
Published as a Tiny Paper at ICLR 2023

QUOTA CONSTRAINTS FOR
DIVERSITY INTERVENTIONS IN SUBSET SELECTION

Neeraja Abhyankar
neeraja.abhyankar@gmail.com

ABSTRACT

The combinatorial optimization problem of subset selection is often modeled as
maximizing a set function that captures inter-element dependencies under some
capacity/matroid constraints. In this paper, we examine this problem under “quota
constraints” where the selected subset must meet some minimum group-wise quo-
tas. We provide algorithms for two popular scenarios extended to the quota-
constrained setting and make an empirical case for their applicability to fair subset
selection.

1 INTRODUCTION

The subset selection problem is found in various domains: hiring, choosing a cohort of candidates
from a pool of people, recommending a small set of news articles, summarizing data, building a
financial portfolio, etc. where one tries to choose an often capacity-constrained set S ⊂ V (the
universal set) so as to maximize a utility function u(S). Very often, this utility is also strongly
correlated with how representative the chosen subset is, of the data at large. As is usually done
(Celis et al., 2016; Hesabi et al., 2015), we will break down the diversity of a set S into two notions.

Diversity that is captured in the utility function u. e.g. when the objective rewards geometric di-
versity over some feature space, or when u is submodular (Krause & Golovin, 2014; Lin & Bilmes,
2011; Chen et al., 2018; Feige & Izsak, 2013), i.e. it captures the diminished marginal gain in utility
from adding a member to S when another similar member is already present in S.
Diversity that is enforced as an intervention. This includes constraints imposed on the optimiza-
tion problem in order to overcome biases in the data/objective (Mitchell et al., 2020; O’neil, 2017;
Mehrabi et al., 2021), affirmative action to induce longer-term changes in the macro environment
(Kleinberg & Raghavan, 2018; Celis et al., 2020; 2021; Hu & Chen, 2018), or diversification as a
means to safeguard against uncertainty (e.g. in a financial portfolio). This notion of diversity is often
uncorrelated or inversely correlated with our understanding of utility u.

Fairness constraints based on group memberships (Binns, 2020; Dwork et al., 2012) typically en-
force group-wise capacity constraints on the chosen subset (e.g. require S to be an independent
set of a partition matroid). In practice, however, when wanting representation across intersectional
underrepresented groups or a large number of groups, a natural constraint is to enforce a minimum
number (hereforth termed as quotas) of items chosen from each group. A common example of this
is affirmative action policies like Baswana et al. (2019) or variations of the Rooney Rule.

The contribution of this paper is an analysis of quota constraints for two popular and illustrative
circumstances: maximizing a monotone submodular function and sampling from a determinantal
point process. We provide algorithms for both problems and conclude with an empirical discussion
of the utilitarian price of such constraints.

2 SUBMODULAR MAXIMIZATION SUBJECT TO QUOTAS

Formally stated, let the elements of a ground set V belong to p protected groups {Vj ⊆ V }pj=1 that
may be disjoint or intersecting with quotas {kj ∈ R}pj=1. We wish to choose

S = argmax
S∈Q

u(S) where Q = {A : |A ∩ Vj | ≥ kj ∀j ∈ 1, ..., p and |A| ≤ k} (1)
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where u is a normalized (i.e. u(∅) = 0), non-decreasing, submodular function (i.e. u(a|A) ≤
u(a|B) ∀a ∈ V,B ⊆ A ⊆ V where u(a|A) stands for u(A ∪ a)− u(A)).

Note that the set Q of allowable subsets of V is not a matroid. A matroid is characterized as a
set of independent sets I ⊆ 2U that is downward closed, i.e., A ∈ I and B ⊆ A ⇒ B ∈ I,
and such that all maximal elements of I have the same cardinality. The theory and applications
of maximizing set functions (especially submodular or submodular-supermodular) subject to (one
or many) matroidal constraints are extremely well-studied under various circumstances (Nemhauser
et al., 1978; Edmonds, 1968; Calinescu et al., 2011; Do & Neumann, 2020; Buchbinder et al., 2019),
and the regular greedy heuristic has been shown to have guarantees under several of these (Bai &
Bilmes, 2018; Friedrich et al., 2019).

We wish to propose a modification of the regular greedy heuristic for solving (1). In the QUOTA-
GREEDY heuristic (Algorithm 1, formally presented in Appendix A), we iteratively build S in two
stages – first by restricting our search over members of Vj for whom the quotas kj have not been
satisfied, until such subsets Vj exist, followed by regular greedy addition of elements. For the mere
purpose of illustration, we have also outlined CAPACITYGREEDY (Algorithm 2 in Appendix A),
where every constraint of the type |A ∩ Vj | ≥ kj is converted to |A ∩ V \ Vj | ≤ k − kj . While
this allows us to frame the problem as maximization over an intersection of matroids, note that the
problem that Algorithm 2 solves is not equivalent to (1).

While asserting an approximation guarantee for Algorithm 1 is relegated for future work, we provide
a discussion in Appendix B to compare QUOTAGREEDY for (1) with the regular greedy heuristic
under a partition matroid constraint, i.e. when the groups {Vj}pj=1 are disjoint and exhaustive.

3 SAMPLING FROM A QUOTA CONSTRAINED DPP

Let us now extend the concept from Celis et al. (2018) to the quota-constrained setting, in order
to understand the probability space of subsets satisfying geometric diversity (with more diverse
sets being more likely to be sampled) as well as group-wise diversity (satisfied for every sample).
Instead of restricting group memberships to follow exact capacity constraints, we define the problem
as: sample S according to the distribution

P (S) ∝
{
det(XSX

⊤
S ) if S ∈ Q = {A : |A ∩ Vj | ≥ kj ∀j ∈ 1, ..., p and |A| ≤ k}

0 otherwise
(2)

where X ∈ R|V |×m is a feature matrix characterizing the ground set. We can slightly modify their
linear-time Sample-And-Project algorithm to extend to the Quota-constrained case (see Appendix
C) and still expect a very analogous performance guarantee to hold under the conditions specified in
the original paper. Moreover, since a quota constraint is less rigid than an exact capacity constraint,
we also expect the price of fairness as defined in Celis et al. (2018) – the KL-divergence DKL(q∥r)
(where q is the distribution defined by (2) and r is the unconstrained distribution over {A : |A| ≤ k})
to be upper bounded by the exact capacity counterpart.

4 DISCUSSION

The motivation to analyze quota constraints arose from the observation that often, members belong-
ing to underrepresented groups contribute disproportionately more toward the utility of the cohort
as a whole when chosen alongside more members of the same group, as opposed to chosen in isola-
tion (e.g. “token diversity hires” or samples in summaries which lack context). An attempt is made
to demonstrate that quota-like constraints can be employed as an intervention, alongside tweaks to
existing algorithms without incurring an extra price of fairness, i.e. without compromising on the
attained utility of the subset as a whole, as compared to group capacity constraints. Along with a
possible approximation guarantee, another conjectured property of QUOTAGREEDY not captured in
the current formalism is that filling up underrepresented group quotas with high-leverage members
first (as opposed to when the gains to u are diminished after reaching capacity on the overrepre-
sented groups) will result in higher quality representation across said groups. In Appendix D, we try
out CAPACITYGREEDY and QUOTAGREEDY on realistically constructed synthetic data and observe
that the latter results in much better group-wise diversity while incurring a negligible hit to utility.
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A APPENDIX: THE QUOTAGREEDY ALGORITHM

Algorithm 1: QUOTAGREEDY

Input: Universal set V ,
membership matrix µ ∈ {0, 1}|V |×p over p groups,
group quotas {kj}pj=1, total set capacity k,
oracle access to the marginal utility gains u(a|A) ∀a ∈ V,A ⊆ V

1 Initialize S ← ∅, u(S)← u(∅);
// Quota-filling stage

2 R ←
{
j :

∑
v∈S µvj < kj

}
3 while |R| > 0 do

// Search over all inadequately-represented groups R
4 S ← S ∪ argmax

v∈V \S∑
j∈R µvj>0

u(v|S)

5 R ←
{
j :

∑
v∈S µvj < kj

}
6 end
// Regular greedy stage

7 for t = |S|+ 1, ..., k, do
// Add the best elements

8 S ← S ∪ argmax
v∈V \S

u(v|S)

9 end

Algorithm 2: CAPACITYGREEDY

Input: Universal set V ,
membership matrix µ ∈ {0, 1}|V |×p over p groups,
group quotas {kj}pj=1, total set capacity k,
oracle access to the marginal utility gains u(a|A) ∀a ∈ V,A ⊆ V

1 Initialize S ← ∅, u(S)← u(∅);
// Having a minimum quota for a certain group is equivalent to
// having a maximum capacity for elements not belonging to that group

2 Set hj = k − kj ∀j = 1, ..., p;

3 R ←
{
j :

∑
v∈S(1− µvj) == hj

}
4 for t = 1, ..., k, do

// Search over all elements which are
// NOT members of groups R that have reached capacity

5 S ← S ∪ argmax
v∈V \S∑

j∈R(1−µvj)==0

u(v|S)

6 R ←
{
j :

∑
v∈S(1− µvj) == hj

}
7 end

B APPENDIX: TOWARD A GUARANTEE FOR QUOTAGREEDY FOR
SUBMODULAR FUNCTION MAXIMIZATION

To potentially aid us in our endeavor, we will use as a starting point, any appropriate result for
the partition matroid version of our problem statement. Here, unlike (1), {Vj}pj=1 are necessarily
disjoint and each of them is to contain exactly kj elements.

S = argmax
S∈M

u(S) whereM = {A : |A ∩ Vj | = kj ∀j ∈ 1, ..., p} (3)

Lemma B.1 (Approximation Guarantee for Greedy with a Partition Matroid Constraint). If
S†
M is the optimal value of (3) and S̃M is the solution of the greedy heuristic on (3), then u(S̃M) ≥

α u(S†
M).
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Nemhauser et al. (1978) have shown α to be 1/2 and Calinescu et al. (2011)
(
1− 1

e

)
with a ran-

domized method, but we shall continue to denote the approximation guarantee as a variable α so as
to allow substituting extensions to the various special cases (e.g. curvature bounds, different oracle
models, etc.).

Note that when
∑p

j=1 kj < k, i.e. when Problem (1) has a feasible solution, and when u is
normalized and non-decreasing, any feasible solution of (3) is also a feasible solution of (1).

B.1 DISCUSSION: APPROXIMATION GUARANTEE FOR ALGORITHM 1

If S† is the true optimum of Problem (1) for a submodular, non-negative, normalized utility u and
for disjoint (but not necessarily exhaustive) subsets Vj , and S̃ is the output of Algorithm 1, then we
would like to have an approximation guarantee of the form u(S̃) ≥ γ u(S†) for some γ.

Below, we will outline some steps in order to develop intuition for how u(S̃) and u(S†) can behave.

1. We can always arbitrarily divide S† into two sets S†
q and S†

r such that S†
q satisfies all

constraints in (1) with equality (and hence also all constraints in (3)).

S† = S†
q ⊔ S†

r (4)

2. Observe that when the groups Vj are disjoint and exhaustive, the “quota-filling stage” in Al-
gorithm 1 is equivalent to the regular greedy heuristic under a partition matroid constraint.
Thus,

u(S̃M) ≥ αu(S†
M) (5)

≥ αu(S†
q) (from the optimality of u(S†

M) (6)

3. Let’s denote S̃ \ S̃M by S̃r.

u(S̃) = u(S̃r ∪ S̃M) (7)

= u(S̃M) + u(S̃r|S̃M) (8)

4. Since we have chosen elements greedily post the quota-filling stage,

u(S̃)− u(S̃M) = u(S̃r|S̃M) (9)

≥
(
1− 1

e

)
max

S:|S|≤k
u(S|S̃M) (10)

≥
(
1− 1

e

)
u(S†

r |S̃M) (11)

5. Attempting to bound u(S†)...

u(S†) ≤ u(S†
q) + u(S†

r) (submodularity) (12)

≤ u(S†
q) + u(S†

r ∪ S̃M) (monotonicity) (13)

≤ 1

α
u(S̃M) + u(S†

r ∪ S̃M) (by 6) (14)

≤ 1

α
u(S̃M) +

e

e− 1
u(S̃)− 1

e− 1
u(S̃M) (by 11) (15)

6. Thus,

u(S̃) ≥
(
1− 1

e

)
u(S†) +

[
1

e− 1
− 1

α

]
u(S̃M) (16)

≥
(
1− 1

e

)
u(S†) +

[
α

e− 1
− 1

]
u(S†

M) (17)

Since α < 1, the orange term is negative, preventing us from ariving at a general guarantee.
However, this expression may serve as a starting point to prove a bound in certain special
cases.
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C APPENDIX: QUOTA-AWARE-SAMPLE-AND-PROJECT

Algorithm 3: QUOTASAMPLEANDPROJECT

Input: Universal set V ,
membership matrix µ ∈ {0, 1}|V |×p over p groups,
group quotas {kj}pj=1, total set capacity k,
feature matrix X ∈ R|V |×m

1 Initialize wv = Xv ∈ Rm ∀v ∈ V
// Quota-filling stage

2 R ←
{
j :

∑
v∈S µvj < kj

}
3 while |R| > 0 do

// Sample from members belonging to
// inadequately-represented partitions

4 Sample ṽ from distribution
{

||wṽ||2∑
v∈R ||wv||2

}
ṽ∈V \S∑
j∈R µṽj>0

5 S ← S ∪ ṽ
// Project all feature vectors onto
// the subspace orthogonal to ṽ

6 Set wv ← πṽ(wv) ∀v ∈ V \ S
// Recompute inadequately-represented partitions

7 R ←
{
j :

∑
v∈S µvj < kj

}
8 end
// Regular sample-and-project stage

9 for t = |S|+ 1, ..., k, do
// Sample from all remaining elements

10 Sample ṽ from distribution
{

||wṽ||2∑
v∈R ||wv||2

}
ṽ∈V \S

11 S ← S ∪ ṽ
12 Set wv ← πṽ(wv) ∀v ∈ V \ S
13 end

D APPENDIX: EXPERIMENTS ON SYNTHETIC DATA

In order to get a feel for how QUOTAGREEDY would play out in practice, we simulate it on some
synthetic data. We used a ground set of size |V | = 100, selection budget of k = 20, and a simple
mixture of concave-over-modular utilities u(A) =

∑m
i=1 wi

√∑
a∈A Xai where X ∈ R|V |×m

+ is a
randomly drawn feature matrix, wi are randomly instantiated weights, and m = 80.

Observe how u(A) increases monotonically with each feature Xai from the vector Xa if a ∈ A.
Hence, to simulate p = 3 groups that are underprivileged w.r.t. their value assessed by u, we
randomly assigned members to groups with some probabilities, and shrunk some of their features
by a factor 0 < βp ≤ 1 by setting Xai ← βp Xai for all a ∈ Vp and i ∈ a randomly chosen subset
of features.

In the simulation results to follow, we take representative examples of a few configurations of
{Vj}pi=j (group membership distributions in light brown), and select subsets using the following
4 methods:
(final membership distributions plotted as histograms; objective values u(S) in plot subtitles)

1. [red] A random subset selection
2. [teal] Greedy maximization without any group-wise constraints (i.e. over {A : |A| ≤ k})
3. [yellow] CAPACITYGREEDY 2 maximization with quota constraints expressed as capacity

constraints (i.e. over {A : |A ∩ (V \ Vj)| ≤ (k − kj) ∀j ∈ 1, ..., p and |A| ≤ k})
4. [orange] QUOTAGREEDY 1 with group-wise quota constraints (over {A : |A ∩ Vj | ≥

kj ∀j ∈ 1, ..., p and |A| ≤ k})
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D.1 DISJOINT GROUPS: 1

In this instance, we chose population distributions over 3 disjoint groups ∼ {0.4, 0.2, 0.4} with
feature disadvantage vectors ||β2|| > ||β1|| > ||β0|| = 0 ∈ (0, 1]m.
Quota constraints were set as k1 = k2 = k3 = 4.

We see an example of the fact that phrasing the problem as in Algorithm 2 and prioritizing the
filling of high-gain elements without hitting the quota-sensitive groups may land us in a situation
where the set capacity is maxed out (it is not possible to further add elements), we are still satisfying
|A ∩ (V \ Vj)| ≤ (k − kj) ∀j, but not satisfying |A ∩ Vj | ≥ kj ∀i. The objective attained by
QUOTAGREEDY is almost as good as that attained without quota constraints, and much better than
a random selection, pointing to a low price of fairness.

D.2 DISJOINT GROUPS: 2

This instance is identical to the one above, with a reduction in the magnitudes of feature disadvantage
vectors ||βp||.
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Here, CAPACITYGREEDY
outperforms QUOTAGREEDY
by a tiny bit,
but the difference is still
negligible given that both are
near the unconstrained max.

D.3 INTERSECTING GROUPS

In this instance, we sample group assignments over 3 intersecting groups with independent proba-
bilities ∼ {0.4, 0.3, 0.6} with feature disadvantage vectors ||β2|| > ||β1|| > ||β0|| ∈ (0, 1]m.
Quota constraints were set as k1 = k2 = k3 = 4.

Here too, both algorithms
with constraints perform
much better than random,
and almost as well as group-
agnostic greedy.

In the intersecting group
paradigm, it is also not rare
to see CAPACITYGREEDY
and QUOTAGREEDY render
different distributions over
groups – where the choice of
more intersectional members
in QUOTAGREEDY result
in a distribution with more
underrepresented members
overall.

All code for this repository lives here.
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