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ABSTRACT

In this work, we introduce a method of learning Multi-task Implicit Knowledge
Embeddings (MIKE) from a set of source (or “teacher”) networks by autoencod-
ing through a shared input space. MIKE uses an autoencoder to produce a recon-
struction of a given input space optimized to induce the same activations in the
source networks. This results in an encoder that takes inputs in the same format
as the source networks and maps them to a latent semantic space which represents
patterns in the data that are salient to the source networks. We present the results
of our first experiments that use 11 segmentation tasks derived from the COCO
dataset, which demonstrate the basic feasibility of MIKE.

1 INTRODUCTION

As representations, embeddings have proven useful in a wide range of agent architectures, facili-
tating information exchange between different architecture components such as world models and
policy networks (Ha & Schmidhuber, 2018). Our goal in this work is to develop a scalable method
of transferring the implicit knowledge from an arbitrarily large set of pretrained source/teacher net-
works to a single target/student network which will learn to produce embeddings of their knowledge.
This is useful in scenarios where the goal is to absorb the representations of other networks without
having to keep those networks in deployment.

Our method allows the source networks to be diverse both in terms of their topologies and the tasks
they are trained on, with the constraint that all source networks must share the same input data
format. The target network is assumed to be an autoencoder, with the encoder input and decoder
output following the same data format as the source networks. It is also assumed that we do not
have access to the datasets that were originally used to train the source networks. Instead, we have
a “query dataset” which will be used to facilitate the knowledge transfer. Ideally, the query dataset
will be representative of the domain to which we will apply our encoder. We refer to this as the query
dataset because it is essentially used to “query” the latent knowledge of the source network so it can
be transferred to the encoder. An ideal query dataset will result in the transfer of only knowledge
that is salient to the tasks of the target domain.

Figure 1 summarizes how the encoder is trained and subsequently applied to the downstream target-
domain tasks. The query data is passed through both the autoencoder and the source network(s).
The reconstruction produced by the decoder is then also passed through the source networks. This
produces activations in the source networks for both the original data and reconstructed data. The
difference between these activations at various layers in the source networks is used to produce the
loss which ultimately propagates back through earlier layers of the source networks and into the
autoencoder, thus transferring the implicit knowledge of those layers. The information bottleneck
in the autoencoder causes this knowledge to be represented as an embedding. This will ideally train
the encoder to extract similar features as those of the source networks, thus distilling their implicit
knowledge into the encoder.

Since the source networks will ideally have been pretrained on different tasks, we refer to this re-
sult as Multi-task Implicit Knowledge Embeddings (MIKE). The hope is that, by compressing the
semantics of the source networks into a lower-dimensional representation, the implicit semantics of
the representation will be easier for downstream components to decode, thus facilitating forward
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Figure 1: High-level summary showing how MIKE is trained and how the resulting encoder can
be used to provide representations for downstream components/tasks. Note that the parameters of
the source/teacher network are frozen during training of the autoencoder, and that the two teacher
instances shown are in-fact the same network being evaluated on different inputs.

transfer to our target domain. Such embeddings could be applied to reinforcement learning agents,
potentially serving as part of a world model (Ha & Schmidhuber, 2018), and may be particularly use-
ful in scenarios where data is expensive to obtain, such as with physical robotic agents (Kalashnikov
et al., 2018).

The secondary product of MIKE is a decoder, which can map the representations back to the in-
put space in a way that preserves patterns which are salient to the source networks. We believe
the decoder could potentially help human analysts intuitively understand the content of the repre-
sentations. The data generated from the decoder might also find uses in automated processes within
agents, such as memory replay mechanisms (Draelos et al., 2017) that are sometimes used to combat
catastrophic forgetting in networks that learn continuously (Parisi et al., 2019).

The rest of this paper is organized as follows: Section 2 reviews Related Works pertinent to knowl-
edge transfer and embedding learning in various contexts; Section 3 provides a formal description of
the core Methods of MIKE, including high-level training topology (3.1), losses (3.2), and layerwise
knowledge transfer algorithms (3.3). Section 4 details our specific experiments, describes how we
produced our datasets (4.1) from Common Objects in Context (COCO) (Lin et al., 2014), and goes
over the results (4.2). Section 5 contains a discussion of our findings including potential methods of
addressing current limitations and some concluding remarks.

2 RELATED WORKS

Broadly speaking, MIKE applies learned similarity metrics (Larsen et al., 2016) to knowledge-
transfer (Gou et al., 2021). The paper “Autoencoding beyond pixels using a learned similarity met-
ric” replaced the generator for a Generative Adversarial Network (GAN) with an autoencoder, using
features learned in the discriminator network to produce error for training the autoencoder. To gen-
erate error, the authors used the difference between the discriminators intermediate activations on
original versus reconstructed data (referred to as “content error”). Instead of the intermediate ac-
tivations of a discriminator, a later work (Hou et al., 2017) used the intermediate activations of a
pretained ImageNet classifier, using the error to produce “feature perceptual loss”. Within the con-
text of this paper and using terminology we use here, the discriminator of Larsen et al. (2016) and the
pretrained classifier of Hou et al. (2017) both constitute source networks, and both techniques use
autoencoders to learn embeddings of the knowledge from their respective source networks. MIKE
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attempts to extend this general knowledge-transfer approach to all layers of multiple source net-
works.

It should be clarified that MIKE does not perform true distillation, since our target network (equiva-
lently student network) does not explicitly learn to perform the task of the source network(s) (equiv-
alently teacher network(s)). MIKE therefore resides in a middle ground between distillation and
embedding learning, where the student network implicitly learns the knowledge of the teacher in the
process of learning an embedding. Similar to many distillation methods, MIKE utilizes intermediate
activations of the teacher networks in generating loss (Romero et al., 2014). However, this loss is
generated between the teachers’ own activations on the original and reconstructed data respectively,
rather than between the teacher and student network activations for the same data.

We distinguish our use of the term embedding from its meaning in the context of Natural Language
Processing (NLP). Our use is synonymous with “dimensionality reduction” whereas in NLP an
embedding is usually a means of translating a categorical variable to a vector. When our embedding
is learned from multiple teachers, the embedding may be referred to as a joint embedding. The term
joint embedding often refers to multi-modal embeddings, such as those which combine an image
and its textual description into a single unified representation (Weston et al., 2010; Socher et al.,
2014). When we transfer implicit knowledge from multiple teachers into a single embedding, it is
“joint” in the sense of being multi-task rather than multi-modal.

The term latent semantic space describes what our encoder provides a mapping to. The term se-
mantics is typically associated with linguistics (e.g. syntax vs semantics), whereas we are using it
to refer to the latent semantics of an image (i.e. image contents). Ultimately, semantics correspond
to the salient regularities in a given scenario, which for an embodied agent would likely correspond
to affordances (Min et al., 2016). This pragmatic relativism in semantics may be reflected in the dif-
fering manifold structures (Brahma et al., 2015) in teacher networks which were trained on different
tasks. Therefore, a joint embedding of the implicit knowledge of the teacher networks constitutes a
mapping to a latent semantic space which jointly reflects the semantics of all the teachers, attempting
to merge their representations into a common space.

The resulting approach can also be interpreted as maximizing mutual information between the em-
bedding and the activations of the teacher networks (Ahn et al., 2019). Granted, we are not directly
maximizing mutual information, since the differing topologies between teacher and student make
this infeasible. Instead this may be learned indirectly through autoencoding. By mapping from
the input space to the embedding space and then back to the input space, irrelevant patterns are
discarded while salient patterns (with respect to the teacher networks) are preserved. While not a
direct method, MIKE may implicitly maximize mutual information between the embedding and the
activations of the teacher networks, thus maximizing “mutual semantics” in a joint latent space.

3 METHODS

We alternatively considered two approaches to learning joint embeddings of source networks. How-
ever, both were discounted due to poor scaling characteristics and high resource usage. A direct
approach would have been to use an autoencoder that takes the activations of the source networks as
input, and attempts to reconstruct those activations. While preliminary experiments showed that this
converges better, this approach poses a resource challenge since it requires the source networks to
be retained in deployment. It also scales poorly since the number of parameters of the encoder and
decoder grows with the combined size of the intermediate activation tensors of the source networks.

There is a hybrid approach where the encoder takes input X but the decoder attempts to predict the
activations of the source networks. This implicitly distills the source networks into the encoder, but
does not benefit from a decoder which is interpretable or interoperable. While this approach may
produce a useful embedding, it also runs into training scalability problems due to the the growth
in decoder parameters with the combined size of source network activation tensors. To avoid these
disadvantages, we have instead chosen to autoencode through a shared input space using the training
topology described in the following subsection.
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3.1 TRAINING NETWORK TOPOLOGY

The left portion of Figure 1 shows the single-source-network base case of our training network
topology (often called “student-teacher architecture” in distillation literature). The query dataset X
is passed through the autoencoder to produce a reconstruction X̄ . Both X and X̄ are then passed
through the source network, resulting in two sets of activations over all the layers in the source
network. A reconstruction X̄ that preserves the patterns which are salient to the source network
should produce activations that are similar to those of the original data X , with the difference in
these corresponding activations serving as the basis for our loss function (3.2). MIKE generalizes
this to multiple source networks in a straight-forward fashion by passing the query dataset through
all source networks, and aggregating losses over the networks. The specific topologies of the source
networks and autoencoder used in our experiments will be explained in Section 4.

The topologies of the source networks and autoencoder have one constraint; the input formats of
all source networks and the input and output format of the autoencoder must be identical. For
example, our experiments had an input space of images with dimensionality 3 × 64 × 64. It is
sometimes possible to accommodate source networks with different input space formats, but this
generally requires a lot of work: multiple versions of the query dataset must be produced with
the different formats; plus both the encoder and decoder require composite inputs that merge the
different resolutions and formats of the data at downstream points in their topologies. In some cases
it is also possible to perform network surgery on non-conforming source networks. For example,
if we have a VGG-like source network pre-trained on ImageNet (3 × 224 × 224) and we want to
map it to a 3 × 64 × 64 input space, we can produce a subset of the network that truncates later
layers which would cause downsampling below 1× 1× 1. However, many types of data cannot be
resized or reformatted, and the shared input space constraint remains one of the primary limitations
of MIKE. As a last note on topology, while not technically a limitation, some extra implementation
work is generally required to enable source networks to return an arbitrary set of their intermediate
activations on their forward pass.

3.2 LOSS

The loss function (1) uses the difference between the activation tensors produced by the source
networks for the original data, X , and reconstructed data, X̄ . Let N be the number of source
networks, and Ln be the number of layers in a given source network, with n ∈ {0, . . . , N − 1}.
With l ∈ {0, . . . , Ln − 1} indexing the layer, we assign a loss weight to a given layer denoted with
wn

l with the constraint that the loss weights sum to 1, i.e.
∑N−1

n=0

∑Ln−1
l=0 wn

l = 1.0.

We denote the activations of a given layer of a given source network applied to an input x ∈ X with
φnl (x) (and φnl (x̄) for x̄ ∈ X̄ respectively). Our total loss L is then defined by

L =

N−1∑
n=0

Ln−1∑
l=0

wn
l (tanh (φnl (x))− tanh (φnl (x̄)))

2 (1)

though in training we average L over the batch dimension as is standard.

As seen in Figure 1 and Equation 1, we apply a hyperbolic tangent to the the activations of each layer
in each network. This restricts their ranges between −1.0 and 1.0 and helps compensate for activa-
tions at different layers of the source network having different bounds, such as when comparing a
sigmoidal layer to a ReLU layer. In most of our experiments, the weights for all the layers were set
to be equal. However, it is possible to set the weights differently or even assign them dynamically.

3.3 LAYERWISE KNOWLEDGE TRANSFER ALGORITHMS

While MIKE usually assigns equal weight to all layers of all source networks, it currently also
supports several knowledge-transfer-algorithms where we use dynamic loss-term weights during
training. These other algorithms were prompted by convergence problems seen in early experiments
attempting to directly absorb the knowledge from the last layer of a given source network. We found
that pretraining the autoencoder on simple pixel-wise reconstruction error could help it converge
more reliably. A generalization of this idea is the layerwise progressive algorithm for knowledge-
transfer which reassigns the loss weight to progressively deeper layers of the source network at
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regular intervals during training. A more nuanced approach may be to change the layerwise loss
weights adaptively, though this is beyond the current scope of this work. In the following section
we describe our experiments, which use only two of the possible knowledge-transfer algorithms,
namely “all-layer uniform” and “last-layer progressive”.

4 EXPERIMENTS

Our experiments thus far have aimed to test the basic feasibility of knowledge transfer using MIKE.
The shared input space consists of matrices with dimensionality 3 × 64 × 64, representing RGB
color images (Figure 2). For our source networks, we pre-trained 11 three-class image segmenters
on non-overlapping classes (i.e. different tasks), with all of these networks sharing the same topol-
ogy. The segmenters and the autoencoder are both based on the EfficientNet (Tan & Le, 2019) block
architecture, which was chosen for its compact model size and robust convergence. Our segmenter
topology consists of 18 convolutional layers, including 16 EfficientNet blocks. It has a skip connec-
tion from the second layer which merges via concatenation with the output of the 15th layer, which
we found to improve its performance at a minimal resource cost.

Within our autoencoder, the encoder consists of a 3 × 3 convolutional layer followed by eight Ef-
ficientNet blocks, with the final embedding being produced by 2-channel pointwise convolution,
outputting an embedding matrix of size 128 and shape 2×8×8. This encoder is unusual in that it is
fully convolutional, producing a three-dimensional embedding rather than the typical flat embedding
vector. This was found to converge to higher accuracies much more quickly, and require far fewer
parameters than the equivalent encoder that used a dense layer. The decoder topology mirrors the
encoder topology, though the parameters are not shared. We deliberately chose to keep our models
small so the experiments could fit within the 16GB memory of our GPU. Using these particular net-
works, we were able to perform knowledge transfer from up to 11 source networks simultaneously,
though we describe a potential method of overcoming this scalability limitation in Section 5. For
reproducibility, we plan to open source our codebase at a future date.

4.1 DATASET

Figure 2: Various exemplar images from the 11 segmentation datasets that we derived from COCO.

The 11 datasets used to train each of our 11 segmenters were produced using the Common Objects
in Context (COCO) API to obtain segmentation masks and bounding boxes for all the class instances
in COCO. We cropped out these class instances and augmented them using shifting, zooming, and
mirroring, before images were resized to 64 × 64 pixels (Figure 2 shows examples). While COCO
contains 80 classes, we only used three from each of the 11 super-categories (ex. animals, furniture,
vehicles, etc.). For example, from the “animals” category, we used the three classes with the most
instances: cat, dog, and horse. These categories are: PHB: person, handbag, backpack; BTS: bench,
traffic-light, stop-sign; SSS: sportsball, surfboard, skateboard; SOR: sink, oven, refrigerator; PCS:
pizza, cake, sandwich; DCH: dog, cat, horse; CBB: cup, bottle, bowl; CDP: chair, dining-table,
potted-plant; CTL: cellphone, tv, laptop; CTB: car, truck, bus; BCV: book, clock, vase.

In the interest of testing knowledge-transfer with as few confounders as possible, we used these
11 datasets for three different roles that would normally use distinct datasets. While we generally
assume that source network training datasets are not available to facilitate knowledge transfer, our
experiments relaxed this restriction by using the 11 datasets as query datasets for knowledge transfer.
In each experiment, the query dataset is formed from a different subset of these 11 datasets, with the
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remaining datasets serving as downstream tasks which have a similar role to testing sets. However,
for each autoencoder, we also show the results for downstream tasks which were included in the
query dataset. This allows us to measure the amount of knowledge actually absorbed, while the
non-query tasks measure how well the representations generalize. For example, in order to train
an autoencoder via transfering the knowledge from the cat-dog-horse and car-truck-bus segmenters,
the cat-dog-horse and car-truck-bus datasets would be used as the query dataset. To ensure a fair
comparison, the baseline autoencoder with simple pixel-wise error would also be trained on cat-dog-
horse and car-truck-bus.

One consequence of pulling multiple datasets from COCO is the potential for roughly the same im-
age to appear in more than one of the 11 datasets, but with different labels. When we are attempting
knowledge-transfer from more than one source network, these conflicting samples may end up to-
gether in the query dataset. To mitigate this, our particular experiments modified the loss calculation
so that losses from each of the source networks were only calculated based on the subset of the query
dataset which overlaps with the source networks training set. In other words, we only want the loss
to care about the way each source network reacts to its own training data, and not how it reacts to
the training data of the other source networks. This prevents different labelings of the same image
from producing conflicting gradients within a given source network.

4.2 RESULTS

Figure 3: Radar charts comparing the downstream performance across the 11 coco segmentation
tasks. Each of the 11 radar charts is for a single encoder that absorbed the knowledge from only
one of the segmenter source networks, with the left-to-right/top-to-bottom order corresponding to
the clockwise ordering of the upper left radar chart. These encoders were all trained using the all-
layers uniform “knowledge-transfer algorithm”. They all outperform their corresponding baseline
autoencoder on every downstream task, indicating that generally useful segmentation features were
learned. The average task performance (measured in IOU) for the baseline and MIKE encoders are
shown under each radar chart.
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In our first experiment, we used MIKE to train 11 different autoencoders, each absorbing the knowl-
edge from just one of the 11 pre-trained segmenter networks. We then used each of these encoders
and their embeddings to train 11 downstream networks to perform the same 11 segmentation tasks.
Normally, a query dataset would be distinct from the training datasets of the source networks (since
said training sets may not be available) and would be chosen based on the intended target domain that
the encoder will be applied to. However, in these experiments we used the same segmenter/source
network training sets to simplify performance comparison. Each autoencoder was converted into
a segmenter by freezing the encoder and reinterpreting/retraining the decoder to produce a three-
channel segmentation mask instead of an RBG image, which was convenient since it required no
changes to decoder topology. Using the decoder architecture as the downstream network also re-
moved any uncertainty regarding the capacity of the downstream network to adequately decode/map
the latent embeddings to other spaces.

The results of these 11 experiments are shown in Figure 3. We measured accuracy of the down-
stream task as the Intersection Over Union (IOU) for the downstream segmenter (i.e. repurposed
decoder) divided by the IOU of the original segmenter that we trained on that same dataset. Using
the original segmenter accuracies to normalize the downstream segmenter accuracies makes com-
parison between tasks easier and provides a more direct way of measuring the amount of knowledge
transferred to the autoencoder in the case where the downstream task and source network task were
the same.

Figure 4: Radar chart comparing the downstream performances of three autoencoders trained on
different numbers of source networks (i.e. tasks). The single task encoder was trained against the
car-truck-bus source network. The three task encoder was trained against the three tasks whose
exemplar images have a green border. The final encoder was trained against all 11 source networks.
The results indicate that knowledge from multiple source networks can be absorbed simultaneously.

Our first set of experiments indicated that MIKE could transfer knowledge from a single source
network to an autoencoder. Our second and third experiments have begun to test the ability of MIKE
to transfer knowledge from multiple source networks into one autoencoder. Figure 4 compares
our results for a three-network transfer and an 11-network transfer to a single-network transfer.
The best average performance on the 11 downstream tasks was seen in the three-network transfer.
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Interestingly, the 11-network transfer performed slightly worse, though still performed better than
any of the single-network transfers shown in Figure 3.

Figure 5: Layerwise training loss during knowledge transfer from the bench-trafficlight-stopsign
source network. Loss weights were equal for all source network layers throughout training.

Figure 6: Layerwise training loss during knowledge transfer from the bench-trafficlight-stopsign
source network. Loss weight was placed on only one layer at a time, moving sequentially through
the network at regular intervals.

Our fourth experiment compared convergence for the all-layers uniform loss weighting (Figure 5)
to that of the last-layer-progressive knowledge-transfer algorithm (Figure 6). The goal of the last-
layer-progressive experiment was to absorb the information from the last layer of the network, which
should also absorb much of the information from earlier layers by proxy. This was motivated by our
expectation that the mutual information between a given set of activations and the output space
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should increase for activations that are closer to the output of the network. Unfortunately, conver-
gence became very unstable as loss weights were adjusted for deeper layers.

5 DISCUSSION AND CONCLUSION

Our initial experiments have demonstrated the basic feasibility of MIKE, though considerable
follow-on is required before practical deployment. Even for the single source-network case, there
is evidence of gradient instability, particularly from the deeper layers of the source network. We
hypothesize that this instability is exacerbated by the dimensionality-reduction induced information
bottleneck at the center of the autoencoder. A simple way to test this hypothesis is to systematically
vary the size of the embedding space. If this improves gradient stability, then other approaches to
information bottlenecks may be viable. For example, perhaps an overcomplete autoencoder with
an information bottleneck produced by sparsity regularization will impact the gradient differently.
A potential consequence of poor gradient stability combined with a high-capacity decoder is that
the decoder (rather than the encoder) may potentially absorb knowledge from the source networks.
If so, then our experiments may be significantly underestimating the amount of knowledge actu-
ally absorbed by the autoencoder as a whole. A mirrored autoencoder may prevent asymmetry in
knowledge absorption.

Another avenue that deserves more exploration is the influence of the relative capacities of the
encoder and decoder on the resulting encoding scheme of the embeddings. Some of our preliminary
experiments have shown that downstream networks with similar topologies to the decoder are more
effective at decoding the embeddings, as evidenced by their higher performance on the downstream
tasks. This suggests that a complex decoder function may cause the encoder to learn embeddings
that are similarly complex to decode. We plan to perform experiments which vary the capacity
and topology of the decoder, with the general hypothesis that the optimal decoder should mirror the
structure of downstream network(s) that will be consuming the embeddings in the target application.

Finally, infeasible training times are quickly encountered if all source networks cannot fit in mem-
ory. In such a case, sequential knowledge transfer may be used, however, like other sequential learn-
ing tasks, catastrophic forgetting will likely become a challenge. Methods such as elastic weight
consolidation (Kirkpatrick et al., 2017) could mitigate this, which should be simple since the task
transitions are known a priori. As the elasticity of the weights decreases with each task, structural
plasticity methods may increase the capacity of the autoencoder. While this could potentially grow
the embedding space to the point of being overcomplete, an information bottleneck would still be
supplied by the elasticity parameters of the weights.
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