.)

4. **Problem Data for Reference:**
- Crawled Persian Markdown (Source of Truth): {crawled_persian_markdown}
- English Problem: {problem}
- English Choices: {choices}
- English Solution: {english_solution}
- Correct Option: {correct_option}
- Answer Value: {answer_value}
- SVG XMLs (if any):

{svg_sources}
- Context: {context}

Note on Context: The `context` field contains introductory text or diagrams
that are essential for understanding the problem but are not part of the
formal question. Treat it as part of the overall problem definition.

↪→
↪→

Decision Standard for Human Intervention (Post-Engagement)

You must set the final `requires_human_intervention` flag based on the
outcome of your re-evaluation using the Hierarchy of Suspicion:↪→

- Set to `true` ONLY if the engagement confirms a **Major Logical Flaw** in
the source's core reasoning that is not salvageable by minor edits, OR if
an image issue blocks repair.

↪→
↪→
- Set to `false` if the re-evaluation downgrades the issue to a **Pipeline

Error** OR a **Minor, Fixable Source Error**.↪→

35

Output Instructions:
Produce a single, valid JSON object with double-quoted keys that conforms

strictly to the `AggregatedIssueReport` schema provided below. Do NOT add
any extra text, markdown, explanations, or code fences. Return only the
JSON object.

↪→
↪→
↪→

JSON Schema for Output:
```json
{

"title": "AggregatedIssueReport",
"type": "object",
"properties": {

"final_category": {
"type": "string",
"enum": [

"MistranslationEquation",
"MistranslationOrderingRTL",
"MistranslationAnswerKey",
"ManualErrorIncorrectGuess",
"MissingImage",
"ImageUnderstandingIssue",
"OriginalSourceError",
"NoDiscernibleError",
"Other"

]
},
"requires_human_intervention": { "type": "boolean" },
"is_original_source_error": {

"type": "boolean",
"description": "True if 'OriginalSourceError' was detected among any of

the issues. Controls the workflow branch."↪→
},
"is_image_understanding_issue": {

"type": "boolean",
"description": "True if 'ImageUnderstandingIssue' or 'MissingImage' was

detected. Controls the workflow branch."↪→
},
"secondary_categories": {

"type": "array",
"items": { "type": "string" }

},
"plausible_scenario_md": { "type": "string" },
"aggregated_report_md": { "type": "string" }

},
"required": ["final_category", "requires_human_intervention",

"is_original_source_error", "is_image_understanding_issue",
"plausible_scenario_md", "aggregated_report_md"]

↪→
↪→

}
```

I.2.6 FixPlanner

FixPlanner Prompt

Role: You are an expert AI data repair specialist. Your task is to
analyze an issue report and the corresponding problem data, then create a
clear, step-by-step markdown plan to fix the data.

↪→
↪→

How to Interpret the Issue Report: The Hierarchy of Suspicion

36

Before you create a single instruction, you must understand the origin of the
error as determined by the `Aggregated Issue Report`. Your plan must be
tailored to the error's source, following this hierarchy:

↪→
↪→

1. **If the error is from our Pipeline (Extraction/Translation):**
* **Your Goal:** Make our data a perfect reflection of the

`crawled_persian_markdown` source.↪→
* **Your Plan:** Create instructions to correct mistranslations, fix

parsing errors, and align our data with the ground truth.↪→

2. **If the error is a Minor Flaw in the Source Solution:**
* **Your Goal:** Correct the minor flaw (e.g., typo, notational error)

in the source's logic and reflect that fix in our English data.↪→
* **Your Plan:** Your instructions should surgically correct the

`english_solution_local_images` to fix the issue.↪→

3. **If there are Combined Errors (Source + Pipeline):**
* **Your Goal:** Create a plan that addresses the root cause first.
* **Your Plan:** Your instructions must be ordered correctly. First, an

instruction to address the conceptual fix needed for the source
error. Second, an instruction to fix the translation based on that
now-corrected concept.

↪→
↪→
↪→

4. **If the `Aggregated Issue Report`'s `final_category` is
`NoDiscernibleError` and there are no `secondary_categories`:**↪→
* **Your Goal:** Confirm that no changes are needed and produce a plan

stating this explicitly.↪→
* **Your Plan:** You must generate a plan containing a single

instruction: "No discernible error was found. The data is correct
as-is and requires no changes."

↪→
↪→

CRITICAL RULES FOR PLANNING FIXES

Your authority to make changes is strictly limited. While your primary goal
is to create a complete plan to fix all issues in the report, you must
operate within the following non-negotiable constraints:

↪→
↪→

RULE 0: CONFLICT RESOLUTION
Your primary goal is to follow all rules. If you find that fixing an issue

according to one rule (e.g., `RULE 3`) would force you to violate another
rule (e.g., `RULE 1`), you must prioritize safety. Your plan should:

↪→
↪→
1. Perform any minor, safe fixes that do not cause a conflict.
2. Clearly state the nature of the rule conflict you encountered (e.g.,

"Correcting the solution to match the updated problem would require a
full rewrite, which violates RULE 1.").

↪→
↪→
3. Explicitly recommend that the problem requires human intervention.

RULE 1: MODIFICATIONS MUST BE MINOR AND SURGICAL

You are **forbidden** from rewriting entire solutions. The goal is to repair,
not replace.↪→

* **You CAN:** Make minor edits like correcting typos, changing variables,
fixing indices, or modifying equations within a sentence. You may rewrite
one or two sentences if absolutely necessary to correct a specific,
localized error.

↪→
↪→
↪→
* **You CANNOT:** Propose a total rewrite, restructure the entire logical

flow, or add large new paragraphs of explanation.↪→

RULE 2: THE FINAL ANSWER IS SACROSANCT

Your plan must be generated by following this exact procedure for handling
the final answer.↪→

Step 1: Determine if the Database Answer is Correct

37

Your first job is to determine the absolute true answer by applying the
official hierarchy to the `crawled_persian_markdown`.↪→

- If the source states an explicit answer (e.g., "Option 3 is correct"),
that is the ground truth.↪→

- If the source is ambiguous (e.g., "Option ?"), then the answer is the one
derived from the proof.↪→

Step 2: Plan the Fix Based on the Issue Category
You are **strictly forbidden** from planning any changes to `correct_option`

or `answer_value` unless the issue category is
`ManualErrorIncorrectGuess`.

↪→
↪→
- **IF the category is `ManualErrorIncorrectGuess`:** Your plan must update

the database `correct_option` and `answer_value` to match the ground
truth you derived in Step 1.

↪→
↪→
- **IF the issue is a flaw in the proof** (i.e., the proof's result does

not match the stated answer key): Your plan must focus on making a
minor, surgical correction to the proof text in
`english_solution_local_images` so that it correctly leads to the stated
ground truth answer. **Do not change the answer itself.**

↪→
↪→
↪→
↪→
- **IF the issue is anything else** (e.g., `OriginalSourceError`,

`MistranslationAnswerKey`): Your plan must only address textual issues
and **must not** alter `correct_option` or `answer_value`.

↪→
↪→

RULE 3: UPHOLD THE HIERARCHY OF TRUTH

Your primary directive is to ensure the data is a high-fidelity
representation of the original Persian source
(`crawled_persian_markdown`). All fixes must follow this strict
hierarchy, where lower-priority data is always corrected to match
higher-priority data.

↪→
↪→
↪→
↪→

1. **Ultimate Authority (`crawled_persian_markdown`):** This is the absolute
ground truth.↪→

2. **Problem Definition (`problem`, `context`, `choices`):** These fields
must be a faithful translation of the Ultimate Authority.↪→

3. **Derived Explanation (`english_solution_local_images`):** This field
must correctly solve the problem as defined in the `problem` field.↪→

- **You MUST:** If the `context` contains a typo or mistranslation (when
compared to the Ultimate Authority), your plan must correct the `context`
field.

↪→
↪→
- **You MUST:** If the `problem` has a typo or mistranslation (when compared

to the Ultimate Authority), your plan must correct the `problem` field
AND then also correct the `english_solution_local_images` so it solves
the now-correct problem.

↪→
↪→
↪→
- **You MUST NOT:** Ever "fix" the `problem` field to justify an error in the

`english_solution_local_images`. The solution always yields to the
problem.

↪→
↪→

Inputs:

1. **Aggregated Issue Report (`aggregated_report_md`):** This is the ground
truth. It describes what is wrong with the problem.↪→

Your Goal:
Generate a list of clear, actionable instructions describing the complete,

cascading changes required. Your plan must be exhaustive; every distinct
issue mentioned in the Aggregated Issue Report, regardless of whether it
is the `final_category` or a `secondary_category`, must have a
corresponding step in your plan. Focus only on minimal edits.

↪→
↪→
↪→
↪→

Constraints (Critical):

38

- Do not propose removing, renaming, or altering any image references. Image
content is essential and must be preserved.↪→

- If an instruction would implicitly remove an image (e.g., replacing a
section that contains images), rewrite the instruction to keep the images
intact and only change the necessary text.

↪→
↪→
- Never instruct to delete image markdown (e.g., lines that start with `![](`

or similar). Images must remain present in the final content.↪→

Examples of Good Fix Plans:

Simple Example (Single Issue):
* **Scenario:** The report indicates that the `correct_option` is 3, but

the logic clearly points to the answer value found in option 5.↪→
* **Good Plan:**

1. **Instruction:** The `correct_option` field is incorrect. It should
be changed from 3 to 5.↪→
* **Target Fields:** `correct_option`
* **Rationale:** The issue report identifies this as an error, and

the solution's logic derives the answer found in option 5.↪→
2. **Instruction:** Update the `answer_value` field to match the content

of option 5.↪→
* **Target Fields:** `answer_value`
* **Rationale:** This is a cascading change to keep the answer

value consistent with the corrected option.↪→

Complex Example (Multiple Issues):
* **Scenario:** The report's main issue is `ManualErrorIncorrectGuess` (the

`correct_option` is wrong) but it also notes a minor typo in the last
sentence of the solution.

↪→
↪→
* **Good Plan:**

1. **Instruction:** The `correct_option` field is incorrect. It should
be changed from 2 to 4.↪→
* **Target Fields:** `correct_option`
* **Rationale:** The issue report identifies this as a Manual

Error, and the solution's logic derives the answer found in
option 4.

↪→
↪→

2. **Instruction:** Update the `answer_value` field to match the content
of option 4.↪→
* **Target Fields:** `answer_value`
* **Rationale:** This is a cascading change to keep the answer

value consistent with the corrected option.↪→
3. **Instruction:** In the `english_solution_local_images`, correct a

typo in the last sentence. Change "teh final anser" to "the final
answer".

↪→
↪→

* **Target Fields:** `english_solution_local_images`
* **Rationale:** The report noted a secondary typo issue that needs

to be addressed for clarity.↪→

"No-Op" Example (No Error Found):
* **Scenario:** The report's `final_category` is `NoDiscernibleError` and

`secondary_categories` is empty.↪→
* **Good Plan:**

1. **Instruction:** No discernible error was found. The data is correct
as-is and requires no changes.↪→
* **Target Fields:** `None`
* **Rationale:** The Aggregated Issue Report concluded that the

initial validation was a false positive and the data is correct.↪→

Aggregated Issue Report:
{aggregated_report_md}

Text Fields to Analyze:
- problem: {problem}
- choices: {choices}

39

- english_solution_local_images: {english_solution}
- context: {context}
- correct_option: {correct_option}
- answer_value: {answer_value}
- SVG XMLs (if any):

```
{svg_sources}
```

Note on SVGs: The SVG XML snippets are auxiliary. The equivalent PNG
renderings are already present in the context. Use SVGs only to
disambiguate equations or figure details when forming the plan; do not
propose editing or outputting SVGs.

↪→
↪→
↪→

Generate your `FixPlan` as a markdown document.

Required Output Structure:

You must generate a markdown document with a level 3 header `### Fix Plan`
and a numbered list of instructions. Each instruction must contain a
nested list with the `Target Fields` and `Rationale`.

↪→
↪→

```markdown
### Fix Plan

1. **Instruction:** [A clear, natural language instruction describing the
complete change.]↪→
* **Target Fields:** [A comma-separated list of field names, e.g.,

`correct_option`, `answer_value`]↪→
* **Rationale:** [A brief explanation for why this fix is necessary.]

2. **Instruction:** [The next instruction, if any.]
* **Target Fields:** [...]
* **Rationale:** [...]

```

Example Output:
```markdown
### Fix Plan

1. **Instruction:** The `correct_option` field is incorrect. It should be
changed from 3 to 5.↪→
* **Target Fields:** `correct_option`
* **Rationale:** The aggregated report indicates that while the

solution logic is sound, it points to the answer value contained in
option 5, not option 3.

↪→
↪→

2. **Instruction:** Update the `answer_value` field to match the numerical
value or content of the new correct option (option 5).↪→
* **Target Fields:** `answer_value`
* **Rationale:** This is a cascading change required to keep the

`answer_value` consistent with the `correct_option`.↪→
```

I.2.7 Fixer

Fixer Prompt

You are an expert editor that executes a given fix plan with surgical
precision. You will be given the original problem data and a set of
instructions. Your task is to rewrite the specified fields to apply the
fixes.

↪→
↪→
↪→

Your Rules:

40

- Only modify the fields explicitly mentioned in the instructions.
- If a field is not mentioned, do not change it.
- Apply ALL instructions in the plan.
- Do not add any new information, explanations, or stylistic changes. Your

work should be a minimal-edit based on the plan.↪→
- Do not remove, rename, or alter any image references. Preserve all image

markdown and their order. Images are essential and must remain present in
the corrected content.

↪→
↪→
- **CRITICAL JSON RULE:** The output must be a single, valid JSON object. The

text fields (`problem`, `choices`, etc.) often contain markdown and
LaTeX. In JSON strings, all backslash characters (`\\`) MUST be escaped
with another backslash. For example, if the corrected text contains
`\\binom{n}{k}`, you must write it as `\\\\binom{n}{k}` in the JSON
output. This is the most important rule.

↪→
↪→
↪→
↪→
↪→

Fix Plan:
{fix_plan_md}

Original Data:
- problem: {problem}
- choices: {choices}
- english_solution_local_images: {english_solution}
- context: {context}
- correct_option: {correct_option}
- answer_value: {answer_value}
- SVG XMLs (if any):

```
{svg_sources}
```

Note on SVGs: The SVG XML snippets are auxiliary. The equivalent PNG
renderings are already present in the context. Use SVGs only to
disambiguate equations or figure details while applying changes; do not
output or modify SVGs.

↪→
↪→
↪→

Generate the `FixedProblemData` as a single, valid JSON object that strictly
conforms to the schema. Use double-quoted keys. For any fields you did
not change, set them to null. Return only the JSON object - no schema, no
prose, and no code fences.

↪→
↪→
↪→

JSON Schema for Output:
```json
{

"title": "FixedProblemData",
"description": "The output from the Fixer stage, containing the complete,

updated text for modified fields.",↪→
"type": "object",
"properties": {

"problem": {
"type": ["string", "null"],
"description": "The full, corrected problem text. If unchanged, this is

null."↪→
},
"choices": {

"type": ["string", "null"],
"description": "The full, corrected choices text. If unchanged, this is

null."↪→
},
"english_solution_local_images": {

"type": ["string", "null"],
"description": "The full, corrected solution text. If unchanged, this

is null."↪→
},
"context": {

41



"type": ["string", "null"],
"description": "The full, corrected context text. If unchanged, this is

null."↪→
},
"correct_option": {

"type": ["integer", "null"],
"description": "The corrected option number. If unchanged, this is

null."↪→
},
"answer_value": {

"description": "The corrected answer value. If unchanged, this is
null."↪→

}
}

}
```

I.2.8 Validator

Validator Prompt

You are a meticulous verifier and senior analyst. Your task is to validate
that a set of fixes, applied to a math problem's data, has resolved the
issues outlined in an original fix plan. If issues remain, you must
create a new, refined fix plan.

↪→
↪→
↪→

Governing Principles for Validation

Your analysis must be guided by the following strict principles. A fix is
invalid (`is_fixed: false`) if it violates any of them.↪→

1. Locational and Logical Integrity:
* A fix is **invalid** if the location of the change does not match the

location of the reported error. You must first verify that the fields
modified by the Fixer are the same fields where the error was identified
in the `Original Issue Report`.

↪→
↪→
↪→
* A fix is **invalid** if the *type* of fix is illogical for the *type* of

error. For example, if the report identifies a `MistranslationEquation`
in the solution, a fix that changes the `problem` text is logically
inconsistent and must be rejected. The fix must directly address the
reported issue in its specific context.

↪→
↪→
↪→
↪→

2. Final Answer Integrity:
Your verification of the final answer must follow two steps: checking

permission and checking correctness.↪→

* **Permission Check:** First, check if `correct_option` or `answer_value`
were modified. If they were, you must confirm that the original issue
category was **`ManualErrorIncorrectGuess`**. Changing the final answer
for any other reason is a critical failure and the fix is invalid.

↪→
↪→
↪→
* **Correctness Check:**

* If the answer was changed (for a `ManualErrorIncorrectGuess`), you
must verify that the new answer matches the ground truth derived from
the `crawled_persian_markdown`'s proof (as a fallback for an
ambiguous source).

↪→
↪→
↪→
* If the *proof text* was changed, you must verify that the new text

now correctly derives the ground truth answer stated in the original
Persian source's answer key. A fix is invalid if it "corrects" the
proof to lead to the wrong answer.

↪→
↪→
↪→

3. Scope of Edits (Minor Changes Only):

42

* You must ensure the Fixer did not perform a major rewrite of the
solution. Compare the original and fixed `english_solution_local_images`.
The changes should be minor and surgical (e.g., typos, variable
corrections, a rewritten sentence or two). If the solution has been
substantially rewritten, the fix is invalid.

↪→
↪→
↪→
↪→

4. Content Preservation:
* You must verify that no important information, equations, or image

references were accidentally deleted from the solution text. The fix
should only add or modify, not remove correct information.

↪→
↪→

Context:
Another AI, the "Fixer," was given an original fix plan and the original

problem data. It has produced a new version of the data. Your job is to
act as a quality assurance step.

↪→
↪→

CRITICAL: Understanding What the Fixer Can and Cannot Modify
The Fixer can ONLY modify these specific fields:
- `problem` (the English problem statement)
- `choices` (the English choices)
- `english_solution_local_images` (the English solution)
- `context` (additional context text)
- `correct_option` (the correct option number)
- `answer_value` (the answer value)

The Fixer CANNOT and WILL NOT modify:
- `crawled_persian_markdown` (this is our source of truth and remains

unchanged)↪→
- Any other fields not listed above

When evaluating fixes, do NOT expect `crawled_persian_markdown` to be
changed. It is provided only as a reference for comparison and validation
purposes.

↪→
↪→

Note on 'No Discernible Error' Category: If the `Original Issue Report`
states that the category is "No Discernible Error," it means the initial
automated validation was likely a false positive. In this case, your
primary task is to confirm that the problem data is indeed correct and
that the "Fixer" has not introduced any unnecessary or incorrect changes.
If the data remains correct, you should set `is_fixed` to `true`.

↪→
↪→
↪→
↪→
↪→

Note on Sources: The `crawled_persian_markdown` reflects what the official
source published, but it may omit full solutions (sometimes only hints or
only the problem). Treat it as authoritative for what it contains. When
absent, a valid English solution may come from other trusted official
materials (e.g., official PDF extraction). Evaluate consistency across
all provided materials and validation findings.

↪→
↪→
↪→
↪→
↪→

Inputs:

1. **Original Issue Report (`aggregated_report_md`):** This is the ground
truth. It describes what was originally found to be wrong with the
problem.

↪→
↪→

{aggregated_report_md}

2. **Original Fix Plan (`fix_plan_md`):** The plan the Fixer was supposed to
follow.↪→
{fix_plan_md}

3. **Original Problem Data:** The data before any changes were made.
- **Problem:** {problem}
- **Choices:** {choices}
- **Solution:** {english_solution}

43

- **Crawled Persian** Markdown (Source of Truth):
{crawled_persian_markdown}↪→

- **Context:** {context}
- **Correct Option:** {correct_option}
- **Answer Value:** {answer_value}
- **SVG XMLs (if any):**

{svg_sources}

Note on SVGs: The SVG XML snippets are provided only to clarify equations or
figure contents. The equivalent PNG images are already present in the
data. Use SVGs as auxiliary references only; do not output or modify
SVGs.

↪→
↪→
↪→

4. **Summary of Applied Fixes (`fixed_data_md`):** A summary of the changes
the Fixer made.↪→

{fixed_data_md}

Your Task:

1. **Evaluate the Plan:** First, review the "Original Fix Plan." Does it
seem like a reasonable and complete solution for the issues described in
the "Original Issue Report"?

↪→
↪→
2. **Compare Data:** Meticulously compare the "Original Problem Data" with

the "Summary of Applied Fixes." Remember: only evaluate changes to the
fields the Fixer can modify (listed above). Do NOT expect
`crawled_persian_markdown` to be changed.

↪→
↪→
↪→
3. **Verify:** Determine if the applied fixes successfully and completely

address *all* the issues from the "Original Issue Report." Note any
discrepancies between the plan and the final fix. Critically, ensure that
all image references that existed in the original data are still present
in the fixed content; if any image reference is missing, the fix must be
rejected.

↪→
↪→
↪→
↪→
↪→
4. **Identify New Issues:** Check if the fixes introduced any new problems

or cascading errors (e.g., changing the choices but not updating the
`correct_option`).

↪→
↪→
5. **Make a Decision (`is_fixed`):**

- If all issues from the "Original Issue Report" are resolved and no
new issues exist, set `is_fixed` to `true`.↪→

- Otherwise, set `is_fixed` to `false`.
6. **Provide Reasoning:** Briefly explain your decision. If not fixed,

clearly state what is still wrong, including any missing image
references.

↪→
↪→
7. **Re-Plan Decision (`needs_replan`):**

- If `is_fixed` is `false` and the existing fix plan is inadequate or
incorrect, set `needs_replan` to `true`.↪→

- Otherwise, set `needs_replan` to `false`.

Output Instructions:
Produce a single, valid JSON object with double-quoted keys that conforms

strictly to the schema below. Do NOT add any extra text, markdown,
explanations, or code fences. Return only the JSON object.

↪→
↪→

Consistency Constraint (Critical):
- `is_fixed` can be `true` only and only if `needs_replan` is `false`. If

`needs_replan` is `true`, then `is_fixed` must be `false`.↪→

44

CRITICAL JSON RULE: The output must be a single, valid JSON object. Some
fields may contain markdown and LaTeX. In any JSON string, all backslash
characters (`\\`) MUST be escaped with another backslash. For example, if
a fix plan instruction is `change \\frac to \\binom`, you must write it
as "change \\\\frac to \\\\binom" in the JSON output. This is the most
important rule.

↪→
↪→
↪→
↪→
↪→

JSON Schema for Output:

{
"title": "ValidationResult",
"type": "object",
"properties": {

"is_fixed": {
"type": "boolean",
"description": "True if all issues in the original plan are resolved

and no new issues were created."↪→
},
"reasoning": {

"type": "string",
"description": "A brief explanation of the validation outcome. If not

fixed, this should explain what is still wrong."↪→
},
"needs_replan": {

"type": "boolean",
"description": "True if the current fix plan should be revised before

the next iteration."↪→
}

},
"required": ["is_fixed", "reasoning", "needs_replan"]

}

I.2.9 RePlanner

RePlanner Prompt

You are a meticulous technical editor and AI repair specialist. The Validator
determined that the current fix plan needs revision. Write a new, clear,
high-level, and machine-executable plan for the Fixer to carry out. The
output must be a markdown document.

↪→
↪→
↪→

How to Re-Assess the Issue: The Hierarchy of Suspicion

The previous plan failed. Before creating a new one, you must re-evaluate the
error's origin using the `Aggregated Issue Report` and the `Validator
Reasoning`. Your new plan must be tailored to the error's source,
following this hierarchy:

↪→
↪→
↪→

1. **If the error is from our Pipeline (Extraction/Translation):**
* **Your Goal:** Make our data a perfect reflection of the

`crawled_persian_markdown` source.↪→
* **Your Plan:** Create instructions to correct mistranslations, fix

parsing errors, and align our data with the ground truth.↪→

2. **If the error is a Minor Flaw in the Source Solution:**
* **Your Goal:** Correct the minor flaw (e.g., typo, notational error)

in the source's logic and reflect that fix in our English data.↪→
* **Your Plan:** Your instructions should surgically correct the

`english_solution_local_images` to fix the issue.↪→

3. **If there are Combined Errors (Source + Pipeline):**
* **Your Goal:** Create a plan that addresses the root cause first.

45

* **Your Plan:** Your instructions must be ordered correctly. First, an
instruction to address the conceptual fix needed for the source
error. Second, an instruction to fix the translation based on that
now-corrected concept.

↪→
↪→
↪→

CRITICAL RULES FOR PLANNING FIXES

Your authority to make changes is strictly limited. While your primary goal
is to create a complete plan to fix all issues in the report, you must
operate within the following non-negotiable constraints:

↪→
↪→

RULE 0: CONFLICT RESOLUTION
Your primary goal is to follow all rules. If you find that fixing an issue

according to one rule (e.g., `RULE 3`) would force you to violate another
rule (e.g., `RULE 1`), you must prioritize safety. Your plan should:

↪→
↪→
1. Perform any minor, safe fixes that do not cause a conflict.
2. Clearly state the nature of the rule conflict you encountered (e.g.,

"Correcting the solution to match the updated problem would require a
full rewrite, which violates RULE 1.").

↪→
↪→
3. Explicitly recommend that the problem requires human intervention.

RULE 1: MODIFICATIONS MUST BE MINOR AND SURGICAL

You are **forbidden** from rewriting entire solutions. The goal is to repair,
not replace.↪→

* **You CAN:** Make minor edits like correcting typos, changing variables,
fixing indices, or modifying equations within a sentence. You may rewrite
one or two sentences if absolutely necessary to correct a specific,
localized error.

↪→
↪→
↪→
* **You CANNOT:** Propose a total rewrite, restructure the entire logical

flow, or add large new paragraphs of explanation.↪→

RULE 2: THE FINAL ANSWER IS SACROSANCT

You are **strictly forbidden** from planning any changes to `correct_option`
or `answer_value` unless the aggregated issue report's final category is
exactly **`ManualErrorIncorrectGuess`**.

↪→
↪→

* **IF the category is `ManualErrorIncorrectGuess`:** Your plan's objective
is to derive the correct answer from the mathematical proof in the
`crawled_persian_markdown` and update `correct_option` and `answer_value`
to match that derived truth.

↪→
↪→
↪→
* **IF the category is `OriginalSourceError`:** You **must not** change

`correct_option` or `answer_value`. Your plan must focus on making minor
textual edits to the solution to clarify the flawed reasoning or fix the
notation/typos.

↪→
↪→
↪→
* **IF the category is `MistranslationAnswerKey`:** Your plan must **only**

remove the sentence stating the answer is not in the choices. Do not
change `correct_option` or `answer_value`.

↪→
↪→

RULE 3: UPHOLD THE HIERARCHY OF TRUTH

Your primary directive is to ensure the data is a high-fidelity
representation of the original Persian source
(`crawled_persian_markdown`). All fixes must follow this strict
hierarchy, where lower-priority data is always corrected to match
higher-priority data.

↪→
↪→
↪→
↪→

1. **Ultimate Authority (`crawled_persian_markdown`):** This is the absolute
ground truth.↪→

2. **Problem Definition (`problem`, `context`, `choices`):** These fields
must be a faithful translation of the Ultimate Authority.↪→

46

3. **Derived Explanation (`english_solution_local_images`):** This field
must correctly solve the problem as defined in the `problem` field.↪→

- **You MUST:** If the `context` contains a typo or mistranslation (when
compared to the Ultimate Authority), your plan must correct the `context`
field.

↪→
↪→
- **You MUST:** If the `problem` has a typo or mistranslation (when compared

to the Ultimate Authority), your plan must correct the `problem` field
AND then also correct the `english_solution_local_images` so it solves
the now-correct problem.

↪→
↪→
↪→
- **You MUST NOT:** Ever "fix" the `problem` field to justify an error in the

`english_solution_local_images`. The solution always yields to the
problem.

↪→
↪→

Any plan that violates these rules is invalid and will be rejected.

Inputs:
- Aggregated Issue Report (markdown):

{aggregated_report_md}
- Validator Reasoning (why previous plan failed):

{validator_reasoning}
- Existing Fix Plan (to revise):

{fix_plan_md}

Text Fields to Analyze:
- problem: {problem}
- choices: {choices}
- english_solution_local_images: {english_solution}
- context: {context}
- correct_option: {correct_option}
- answer_value: {answer_value}
- SVG XMLs (if any):

```
{svg_sources}
```

Constraints (Critical):
- Do not propose removing, renaming, or altering any image references. Image

content is essential and must be preserved.↪→
- If an instruction would implicitly remove an image, rewrite it to keep

images intact and only change necessary text.↪→
- Never instruct to delete image markdown (e.g., lines that start with `![](`

or similar).↪→

Required Output Structure:
```markdown
### Fix Plan

1. **Instruction:** [...]
* **Target Fields:** [...]
* **Rationale:** [...]

2. **Instruction:** [...]
* **Target Fields:** [...]
* **Rationale:** [...]

```

J Complete Technique Taxonomy

The following hierarchy contains all 89 sub-sub-topic labels used for technique classification in
CombiGraph-Vis. Each problem receives labels from this taxonomy based on techniques that
explicitly appear in its solution.

47

J.1 Technique Labeling Prompt

Technique Labeler Prompt

Task

Given a `{problem}`, its `{solution}`, and optional `{context}`, determine
which techniques were **actually used** in the solution and output them
as a **list** of labels. Each label must strictly follow the three-level
path:

↪→
↪→
↪→

`Topic -> Sub-topic -> Sub-sub-topic`

Only use items from the **Reference Topic Hierarchy** below. Pick the **most
specific** sub-sub-topic(s) that apply.↪→

Inputs

* **Problem:** `{problem}`
* **Solution:** `{solution}`
* **Context (optional):** `{context}`

What "Context" Means (read carefully)

* **Definition:** `{context}` is any preliminary text that defines the
setting, objects, constraints, notations, or assumptions that the problem
and solution rely on (e.g., "colors are considered identical up to
rotation," "multisets allowed," "graph is simple and undirected," special
definitions, or domain restrictions).

↪→
↪→
↪→
↪→
* **Usage Rule:** Treat `{context}` as part of the problem setup. If

`{context}` narrows, extends, or clarifies the setting, **apply it when
deciding techniques** (e.g., "combinations with repetition" becomes
applicable if `{context}` allows multisets).

↪→
↪→
↪→
* **Conflict Rule:** If `{context}` conflicts with generic assumptions,

prefer `{context}` unless the solution explicitly overrides it.↪→

Decision Rules (strict)

1. **Most-specific only:** Every label must be a full three-level chain from
the hierarchy (no truncations).↪→

2. **Evidence-based:** Base labels on steps that *appear in the solution*,
not merely plausible alternatives.↪→

3. **Context-aware:** Incorporate `{context}` constraints/definitions when
identifying techniques.↪→

4. **Multi-technique:** Include all materially used techniques. Mark exactly
one label as primary.↪→

5. **Ties:** If two sub-sub-topics plausibly apply, prefer the one explicitly
named or most central to the argument.↪→

6. **Out-of-scope moves:** If the solution uses ideas not present in the
hierarchy, add one extra array item with `"topic": "OTHER"` and a short
`"justification"` describing the idea. Do **not** invent new hierarchy
items.

↪→
↪→
↪→

Output Format (JSON)

Return **only** a JSON **array**. Each element is an object of this shape:

```json
[

{
"topic": "...",
"sub_topic": "...",
"sub_sub_topic": "...",
"primary": true,

48



"justification": "1-3 sentences citing the exact step(s) in the solution
(and any relevant context) that evidence this technique."↪→

}
]
```

* Include **exactly one** element with `"primary": true`. All others must
have `"primary": false`.↪→

* If there are no valid hierarchy techniques, return an array with a single
`"OTHER"` item as described in Rule 6.↪→

Worked Micro-Examples

Example A (single technique)
Solution step: "We count integer solutions to $x_1+\dots+x_k=n$ using stars

and bars."↪→
-> Output:

```json
[

{
"topic": "Combinatorics",
"sub_topic": "Counting Foundations",
"sub_sub_topic": "Stars & bars",
"primary": true,
"justification": "Applies the balls-into-bins formula to count

nonnegative integer solutions to a sum."↪→
}

]
```

Example B (multiple techniques)
Solution steps: "Apply Inclusion-Exclusion to avoid overcounting... then use

linearity of expectation to bound the count."↪→
-> Output:

```json
[

{
"topic": "Combinatorics",
"sub_topic": "Advanced Counting",
"sub_sub_topic": "Inclusion-Exclusion (e.g., derangements)",
"primary": true,
"justification": "Main count constructed via inclusion-exclusion to

correct overcounting."↪→
},
{

"topic": "Combinatorics",
"sub_topic": "Probabilistic Method (intro)",
"sub_sub_topic": "Linearity-of-expectation tricks",
"primary": false,
"justification": "Uses expectation linearity to bound the count after

inclusion-exclusion."↪→
}

]
```

Reference Topic Hierarchy (choose **only** from these leaves)

Combinatorics

* **Counting Foundations**

* Sum/Product/Complement rules

49

* Bijections (one-to-one counting)
* Permutations & arrangements (with/without repetition; circular)
* Combinations (with/without repetition; multisets)
* Stars & bars (integer-solution counting)
* Binomial theorem; lattice paths; basic identities

* **Advanced Counting**

* Inclusion-Exclusion (e.g., derangements)
* Double counting
* **Recurrences & Generating Ideas**

* Linear recurrences (characteristic equations)
* Classic sequences (Fibonacci, Catalan)
* Light generating functions (ordinary/exponential)

* **Symmetry Counting**

* Burnside's lemma
* Pólya enumeration (intro)

* **Invariants & Monovariants**

* Parity/modular invariants
* Coloring/weighting arguments
* Termination via monovariants

* **Probabilistic Method (intro)**

* Linearity-of-expectation tricks
* Existence proofs via expectation

Graph Theory

* **Basics**

* Definitions & representations (adjacency list/matrix)
* Degree/handshaking; degree & *graphic* sequences
* Isomorphism; traversals (BFS/DFS); paths, cycles, distance

* **Trees**

* Properties; rooted/binary trees
* DFS/BFS trees
* Spanning trees & counting

* **Connectivity**

* Connectedness; cut vertices/bridges
* k-connectivity; blocks (biconnected components)

* **Directed Graphs**

* Strongly connected components
* Tournaments

* **Cycles & Trails**

* Eulerian trails/tours
* Hamiltonian paths/cycles

* **Matchings & Covers**

* Bipartite matchings; Hall's marriage theorem
* Matchings in general graphs; independence number
* Vertex/edge covers (and relations in bipartite graphs)

* **Planarity & Coloring**

* Planar graphs; Euler's formula (applications)
* Vertex/edge coloring; counting colorings

Combinatorial Game Theory

50

* **Modeling & State Analysis**

* Game graphs; win/lose/draw states
* DP for state evaluation; kernels; strategy existence proofs

* **Canonical Examples**

* Nim; partisan games; Hex; Shannon switching game

Probability (Elementary)

* **Core Concepts**

* Sample spaces & events; basic probability
* Conditional probability; independence; Bernoulli trials

* **Expectation**

* Random variables; linearity of expectation
* Indicator variables

Number Theory (Contest Essentials)

* **Divisibility & GCD/LCM**

* Euclidean algorithm; Bézout's identity
* **Primes & Congruences**

* Modular arithmetic; Fermat's little theorem; CRT
* **Counting Toolbox**

* Multiplicative functions τ(n), σ(n), φ(n); multiplicativity
* Fast exponentiation; modular inverses
* Counting by gcd/lcm; CRT-based counts

Formal Languages & Automata (CS touch-in)

* **Languages**

* Alphabets, strings, languages
* **Machines**

* DFA & NFA; pushdown automata; Turing machines

Algorithmic Techniques (non-coding)

* **Greedy**

* Exchange arguments; counterexample design
* **Dynamic Programming**

* State modeling for counting/optimization (sequences, grids, graphs)
* **Divide-and-Conquer & Recursion**

* Recurrences; correctness ideas
* **Search**

* Backtracking & pruning; BFS/DFS as search patterns
* **Classic Tricks**

* Binary search on answer; two-pointers/sliding window
* **Proof of Correctness**

* Invariants; loop/phase arguments

Conceptual Data Structures (no code)

51

* **Linear Containers**

* Stack, queue, deque
* **Priority & Set Structures**

* Heaps/priority queues; sets/maps; hashing ideas
* **Disjoint Set Union (Union-Find)**

* Connectivity; cycle detection
* **Graph Representations**

* Adjacency list vs matrix; trade-offs

Strings & Combinatorics on Words

* **Structural Properties**

* Prefix/suffix/border; periodicity
* Palindromes

* **Counting & Constraints**

* Counting constrained strings
* Links to automata (acceptance as constraints)

Discrete and Computational Geometry

* **Primitives**

* Orientation test (cross-product sign)
* Line/segment intersection

* **Polygons & Lattice**

* Polygon area (shoelace)
* Lattice points; Pick's theorem

* **Convexity**

* Convex-hull intuition and uses

Logical & Puzzle Reasoning

* **Logic & Proof Moves**

* Propositional logic; contradiction/contrapositive
* **Puzzle Tactics**

* Invariants for grid/tiling; parity tricks
* Constructive examples & counterexamples

Inequalities & Algebraic Tools

* **Core Inequalities**

* AM-GM; Cauchy-Schwarz (incl. Titu's lemma)
* Rearrangement inequality

* **Summation Tricks**

* Telescoping; bounding techniques

General Proof Strategies

* **Mathematical Induction**

* Weak vs. Strong induction

52

* Structural induction (on trees, graphs, etc.)
* Formulating & strengthening the inductive hypothesis
* Infinite descent / Minimal counterexample

* **Pigeonhole Principle (PHP)**

* Simple form (n+1 pigeons in n holes)
* Generalized/Strong form (\$\lceil N/k \rceil\$ items)
* Applications in geometry, number theory, and graphs

* **Extremal Principle**

* Core idea (Max/Min argument)
* Proving existence or properties of extremal objects

* **Coloring & Invariant Arguments**

* Coloring proofs (e.g., checkerboard/parity coloring)
* Invariants (properties that remain constant)
* Monovariants (properties that change monotonically)

J.2 Solution Generation Prompt

Solution Generation Prompt

Olympiad Problem Solution Instructions

You are tasked with solving a mathematical olympiad-level problem. Provide a
complete, rigorous, and mathematically accurate solution that meets the
standards expected in competitive mathematics.

↪→
↪→

Input Components

Context: {context}
- This provides background information, definitions, and preliminary setup

for the problem↪→
- Pay careful attention to any special notation, constraints, or conditions

defined here↪→

Problem: {problem}
- This is the main question to be solved
- Identify exactly what is being asked and what the final answer should be

Choices: {choices}
- If present, these are the multiple choice options
- Your final answer must match one of these choices exactly

Solution Standards

Your solution must demonstrate:

1. **Complete Mathematical Rigor**: Every step must be mathematically
justified with proper reasoning↪→

2. **Clear Logical Flow**: Present arguments in a logical sequence that
builds toward the solution↪→

3. **Precise Definitions**: Use mathematical terminology accurately and
define any non-standard notation↪→

4. **Thorough Analysis**: Consider all relevant cases and address potential
edge cases↪→

5. **Computational Accuracy**: All calculations must be correct and
verifiable↪→

53

6. **Proof Completeness**: If proving a statement, ensure the proof covers
all necessary cases and is gap-free↪→

Solution Structure

1. **Problem Analysis**: Begin by clearly restating what needs to be found
and identifying key constraints↪→

2. **Approach Strategy**: Explain your solution method and why it's
appropriate↪→

3. **Detailed Working**: Show all mathematical steps with clear
justifications↪→

4. **Verification**: When possible, verify your answer through alternative
methods or checking edge cases↪→

5. **Final Answer**: Present the final answer clearly

Mathematical Notation Requirements

- Use correct LaTeX notation for all equations and mathematical symbols
- Use `\\(` and `\\)` for inline mathematics
- Use `\\[` and `\\]` for display mathematics (block equations)
- Do not use any unicode characters - stick to proper LaTeX formatting
- Show intermediate steps clearly with proper mathematical formatting

Answer Format Requirements

- Wrap your final numerical answer, expression, or choice in:
`\boxed{your_answer}`↪→

- For multiple choice questions, include both the choice number and
description if applicable↪→

- Ensure the boxed answer directly addresses what the problem asks for
- If the answer is a mathematical expression, present it in its simplest form

Mathematical Communication

- Use proper mathematical terminology and maintain precision in language
- Distinguish clearly between "implies," "if and only if," "for all," etc.
- Explain the reasoning behind each major step
- Present arguments in a logical sequence that builds toward the solution
- Consider all relevant cases and address potential edge cases

Solve the given problem following these guidelines.

J.3 Hierarchical Taxonomy of Topics in CombiGraph-Vis

Combinatorics

54

Combinatorics

Counting Foundations

Sum/Product/Complement

Bijections

Permutations

Combinations

Stars & Bars

Binomial thm.; lattice paths; identities

Advanced Counting
Inclusion–Exclusion

Double counting

Recurrences & GFs

Linear recurrences

Classic sequences (Fib., Catalan)

Light OGFs/EGFs

Symmetry Counting
Burnside’s lemma

Pólya enumeration (intro)

Invariants

Parity/modular invariants

Coloring/weighting

Termination via monovariants

Probabilistic Method
Linearity-of-expectation

Existence via expectation

Graph Theory

55

Graph Theory

Basics

Defs; adjacency list/matrix

Degree/handshaking; graphic seq.

Isomorphism; BFS/DFS; paths/cycles/dist.

Trees

Props; rooted/binary trees

DFS/BFS trees

Spanning trees & counting

Connectivity
Connectedness; cut vertices/bridges

k-connectivity; blocks (biconnected)

Directed Graphs
Strongly connected comps.

Tournaments

Cycles & Trails
Eulerian trails/tours

Hamiltonian paths/cycles

Matchings & Covers

Bipartite matchings; Hall

General matchings; independence no.

Vertex/edge covers; bipartite relations

Planarity & Coloring
Planar; Euler’s formula (apps)

Vertex/edge coloring; counting colorings

Combinatorial Game Theory

Comb. Game Theory
Modeling & State Analysis

Game graphs; W/L/D states

DP for evaluation; kernels; strategy existence

Canonical Examples Nim; partisan games; Hex; Shannon switching

Probability

Probability
Core Concepts

Sample spaces & events; basic prob.

Conditional prob.; independence; Bernoulli

Expectation
RV; linearity of expectation

Indicator variables

Number Theory (Contest Essentials)

Number Theory

Divisibility & GCD/LCM Euclidean alg.; Bézout

Primes & Congruences Modular arithmetic; FLT; CRT

Counting Toolbox

τ, σ, φ; multiplicativity

Fast exp.; modular inverses

Counts via gcd/lcm; CRT-based counts

Formal Languages & Automata

56

FL & Automata
Languages Alphabets, strings, languages

Machines DFA & NFA; pushdown automata; Turing machines

Algorithmic Techniques

Algorithmic Techniques

Greedy Exchange arguments; counterexample design

DP State modeling

Recursion Recurrences; correctness ideas

Search Backtracking & pruning; BFS/DFS patterns

Classic Tricks Binary search on answer; two-pointers/sliding window

Proof of Correctness Invariants; loop/phase arguments

Conceptual Data Structures

Data Structures

Linear Containers Stack, queue, deque

Priority & Set Structures Heaps; sets/maps; hashing ideas

Disjoint Set Union Connectivity; cycle detection

Graph Representations Adjacency list vs matrix; trade-offs

Strings & Combinatorics on Words

Strings & Words
Structural Properties

Prefix/suffix/border; periodicity

Palindromes

Counting & Constraints
Counting constrained strings

Links to automata (acceptance as constraints)

Computational Geometry

Computational Geometry

Primitives
Orientation test

Line/segment intersection

Polygons & Lattice
Polygon area

Lattice points; Pick’s theorem

Convexity Convex hull intuition & uses

Logical & Puzzle Reasoning

Logic & Puzzle Reasoning
Logic & Proof Moves Propositional logic; contradiction/contrapositive

Puzzle Tactics
Invariants for grids/tilings; parity tricks

Constructive examples & counterexamples

Inequalities & Algebraic Tools

Inequalities & Algebraic Tools
Core Inequalities

AM–GM; Cauchy–Schwarz (incl. Titu)

Rearrangement inequality

Summation Tricks Telescoping; bounding techniques

57

Proof Strategies

Proof Strategies

Induction
Weak/Strong; structural

Strengthening hypotheses; infinite descent/minimal counterexample

Pigeonhole Principle
Simple; generalized/strong

Apps: geometry, number theory, graphs

Extremal Principle Max/Min arguments; extremal objects

Coloring & Invariants
Checkerboard/parity coloring

Invariants & monovariants

58

	Introduction
	CombiGraph-Vis Dataset
	Data Collection
	Data Curation Process Using Agentic Workflows

	Results
	Conclusion
	Related Work
	Task Formats and Verification Protocol
	Technique Labels and Taxonomy
	Topic Level Performance
	Full Examples for Problem Categories
	Dataset Statistics
	Deferred Definitions and Explanations
	Implementation Details
	Prompt Specifications
	Problem Validation Prompts
	TypoClarityCritic
	LogicalSoundnessCritic
	AnswerVerificationCritic
	FinalAggregator

	Error Resolution Prompts
	IssueDetector
	IssueAggregator
	SolutionEngager
	IssueDetectorWithEngagement
	EngagementReportSynthesizer
	FixPlanner
	Fixer
	Validator
	RePlanner

	Complete Technique Taxonomy
	Technique Labeling Prompt
	Solution Generation Prompt
	Hierarchical Taxonomy of Topics in CombiGraph-Vis

