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Abstract

Creating novel views from a single image has achieved tremendous strides with1

advanced autoregressive models. Although recent methods generate high-quality2

novel views, synthesizing with only one explicit or implicit 3D geometry has a3

trade-off between two objectives that we call the “seesaw” problem: 1) preserv-4

ing reprojected contents and 2) completing realistic out-of-view regions. Also,5

autoregressive models require a considerable computational cost. In this paper, we6

propose a single-image view synthesis framework for mitigating the seesaw prob-7

lem. The proposed model is an efficient non-autoregressive model with implicit and8

explicit renderers. Motivated by characteristics that explicit methods well preserve9

reprojected pixels and implicit methods complete realistic out-of-view region, we10

introduce a loss function to complement two renderers. Our loss function promotes11

that explicit features improve the reprojected area of implicit features and implicit12

features improve the out-of-view area of explicit features. With the proposed13

architecture and loss function, we can alleviate the seesaw problem, outperforming14

autoregressive-based state-of-the-art methods and generating an image ≈100 times15

faster. We validate the efficiency and effectiveness of our method with experiments16

on RealEstate10K and ACID datasets.17

1 Introduction18

Single-image view synthesis is the task of generating novel view images from a given single image [5,19

18, 23, 38–40, 47, 50, 54]. It can enable the movement of the camera from a photograph and bring an20

image to 3D, which are significant for various computer vision applications such as image editing and21

animating. To perform the realistic single-image view synthesis in these applications, we can expect22

that the novel view image has to consist of existing objects and unseen new objects from the reference23

viewpoint. Therefore, for high-quality novel views, the following two goals should be considered: 1)24

preserving 3D transformed seen contents of a single reference image and 2) generating semantically25

compatible pixels for filling the unseen region. To achieve two goals, explicit and implicit methods26

have been proposed.27

With the recent success of differentiable geometric transformation methods [2, 31], explicit meth-28

ods [5, 17, 23, 50, 57] leverage such 3D inductive biases to guide the view synthesis network to29

preserve 3D transformed contents, and various generative models are applied to complete the unseen30

regions. Explicit methods can produce high-quality novel view images in small view changes, where31

the content of the reference viewpoint still occupies a large portion. However, for large view changes,32

the image quality is degraded due to a lack of ability to generate pixels of the unseen region. To deal33

with this problem, outpainting with the autoregressive model is exploited to fill unseen regions [39],34

but generating photo-realistic images remains a challenge for explicit methods.35
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Figure 1: Seesaw problem of explicit and implicit methods. Explicit methods well preserve warped
contents but sacrifice to fill unseen pixels (↑ PSNR on small view change, ↑ FID on large view
change). Implicit methods amply fill unseen pixels but fall short of preserving seen contents (↓ PSNR
on small view change, ↓ FID on large view change). Our proposed framework alleviates this seesaw
problem and generates an image faster than the state-of-the-art methods.

On the other side, implicit methods [38, 40, 46] less enforce 3D inductive biases and let the model36

learn the required 3D geometry for view synthesis. Based on the powerful autoregressive trans-37

former [10], recent implicit methods learn the 3D geometry from a reference image and camera38

parameters. Implicitly learned 3D geometry allows the model to synthesize diverse and realistic novel39

view images but fails to preserve the contents of the reference image since they reduce 3D inductive40

biases.41

To sum up, previous single-image view synthesis methods suffer from a trade-off between two42

objectives: 1) preserve seen contents and 2) generate semantically compatible unseen regions. Figure 143

shows an apparent trade-off that explicit methods well preserve seen contents with sacrificing the44

generation of unseen regions and vice versa for implicit methods. Here, we call this trade-off the45

seesaw problem and emphasize the need for combining solid points of explicit and implicit methods.46

Moreover, recent methods often depend on autoregressive models, which generate individual pixels47

sequentially. Sequential generation causes too slower view synthesis than non-autoregressive methods,48

limiting their application areas, such as image animating in real-time. Therefore, we refocus on a fast49

and efficient non-autoregressive model for single view synthesis.50

In this paper, we present a non-autoregressive framework for alleviating the seesaw problem. Our51

approach aims to design the architecture and loss functions. We design two parallel render blocks52

which explicitly or implicitly learn geometric transformations from point cloud representations.53

To bridge explicit and implicit transformations, we propose a novel loss function that motivates54

explicit features improve seen pixels of implicit features and implicit features improve unseen55

pixels of explicit features. Interestingly, we observe that proposed loss makes two renderers embed56

discriminative features and allow the model to use both renderers in a balanced way to create novel57

views. With the proposed architecture and the loss function, we can merge the pros of both explicit58

and implicit methods, alleviating the seesaw problem. As a result, our non-autoregressive framework59

can better preserve seen contents, better complete unseen pixels, and generate images ≈100 times60

faster than autoregressive methods. We validate the efficiency and effectiveness of our framework61

with experiments on the indoor dataset RealEstate10K [58] and the outdoor dataset ACID [23].62

2 Related Works63

Novel view synthesis Given multiple images from different viewpoints of a scene, novel view64

synthesis aims to generate novel view images. Traditionally, multi-view geometry is utilized for65

synthesizing novel viewpoints [4, 6, 7, 13, 21, 42, 59]. Recently, deep neural networks have been66

used to rendering [15, 28, 29, 32] and several representation for view synthesis such as multi-plane67

image [11, 45, 58], point cloud [1], depth [44], radiance field [30, 49, 55] and voxel [25, 33, 43].68

2



ViewNet

Input Image Iref

DepthNet

Back-projection

f0

D Xw Ximg

he

hi

Decoder

output Image Itgt

O
verlap Patch
Em

beddings

Encoder

M
ix-FFN

x N

Global Set Attention

ISAB

𝜹𝒈𝒍𝒐𝒃𝒂𝒍 gglobal

Local Set Attention

LSA Layer

𝜹𝒍𝒐𝒄𝒂𝒍𝒂𝒃𝒔 𝜹𝒍𝒐𝒄𝒂𝒍𝒓𝒆𝒍

glocal

fN

Camera Pose T

Explicit Renderer

O
verlap Patch 

Em
beddings

Transform
er 

Block

U
psam

ple

W
arping

Implicit Renderer

𝛿pos

x M

O
verlap Patch 

Em
beddings

Transform
er 

Block

U
psam

ple

x M

: addition
: concatenation

Figure 2: An overview of network architecture. Our network takes a reference image Iref and
a relative camera pose T as inputs. The depth estimation network (DepthNet) first predicts a depth
map D, and the view synthesis network (ViewNet) generates a target image Itgt from Iref , D and
T . Specifically, D is used for calculating the 3D world coordinate Xw and the normalized image
coordinate Ximg at the reference viewpoint, which are passed through various positional encoding
layers in the encoder (e.g., δglobal, δabslocal and δrellocal) to provide the scene structure representations.
Encoded features fN are then transformed by both Implicit Renderer and Explicit Renderer with T .
Finally, two transformed feature map, hi and he, are concatenated to generate Itgt by the decoder.

Single-image view synthesis is more challenging than general novel view synthesis since a single69

input image is only available [5, 18, 23, 38–40, 47, 50, 54]. Explicit methods directly inject 3D70

inductive biases into models. For example, SynSin [50] uses 3D point cloud features with estimated71

depth from the model, projects to novel viewpoints, and refines unseen pixels with recent generative72

models [3]. SynSin works well in small viewpoint changes but degrades in large viewpoint changes73

due to the lack of generating unseen pixels. To deal with this problem, PixelSynth [39] exploits the74

autoregressive outpainting model [37] with 3D point cloud representation. Despite using the slow75

autoregressive model, it cannot generate unseen pixels well. For an implicit method, Rombach et76

al. [40] propose a powerful autoregressive transformer. By less enforcing 3D inductive biases, this77

approach can generate realistic view synthesis and complete the unseen region without explicit78

3D geometry. However, its inference time is long due to the autoregressive model, and it fails to79

preserve seen contents of a reference image. We bridge these implicit and explicit methods as a80

non-autoregressive architecture, which can outperform autoregressive approaches with fast inference.81

Transformer for point cloud The transformer and self-attention have brought a breakthrough in82

natural language processing [8, 48] and computer vision [9]. Inspired by this success, transformer83

and self-attention networks have been widely applied for point cloud recognition tasks and achieved84

remarkable performance gain. Early methods utilize global attention for all of the point clouds,85

resulting in a large amount of computation and inapplicable for large-scale 3D point cloud [24, 52, 53].86

Lee et al. [20] propose the SetTransformer module suitable for point cloud due to permutation-87

invariant, which uses inducing point methods and reduces computational complexity from quadratic88

to linear in the number of elements. Also, local attention methods is utilized to enable scalability [14,89

34, 56]. Notably, among local attention methods, Fast Point Transformer [34] which uses voxel90

hashing-based architecture, achieves both remarkable performance and computational efficiency.91

Global attention may dilute important content by excessive noises as most neighbors are less relevant,92

and local attention may not have sufficient context due to their scope. Therefore, Our approaches use93

both global and local attention to deal with 3D point cloud representation.94

3 Methodology95

Given a reference image Iref and a relative camera pose T , the goal of single-image view synthesis is96

to create a target image Itgt with keeping visible contents of Iref and completing realistic out-of-view97

pixels. To achieve this, we focus on mitigating the seesaw problem between explicit and implicit98
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methods in terms of the network architecture and the loss function. Figure 2 describes an overview of99

our network architecture. The network consists of two sub-networks, the depth estimation network100

(DepthNet) and the view synthesis network (ViewNet). Note that the pre-trained DepthNet generates101

depth map D, which is used for ViewNet to synthesize the photo-realistic Itgt.102

3.1 Depth Estimation Network (DepthNet)103

We train the depth estimation network for explicit 3D geometry since ground-truth depths are not104

available. Following Monodepth2 [12], our DepthNet is trained in a self-supervised manner from105

monocular video sequences. Because a ground-truth relative pose between images is available,106

we substitute the pose estimation network with the ground-truth relative pose. Then, we train the107

network on reprojection losses and smoothness losses with auto-masking in their work. After training108

DepthNet, we fix it during training ViewNet.109

3.2 View Synthesis Network (ViewNet)110

We design a simple view synthesis network built on architectural innovations of recent transformer111

models. Specifically, we exploit 3D point cloud representation to consider the relationship between112

the geometry-aware camera pose information and the input image.113

Encoder The encoder aims to extract scene representations from a feature point cloud of a reference114

image. To deal with point clouds, we design a Global and Local Set Attention (GLSA) block which115

simultaneously extracts overall contexts and detailed semantics. For efficient input size of transform-116

ers, Iref ∈ RH×W×3 is encoded into f0 ∈ RH
4 ×W

4 ×C by an overlapping patch embedding [51],117

where C denotes the channel dimension. Then, the homogeneous coordinates p of a pixel in f0118

are mapped into normalized image coordinates Ximg as Ximg(p) = K−1
↓ p, where K↓ denotes the119

camera intrinsic matrix of f0. Finally, 3D world coordinates of p are calculated with depth map D as120

Xw(p) = D(p)Ximg(p). Our encoder architecture is N stacked GLSA block, and i-th GLSA block121

receives fi−1, Ximg and Xw and outputs fi with Mix-FFN [51].122

Global Set Attention. We utilize Induced Set Attention Block (ISAB) [20] to extract global set123

attention between the feature point clouds. With positional encoder δglobal and vector concatenation124

operator ⊕, the global attention of i-th GLSA bock is represented as:125

giglobal(p) = ISAB(fi(p)⊕ δglobal(Xw(p)). (1)

Local Set Attention. We use a modified Lightweight Self-Attention (LSA) layer [34] for the set126

attention in r × r local window of each pixel point. Unlike the decomposing relative position of127

voxels in [34], we decompose the relative position of 3D world coordinates between neighbor pixels128

using normalized image coordinates as:129

Xw(p)−Xw(q) = (Xw(p)−Ximg(p))− (Xw(q)−Ximg(q)) + (Ximg(p)−Ximg(q)), (2)

where q ∈ N (p) is a neighbor set of homogeneous coordinates in a r × r window of p. With130

decomposition in Eq. 2, we can divide the relative positional encoding into an continuous positional131

encoding δabslocal and a discretized positional encoding δrellocal.Then, the computation procedures for132

local set attention gilocal of i-th GLSA block is similar to LSA layer as:133

lilocal(p) = fi(p)⊕ δabslocal(Xw(p)−Ximg(p)),

gilocal(p) = Σq∈N (p)SC(ψ(l
i
local(p)), δ

rel
local(Ximg(p)−Ximg(q)))ϕ(l

i
local(q)),

(3)

where ψ and ϕ are MLP-layers, and Sc(a, b) = a·b
∥a∥∥b∥ computes the cosine similarity between134

a and b. As pixel coordinates of p and q are all integer, the encoding of Ximg(p) − Ximg(q) is135

hashed over r2 − 1 values, resulting in a space complexity reduction from O(HW · r2 · C) to136

O(HW · C) +O(r2 · C).137

Rendering Module Given the scene representations of the reference image, the rendering module138

learns 3D transformation from the reference viewpoint to the target viewpoint. Motivated by our139

observations of implicit and explicit methods, we design an Explicit Renderer(ER) and an Implicit140

Renderer(IR) connected in parallel to bypass the seesaw problem. The structure of the two renderers141
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Figure 3: An overview of our transformation similarity loss. Two transformed features, hi and
he, are complemented each other by the transformation similarity loss. Specifically, we first derive
out-of-view mask O from K, D and T . By using O, two transformation similarity loss, i.e., Lts,in

and Lts,out, are applied to encourage the discriminability of hi and he, respectively. To guide the
another renderer as intended, we allow the back-propagated gradients of Lts,in only to the reprojected
regions of hi, and those of Lts,out only to the out-of-view regions of he.

is similar; they consist of an overlapping patch embedding, GPT architecture [36] and ResNet blocks142

with upsampling layers. Note that the overlapping patch embedding and upsampling layers are143

designed for downsampling and upsampling the input feature with the factor of 4, respectively.144

The major difference between the two renderers is how the relative camera pose T is used for the145

geometric transformation.146

Explicit Renderer (ER). Given the rotation matrixR and translation vector t of relative camera pose T ,147

p can be reprojected to the homogeneous coordinates of target viewpoint p′ as p′ = K↓RXw(p) + t.148

The output of encoder fN is warped by splatting operation [31] with optical flow from p to p′. Then,149

warped fN goes through the explicit renderer to produce explicit feature map he.150

Implicit Renderer (IR). Unlike the explicit renderer, the implicit renderer uses the camera parameter151

itself. Instead of embedding 3x4 camera extrinsic matrix, we use independent 7 parameters to embed152

pose information; Translation vector t and axis-angle notation ( u
∥u∥ , θ) to parameterize rotation matrix153

R. We use a positional encoding layer δpos to embed these parameters and add them to the input of154

the transformer block. fN passes through the implicit renderer and outputs implicit feature map hi.155

Please refer to the supplementary materials for details to compute the axis-angle notation.156

Decoder Two feature maps from ER and IR, which are denoted as he and hi, are then concatenated157

before the decoder. We use a simple CNN-based decoder by gradually upsampling the concatenated158

feature map with four ResNet blocks. Instead of generating pixels in an auto-regressive manner,159

we directly predict all pixels in the one-path, resulting in more than 110 times faster than the160

state-of-the-art autoregressive methods [38–40] in generating images.161

3.3 Loss Design for ViewNet162

Following the previous single-image view synthesis methods [39, 50], we also use the ℓ1-loss,163

perceptual loss [35] and adversarial loss to learn the network. Specifically, we compute ℓ1-loss and164

perceptual loss between Itgt and the ground-truth image Igt at the target viewpoint. Also, we use the165

global and local discriminators [19] with a Projected GAN [41] structure and a hinge loss [22]. We166

observe that our methods improve the generation performance even through these simple network167

structural innovations. Furthermore, we introduce a transformation similarity loss Lts to complement168

two output feature maps he and hi.169

Transformation Similarity Loss As an extension of the existing seesaw problem, he may have170

better discriminability than hi in reprojected regions, conversely, hi has better delineation of out-of-171

view regions than he. Therefore, as shown in Fig. 3, we design the transformation similarity loss172

between he and hi, expecting that hi learns to keep reprojected image contests, and he also learn173

to generate realistic out-of-view pixels. Specifically, we use a negative cosine similarity function174

Sc for calculating the similarity between two feature maps, and the transformation similarity loss175

Lts = λinLts,in + λoutLts,out is formulated as:176
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Lts,in = − 1∑
p(1− O(p))

∑
p

(1− O(p)) · Sc(hi(p), detach(he(p))),

Lts,out = − 1∑
p O(p)

∑
p

O(p) · Sc(detach(hi(p)), he(p)),

(4)

where O(p) ∈ RH
4 ×W

4 denotes an out-of-view mask which is derived from the depth map D and177

the relative camera pose T . Note that, without detach operations, our transformation similarity loss178

performs the same as a simple negative cosine similarity loss between two feature maps. Thus, we179

detach gradients back-propagated from Lts,in to he and gradients from Lts,out to hi, because the180

detach operation allows the components of Lts to be applied to the intended area.181

Final Learning Objective Taken together, our ViewNet is trained on the weighted sum of a ℓ1-loss182

Lℓ1 , a perceptual loss Lc, an adversarial loss Ladv and a transformation similarity loss Lts. The total183

loss is then L = Lℓ1 + λcLc + λadvLadv + Lts. We fix λc = 1 and λadv = 0.1 for all experiments.184

Table 1: Types of baselines and our method. Note that InfNat [23] varies according to the number
of steps, so we mark it as .

Types Methods
Tatarchenko et al. [46] Viewappearance [57] SynSin [50] InfNat [23] PixelSynth [39] GeoFree [40] LookOutside [38] Ours

Explicit ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓
Implicit ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✓

Autoregressive ✗ ✗ ✗ ✓ ✓ ✓ ✗

4 Experimental Results185

4.1 Experimental Settings186

We now describe experimental settings, and please refer to the supplementary materials for further187

details about datasets, baselines, and our network architecture.188

Dataset We used two standard datasets, RealEstate10K [58] and ACID [23], which are a collection189

of videos mostly captured in indoor and outdoor scenes, respectively. We divided train and test190

sequences as in [40].191

Baselines To validate the effectiveness of our framework, we compared our method to previous192

single-image view synthesis methods : Tatarchenko et al. [46], Viewappearance [57], Synsin [50],193

InfNat [23], PixelSynth [39], GeoFree [40] and LookOutside [38]. Table 1 briefly shows whether194

each method is an explicit, implicit, and autoregressive model. Compared to previous methods, we195

use both explicit and implicit geometric transformations without an autoregressive model.196

Evaluation Details Because explicit and implicit methods are respectively advantageous in small197

view change and large view change, methods should be evaluated on several sizes of viewpoint198

changes for a fair comparison. Therefore, we used a ratio of out-of-view pixels over all pixels to199

quantify view changes, resulting in three splits are categorized into small (20-40%), medium (40-60%)200

and large (60-80%). Since evaluation datasets do not have ground-truth depth maps, we used depth201

maps from our pre-trained DepthNet to derive the ratio of out-of-view mask pixels. Finally, we used202

randomly selected 1,000 image pairs for each test split.203

We use PSNR on the small split and FID [16] on the medium and large split as evaluation metrics.204

PSNR is a traditional metric for comparing images, which is widely used to evaluate consistency.205

Nevertheless, PSNR is a poor metric to verify the image quality on large viewpoint changes [39, 40].206

Still, it can be a good metric for evaluating the preservation of reprojected pixels on small view207

changes. Therefore, we use PSNR on the small split to evaluate the ability to preserve seen contents.208

For evaluating images quality of view synthesis, FID is widely used [39, 40, 50]. Especially in209

the medium and large split with many out-of-view pixels, FID indicates how well the model fills210

out-of-view pixels and generates realistic images. We use the PSNR and FID of specific splits as211

evaluation metrics, but we report the PSNR and FID of all splits to show the overall trend.212
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Table 2: Quantitative results on RealEstate10K and ACID. Image quality is measured by PSNR
and FID for three types of view changes, i.e., Small, Medium and Large. Furthermore, we show the
average performance over all view changes at the end. For both datasets, best results in each metric
are in bold, and second best are underlined.

Dataset Methods Small Medium Large Average
PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓

RealEstate10K [58]

Tatarchenko et al. [46] 11.12 258.75 10.90 248.55 10.80 249.24 10.94 252.18
Viewappearance [57] 12.51 142.93 12.79 110.84 12.44 147.27 12.58 133.68
SynSin [50] 15.38 41.75 14.88 43.06 13.96 61.67 14.74 48.83
SynSin-6x [50] 15.17 33.72 14.99 37.28 14.26 48.29 14.81 39.76
PixelSynth [39] 14.46 37.23 13.46 38.39 12.28 45.44 13.40 40.35
GeoFree [40] 14.16 33.48 13.15 34.21 12.57 35.28 13.29 34.32
LookOutside [38] 12.58 44.87 12.72 43.17 12.11 43.22 12.47 43.75
ours 15.87 32.42 14.65 33.04 13.83 35.26 14.78 33.57

ACID [23]

Tatarchenko et al. [46] 14.43 148.19 14.20 151.24 14.34 150.47 14.32 149.97
Viewappearance [57] 14.46 161.91 13.58 203.19 13.21 218.37 13.75 194.49
SynSin [50] 17.48 55.64 16.49 75.88 16.87 79.04 16.95 70.19
InfNat [23] (1-step) 15.94 64.32 14.40 90.80 13.65 106.28 14.66 87.13
InfNat [23] (5-step) 15.16 64.48 14.79 71.52 14.90 65.45 14.95 67.15
PixelSynth [39] 15.81 53.38 14.33 63.48 13.53 65.60 14.56 60.82
GeoFree [40] 14.80 53.21 14.24 58.92 14.22 54.78 14.42 55.64
ours 17.52 42.52 16.54 51.56 15.81 49.28 16.62 47.79

(a) Input Image (b) Warped Image (c) SynSin [50] (d) PixelSynth [39] (e) GeoFree [40] (f) Ours

Figure 4: Qualitative Results on RealEstate10K and ACID. We compare baselines to our method.
The top two rows are from RealEstate10K, and the bottom two rows are from ACID.
Implementation Details We first resized all images into a resolution of 256× 256, and normalized213

RGB value following [39, 50]. We trained DepthNet using a batch size 50 for 100k iterations and214

ViewNet using a batch size 32 for 150k iterations. Training takes about 3 days on 4 NVIDIA Geforce215

RTX 3090 GPUs. We used an AdamW [27] optimizer (with β1 = 0.5 and β2 = 0.9) and applied216

weight decay of 0.01. We first linearly increased the learning rate from 10−6 to 3 · 10−4 during the217

first 1.5k steps, and then a cosine-decay learning rate schedule [26] was applied towards zero. In218

ViewNet, we used 8 GLSA blocks with local window size r = 5 and 6 transformer blocks in each219

renderer for all experiments.220

4.2 Comparison to Baselines221

We now compare our method with the state-of-the-art methods on RealEstate10K and ACID. Table 2222

shows quantitative results for both datasets. The implicit method GeoFree [40] reports a lower223
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Table 3: Average inference time.
Methods SynSin InfNat (5-step) PixelSynth

Time (s/img) 0.063 1.14 6.22
Methods GeoFree LookOutside Ours

Time (s/img) 9.39 22.15 0.056

Table 4: Ablation study on Lts.
Loss Type

no Lts Lts,in Lts,out Lts(no detach) Lts

PNSR↑ 14.47 14.62 14.73 14.59 14.78
FID↓ 40.45 38.05 36.95 40.44 33.57

Table 5: Ablation Study on the Set Attention.
Set Attention Small Medium Large
glocal gglobal PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓
✓ 15.69 34.07 14.64 34.81 13.78 37.63

✓ 15.74 32.80 14.61 34.37 13.88 38.68
✓ ✓ 15.87 32.42 14.65 33.04 13.83 35.26

Table 6: Ablation Study on hyperparame-
ters of transformation similarity loss.

Loss Weight Small Medium Large
λin λout PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓
0.1 1 15.78 33.95 14.65 34.10 13.81 37.11
10 1 15.48 37.46 14.39 37.46 13.56 40.69
1 0.1 15.46 34.98 14.37 37.51 13.64 39.81
1 10 15.70 35.03 14.54 35.57 13.77 38.43
1 1 15.87 32.42 14.65 33.04 13.83 35.26

FID in the medium and large split than explicit methods such as SynSin [50] and PixelSynth [39],224

but its PSNR of the small split is lower. This shows that previous methods are suffered from the225

seesaw problem. However, our method consistently achieves the highest PSNR in the small split on226

both datasets, which means our method better preserves reprojected contents than previous methods.227

Moreover, our method also achieves the lowest FID in all splits on both datasets, and this demonstrates228

that our method generates better quality images with filling compatible pixels regardless of view229

changes. As observed in [38, 39], we note that SynSin and its variant (i.e., SynSin-6x) often produce230

entirely gray images, resulting they still performing competitive results in PSNR of the medium and231

large split. Considering this, our method stably outperforms previous methods in all splits.232

Also, qualitative results in Fig. 4 illustrate that the warped regions are well-preserved and invisible233

parts are well-completed in our method, whereas explicit methods do not generate realistic images,234

and an implicit method loses the semantic information of visible contents. Specifically, GeoFree [40]235

does not preserve the table in the first sample and the ships floating on the sea in the third sample.236

Also, explicit methods [39, 50] either make the entire out-of-view regions in one color or produce a237

less realistic view than our method.238

We confirm that mitigating the seesaw problem by well-bridged explicit and implicit geometric239

transformations yields high-quality view synthesis, even acquiring a generation speed of about 110240

times faster than the previous autoregressive models, as shown in Table 3. The fast generation of241

novel view images allows our method to be scalable to various real-time applications.242

4.3 Ablation Study: Type of Set Attention243

We design the global and local set attention block to simultaneously extract overall contexts and244

detailed semantics. Therefore, we conducted an ablation study on RealEstate10K [58] to verify each245

attention improves the performance of generating novel views. Table 5 shows the quantitative result246

for the type of set attention. Interestingly, our local set attention improves the performance relatively247

in large view changes, while our global set attention performs well on small view changes. From this248

result, we conjecture that local and global set attention are more useful for structural reasoning of249

out-of-view regions and 3D scene representation of reprojected regions, respectively. Also, significant250

performance improvement is achieved when both attentions are used.251

4.4 Ablation Study: Transformation Similarity Loss252

The transformation similarity loss Lts is weighted combination of Lts,in and Lts,out. To understand253

the effect of each component, we conducted ablation studies of transformation similarity loss on the254

RealEstate10K dataset. Table 4 reports the average PSNR and FID of our model by changing various255

components of Lts. Results show that combining with gradient stopping operation, Lts,in, and256

Lts,out achieves best results among the five variants. Also, either using Lts,in or Lts,out improves257

the performance and shows that guiding one renderer from the other renderer with the proposed258

loss function is effective. Notably, transformation similarity loss is not practical when the detach259

operation is not used. From this result, it is necessary to selectively guide unseen and seen regions by260

detaching the gradient.261

We also performed an ablation study on balancing parameter λin and λout. Table 6 illustrates the262

results varying weight of Lts. Results show that the case of λin = 1, λout = 1 performs best. As263

mentioned above, it seems essential to complement each other in a balanced way.264
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Figure 5: Histogram of ||he(p)||2/||hi(p)||2 on the small and large split of RealEstate10K dataset.

4.5 Dependency Analysis between Implicit and Explicit Renderers265

Our proposed architecture exploits the implicit and explicit renderer and mixes their outputs for266

decoding view synthesis results. To understand the dependency between two renderers, we analyze267

the norm of output feature maps. For a spatial position p, the norm ratio of two spatial features268

||he(p)||2/||hi(p)||2 can represent how much depends on the explicit feature he(p) compared to269

implicit feature hi(p). For example, if the ratio is large, the model depends on the explicit renderer270

than the implicit renderer at position p. We compare histograms of the norm ratio by changing the271

components of Lts and data splits as shown in Fig. 5.272

(a) Input Image (b) Warp Image

(c) Without Lts (d) With Lts

Figure 6: Visual ablation study. With-
out the transformation similarity loss,
our model complete textured out-of-view
regions but not realistic enough than our
model trained with the transformation
similarity loss.

Figure 5a depicts that using Lts,out and Lts,in tends to make273

the model more dependent on explicit and implicit features,274

respectively, compared to our method trained without Lts.275

Furthermore, these tendencies are more apparent in difficult276

cases (i.e., large split) as shown in Fig. 5c–5d. From our ob-277

servations, we conjecture that guiding only a specific renderer278

improves the discriminability of that renderer, resulting in the279

model depending on the improved renderer. Surprisingly, the280

model trained on combining all components of Lts uses both281

renderers in a balanced way, and there is less bias in norm282

ratio even according to data splits as shown in Fig. 5e.283

The effectiveness of our transformation similarity loss is con-284

firmed by comparing it to our method that is trained without285

Lts. Figure 5b shows that our model trained without Lts has286

some outliers for large view changes despite there being less287

bias according to data splits. We observe these outliers are288

derived when the model fails to generate realistic out-of-view289

regions, especially in challenging settings, such as the net-290

work having to create novel views for both indoor and outdoor291

scenes, as shown in Fig. 6. We also confirm that our model292

trained with Lts performs well even in extreme cases, inform-293

ing that Lts improves two renderers to embed discriminative294

features. Collectively, Lts improves the discriminability of output features from two renderers and295

makes the behavior of the model stable, resulting in alleviating the seesaw problem.296

5 Conclusion297

We have introduced a single-image view synthesis framework by bridging explicit and implicit298

renderers. Despite using autoregressive models, previous methods still suffer from the seesaw299

problem since they use only one explicit or implicit geometric transformation. Thus, we design two300

parallel renderers to mitigate the problem and complement renderers with transformation similarity301

loss. Alleviating the seesaw problem allows the network to generate novel view images better than302

previous methods, even with a non-autoregressive structure. We note that the effectiveness of bridging303

two renderers can be applied in other tasks, such as extrapolation. We believe that our work can304

prompt refocusing on non-autoregressive architecture for single-image view synthesis.305
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