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ABSTRACT

In-context learning (ICL) is an important capability of Large Language Models
(LLMs), enabling these models to dynamically adapt based on specific, in-context
exemplars, thereby improving accuracy and relevance. However, LLM’s responses
may leak the sensitive private information contained in in-context exemplars. To
address this challenge, we propose Differentially Private In-context Learning (DP-
ICL), a general paradigm for privatizing ICL tasks. The key idea for DP-ICL
paradigm is generating differentially private responses through a noisy consensus
among an ensemble of LLM’s responses based on disjoint exemplar sets. Based on
the general paradigm of DP-ICL, we instantiate several techniques showing how to
privatize ICL for text classification and language generation. We evaluate DP-ICL
on four text classification benchmarks and two language generation tasks, and our
empirical results show that DP-ICL achieves a strong utility-privacy tradeoff. 1

1 INTRODUCTION

In-context learning (ICL) (Brown et al., 2020; Min et al., 2022) enables large language models (LLM)
(OpenAI, 2023; Anthropic, 2023) to adapt to domain-specific information. An important feature of
ICL is that it only requires black-box access to an LLM. Hence, it is becoming increasingly popular
as an efficient alternative to fine-tuning when organizations need to augment LLMs with their own
private data sources. In-context learning appends the relevant information (e.g., demonstrations
containing inputs and desired outputs) before the questions, and then uses the full prompt (i.e.,
query-exemplar pair) to query the model. It usually provides more accurate answers by referencing
the context and has gained traction for various real-world applications (Liu, 2022; Chase, 2022; Veen
et al., 2023), including retrieval-augmented-generation (RAG) systems.

Figure 1: A demonstration of the privacy attack on
in-context exemplars, also known as prompt leak-
ing attack. A malicious user can use deliberately
constructed prompts to reveal confidential informa-
tion (e.g., health records) in exemplars.

Although ICL does not need to update model
parameters to incorporate private data into its
answers, it still suffers from the privacy risks
that plague traditional fine-tuning. Consider a
real-world scenario shown in Figure 1. A health-
care institution owns some sensitive dataset (e.g.,
clinical records) and deploys LLMs to answer
user queries. ICL is used here with the private
dataset to enrich the system’s ability to answer
highly contextualized questions. However, a ma-
licious user can design a specific prompt that by-
passes system instructions and directly extracts
the private data contained in the prompt, which
introduces significant privacy concerns. Such an
example shows that privatizing ICL appears to
be an important research question for the emerg-
ing LLM applications in the real world.

Contributions. In this work, we propose differ-
entially private in-context learning (DP-ICL), a

1Our code is available at https://github.com/tongwu2020/DP-ICL
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Figure 2: Our proposed DP-ICL framework has four phases: In Phase I, we partition the subsampled
sensitive database into separate subsets, each comprising a collection of exemplars. Phase II involves
constructing prompts by pairing each exemplar with the query. During Phase III, the model processes
these exemplar-query pairs and produces corresponding outputs. Finally, in Phase IV, these outputs
are aggregated through a differentially private mechanism before being returned to the user. More
details are presented in Section 3.

general paradigm for privatizing ICL (Figure 2
& Section 3). The key insight behind the DP-ICL paradigm is the use of parallel inference over an
ensemble of LLM’s responses based on disjoint exemplar subsets. We aggregate and release these
responses in a differentially private way that does not overly rely on any single exemplar.

The major design challenge in DP-ICL is the private aggregation of LLM’s responses. Text clas-
sification and language generation are major tasks that use ICL. For text classification, we use the
Report-Noisy-Max with Gaussian noise to release the class that receives the majority vote in a private
way. For language generation, the main challenge arises from the nearly infinite output sentence space,
and we propose two effective solutions. Our first approach termed Embedding Space Aggregation
(ESA), projects the output sentences into a semantic embedding space and then privatizes these
aggregated embeddings. Our second approach, termed Keyword Space Aggregation (KSA), identifies
frequently occurring keywords in the output and then privately selects them via propose-test-release
(Dwork & Lei, 2009) or the joint exponential mechanism (Gillenwater et al., 2022).

We evaluate our DP-ICL paradigm with these approaches for private aggregation on datasets spanning
text classification (SST-2, Amazon, AGNews, TREC), documentation question-answering (DocVQA),
and document summarization (SAMsum). Our empirical evaluation demonstrates that DP-ICL can
achieve a strong privacy guarantee while achieving a comparable performance as the non-private
counterpart. For instance, under a privacy budget of ε = 3 on the SST-2 dataset, DP-ICL reaches
an impressive accuracy of 95.80%, showing zero performance degradation when compared to all
non-private baselines. Similarly, in document summarization, the average ROUGE scores experience
a minimal degradation of approximately 1% under a strict privacy constraint of ε = 1.

Overall, our research offers a promising overall paradigm for applying ICL in a privacy-preserving
way, and signifies a milestone toward trustworthy usage of large language models.

2 BACKGROUND: PRIVACY RISKS OF IN-CONTEXT LEARNING

We present an overview of in-context learning, the privacy risks, and differential privacy. Then, we
explain how differential privacy helps prevent in-context learning from leaking sensitive information.

In-Context Learning. To answer a query Q with ICL, we concatenate a sequence of k exemplars
(i.e., query-answer pairs) S := ((Q1, A1), (Q2, A2), . . . , (Qk, Ak)) to Q using an appropriate format
and instructions. We then use the LLM to generate the next token via argmaxA LLM(A|S + Q),
where + denotes concatenation. Intuitively, exemplars assist the LLM in identifying the relevant
mapping between (Q,A), which substantially enhances performance compared to directly querying
test data, also known as zero-shot learning.
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Table 1: Summary of private aggregation approaches in our DP-ICL framework.
Algorithm Name Algorithm Pros/Cons
Private Voting (Sec. 3.1) Applicable to text classification with high utility;

assumes a small voting space and composes privacy loss over each generated token

Embedding Space Aggregation Applicable to language generation without assumptions;
(Sec. 3.2.1) performance depends on text-to-embedding and embedding-to-text mappings

Keyword Space Aggregation Applicable to language generation with high utility;
by Joint EM (Sec. 3.2.2) not applicable for very large or infinite output domains

Keyword Space Aggregation Applicable to language generation without assumptions;
by PTR (Sec. 3.2.2) subject to occasional PTR test failures

Privacy Attacks on ICL. These prompt leakage attacks (Figure 1) have been deployed effectively to
extract proprietary prompts (Liu, 2023) from real-world systems. Wang et al. (2023) study the privacy
leakage of secret information via ICL in the presence of privacy-preserving prompts. Furthermore,
Duan et al. (2023b) describe a membership inference attack targeted at ICL, which can potentially
expose whether a particular record was part of the training data. Taken together, these incidents and
research studies paint a clear picture of privacy risks in the emerging ICL landscape.

Differential Privacy. Differential privacy (Dwork et al., 2006b) is the gold standard for reasoning
about the privacy of machine learning algorithms. Formally, we call a randomized algorithmM
is (ε, δ)-differentially private if for every adjacent dataset D,D′, it follows Pr[M(D) ∈ E] ≤
eε · Pr[M(D′) ∈ E] + δ. Throughout this paper, we say D and D′ are adjacent if we can construct
D′ by adding or removing one data point from D. It indicates that if two datasets are similar, their
output distributionsM(D) andM(D′) should be close to each other so that attackers cannot infer
the difference between them.

In our case,M functions as an in-context learning (ICL) algorithm, producing answers to queries by
utilizing private data as in-context exemplars. If this ICL algorithm adheres to differential privacy, it
should generate similar outputs even when the in-context exemplars vary. Consequently, this prohibits
the generation of private information, such as replicating the in-context exemplars, like Figure 1.

3 DIFFERENTIALLY PRIVATE IN-CONTEXT LEARNING

In this section, we first introduce the general paradigm of privatizing In-context Learning depicted
in Figure 2. We then discuss the specific algorithm instantiations of this general paradigm for text
classification and language generation tasks.

General Paradigm of DP-ICL. To privatize the task of in-context learning, we draw inspiration
from the famous “sample-and-aggregate” paradigm (Nissim et al., 2007). Here is a breakdown of
our approach: (1) Partition: We first partition the full set of private demonstration exemplars into
disjoint subsets of exemplars. (2) Pairing with Queries: Each demonstration exemplar subset is
then paired with the query, resulting in a set of exemplar-query pairs. (3) Prompting the Model:
For each exemplar-query pair, we prompt the LLM’s API, yielding a collection of answers (class
predictions for text classification tasks or generated text outputs for language generation tasks). (4)
Private Aggregation of Answers: The collection of individual LLM’s answers is aggregated in a
differentially private way. The privately aggregated model answer is then returned to the user.

Privacy Amplification by Subsampling. When faced with a large dataset of exemplars, generating
in-context exemplars from the entire dataset incurs significant monetary costs associated with API
queries. To address this, upon receiving a query, we can first sample a random subset of the private
exemplar dataset. Following the mainstream DP literature, we adopt Poisson sampling, which
independently collects each data point with a fixed probability q. Integrating subsampling into
DP-ICL alleviates processing and cost challenges and significantly amplifies the differential privacy
guarantee (Balle et al., 2018).

In the following, we develop various techniques for privately aggregating the LLM’s answers, as
summarized in Table 1. These techniques vary based on the complexity of the task at hand, ranging
from classification problems (Section 3.1) to more intricate language generation tasks (Section 3.2).
It is worth noting that the output in language generation tasks consists of sentences with multiple
tokens, making their private aggregation a non-trivial challenge.
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3.1 PRIVATE AGGREGATION FOR TEXT CLASSIFICATION

We describe our private voting algorithm for text classification in Figure 3. We first create a voting
histogram by aggregating one-shot class predictions from the LLM’s evaluation of each exemplar-
query pair. We release the class with the highest vote count in a differentially private way through the
Report-Noisy-Max mechanism with Gaussian noise (RNM-Gaussian) (Dwork et al., 2014; Zhu &
Wang, 2022), where we add independent Gaussian noise to the vote count for each candidate class,
and release the class with the highest noisy count.

Figure 3: An overview of private aggregation method for text classification. We first count the output
labels and put them in a histogram. Next, we add Gaussian noise to this histogram. Finally, we
release the label with the highest noisy count.

RNM-Gaussian Mechanism. For a query Q and classes 1 to m, let oj(Q) ∈ [m] denote the LLM
prediction for j-th exemplar-query pair on Q, and ci(Q) denote the vote count for the i-th class,
i.e., ci(Q) = |{j : oj(Q) = i}|. The Report-Noisy-Max with Gaussian noise (RNM-Gaussian)
mechanism can be defined as: Mσ(Q) := argmax

j∈[m]

{
cj(Q) +N

(
0, σ2

)}
where N

(
0, σ2

)
is the

Gaussian distribution with mean 0 and variance σ2. The aggregation mechanism selects the class
with the highest vote count after adding Gaussian noise to each count. Intuitively, adding noise
obfuscates the contribution of any single exemplar in a dataset. While there exist other mechanisms
for RNM, in this work we adopt RNM-Gaussian due to the well-studied privacy cost analysis for the
Gaussian mechanism. We use the state-of-the-art numerical privacy accountant (Gopi et al., 2021) for
computing the overall privacy cost and we defer the details to Appendix B and Remark 1.

3.2 PRIVATE AGGREGATION FOR LANGUAGE GENERATION

Although our private voting method works well for text classification, extending it to the more
compelling task of language generation proves to be non-trivial. In this section, we first describe the
challenges of private language generation, namely the high-dimensional nature of the domain, and
then describe our design goals to address these challenges. We then propose two novel techniques
(Section 3.2.1 & Section 3.2.2) that we overview in Figure 4.
Challenges of dimensionality in privately generating language. An autoregressive lan-
guage model generates text (conditioned on some prefix x̂1, . . . , x̂i) by iteratively sampling
x̂i+1 ∼ LLM(xi+1|x̂1, ..., x̂i) and then feeding x̂i+1 back into the model to sample x̂i+2 ∼
LLM(xi+2|x̂1, ..., x̂i+1). This process is repeated until a desired stopping criterion is reached
(e.g., the sentence length limit). The number of possible values that x̂i+1 can take on is equal to
the vocabulary space of the model’s tokenizer; consider a vocab size of 50, 000. The number of
possible values that the entire generation can take on, for a maximum generation length of 100, is
therefore 50, 000100, and this constitutes the size of the voting space for our private voting technique.
It is unlikely that the model conditioned on two distinct exemplar pairs will generate the same text
given a sufficiently long generation, because of the autoregressive nature of generation. Therefore, to
assemble a histogram for language generation, where the “classes” are all possible generations of a
given length, would yield an intractably large yet sparse histogram -precisely the opposite of what we
want for our private voting method. The alternative is to operate the private voting method at each
iteration, but this requires composing the privacy loss over the number of tokens being generated,
which will quickly destroy the privacy-utility tradeoff.
Design goal. We fuse our insights into a design goal that will enable us to generate high-quality
passages of text under privacy constraints. We want to do private aggregation in a lower dimensional
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Figure 4: An overview of private aggregation methods for language generation. (a) Embedding
Space Aggregation (Section 3.2.1): First, we transform all output sentences into an embedding
space using a text-to-embedding model. Second, we privately estimate the mean embedding. Finally,
we reconstruct a sentence from the privatized mean embedding. (b) Keyword Space Aggregation
(Section 3.2.2): First, we decompose all output sentences into individual words and form a histogram
based on their frequencies. Then, we employ either the PTR or joint EM mechanism to privately
select the keywords. Finally, we reconstruct the sentence by incorporating these selected keywords
into the prompt and re-querying the API.

space, by transforming generated model outputs into representations that preserve relative semantic
meaning. We now propose a method that maps to the embedding space (Section 3.2.1) and a method
that transforms model outputs into what we call the keyword space (Section 3.2.2).

3.2.1 EMBEDDING SPACE AGGREGATION (ESA)

Figure 4(a) depicts how embedding space aggregation (ESA) maps outputs to the embedding space
and then reconstructs the private aggregation. The semantic embedding space (Reimers & Gurevych,
2019) is a natural choice for a representation that preserves the distance between outputs according to
relative semantic meaning.
Algorithm Overview. We map each sentence generated by the LLM for a given exemplar-query
pair onto the embedding space via a publicly available text-to-embedding model. In our empirical
evaluations, we use OpenAI’s widely used text-embedding-ada-002 model2, which maps each
input sentence into a 1563-dimensional embedding vector with ℓ2 norm of 1. We then release a
privatized mean of the embedding vectors converted from the generated sentences based on each
private exemplar-query pair. To map from the embedding space back to a human-readable output
space, we look for the sentences from the original sentence space that have similar embeddings to the
newly privatized mean embedding.
Technical Details. Privately estimating the mean of the embedding vectors is straightforward;
because we know the ℓ2 norm of all embeddings is 1, the Gaussian mechanism (Dwork et al., 2006a)
minimizes the estimation error. The challenge lies in mapping the private mean from embedding
space back to the sentence space so that we can output it to the user. Utilizing the LLM’s zero-shot
capabilities, we generate a set of sentence candidates by querying the API without any context.
This approach ensures that these generated sentences do not add to the privacy budget, as they
don’t make use of the private in-context exemplars. We then select the generated sentence that
maximizes the cosine similarity with the privatized mean embedding. The performance of our ESA
technique depends on the quality of the methods used for the text-to-embedding and embedding-to-
text mappings. While publicly available text-to-embedding models can generate good representations,
going from embedding-to-text is an active research direction on its own (Morris et al., 2023; Linus,

2https://platform.openai.com/docs/guides/embeddings
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2023). While there exist other mechanisms for RNM, in this work we adopt RNM-Gaussian due to
the well-studied privacy cost analysis for the Gaussian mechanism. Privacy analysis: Since ESA also
invokes a (subsampled) Gaussian mechanism, similar to text classification, we use the state-of-the-art
numerical privacy accountant (Gopi et al., 2021) for computing the overall privacy cost and we defer
the details to Appendix B and Remark 1.

3.2.2 KEYWORD SPACE AGGREGATION (KSA)
In this section, we introduce keyword space aggregation (KSA Figure 4(b)). KSA maps the model
outputs into what we call the keyword space, performs private aggregation in the keyword space, and
maps back to the output space by using the keywords to create a prompt for the LLM. The keyword
space can be considered a low-dimensional approximation of the entire sentence space, and enables
use of the private voting method without suffering from the curse of dimensionality.
Algorithm Overview. The goal of this algorithm is to extract a set of keywords that are very likely to
be contained in a sentence that performs well as the answer for the query.3 Clearly, such keywords
should be present in many sentences generated based on different disjoint private in-context exemplars.
Hence, we can count the frequency of each word token among the sentences generated based on
individual private in-context exemplars and release the top-K tokens that achieve the highest counts in
a differentially private way. After obtaining those keywords, we can reconstruct a complete sentence
by designing a new prompt with keywords and querying the LLM API.
Technical Details. Applying the RNM mechanism K times to release the top-K tokens based on
count might seem straightforward. However, such an algorithm repeats RNM for K times, and hence
the privacy costs can be large for relatively large K. Moreover, it is very likely that the keyword
space is large or even infinite. Fortunately, private top-K selection on large domain spaces has been a
well-studied problem, and we adopt two state-of-the-art methods for different scenarios depending on
the size of the voting space. (1) Moderately large domain space. In this case, we adopt the joint
exponential mechanism (joint EM) (Gillenwater et al., 2022). Unlike repeated applying RNM for K
times, this approach directly performs RNM on the space of all size-K sequences and hence does
not use composition. Note that for this case, the ranking of the counts for the word tokens is also
released. (2) Very large or infinite domain space. In this case, we adopt the technique from Zhu &
Wang (2022) which is based on the famous propose-test-release (PTR) paradigm. The main idea here
is that, as long as the vote count difference between the Kth and (K + 1)th highest candidate is > 2,
we can release the tokens with the top-K vote counts directly without privatization. We note that in
this case, the ranking of the counts for the word tokens is not released.
See Appendix A for a detailed description of our methods. Privacy analysis: For KSA, we are
composing (Subsampled) Propose-Test-Release (PTR) paradigm and Exponential Mechanism (EM).
Since the PRV is unknown for neither PTR paradigm nor EM, PRV accountant is not applicable here
and we instead use the tool of (approximate) Renyi Differential Privacy (RDP) for calculating the
final privacy guarantee. The detailed (approximate) RDP analysis for the PTR paradigm and Joint
EM can be found in Appendix B.3. In particular, we derive the first subsampling amplification result
for approximate RDP in Appendix B.3.3.

4 EXPERIMENTS

In this section, we demonstrate the experimental results of DP-ICL across three different tasks,
including text classification (Section 4.1), document question-answering (Section 4.2), and dia-
log summarization (Section 4.3). Then, we perform ablation studies for dialog summarization in
Section 4.4 and further results are presented in Appendix E & F.

4.1 DP-ICL FOR TEXT CLASSIFICATION

We study text classification using four datasets: sentiment analysis using SST-2 (Socher et al., 2013)
and Amazon (Zhang et al., 2015), topic classification using the 4-way AGNews (Zhang et al., 2015)
datasets, and 6-way question classification using TREC (Voorhees & Tice, 2000). For all datasets,
we randomly select 8,000 samples for training and 1,000 samples for testing if the size is large. We
use the GPT-3 Babbage model for all tasks and additionally consider the GPT-3 Davinci model4 for
SST-2. We choose these models because they have shown promising results of in-context learning.
Further details can be found in Appendix D.1.

3This idea is inspired by the Bag-of-Words method (Salton et al., 1975).
4GPT-3 Davinci has 100 times more parameters and is 40 times more expensive than GPT-3 Babbage.
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We primarily focus on in-context learning with 4 exemplars (4-shot) and 10,000 queries. We compare
with a zero-shot prediction that provides inherently privacy guarantee (ε = 0) and non-private
(ε =∞) 4-shot prediction. Since the performance of in-context learning has a large variance (Zhao
et al., 2021; Min et al., 2022), we also compare our results with the performance of output aggregation
(ε = ∞(Agg)). We set the number of exemplar-query pairs to 10 after subsampling and selected
ε = {1, 3, 8} and δ = 10−4 to achieve different levels of privacy.

DP-ICL achieves a comparable performance with non-private ICL across all tasks (Table 2).
Our findings indicate that the impact of considering privacy on accuracy is marginal. For instance, the
performance only drops by 0.04% for SST-2 with ε = 3 on GPT-3 Babbage. Even for a conservative
privacy budget of ε = 1, we observe that DP-ICL can significantly outperform the zero-shot prediction
(e.g., over 20 % for AGNews) depending on the dataset.

DP-ICL can be further improved via deploying advanced LLMs. By comparing the performance
of GPT-3 Davinci and GPT-3 Babbage on SST-2, we find that the larger model leads to better
performance across all ε for DP-ICL. Take ε = 1 as an example; GPT-3 Davinci outperforms GPT-3
Babbage by ∼3.1%. In addition, we note that all our results can be further improved by simply
replacing the GPT-3 API call with even more advanced LLMs, such as GPT-4.

Table 2: Results of DP-ICL for Text classification. We compare our method with zero-shot
prediction (ε = 0), four-shot predictions (ε = ∞), and an aggregation of 10 four-shot predictions
(ε =∞ (Agg)). For ε = {1, 3, 8}, our DP-ICL generally surpasses zero-shot predictions and yields
competitive performance relative to non-private predictions.

Dataset Model ε = 0 (0-shot) ε = 1 ε = 3 ε = 8 ε =∞ (Agg) ε =∞

SST-2 Babbage 86.58 91.970.49 92.830.28 92.900.24 92.870.09 91.891.23

Davinci 94.15 95.110.35 95.800.21 95.830.21 95.730.13 95.490.37

Amazon Babbage 93.80 93.830.33 94.100.22 94.120.20 94.100.11 93.580.64

AGNews Babbage 52.60 75.491.46 81.001.14 81.861.22 82.222.16 68.7711.31

TREC Babbage 23.00 24.483.58 26.365.19 26.265.61 26.325.33 27.007.72

4.2 DP-ICL FOR DOCUMENT QUESTIONS ANSWERING

Then, we consider the document questions answering task, which aims to answer questions via
reasoning a given document. We adopt a dataset that originates from a Privacy Preserving Federated
Learning Document VQA (PFL-DocVQA) competition (Tito et al., 2023). We directly leverage the
token extracted from the OCR model as the given context and use LLMs to generate answers to
questions. Here, we use the open-source model OpenLLaMA-13B Geng & Liu (2023) and 1-shot
ICL as a cost-effective choice to conduct experiments, and our methods are readily generalizable to
other LLMs. We employ three metrics, ROUGE-1, BLEU, and normalized Levenshitein similarity,
to comprehensively evaluate our proposed methods. Higher values in these metrics indicate better
performance. See Appendix D.2 for more details and examples.
For baseline methods, we include evaluations for zero-shot prediction (ε = 0), 1-shot prediction
(ε =∞), and non-private aggregation (ε =∞(Agg)) where we perform aggregation without noise.
We compare embedding space aggregation and keyword space aggregation by PTR approaches.5 The
ensemble, query, and output candidate sizes are all set to 100, ε = {1, 3, 8} and δ = 4× 10−6.

Table 3: Results of DP-ICL Applied to Document Question Answering. We use three baselines
including zero-shot predictions (ε = 0), 1-shot ICL (ε = ∞), as well as non-private aggergation
(ε =∞ (Agg)). In the non-private aggregation setting, we use either embedding or keyword methods
without adding privacy noise.

Methods Metrics ε = 0 (0-shot) ε = 1 ε = 3 ε = 8 ε =∞ (Agg) ε =∞ (1-shot)

Embedding
ROUGE-1 ↑ 19.05 37.780.35 37.910.19 38.060.15 37.97 50.68

BLEU ↑ 4.42 6.490.20 6.510.04 6.540.16 6.43 24.03
Levenshtein ↑ 16.15 30.390.50 30.710.45 30.880.06 30.94 49.30

Keyword
by PTR

ROUGE-1 ↑ 19.05 59.920.60 60.400.50 60.660.61 62.42 50.68
BLEU ↑ 4.42 23.320.51 23.670.45 23.930.45 25.10 24.03

Levenshtein ↑ 16.15 51.470.67 52.051.06 52.471.09 52.42 49.30

5Here, we did not implement the joint EM method, given that the output domain could potentially be infinite.
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DP-ICL achieves competitive results to non-private aggregations even with ε=1 (Table 3).
Remarkably, our empirical results suggest that adopting differential privacy does not lead to substantial
performance degradation. For instance, the decline in ROUGE-1 scores when shifting from ε =
∞(Agg) to ε = 1 is less than 3% for keyword space aggregation (KSA) by PTR methods. For
embedding space aggregation (ESA), the decrease is even more minimal at 0.19%.

Another noteworthy point is that the KSA method significantly surpasses the ESA approach, even
exceeding the results of standard 1-shot ICL. This is because the consensus of keywords in output
sentences leads to a more reliable answer. This performance drop in the ESA is mainly due to two
factors: (1) information loss during projecting outputs into an embedding space, and (2) the lack of
high-quality candidates generated by zero-shot predictions of OpenLLaMA-13B models. We think
employing advanced LLMs and embedding reconstruction methods could mitigate these drawbacks.

4.3 DP-ICL FOR DIALOG SUMMARIZATION

We evaluate on the SAMSum dialog summarization dataset Gliwa et al. (2019). This task is much
more challenging than previous tasks because the output can be multiple long sentences. We consider
all three proposed methods: embedding space aggregation (ESA), keyword by PTR, and keyword
by jointEM, using 4-shot ICL and GPT-3 Davinci API. For the keyword space aggregation (KSA),
GPT-3 is again used to reconstruct the answers with extracted keywords within prompts. We compare
three baselines: zero-shot learning, 4-shot ICL, and predictions of non-private aggregation. More
details of the evaluation are in Appendix D.2.

Table 4: Results of DP-ICL for dialog summarization. We again compare with zero-shot
predictions (ε = 0), 4-shot ICL (ε = ∞), as well as non-private aggregation (ε = ∞(Agg)). We
report three variants of our private aggregation approaches with ε = {1, 3, 8} and δ = 5× 10−5.

Method Metrics ε = 0 (0-shot) ε = 1 ε = 3 ε = 8 ε =∞ (Agg) ε =∞ (4-shot)

Embedding
ROUGE-1 ↑ 35.31 38.210.39 38.920.24 39.620.40 40.27 43.32
ROUGE-2 ↑ 12.65 14.550.66 15.180.43 15.430.46 16.52 19.08
ROUGE-L ↑ 27.02 29.850.61 30.860.22 31.240.45 32.29 34.78

Keyword
by joint EM

ROUGE-1 ↑ 35.31 40.020.37 40.980.47 41.210.58 42.40 43.32
ROUGE-2 ↑ 12.65 15.670.60 16.490.79 16.310.43 15.61 19.08
ROUGE-L ↑ 27.02 30.460.73 31.760.26 31.840.34 32.60 34.78

Keyword
by PTR

ROUGE-1 ↑ 35.31 38.540.47 39.090.39 39.710.21 41.03 43.32
ROUGE-2 ↑ 12.65 14.420.54 14.320.45 14.600.39 15.91 19.08
ROUGE-L ↑ 27.02 29.580.45 30.180.44 30.560.30 32.47 34.78

Employing DP-ICL offers consistent advantages over zero-shot learning across all methods
(Table 4). Notably, under privacy constraints with ε = 1, our most effective approach, keyword by
joint EM, yielded an improvement of approximately 4.5% in ROUGE-1, 3.0% in ROUGE-2, and
3.4% in ROUGE-L than zero-shot learning. This result is only marginally lower, by ∼1% on average
than the performance achieved with non-private aggregations. Interestingly, the keyword by joint EM
outperforms the keyword by PTR; this advantage is primarily due to joint EM also releasing the order
of frequency. Another finding is that our non-private aggregation methods performed worse than
in-context learning predictions, even for keyword space aggregation methods. We leave the question
of optimizing the utilization of extracted keywords as future research.

4.4 ABLATION STUDIES

We also conduct an ablation study on the dialog summarization task, as it is the most challenging task,
with varying number of queries and number of ensembles. Experimental results on text classification
task are provided in Appendix E, and more findings related to language generation tasks are present
in Appendix F. Here, we set the differential privacy parameter ε = 3.
Effectiveness across numbers of ensembles (Figure 5(a)). Our prior evaluation discussed in
Section 4.3 utilizes an ensemble of 100 teachers for all methods. In this section, we vary the ensemble
size from 10 to 100. It is noteworthy that increasing the ensemble size results in raised subsampling
rates, thereby introducing additional noise into the aggregation process. At the same time, a larger
ensemble size could also generate a more reliable consensus. We observe a clear trend of performance
improvement when increasing ensembles for embedding space aggregation and keyword by PTR.
However, the result of the keyword by joint EM approach shows more fluctuations and reaches a high
performance with 30 ensembles.
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Figure 5: Ablation studies on dialog summarization task. Figure 13 & 12 present full results.

Effectiveness across numbers of queries (Figure 5(b)). We then investigate the impact of varying
the number of queries across the set {1, 10, 100, 1000, 10000}. It is important to note that increasing
the number of queries inherently strengthens privacy protection, causing a higher noise level. Our
results indicate that performance degradation in KSA by joint EM remains marginal up to 103 queries,
suggesting its suitability for real-world applications.

5 RELATED WORKS

Differentially Private Language Models. The existing research on differentially private language
models (Li et al., 2022; Yu et al., 2022; Bu et al., 2023; He et al., 2023) primarily focused on
improving DP-SGD (Abadi et al., 2016) for training language models. In this paradigm, noise is
introduced to the gradient during the model’s training to ensure privacy. However, as the scale of
the large language models significantly increased, fine-tuning has become much more challenging,
making this approach less practical. We provide detailed qualitative and quantitative comparisons
between DP-ICL and DP-SGD in Appendix C.

Concurrent works on Differentially Private In-Context Learning. For differentially private
in-context learning, concurrent to our work, Duan et al. (2023a) propose an approach that privately
labels a publicly available dataset and then uses the newly labeled data pairs as demonstrations, while
our approach does not rely on public data. Later, Tang et al. (2023) present an approach that privately
generates in-context exemplars directly via prompting and achieves effective ICL. It is essential to
underscore that both approaches are restricted to tasks involving limited label spaces, such as
text classification and word extraction. By contrast, we show that DP-ICL can obtain competitive
performance on SAMSum and DocVQA, which are considerably more complex and challenging
tasks in language generation. Our methodology and compelling results indicate that our methods can
be broadly applied across various natural language processing tasks.

6 DISCUSSION AND FUTURE WORKS

In this paper, we initiate the study of incorporating in-context learning with differential privacy. We
developed a unified framework for privatizing ICL based on the famous “sample-and-aggregate”
paradigm, and we propose several instantiations for the private aggregation for the task of text
classification and language generation.

While our method exhibits strong performance, there are multiple directions for future research.
Specifically, for the Embedding Space Aggregation method, a more advanced embedding-to-text
model may yield further improvements in the model performance. For instance, recent work (Morris
et al., 2023) has shown promising results in reconstructing sentences directly from their embeddings.
Additionally, DP-ICL relies on dividing the exemplars into disjoint subsets and queries the LLM
with each of the subsets. As the number of subsets increases, the computational efficiency, while still
significantly better compared with directly fine-tuning the LLM, will be larger. The efficiency-utility
tradeoff for the choice of the number of subsets in DP-ICL is an interesting problem for future works.
Furthermore, DP-ICL does not allow an infinite amount of queries. While we consider a substantial
number of queries (up to 100,000) in our experiments, future investigations could aim to increase
this capacity via tighter privacy accounting techniques for propose-test-release and Exponential
mechanism.
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A DETAILS AND PSEUDOCODE OF DP IN-CONTEXT LEARNING IN SECTION 3

In this section, we provide full details of our DP-ICL algorithms. These algorithms include text
classification through RNM-Gaussian (Appendix A.1), language generation via embedding space
aggregation (Appendix A.2), and language generation via keyword space aggregation (Appendix A.3).

Algorithm 1 Differentially Private In-Context Learning (Meta Algorithm)
Require: Full private dataset D, query set Q = {Q}, model LLM, task description task, technique

technique.
1: for Q ∈ Q do
2: Subsample D ← D.
3: if task="text classification" then
4: Execute RNM-Gaussian (Algorithm 2) on D and Q.
5: else if task="language generation", technique="ESA" then
6: Execute ESA (Algorithm 3) on D and Q.
7: else if task="language generation", technique="KSA" then
8: Execute KSA (Algorithm 4) on D and Q.
9: end if

10: end for

A.1 TEXT CLASSIFICATION VIA RNM-GAUSSIAN

Our method is detailed in Algorithm 2, and further privacy analysis is detailed in Appendix B.1.

Algorithm 2 RNM-Gaussian
Require: Private data D, query Q, model LLM, noise σ, number of subsets N

1: Partition D1, D2, . . . , DN ← D.
2: for i ∈ {1, . . . , N} do
3: Form exemplar-query pair DQ

i = Di ∪ {Q}.
4: Obtain model output Oi(Q) = LLM(DQ

i ).
5: Convert Oi(Q) to a one-hot vector with length equal to the number of classes.
6: end for
7: Sum the one-hot vectors into a histogram H.
8: Add noise to N

(
0, σ2

)
to each entry of H.

9: Report the top-1 bin from H.

A.2 LANGUAGE GENERATION VIA EMBEDDING SPACE AGGREGATION (ESA)

In Algorithm 3, we present the full descriptions of our ESA method. The main idea is to project those
output sentences into embedding space, get a differentially private mean, and map it back to sentence
space. Further privacy analysis, including how to compute σ, is presented in Appendix B.2.

A.3 LANGUAGE GENERATION VIA KEYWORD SPACE AGGREGATION (KSA)

The keyword space aggregation (KSA) algorithm is demonstrated in Algorithm 4. We illustrate two
differential private approaches for selecting keywords in the following subsections, including joint
Exponential Mechanism (Appendix A.3.1) and Propose-Test-Release (Appendix A.3.2).

A.3.1 KSA VIA JOINT EXPONENTIAL MECHANISM.

The main idea of the joint exponential mechanism (Gillenwater et al., 2022) is to provide a mechanism
that samples sequences of items rather than use variants of the exponential mechanism that may
require composition over the number of tokens (Durfee & Rogers, 2019). We create the “public
domain” for our summarization tasks by creating a histogram of counts for the words in the dialogue
we want to summarize. We increase these counts for each exemplar. Note that just creating a
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Algorithm 3 Embedding Space Aggregation
Require: Private data D, query Q, model LLM, noise σ, number of subsets N , public candidate

sentences obtained by zero-shot predictions OC with total number of C
1: Partition D1, D2, . . . , DN ← D.
2: for i ∈ {1, . . . , N} do
3: Form exemplar-query pair DQ

i = Di ∪ {Q}.
4: Obtain model output sentence Oi(Q) = LLM(DQ

i ).
5: Project Oi(Q) into embedding vector Ei(Q).
6: end for
7: Take the mean of all embedding vectors E = 1

N

∑N
i=1 Ei.

8: Adding noise and obtain the noisy embedding Ê = E +N
(
0, σ2I

)
.

9: Return the sentence argmaxo∈OC
CosineSimilarity(o, Ê).

Algorithm 4 Keyword Space Aggregation
Require: Private data D, query Q, model LLM, noise σ, number of subsets N , public candidates

obtained by zero-shot predictions OC with total number of C, maximum token length M ,
method ∈ {JEM,PTR}.

1: Partition D1, D2, . . . , DN ← D.
2: for i ∈ {1, . . . , N} do
3: Form exemplar-query pair DQ

i = Di ∪ {Q}.
4: Obtain model output sentence Oi(Q) = LLM(DQ

i ).
5: end for
6: For each token, count the number of sentences in {Oi(Q)} it appears, and form a histogram H.
7: if method = JEM then
8: Return JointEM(k,H). (Algorithm 5)
9: else if method = PTR then

10: k̂ = FindBestK(H). (Algorithm 7)
11: Return TopKwithPTR(k̂, FindBestK(H)). (Algorithm 6)
12: end if
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Algorithm 5 JointEM (Gillenwater et al., 2022)
Require: Vector of item counts c1, . . . , cd, number of items to estimate k, privacy parameter ε

1: Sort and relabel items so c1 ≥ c2 ≥ · · · ≥ cd
2: Construct matrix Ũ by Ũij = −(ci − cj)− d(k−i)+j

2dk

3: Sort Ũ in decreasing order to get Ũ(1), . . . , Ũ(dk), storing the (row, column) of each Ũ(a) as
(r(a), c(a))

4: Initialize n1, . . . , nk ← 0
5: Initialize set of non-zero ni, N ← ∅
6: Initialize b← 0
7: for a = 1, . . . , dk do
8: nr(a) ← c(a)− (r(a)− 1)
9: N ← N ∪ {r(a)}

10: if |N | = k then
11: break
12: end if
13: Set m̃(Ũ(a))← 0, and set b← a
14: end for
15: Set p←

∏
r∈[k] nr

16: Compute m̃(Ũ(b+1))← p/nr(a)

17: for a = b+ 2, . . . , dk do
18: Set p← p/nr(a)

19: Compute m̃(Ũ(a))← p
20: Update nr(a) ← nr(a) + 1
21: Update p← p · nr(a)

22: end for
23: Sample a utility Ũij from: P

[
Ũij

]
∝ m̃

(
Ũij

)
exp

(
ε⌈Ũij⌉

2

)
24: Initialize size-k output vector s with si ← j
25: for i′ = 1, 2, . . . , i− 1, i+ 1, . . . , k do
26: Compute ti′(Ũij) by iterating through row i′ of Ũ
27: Sample si′ uniformly from ti′(Ũij)\{j, s1, s2, . . . , si′−1}
28: end for
29: Return Vector of item indices s
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histogram over the outputs of all exemplars would violate privacy. This is a challenge in extending
KSA-JOINT to the infinite domain. We use this histogram to initialize a data structure to efficiently
sample with the joint exponential mechanism. Our implementation uses the code from (Gillenwater
et al., 2022).

A.3.2 KSA VIA PROPOSE-TEST-RELEASE (KSA-PTR)

Notations. We use N to denote the total number of tokens (e.g., N = 50, 000). We use H to denote
the histogram for the counts of each token, and we use H(j) to denote the jth highest count, i.e.,
H(1) ≥ H(2) ≥ . . . ≥ H(N).

The main idea of KSA-PTR is that, for the task of releasing the top-k index set of a voting histogram,
if H(k) −H(k+1) > 2, then the top-k indices are exactly the same for all the neighboring datasets.
Hence, one can release the exact top-k indices without any randomness. However, we need to test
whether H(k) − H(k+1) > 2 in a differentially private way, where we can leverage the famous
propose-test-release paradigm (Dwork & Lei, 2009), as shown in Algorithm 6.

Algorithm 6 TopKwithPTR

Require: k – the number of top counted tokens to release; H – histogram for the counts of each
token; δ – failure probability

1: Set dk := H(k) −H(k+1).
2: Set d̂k := max(2, dk) +N (0, 4σ2)− Φ(1− δ; 0, 2σ).
3: If d̂k > 2, Return the exact top-k tokens.
4: Else Terminate (or use zero-shot learning).

As we can see, such an algorithm can have the highest utility when we choose the k that maximizes
H(k) − H(k+1). Hence, to further improve the utility of the algorithm, we can select k in a data-
dependent way, i.e., we release argmaxk H(k) − H(k+1) in a differentially private way (which is
another Report-Noisy-Max) using Exponential mechanism.

Algorithm 7 FindBestK

Require: H – histogram for the counts of each token
1: Compute histogram gap dk := H(k) −H(k+1) for each k = 1 . . . N − 1.
2: Return argmaxk{dk + r(k) + Gumbel(4/ε)}

Here, r(k) is a regularizer independent of the dataset, e.g., we can set r(k) = −∞ for any k > 30
and k < 15, if we don’t want to return more than 30 or less than 15 tokens.
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B PRIVACY ANALYSIS

In this section, we review the important properties of differential privacy and provide the privacy
analysis for the algorithms introduced in Section 3.

Outline of this section: In this section, we first review the concept of DP as well as the necessary
background of DP composition. The privacy analysis for differentially private text classification
(RNM-Gaussian) is provided in Appendix B.1. The privacy analysis for ESA is provided in Appendix
B.2. The privacy analysis for KSA-Joint EM and KSA-PTR is provided in Appendix B.3.1 and B.3.2,
respectively.

We first state the formal DP definition.
Definition 1 (Differential Privacy (Dwork et al., 2006b)). For ε, δ ≥ 0, a randomized algorithm
M : MultiSets(X ) → Y is (ε, δ)-differentially private if for every neighboring dataset pair
D,D′ ∈ MultiSets(X ), we have:

∀ T ⊆ Y Pr[M(D) ∈ T ] ≤ eε · Pr[M(D′) ∈ T ] + δ

where the randomness is over the coin flips ofM.

Post-processing Property. Differential privacy exhibits a robust post-processing property. Informally,
this means that if a mechanism is differentially private, then any post-processing applied to the output
of that mechanism is also differentially private. This property is crucial for enabling flexible analysis
of privately released data.
Lemma 2 (Post-processing (Dwork et al., 2006b)). IfM : MultiSets(X )→ Y is (ε, δ)-differentially
private and f : Y → Z is an arbitrary (possibly randomized) function, then the composed mechanism
f ◦M : MultiSets(X )→ Z is also (ε, δ)-differentially private.

(Adaptive) Composition of Differential Privacy. In practice, multiple differentially private mech-
anisms may be applied to the same dataset. Crucially, multiple DP mechanisms can be adaptively
composed in the sense that the output of one mechanism can be used as an input to another mechanism,
denoted asM(D) = M1 ◦ M2(D) := (M1(D),M2(D,M1(D))). Differential privacy offers
strong composition guarantees, that help quantify the cumulative privacy loss resulting from these
combined mechanisms. These guarantees are provided by various composition theorems or privacy
accounting techniques, including the basic composition theorem (Dwork et al., 2006a), advanced
composition theorem (Dwork et al., 2010), and Moments Accountant (Abadi et al., 2016). For
example, the basic composition theorem states that ifM1 is (ε1, δ1)-DP andM2 is (ε2, δ2)-DP, then
the adaptive composition ofM1 andM2 is (ε1 + ε2, δ1 + δ2)-DP.

Consider two attackers: the first asks their allotted k queries in one batch and then observes the
answers, the second asks each query sequentially and incorporates information gained from observing
the answer to the current query into the next query. The second attacker is certainly stronger, and this
increased strength is captured by adaptive composition.

Privacy Amplification by Subsampling. Privacy amplification by subsampling is a technique used
to enhance privacy guarantees in differentially private mechanisms by randomly selecting a subset of
the data before applying the privacy mechanism. This subsampling process can lead to a reduction in
the privacy cost, allowing for better utility while preserving privacy. We can show that the Poisson
subsampled Gaussian mechanism with sensitivity 1, noise scale σ, and subsampling rate q has the
PRV Y = log(P (o)/Q(o)), o ∼ P , where P = (1− q)N (0, σ2) + qN (1, σ2) and Q = N (0, σ2),
and P (·), Q(·) are the density functions of P,Q. With the PRV of subsampled Gaussian mechanism
as well as the PRV accountant, we can now efficiently and tightly track the privacy costs for DP-ICL.

B.1 TEXT CLASSIFICATION VIA RNM-GAUSSIAN

Theorem 3. The mechanism RNM-Gaussian Mσ from Section 3.1 is (ε, δ)-DP with σ =

2
√
log(1.25/δ)/ε.

Proof. Note thatMσ can be broken down into applying the argmax operator on a noisy histogram,
which is generated by adding Gaussian noise to each dimension of the original histogram. The
Gaussian mechanism is known to satisfy (ε, δ)-DP with σ = ∆

√
2 log(1.25/δ)/ε (Dwork et al.,
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2014), where ∆ := supD∼D′ ∥f(D)− f(D′)∥ represents the global sensitivity of the underlying
aggregation function f . In our case, f calculates the original voting histogram. As each exemplar-
query prediction may alter two counts (increasing one and decreasing the other), the sensitivity ∆ is√
2. The overall privacy guarantee is then derived from the post-processing property of differential

privacy.

B.2 EMBEDDING SPACE AGGREGATION (ESA)

Theorem 4. The Step 2 to Step 9 in Alg. 3 is (ε, δ)-DP with σ = 2
√
log(1.25/δ)/ε.

Proof. Note that each embedding output by the text-to-embedding model has ℓ2 norm to be 1. Hence,
the referred steps are essentially the same as Gaussian mechanism with ℓ2 sensitivity 1. The last step
of releasing the public candidate sentence that has the maximum cosine similarity can be regarded as
the post-processing step and hence does not affect the overall privacy guarantee.

Remark 1 (Tracking Privacy Loss with PRV Accountant for Subsampled Gaussian mechanism).
To better keep track of the privacy cost for RNM-Gaussian and ESA, we use the most recent advances
in privacy cost accounting based on the notion of the Privacy Loss Random Variable (PRV) (Dwork
& Rothblum, 2016). The PRV accountant was introduced by Koskela et al. (2020) and later refined in
Koskela & Honkela (2021); Gopi et al. (2021). For any DP-algorithm, one can easily compute its
(ε, δ) privacy guarantee based on the distribution of its PRV. The key property of PRVs is that, under
(adaptive) composition, they simply add up; the PRV Y of the compositionM =M1 ◦M2 ◦ · · · ◦Mk

is given by Y =
∑k

i=1 Yi, where Yi is the PRV ofMi. Therefore, one can then find the distribution
of Y by convolving the distributions of Y1, Y2, . . . , Yk. Prior works (Koskela & Honkela, 2021; Gopi
et al., 2021) approximate the distribution of PRVs by truncating and discretizing them, then using the
Fast Fourier Transform (FFT) to efficiently convolve the distributions.

B.3 LANGUAGE GENERATION VIA KEYWORD SPACE AGGREGATION (KSA)

Rényi differential privacy (RDP) is a variant of the standard (ε, δ)-DP that uses Rényi-divergence as
a distance metric between the output distributions ofM(D) andM(D′), which is particularly useful
in training differentially private machine learning models.
Definition 5 (Rényi Differential Privacy (Mironov, 2017)). We say that a mechanism M is
(α, εM(α))-RDP with order α ∈ (1,∞) if for every dataset pair D,D′ ∈ MultiSets(X ) such
that d(D,D′) = 1, we have:

Dα (M(D)∥M (D′)) :=
1

α− 1
logEo∼M(D′)

[(
µM(D)(o)

µM(D′)(o)

)α]
≤ εM(α) (1)

where µM(·) denotes the density function ofM’s distribution.

Another useful relaxation of the RDP definition is approximate RDP.
Definition 6 (Approximate RDP (Bun & Steinke, 2016; Zhu & Wang, 2022)). We say a randomized
algorithmM is δ-approximately (α, εM(α))-RDP with order α ≥ 1, if for all neighboring dataset
D,D′, there exist events E (depending onM(D)) and E′ (depending onM(D′)) such that Pr[E] ≥
1− δ and Pr[E′] ≥ 1− δ, and ∀α ≥ 1, we have

Dα (M(D)|E ∥M (D′) |E′) ≤ εM(α) (2)

For both methods of KSA-JEM and KSA-PTR, we use RDP and approximate RDP for a tighter
measure of the privacy cost under composition. After we obtain the (approximate) RDP guarantee for
the overall algorithm, we can then convert the privacy guarantee back into the standard DP definition.
We refer the readers to Bun & Steinke (2016) and Mironov (2017) for the composition and conversion
formula for RDP and approximate RDP. In the following, we state the privacy guarantee of individual
building blocks for private prompt generation and selection in terms of (approximate) RDP.

We then introduce the exponential mechanism (McSherry & Talwar, 2007), one of the most famous
and frequently used DP mechanisms. The exponential mechanism takes a utility function q :
MultiSets×Y → R and can be thought of as evaluating how good q(D, y) is for an outcome y ∈ Y
on dataset D.
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Definition 7 (Exponential Mechanism). Let EMq : MultiSets → Y be a mechanism where for all
outputs y ∈ Y we have

Pr[EMq(D) = y] ∝ exp

(
ε

2∆(q)
q(D, y)

)
where ∆(q) is the sensitivity of the quality score, i.e. for all neighboring inputs D,D′ we have
supy∈Y |q(D, y)− q(D′, y)| ≤ ∆(q)

Furthermore, Durfee & Rogers (2019) shows that adding Gumbel noise to each output’s utility
and releasing the output with the highest noisy utility score is equivalent to using the exponential
mechanism.

Theorem 8 (Bun & Steinke (2016)). The exponential mechanism is ε-DP, and (α, εEM(α))-RDP s.t.

εEM(α) := min

(
α

2
ε2,

1

α− 1
log

(
sinh(αε)− sinh((α− 1)ε)

sinh(ε)

))
B.3.1 KSA VIA JOINT EXPONENTIAL MECHANISM (KSA-JOINT EM)

Theorem 9. Alg. 5 is ε-DP, and εEM (α)-RDP.

Proof. Alg. 5 is an Exponential mechanism on the domain space of positive integers k = 1, 2, . . . ,
where the utility of k is ck. The sensitivity of dk is 1 since each exemplar-query prediction may
alter a count ck at most 1. Hence, the DP and RDP guarantee follows from the privacy guarantee of
exponential mechanism in Theorem 8.

B.3.2 KSA VIA PROPOSE-TEST-RELEASE (KSA-PTR)

Theorem 10. Alg. 7 is ε-DP, and εEM (α)-RDP.

Proof. Alg. 7 is an Exponential mechanism on the domain space of positive integers k = 1, 2, . . . ,
where the utility of k is dk := H(k) −H(k+1). The sensitivity of dk is 2. Hence, the DP and RDP
guarantee follows from the privacy guarantee of exponential mechanism in Theorem 8.

Theorem 11. Alg. 6 is δ-approximate α
2σ2 -RDP.

Proof. Releasing the noisy threshold d̂k is α
2σ2 -RDP.

If dk > 2, then releasing the exact top-k tokens has no privacy cost, as its local sensitivity is 0.

If dk ≤ 2, then if d̂k ≤ 2, the program terminates and there’s no privacy cost.

If dk ≤ 2, the failure probability

Pr[d̂k > 2] = Pr[max(2, dk) +N (0, 4σ2)− Φ(1− δ; 0, 2σ) > 2]

= Pr[2 +N (0, 4σ2)− Φ(1− δ; 0, 2σ) > 2]

= Pr[N (0, 4σ2)− Φ(1− δ; 0, 2σ) > 0]

= δ

B.3.3 PRIVACY AMPLIFICATION BY SUBSAMPLING FOR APPROXIMATE RDP

In the following, we present the privacy amplification of approximate RDP by Poisson subsampling.
To the best of our knowledge, we are the first to derive the following result.

Theorem 12. If M is δ-approximate εM(α)-RDP, then M ◦ Poisson with subsampling rate q
is δq-approximate εM◦Poisson(α)-RDP, where εM◦Poisson(α) is the tightest possible amplification
bound for any mechanism that is εM(α)-RDP with subsampling rate q(1−δ)

1−qδ .
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Proof. Consider D := D′ ∪ {z}, D,D′ are neighboring datasets. Denote S ⊆ D′, and let γS the
probability of sampling S. Denote µS :=M(S).

M(Poisson(D′)) =
∑
S⊆D′

γSµS (3)

M(Poisson(D)) =
∑
S⊆D′

γS
(
(1− q)µS + qµS∪{z}

)
(4)

= (1− q)
∑
S⊆D′

γSµS + q
∑
S⊆D′

γSµS∪{z} (5)

By definition of approximate RDP, for any pair of S, S ∪ {z}, we have event ES , ES∪{z} s.t.
Dα(µS |ES∥µS∪{z}|ES∪{z}) ≤ εM(α) and Pr[ES ] = 1− δ and Pr[ES∪{z}] = 1− δ. Hence, we
can rewriteM(Poisson(D′)) andM(Poisson(D)) as

M(Poisson(D′)) = (1− q)
∑
S⊆D′

γSµS + q
∑
S⊆D′

γSµS

= (1− q)
∑
S⊆D′

γSµS + q
∑
S⊆D′

γS
(
(1− δ)µS |ES + δµS |ĒS

)
= (1− q)

∑
S⊆D′

γSµS + q(1− δ)
∑
S⊆D′

γSµS |ES + qδ
∑
S⊆D′

γSµS |ĒS

M(Poisson(D)) = (1− q)
∑
S⊆D′

γSµS + q
∑
S⊆D′

γSµS∪{z}

= (1− q)
∑
S⊆D′

γSµS + q(1− δ)
∑
S⊆D′

γSµS∪{z}|ES∪{z} + qδ
∑
S⊆D′

γSµS∪{z}|ĒS∪{z}

Hence, there exists event ED, ED′ s.t. Pr[ED] ≥ 1− qδ and Pr[ED′ ] ≥ 1− qδ, and

M(Poisson(D′))|ED =
(1− q)

1− qδ

∑
S⊆D′

γSµS +
q(1− δ)

1− qδ

∑
S⊆D′

γSµS |ES

M(Poisson(D))|ED′ =
(1− q)

1− qδ

∑
S⊆D′

γSµS +
q(1− δ)

1− qδ

∑
S⊆D′

γSµS∪{z}|ES∪{z}

Hence

Dα (M(Poisson(D))|ED ∥M(Poisson(D′))|ED′) (6)

has privacy amplification with subsampling rate q(1−δ)
1−qδ .
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C DP-ICL ENABLES PRIVATE PREDICTION

Our work represents a major departure from prior work on DP LLMs in that we consider private
prediction rather than private training. A line of recent work (Li et al., 2022; Yu et al., 2022; Bu
et al., 2022; He et al., 2023) has proposed fine-tuning pre-trained models on downstream tasks with
differentially private stochastic gradient descent (DP-SGD) (Abadi et al., 2016). Despite ample
research into DP LLMs and the growing industry demand for solutions to augment LLMs with
proprietary data (Kuchaiev et al., 2019; Nvidia, 2023), a number of key challenges remain for DP
LLMs that we seek to address by considering private prediction.

Private training makes training harder. Fine-tuning with DP-SGD requires adopting entirely new
hyperparameters and shifting existing hyperparameters to be radically different from non-private
training (Li et al., 2022). Performing this additional hyperparameter tuning can take hundreds of
trials. DP-SGD uses per-example gradient clipping to bound the sensitivity of individual datapoints.
Materializing per-example gradients can increase the memory consumption of training by an order of
magnitude (Bu et al., 2022) and slow down training. Although recent methods have been proposed for
efficient hyperparameter tuning (Panda et al., 2022; Papernot & Steinke, 2022), efficient per-example
gradient clipping (Li et al., 2022), and parameter-efficient fine-tuning (Yu et al., 2022), we emphasize
that DP-SGD introduces challenging engineering and optimization problems that are a topic of
ongoing research. Our method requires no hyperparameter tuning and is computationally
efficient.

Private training is incompatible with black-box LLMs. Developers building on top of cloud-
hosted LLMs such as OpenAI, Anthropic, or AWS Bedrock cannot implement the complex DP-SGD
algorithm (Sivasubramanian, 2023). Organizations employing closed-source LLMs such as GPT-3+,
Claude, or Bard cannot even access the weights for fine-tuning and may never be able to (OpenAI,
2023). Our method is compatible with any LLM API.

Private training does not allow flexible data editing. Private training generates a single model that
is inextricably tied to each datapoint in its training data. This is at odds with the right to be forgotten
mandated by GDPR (Politico, 2023), that would require retraining the entire model to delete the
influence of a private datapoint -an impracticality if not an outright impossibility when considering
fine-tuning billion-parameter models. By contrast, honoring the right to be forgotten with DP-ICL is
as straightforward as just removing the individual’s private data from the exemplar database. Our
method enables the right to be forgotten.

DP-ICL outperforms all previous DP-SGD methods on SST-2 benchmark (Table 5). We also
compare our results with current state-of-the-art differentially private stochastic gradient descent
(DP-SGD) methods on SST-2. The results illustrate an improvement over earlier methods. For
instance, the enhancement at ε = 3 is 1.2%, which translates to an over 20% reduction in relative
error rate, thereby establishing a new SOTA in the field.6 Moreover, by presenting the results with
ε =∞, we notice that our performance gains do not correlate to the advanced large language model,
where our upper bound is lower than other methods. That means DP-ICL exhibits less sacrifice when
achieving a differential privacy guarantee.

Table 5: Comparison of DP-ICL and DP-SGD on the SST-2 Dataset. Our DP-ICL method
demonstrates significantly lower performance degradation under privacy constraints of ε = {3, 8}.

Model Method ε = 3 (gap) ε = 8 (gap) ε =∞

RoBERTa-large
(Liu et al., 2020)

DP-SGD (Li et al., 2022) 93.04 (-3.16) 93.81 (-2.39) 96.20
DP-SGD (Yu et al., 2022) – 95.30*(-1.10) 96.40
DP-SGD (Bu et al., 2023) 94.60 (-0.90) 94.70 (-0.80) 95.50
DP-SGD (He et al., 2023) 94.23 (-1.97) 94.87 (-1.33) 96.20

GPT-3 Davinci DP-ICL (Ours) 95.800.21 (+0.07) 95.830.22 (+0.10) 95.73 (4-shot)
* Result present in (Yu et al., 2022) is ε = 6.7.

However, DP-ICL in Table 5 is capable of responding to a maximum of 10,000 queries, whereas
DP-SGD has no such query limit and can answer an arbitrarily large number of queries. We defer to

6A minor discrepancy exists between our training data (sentence level) and the DP-SGD training data (phrase
level) on the SST-2 dataset. Our training data is 10 times smaller than that of DP-SGD. However, the test data
remains identical for both.
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practitioners to evaluate these factors when selecting the most appropriate algorithm for real-world
applications.
Remark 2. We acknowledge that our DP-ICL is a private prediction framework, which does not
allow for an infinite amount of queries. However, we stress that in our experiment, we consider up to
100,000 queries, which is arguably a huge number. Furthermore, in many real-world applications
where ICL is helpful, in-context examples will often be updated regularly. For example, for healthcare
data analysis, systems that analyze patient data for research or treatment optimization might update
their learning models regularly with new data. Banks and financial institutions might use in-context
learning for fraud detection, credit scoring, or personalized customer services. The dynamic nature
of financial transactions could necessitate frequent updates to the learning models, aligning with a
refreshed privacy budget.
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D DETAILS OF EXPERIMENTS SETUP

In this appendix, we present more details of our experiment setup, including the text classification
task (Appendix D.1) as well as the language generation tasks (Appendix D.2).

D.1 TEXT CLASSIFICATION

Task. Following Zhang et al. (2022), we employ the template summarized in Table 6 to carry out
experiments on text classification tasks. We configure the logit bias to 100 via the GPT-3 API to
ensure that the output token belongs to one of the predefined labels (e.g., positive and negative). We
then select the label with the highest probability. We use a value of 0.0 for the temperature.

Table 6: The template prompts for our experiments.
Dataset Template Labels
SST-2 Review: {text} Sentiment: {label} Positive, Negative

Amazon Title: {title} Review: {review} Positive, NegativeSentiment {label}

AGNews Article: {text} Answer: {label} World, Sports,
Business, Technology

TREC

Classify the questions based on whether Number, Location,
Person, Description,
Entity, Abbreviation

their answer type is a Number, Location,
Person, Description, Entity, or Abbreviation.

Question: {text} Answer Type: {label}

Dataset. Our experiments are conducted on four datasets, the details of which are presented in Table
7. Given that the training data size for each dataset is fewer than 10,000, we set δ to 10−4.

Table 7: Information about the Text Classification Dataset
Dataset Task # of classes # of exemplars # of test data avg. length
SST-2 Sentiment cls. 2 6,920 872 37.8

Amazon Sentiment cls. 2 8,000 1,000 78.5

AGNews Topic cls. 4 8,000 1,000 19.3

TREC Question cls. 6 5,452 500 10.2

D.2 LANGUAGE GENERATION

We then provide the detailed setup for document questions answering and dialog summarization.

D.2.1 DOCUMENT QUESTIONS ANSWERING

Task. For document questions answering task, we use data from Privacy Preserving Federated
Learning Document VQA (PFL-DocVQA) competition 7. The primary objective is to create privacy-
preserving approaches for fine-tuning multi-modal models, for both vision and language, to improve
document understanding. These documents often contain sensitive or confidential information. As
our research is centered on language generation, we skip the vision module and assume that accurate
OCR tokens have been extracted from the document images. We leverage the language model to
answer the posed questions, and an example of our evaluation is presented as follows:

Extracted OCR tokens from image:
Page,2,of,2,DUNORICE,REISSUE,Send,Payment,To:,WSIL-TV,Invoice,. . .
Question: What is the identification number assigned to the invoice in the document?

7The web link is https://benchmarks.elsa-ai.eu/?ch=2
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Answer the question with short term: 12970-2B

Extracted OCR tokens from image:
ORDER,WORKSHEET,Rep,Order#,10447675,Ver#,1,Status,New,Traffic,. . .
Question: Could you share the ID associated with the document?
Answer the question with short term:

Dataset and Metrics. We use the training data contains 221,329 data and evaluate the performance on
100 data that are randomly selected from validation dataset. Therefore, we set the δ for DP guarantee
to 4 × 10−6. We use three evaluation metrics in this task: ROUGE-1, BLEU, and Levenshtein
similarity. Specifically, ROUGE-1 measures the overlap of unigrams between the generated and
reference texts, and BLEU checks for matching words but considers them in n-grams. The Levenshtein
similarity metric is derived from the Levenshtein distance, which measures the minimum number of
single-character edits needed to transform one string into another.

Model. Due to the long OCR-extracted tokens, we avoided using the paid GPT API. We plan to
conduct more extensive experiments if we have increased funding. For the current evaluation, we
used the open-source model OpenLLaMA-13B Geng & Liu (2023).

D.2.2 DIALOG SUMMARIZATION

Task. Then we provide the detailed experiment setup for dialog summarization, where we use the
SAMsum dataset Gliwa et al. (2019). This dataset has conversations between people, some of which
may be private. We use the prompt to guide the task, which is as follows:

Dialogue:
– Sandra: Are you sleeping?
– Matija: Nope
– Sandra: How so?
– Matija: It is Friday :D
– Sandra: So you are partying?
– Matija: File photo :D
– Sandra: You are in bed already?
– Matija: Of course :P
– Sandra: You are like old folks ;) What are your plans for tomorrow?
– Matija: Cleaning the apartment
– Sandra: Wow, nice
– Matija: Yea. Afterwards we are going to some restaurant, I have a lesson at 4 and we are

meeting that bartender at 6
– . . .

Summarize the above dialogue:
Matija is in his bed on Friday nights. Tomorrow he is cleaning the apartment and afterwards
they are going to the restaurant to have a lesson at 4 and meet that bartender at 6.
Dialogue:
– Joyce: Check this out!
– Joyce: <link>
– Michael: That’s cheap!
– Edson: No way! I’m booking my ticket now!!

Summarize the above dialogue:

When using keyword space aggregation by PTR, we change the “Summarize the above dialogue:” to
“Summarize the above dialogue with the following word suggestions:”. When using keyword space
aggregation by joint EM, we change the “Summarize the above dialogue:” to “Summarize the above
dialogue with the following word suggestions ranked by their frequency from high to low:”.

Dataset and Metrics. We use the training data containing 14,732 data and evaluate the performance
on 100 test data. We set the δ to 5× 10−5. Following He et al. (2023), we use ROUGE-1, ROUGE-2,
and ROUGE-L as the evaluation metrics.
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Model. We leverage the GPT-3 Davinci to conduct the experiments. Our methods can also apply to
other large language models.
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E ADDITIONAL EVALUATIONS ON TEXT CLASSIFICATION

In this appendix, we provide additional ablation studies for the text classification task. We discuss the
impact of using DP-ICL with different queries (Appendix E.1) and models (Appendix E.2). We also
examine how performance changes with varying numbers of in-context examples (Appendix E.4)
and subsampling rates (Appendix E.5).

E.1 EFFECTIVENESS OVER VARIOUS QUERIES

In this subsection, we conduct ablation experiments to learn the influence of varying the number of
queries on performance, as illustrated in Figure 6. The outcomes for the TREC dataset were obtained
using the GPT-3 Davinci model, whereas results for all other datasets employed the GPT-3 Babbage
model. We keep ε = 3 constant and use 10 ensembles. Our observations reveal that the performance
degradation resulting from an increase in the number of queries remains negligible, up to 10,000,
with a decrease of less than 2%. Furthermore, it was observed that performance drops were more
significant for the AGNews and TREC datasets compared to the remaining datasets. We hypothesize
that this drops attributed to the property of multiple classes (i.e., 4 and 6) within the AGNews and
TREC datasets.
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Figure 6: Performance across numbers of the query.

E.2 EFFECTIVENESS OF VARIOUS MODELS

In this subsection, we explore various GPT-3 variants available through OpenAI’s service. Specifically,
we evaluate GPT-3 Ada (350M), GPT-3 Babbage (1.3B), GPT-3 Curie (6.7B), and GPT-3 Davinci
(175B) on four text classification tasks, as detailed in Table 8. We configure the setting to be the same
as our results in Table 2.

Table 8: Results of DP-ICL for Text classification
Dataset Model ε = 0 (0-shot) ε = 0 (Pub.) ε = 1 ε = 3 ε = 8 ε =∞ (Agg) ε =∞

SST-2

Ada 86.24 80.16 73.31 75.10 75.38 72.29 70.92
Babbage 86.58 89.45 91.97 92.83 92.90 92.87 91.89

Curie 91.51 92.89 94.03 94.86 94.94 95.07 94.03
Davinci 94.15 95.30 95.11 95.80 95.83 95.73 95.49

Amazon
Ada 92.00 84.90 89.68 90.26 90.32 90.70 88.51

Babbage 93.80 91.60 93.83 94.10 94.12 94.10 93.58
Curie 95.90 94.30 95.37 95.67 95.69 95.58 95.28

AGNews
Ada 37.50 40.00 65.60 70.51 71.22 71.72 60.23

Babbage 52.60 61.80 75.49 81.00 81.86 82.22 68.77
Curie 62.40 68.10 80.00 81.88 82.06 81.80 78.31

TREC

Ada 20.40 22.80 23.72 25.41 25.86 26.28 22.62
Babbage 23.00 24.40 24.48 26.36 26.26 26.32 27.00

Curie 29.20 29.80 37.95 41.96 42.50 42.24 36.57
Davinci 79.60 80.60 73.31 83.86 84.53 85.92 79.08
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We observe consistent performance improvements as the model becomes more advanced—indicated
by increased parameters—across all datasets. For example, in the SST-2 dataset, zero-shot perfor-
mance increased from 86.24% for Ada to 94.15% for Davinci. Correspondingly, our DP-ICL results
also improved, rising from 73.31% to 95.11% with ε = 1 on the SST-2 dataset. This suggests
that more advanced models in the future can further enhance DP-ICL performance. Interestingly,
zero-shot performance can sometimes surpass in-context learning results, particularly for the Ada
model on the Amazon dataset. This is caused by the influence of suboptimal in-context exemplars
or limited in-context learning capabilities for small models. Therefore, estimating the utility of
in-context learning (ICL) and zero-shot learning is essential before deploying DP-ICL.

We also present the results of four-shot predictions utilizing publicly available data in Table 8.
Specifically, we apply data from the IMDB (Maas et al., 2011) dataset for the SST-2 and Amazon
tasks, the AriseTV (chimaobi Samuel., 2022) dataset for the AGNews task, and the QQP (Wang et al.,
2017) dataset for the TREC task, following the setting of (Duan et al., 2023b). Our analysis reveals
that using public exemplars generally enhances performance compared to the zero-shot method, but
this improvement is not uniformly observed across all datasets. The reason lies in the varied quality
of public data, where low-quality public data can introduce inaccurate correlations between input
and output mappings. On the other hand, DP-ICL with ε = {3, 8} can consistently outperform the
4-shot prediction with public data on all settings except the SST-2 with the Ada model. Particularly,
the improvement on the AGNews dataset is over 20%. It is also worth noting that in many domains,
a high-quality, labeled public dataset may not be available, especially in specialized domains like
healthcare, where in-context exemplars often require highly specific and sensitive data.

E.3 EFFECTIVENESS OF MORE ADVANCED MODELS

In Table 9, we present the analysis of GPT-3.58 and GPT-49 across various datasets, using both
0-shot and 4-shot learning. The results indicate that the 4-shot approach yields consistently better
performance than the 0-shot prediction, especially for AGNews and TREC. This trend underscores
the importance of utilizing in-context learning to enhance model efficacy even for more advanced
models in some scenarios.

Table 9: Zero-shot and Four-shot Results for more advanced models
Dataset GPT-3.5 (0-shot) GPT-3.5 (4-shot) GPT-4 (0-shot) GPT-4 (4-shot)

SST-2 95.06 95.18 93.23 94.15

Amazon 96.20 96.60 95.90 96.00

AGNews 76.20 84.40 83.80 86.10

TREC 77.60 81.60 80.40 85.80

Table 10: Effectiveness of DP-ICL for more advanced models
Dataset GPT-3.5 (0-shot) GPT-4 (0-shot) GPT-3.5 (4-shot)

AGNews 76.20 84.40 83.80 86.10

TREC 77.60 81.60 80.40 85.80

E.4 EFFECTIVENESS OVER THE NUMBER OF IN-CONTEXT EXEMPLARS.

In our primary evaluation in Table 2, we set our analysis to four in-context exemplars. In this ablation
study, we extend our evaluation to include a broader range of in-context exemplars: 1, 2, 4, 8, and 16.
For these experiments, we maintain an ensemble size of 10. Therefore, using more shots requires a
higher subsampling rate, which increases noise in the voting histogram.

8Exact model name: gpt-3.5-turbo-instruct
9Exact model name: gpt-4-1106-preview
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Figure 7: Performance across numbers of the in-context exemplars.

In Figure 7, our evaluation reveals that performance remains stable for ε =∞. However, a significant
performance degradation occurs for setups with 8 and 16 shots, experiencing drops of about 10% and
20%, respectively. This degradation is attributed to the introduction of additional noise.

E.5 EFFECTIVENESS OVER SUBSAMPLING RATES

To better understand the cost-utility trade-off in our proposed DP-ICL, we investigate the impact
of subsampling strategies in Fig. 8. To save the computation cost, our evaluation is limited to test
sets comprising 100 data for two datasets: SST-2 and AGNews. Our empirical results indicate that a
subsampling rate of around 0.5× 10−2 for the exemplars achieved satisfactory performance, which
are 10 samples post-subsampling. We further evaluate the estimated cost associated with querying the
GPT-3 Babbage API, as illustrated in Fig. 8 (Right). Notably, at a subsampling rate of 0.5× 10−2,
the cost is only $0.0945 for 100 predictions on the SST-2 dataset. Increasing the subsampling rate
beyond this point does not significantly improve performance while resulting in higher costs.
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Figure 8: Left: Performance across the subsampling rate. Right: Estimated GPT-3 Babbage API Cost
of predicting 100 test samples. The size of the training set for SST-2 is 6,920, and for AGNews, it is
8,000.

Furthermore, we also plot the cost and accuracy tradeoff in Figure 9 combining two figures in Figure
8. We found that using the GPT-3 Babbage API to predict 100 data points from the SST-2 and
AGNews incurs a mere cost of approximately $0.1 while achieving a comparable performance.
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Figure 9: The trade-off between cost and accuracy for GPT-3 Babbage API.
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F ADDITIONAL EVALUATIONS ON LANGUAGE GENERATION

In this appendix, we present ablation studies for language generation tasks. Results for the document
question-answering task are in Appendix F.1, and those for dialog summarization are in Appendix F.2.

F.1 DOCUMENT QUESTION ANSWERING TASK

Performance across varying numbers of queries (Figure 10) In document question answering
tasks, we evaluate the keyword space aggregation via PTR method, as it consistently outperforms
embedding space aggregation. Our analysis reveals that performance remains stable up to 106 queries,
allowing us to guarantee a strong performance for at least 105 queries.
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Figure 10: Ablation studies on varying numbers of queries.

F.2 DIALOG SUMMARIZATION TASK

Effectiveness across numbers of public candidates (Figure 11). We study the performance of the
embedding space aggregation method with varying numbers of public candidates. As anticipated, an
increased number of public candidates leads to improved performance. The ideal scenario would
involve maximizing the number of public candidates. However, a larger pool of candidates also needs
more API queries, thereby increasing the overall cost.
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Figure 11: Performance across numbers of the public candidates (i.e., number of answers generated
by zero-shot predictions) for embedding space aggregation method.

Effectiveness across numbers of ensembles (Figure 12). Here, we present the full results of ablation
studies of the number of ensembles.
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Figure 12: Ablation studies on varying numbers of ensembles. Full results of Figure 5(a)

Effectiveness across numbers of queries (Figure 13). Here, we present the full results of ablation
studies of the number of queries.
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Figure 13: Ablation studies on varying numbers of queries. Full results of Figure 5(b)

F.3 EFFECTIVENESS OF ADVANCED MODELS

In this subsection, we evaluated the zero-shot and four-shot prediction capabilities in more advanced
models, specifically GPT-3.5 and GPT-4. Our findings reveal that utilizing four-shot predictions,
which involve in-context learning with private exemplars, significantly enhances overall model
performance. For instance, the improvement across all metrics on Document QA for GPT-4 is larger
than 12%. This improvement trend is consistent with results from the dialog summarization task.

Table 11: Zero-shot and Four-shot Results for more advanced models
Task Prediction GPT-3.5 (0-shot) GPT-3.5 (4-shot) GPT-4 (0-shot) GPT-4 (4-shot)

Document QA
ROUGE-1 ↑ 63.18 73.68 66.21 78.44

BLEU ↑ 39.28 51.42 37.09 51.15
Levenshtein ↑ 52.13 66.14 59.80 74.89

Dialog Summ.
ROUGE-1 ↑ 33.22 39.44 28.64 38.83
ROUGE-2 ↑ 11.91 16.33 10.28 15.79
ROUGE-L ↑ 25.08 31.21 21.95 30.41

F.4 TRADE-OFF BETWEEN COST AND ACCURACY

In this subsection, we present the trade-off between cost and accuracy for dialog summarization
task. Here, we used the price 10 of the updated version of GPT-3 Davinci to estimate the final cost of
summarizing 100 dialogs. We present the results in Figure 14, where we vary the ensemble number

10GPT-3 Davinci is going to be deprecated on Jan 4th 2024 and the suggested replacement by OpenAI is
gpt-3.5-turbo-instruct
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from 10 to 100. Specifically, the cost of the ESA is calculated by both multiple ensemble queries
and the generation of potential candidates (0-shot predictions). For KSA, the cost also involves
multiple ensemble queries plus an additional 0-shot prediction for constructing the final sentence
from keywords. We set the candidate number to 100 for ESA. We observe that ESA by joint EM can
achieve comparable performance with only ∼$2.
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Figure 14: The trade-off between cost and accuracy for dialog summarization task.
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G EXAMPLES OF ESA OUTPUT IN DIALOG SUMMARIZATION TASK

In this section, we offer some qualitative examples of zero-shot candidates and the final outputs
selected by embedding similarity. It is observed that the final outputs demonstrate not only fluency
but also a heightened similarity to the ground truth compared to the zero-shot candidates.

Dialogue:
– Sybille: Hello, i’m trying to make my online registration for the flight AF3581 from Min-

neapolis to Paris the 29th, but i only get an error message. Here is my file number NRTTU
and my flying blue number XXXX. Thanks for you help.

– Air France: Hello Sybille, we acknowledge receipt of your message and return to you as soon
as possible.

– Air France: After checking your flight is operated by Delta Airlines for departure from the
United States. Online registration works from the Delta site.

– Sybille: Hello again , i still have trouble for my son’ s online registration. I’m really angry as
it cost me more than 40 euros for 20 minutes on your short number 3654, and still i don’t
have any answer. He couldn’t get his flight yesterday, so i asked for it to be postpone. I twice
gave my credit number but still the ticket is not delivered.

– Air France: Of course, i give the file to an agent.
– Air France: Please, be awared it could take 24 hours
– Sybille: I can’t wait so long. My son is only 16 year old and he has to sleep in the airport,

with no mean to leave his luggage as he has no ticket.
– Air France: Hello Sybille, we’re very sorry . We could offer you a departure on flight DL140

from Minneapolis to Paris. We’ll return to you.
– Sybille: My phone number is XXXX, please call me back as soon as possible
– Sybille: Hello, i was again on line with people from the short number. They told me that

they’ve done everything possible but my payment can’t be accepted because the flight is
operated by Delta. Please consider a young stuck in US with no possibilites for coming back
just because of Delta and Air France sharing code, can’t share payment.

– Air France: We’ll get in touch with Delta US and return to you quickly
– Sybille: thanks a lot
– Air France: We just send you by email the new ticket for you son. We remain at your disposal.
– Sybille: Thanks a lot, you’re more efficient than the hotline.

Zero-shot summarization candidates:
• Sybille contacted Air France trying to make her son’s online registration. After recognizing

the flight was operated by Delta, Air France suggested the customer to complete the Al online
registration on the Delta website. Sybille then proceeded to point out her dissatisfaction
regarding the long time she spent on the hotline without getting any solution. Air France then
offered her a new flight DL140 from Minneapolis to Paris, and subsequently sent her a new
ticket for her son by email. Sybille thanked Air France for their help.

• Sybille was trying to make an online registration for her son’s flight from Minneapolis to
Paris but kept getting an error message. She contacted Air France and was told to register
online with Delta Airlines. After explaining her son was stuck in the US with no means to
leave, Air France contacted Delta US and quickly sent her an email with the new ticket for
her son. Sybille thanked Air France for their efficiency.

• Sybille was attempting to make an online registration for a flight with Air France, but
encountered an error message. Air France told her the flight was operated by Delta Airlines,
who she should use to do the registration. The customer became frustrated as she was charged
for a phone call, yet still had not received a successful registration. Air France offered a new
ticket for her son via email and the customer thanked them for their efficiency.

• Sybille is trying to make her son’s online registration for the flight AF3581 from Minneapolis
to Paris on the 29th, but she only gets an error message. She contacts Air France customer
service, who informs her that the flight is operated by Delta and so she must use the Delta
online registration system. When Sybille is still having trouble, she expresses her frustration
at the costly and time consuming customer service hotline. Air France then contacts Delta
and sends a new ticket for her son by email.
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• Sybille is trying to make an online registration for a flight from Minneapolis to Paris for her
son, but she is encountering issues. Air France offers an alternative flight and eventually
sends a new ticket via email. Sybille thanks Air France for their help.

• A customer was unable to make an online registration for their son’s flight from Minneapolis
to Paris and forked out 40 euros for a 20 minute phone call. After Air France checked the
flight flight, the customer was informed that the registration must be done through the Delta
website. Air France offered the customer an alternative flight option and eventually sent the
customer an email with a new ticket for their son. The customer thanked Air France for their
efficiency.

• Sybille is trying to make an online registration for her son’s flight from Minneapolis to Paris
on the 29th, but is running into trouble. Air France acknowledges her concerns and directs her
to the Delta Airlines website in order for her to make the registration. After Sybille expresses
her anger over the delay and her son sleeping at the airport without any mean to leave his
luggage, Air France offers her a departure on flight DL140 from Minneapolis to Paris. She
provides Air France with her phone number for them to call her back, and after getting in
touch with Delta US, Air France emails Sybille a new ticket for her son.

• Sybille contacted Air France to make an online registration for her son for a flight from
Minneapolis to Paris, but encountered errors. Air France suggested that the registration should
be done from the Delta site, but Sybille was unable to register due to payment issues.Air
France sent an agent to help and offered an alternate flight. Finally, they sent an email with
the new ticket for Sybille’s son and thanked them for their help.

• Sybille needed help with registration for a flight operated by Delta Airlines and encountered
problems with online registration, payment, and lack of response via the hotline. Air France
responded by looking into the information and offering a different flight option, which they
later emailed the ticket for. In the end, Sybille thanked them for their efficiency.

• ...

Selected candidate:
Sybille is trying to make an online registration for a flight from Minneapolis to Paris for her
son, but she is encountering issues. Air France offers an alternative flight and eventually sends
a new ticket via email. Sybille thanks Air France for their help.
Ground Truth:
Sybille is angry, because she cannot make a reservation for the flight from Minneapolis to Paris.
Air France managed to solve the issue.
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