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Abstract

We study the adversarial bandit problem against arbitrary strategies, where the difficulty
is captured by an unknown parameter S, which is the number of switches in the best arm
in hindsight. To handle this problem, we adopt the master-base framework using the online
mirror descent method (OMD). We first provide a master-base algorithm with simple OMD,
achieving Õ(S1/2K1/3T 2/3), in which T 2/3 comes from the variance of loss estimators. To
mitigate the impact of the variance, we propose using adaptive learning rates for OMD and
achieve Õ(min{

√
SKTρ, S

√
KT}), where ρ is a variance term for loss estimators.

1 Introduction

The bandit problem is a fundamental framework in sequential decision-making that addresses the exploration-
exploitation trade-off. At each time step, an agent selects an action (referred to as an arm) and observes a
corresponding reward or loss. In applications such as recommendation systems, arms may represent items
presented to users, and user preferences can evolve over time. This dynamic nature can be modeled by
allowing the identity of the best arm to change, leading to the notion of switching best arms.

To capture such evolving environments, it is natural to consider performance against a changing sequence
of optimal arms rather than a single fixed one. The problem of competing against switching arms has been
extensively studied. In the expert setting with full-information feedback (Cesa-Bianchi et al., 1997), several
algorithms (Daniely et al., 2015; Jun et al., 2017) have been developed that achieve a near-optimal regret
bound of Õ(

√
ST ) for S-switch regret (formally defined later), without requiring prior knowledge of the

number of switches S. In contrast, the bandit setting presents a greater challenge, as the agent only observes
the feedback for the selected arm rather than the full loss vector, making the problem significantly harder
than in the full-information case.

In the stochastic bandit setting where each arm’s reward distribution may change over time, commonly
referred to as the non-stationary bandit problem, several studies have addressed the challenge of switching
environments (Garivier & Moulines, 2008; Auer et al., 2019; Russac et al., 2019; Suk & Kpotufe, 2022).
Notably, Auer et al. (2019) and Suk & Kpotufe (2022) achieved near-optimal regret bounds of Õ(

√
SKT )

without requiring prior knowledge of the number of switches S. However, these methods rely on stochastic
assumptions and are not applicable in the adversarial setting, where losses can be chosen arbitrarily. For the
adversarial bandit setting, EXP3.S algorithm (Auer et al., 2002) achieves a regret bound of Õ(

√
SKT ), but

assumes that S is known in advance. When S is unknown, the Bandit-over-Bandit (BOB) approach has been
proposed, achieving a regret bound of Õ(

√
SKT + T 3/4) (Cheung et al., 2019; Foster et al., 2020). More

recently, Luo et al. (2022) studied the problem of switching adversarial linear bandits and achieved a regret
of Õ(

√
dST ) under the assumption that S is known.

In this paper, we study adversarial bandit problems against arbitrarily switching arms. Crucially, we allow
the number of switches S to be unknown to the agent, thereby targeting arbitrary strategies without prior
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knowledge of their complexity. To address this setting, we adopt the master-base framework combined with
the online mirror descent (OMD) method, inspired by Agarwal et al. (2017); Pacchiano et al. (2020); Luo
et al. (2022). We begin by analyzing a master-base algorithm that employs OMD with a negative entropy
regularizer, and show that it achieves a regret bound of Õ(S1/2K1/3T 2/3). However, this approach relies
on a fixed learning rate, which limits its ability to adapt to the variance of the loss estimators, leading to a
suboptimal regret term proportional to T 2/3.

Building on this analysis, we propose using adaptive learning rates within the OMD framework to bet-
ter control the variance of loss estimators. This refinement leads to an improved regret bound of
Õ(min{

√
SKTρ, S

√
KT}) with respect to T , where ρ captures the variance associated with a comparator

strategy. Crucially, rather than employing the standard negative entropy regularizer, we adopt a log-barrier
regularizer, which enables tighter control over worst-case scenarios in terms of the variance term ρ.

2 Problem Statement

We now formalize the problem setting. Let A = [K] denote the set of K arms, and let lt ∈ [0, 1]K be the
loss vector at time t, where lt(a) denotes the loss incurred by arm a ∈ [K] at time t. The environment is
adversarial, generating an arbitrary sequence of loss vectors l1, l2, . . . , lT ∈ [0, 1]K over a time horizon of T
rounds. At each round t ∈ [T ], the agent selects an arm at ∈ [K] and observes only the loss lt(at) of the
chosen arm. Our goal is to minimize the S-switch regret, which measures the performance gap between the
agent and the best sequence of actions that switches arms at most S times.

Formally, let κ = {κ1, κ2, . . . , κT } ∈ [K]T denote a sequence of comparator actions. For a positive integer
S < T , define the set of sequences with at most S switches as

BS =
{

κ ∈ [K]T :
T −1∑
t=1

1{κt ̸= κt+1} ≤ S

}
.

Then, the S-switch regret is defined by

RS(T ) = max
κ∈BS

T∑
t=1

E[lt(at)]− lt(κt).

We consider the setting where the number of switches S is unknown to the agent (i.e., not provided in
advance). Our goal is to design algorithms that perform well against any sequence of actions, without
relying on prior knowledge of S. This requires the development of universal algorithms that achieve tight
regret bounds uniformly over all values of S ∈ [T − 1], where S characterizes the hardness of the problem
(Auer et al., 2002). Notably, this setting generalizes non-stationary stochastic bandit problems in which the
switching parameter is unknown (Auer et al., 2019; Chen et al., 2019).

3 Algorithms and Regret Analysis

To address the problem of adversarial bandits with an unknown switching budget S, we propose algorithms
based on the master-base framework combined with the online mirror descent (OMD) method.

3.1 Master-Base Framework

In the master-base framework, a master algorithm selects one among several base algorithms at each round,
and the selected base then chooses an arm to play. Since the true switch parameter S is not known in
advance, we instantiate each base algorithm with a different candidate value of S from a predefined set.

Let H denote the set of candidate values for S, defined as:

H = {T 0, T
1

⌈log T ⌉ , T
2

⌈log T ⌉ , . . . , T}.
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Each base is associated with a candidate h ∈ H and tunes its learning rate accordingly. Let H = |H| =
O(log T ) be the number of base algorithms. When there is no ambiguity, we refer to a base instantiated
with parameter h ∈ H simply as base h. Define h† ∈ H as the largest candidate not exceeding the true
(unknown) value of S: h† = max{h ∈ H : h ≤ S}. By construction, this ensures

e−1S ≤ h† ≤ S,

which guarantees that h† provides a near-optimal approximation of S.

3.2 Online Mirror Descent (OMD)

We now present the Online Mirror Descent (OMD) method (Lattimore & Szepesvári, 2020), which serves
as the fundamental update rule for the master and each base algorithm in our framework. OMD generalizes
classic online gradient descent by incorporating a flexible geometry through a regularizer.

Let F : Rd → R be a convex and differentiable regularizer function. This regularizer defines the Bregman
divergence between two points p, q ∈ Rd:

DF (p, q) = F (p)− F (q)− ⟨∇F (q), p− q⟩.

In our context, the decision variable is a probability distribution pt over d arms, i.e., pt ∈ Pd where Pd

denotes the d-dimensional probability simplex. At each round t, given a loss vector l ∈ Rd, OMD computes
the next distribution by solving the following optimization problem:

pt+1 = arg min
p∈Pd

{
⟨p, l⟩+ DF (p, pt)

}
. (1)

This formulation reflects the trade-off between exploiting current loss information (via the linear term) and
staying close to the previous distribution (via the Bregman divergence).

In practice, the update of equation 1 is often implemented in two steps for computational convenience:

p̃t+1 = arg min
p∈Rd

{
⟨p, l⟩+ DF (p, pt)

}
,

pt+1 = arg min
p∈Pd

DF (p, p̃t+1).

Here, the first step performs an unconstrained update in the dual space defined by F , while the second
step projects the intermediate point back onto the simplex, ensuring that the updated distribution is a
valid probability vector. The choice of regularizer F determines the specific algorithm instance; it typically
includes a learning rate parameter that controls the step size and will be specified in subsequent sections.

Finally, in the bandit setting, since the learner does not observe the full loss vector lt but only the loss of
the selected arm, the true loss must be replaced with an appropriate unbiased estimator. This ensures that
OMD remains applicable even with partial feedback.

3.3 Master-Base OMD

We employ an OMD framework with a hierarchical structure consisting of a master and multiple bases.
We first present a simple Master-Base OMD algorithm (Algorithm 1) that employs the negative entropy
regularizer:

Fη(p) = (1/η)
d∑

i=1
(p(i) log p(i)− p(i)),

where p ∈ Rd, p(i) denotes the i-index entry for p, and η is a learning rate. This regularizer is commonly
used in adversarial bandit algorithms, including the well-known EXP3 algorithm (Auer et al., 2002).

In Algorithm 1, at each round t, the master algorithm selects a base ht ∈ H according to a probability
distribution pt. The selected base ht then chooses an arm at ∈ [K] using its internal distribution pt,ht

3



Published in Transactions on Machine Learning Research (10/2025)

and observes the incurred loss lt(at). From this partial feedback, we construct unbiased estimators: l′
t(h)

estimates the loss for each base h ∈ H, and l′′
t,h(a) estimates the loss for each arm a ∈ [K] under base h.

Using these estimators, the algorithm updates both the master distribution pt+1 and each base’s distribution
pt+1,h via OMD.

To control variance in the estimator l′
t(h) = lt(at)1(h = ht)/pt(h), we define the master’s update domain as

a clipped probability simplex Pα
H = PH ∩ [α, 1]H for some α > 0. This clipping ensures that each base is

selected with non-negligible probability, preventing high variance in the importance-weighted loss estimates.
Within this domain, the update of pt+1 is then computed using the negative entropy regularizer with learning
rate η.

Each base h ∈ H maintains its own arm selection distribution pt,h. The update for this distribution is
also based on the negative entropy regularizer but with a learning rate that adapts to the candidate switch
parameter h:

ξ(h) = h1/2

K1/3T 2/3 .

This choice of ξ(h) helps base h adapt to environments with up to h switches in the best arm sequence. The
domain for updating pt,h is Pβ

K = PK ∩ [β, 1]K for β > 0. Unlike α, which controls variance in master-level
estimation, β acts as a regularization mechanism to stabilize learning under the switching best arms in
hindsight.

Algorithm 1 Master-base OMD
Input: T , K, H.
Initialization: α = K1/3/(T 1/3H1/2), β = 1/(KT ), η = 1/

√
TH, ξ(h) = h1/2/(K1/3T 2/3), p1(h) = 1/H,

p1,h(a) = 1/K for h ∈ H and a ∈ [K].
for t = 1, . . . , T do

Select a base and an arm:
Draw ht ∼ probabilities {pt(h)}h∈H.
Draw at,ht ∼ probabilities {pt,ht(a)}a∈[K].
Pull at = at,ht

and Receive lt(at,ht
) ∈ [0, 1].

Obtain loss estimators:
l′
t(ht) = lt(at,ht )

pt(ht) and l′
t(h) = 0 for h ∈ H/{ht}.

l′′
t,ht

(at,ht
) = l′

t(ht)
pt,ht (at,ht ) and l′′

t,h(a) = 0 for h ∈ H/{ht}, a ∈ [K]/{at,ht
}.

Update distributions:
pt+1 = arg minp∈Pα

H
⟨p, l′t⟩+ DFη

(p, pt)
pt+1,h = arg minp∈Pβ

K
⟨p, l′′t,h⟩+ DFξ(h)(p, pt,h) for all h ∈ H

end for

Now we provide a regret bound for the algorithm in the following theorem.

Theorem 3.1. For any switch number S ∈ [T − 1], Algorithm 1 achieves a regret bound of

RS(T ) = Õ(S1/2K1/3T 2/3)

Proof Sketch. Here, we provide a proof sketch, and the full version is provided in Appendix A.1.

In our proof, we decompose the regret into two parts: one is the regret from the master selecting a base at
each time, and the other is the regret from the base selecting an arm at each time. Let ts be the time when
the s-th switch of the best arm happens and tS+1 − 1 = T , t0 = 1. Also let ts+1 − ts = Ts. For any ts for
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all s ∈ [0, S], the S-switch regret can be expressed as

RS(T ) =
T∑

t=1
E [lt(at)]−

S∑
s=0

min
ks∈[K]

ts+1−1∑
t=ts

lt(ks)

=
T∑

t=1
E [lt(at,ht

)]−
T∑

t=1
E

[
lt(at,h†)

]
+

T∑
t=1

E
[
lt(at,h†)

]
−

S∑
s=0

min
ks∈[K]

ts+1−1∑
t=ts

lt(ks), (2)

in which the first two terms are closely related with the regret from the master algorithm against the near
optimal base h†, and the remaining terms are related with the regret from h† base algorithm against the
best arms in hindsight. We note that the algorithm does not need to know h† in prior and h† is brought
here only for regret analysis.

Regret from the near-optimal base. First we provide a bound for the following regret from base h†:

T∑
t=1

E
[
lt(at,h†)

]
−

S∑
s=0

min
ks∈[K]

ts+1−1∑
t=ts

lt(ks),

where the first term is the loss from the base and the second one is the loss from the optimal arm in hindsight.
Let k∗

s = arg mink∈[K]
∑ts+1−1

t=ts
lt(k) and ej,K denote the unit vector with 1 at j-index and 0 at the rest of

K − 1 indices. Then, we have
ts+1−1∑

t=ts

E
[
lt(at,h†)− lt(k∗

s)
]
≤ βTs(K − 1) + max

p∈Pβ
K

E

[
ts+1−1∑

t=ts

⟨pt,h† − p, l′′
t,h†⟩

]
, (3)

where the first term in the last inequality is obtained from the clipped domain Pβ
K and the second term

is obtained from the unbiased estimator l′′
t,h† such that E[l′′

t,h† |Ft−1] = E[lt|Ft−1] where Ft−1 denotes the
natural filtration generated by the history up to round t − 1. We can observe that the clipped domain
controls the distance between the initial distribution at ts and the best arm unit vector for the time steps
over [ts, ts+1 − 1]. Let

p̃t+1,h† = arg min
p∈RK

⟨p, l′′
t,h†⟩+ DF

ξ(h†)
(p, pt,h†).

Then, by solving the optimization problem, for all k ∈ [K] we can obtain

p̃t+1,h†(k) = pt,h†(k) exp(−ξ(h†)l′′
t,h†(k)).

For the second term of the last inequality in equation 3, we have for any p ∈ Pβ
K ,

ts+1−1∑
t=ts

⟨pt,h† − p, l′′
t,h†⟩ ≤ DF

ξ(h†)
(p, pts,h†) +

ts+1−1∑
t=ts

DF
ξ(h†)

(pt,h† , p̃t+1,h†). (4)

The first term is for the initial point diameter at time ts and the second term is for the divergence of the
updated policy. Using the definition of the Bregman divergence and the fact that pts,h†(k) ≥ β, the initial
point diameter term can be shown to be bounded as follows:

DF
ξ(h†)

(p, pts,h†) ≤ log(1/β)
ξ(h†) . (5)

Next, for the updated policy divergence term, using p̃t+1,h†(k) = pt,h†(k) exp(−ξ(h†)l′′
t,h†(k)) for all k ∈ [K],

we have
ts+1−1∑

t=ts

E
[
DF

ξ(h†)
(pt,h† , p̃t+1,h†)

]
≤ ξ(h†)KTs

2α
. (6)

5



Published in Transactions on Machine Learning Research (10/2025)

Then from equation 3, equation 4, equation 5, and equation 6, by summing up over s ∈ [S], we have

T∑
t=1

E
[
lt(at,h†)

]
−

S∑
s=0

min
ks∈[K]

ts+1−1∑
t=ts

lt(ks) ≤ βT (K − 1) + S log(1/β)
ξ(h†) + ξ(h†)KT

2α
. (7)

Next, we provide a bound for the following regret from the master:
T∑

t=1
E [lt(at,ht)]−

T∑
t=1

E
[
lt(at,h†)

]
.

Let p̃t+1 = arg minp∈RH ⟨p, l′t⟩+ DFη
(p, pt) and eh,H denote the unit vector with 1 at base h-index and 0 at

the rest of H − 1 indices. For ease of presentation, we define l̃t(h) = lt(at,h). Then, we have

T∑
t=1

E
[
lt(at,ht)− lt(at,h†)

]
≤ αT (H − 1) + max

p∈Pα
H

E

[
T∑

t=1
⟨pt − p, l̃t⟩

]
. (8)

Regret from the master. For bounding the second term in equation 8, which arises from the master, we
use the following: for any p ∈ Pα

H

T∑
t=1
⟨pt − p, l̃t⟩ ≤ Fη(p)− Fη(p1) +

T∑
t=1

DFη (pt, p̃t+1). (9)

From equation 8 and equation 9, we have
T∑

t=1
E [lt(at,ht)]−

T∑
t=1

E
[
lt(at,h†)

]
≤ αT (H − 1) + max

p∈Pα
H

E

[
Fη(p)− Fη(p1) +

T∑
t=1

DFη
(pt, p̃t+1)

]

≤ αT (H − 1) + log(H)
η

+ ηTH

2 . (10)

Overall Regret. Therefore, putting equation 2, equation 7, and equation 10 altogether, we have

RS(T ) =
T∑

t=1
E [lt(at)]−

S∑
s=0

min
1≤ks≤K

Ts+1−1∑
t=Ts

lt(ks)

≤ αTH + log(H)
η

+ ηTH

2 + βT (K − 1) + S log(1/β)
ξ(h†) + ξ(h†)KT

2α

= Õ(S1/2T 2/3K1/3),

where α = K1/3/(T 1/3H1/2), β = 1/(KT ), η = 1/
√

TH, ξ(h†) = (h†)1/2
/(K1/3T 2/3), h† = Θ(S), and

H = log(T ). This completes the proof.

Compared to the prior parameter-free algorithm based on the Bandit-over-Bandit (BOB) approach (Cheung
et al., 2019), which incurs a suboptimal dependence on the time horizon T , specifically, a regret term of
order T 3/4, our algorithm achieves a tighter regret bound in terms of T . In particular, when T = ω(S6K4),
Algorithm 1 achieves a tighter regret bound than that of BOB.

However, the regret bound achieved by Algorithm 1 remains of order O(T 2/3), rather than the optimal
O(
√

T ), due to the high variance in the loss estimators. This variance arises from the double sampling
process—first selecting a base, then an arm—at each round. To address this issue, we next propose an
improved algorithm that leverages adaptive learning rates to better control the variance of the estimators.
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3.4 Master-Base OMD with Adaptive Learning Rates

We now propose Algorithm 2, which incorporates adaptive learning rates to better control the variance of
the loss estimators. We begin by describing the base algorithm. Each base employs the negative entropy
regularizer, but with a time-varying adaptive learning rate ξt(h), defined as:

Fξt(h)(p) = 1
ξt(h)

d∑
i=1

(p(i) log p(i)− p(i)),

where p ∈ Rd is a probability distribution over arms. The learning rate ξt(h) is dynamically adjusted at
each round t based on the variance of the loss estimators, and is given by:

ξt(h) =
√

h/(KTρt(h)),

where ρt(h) is a variance threshold term that will be defined later. This formulation ensures that when the
variance of the estimators is small, a larger learning rate is used—allowing for more aggressive updates—while
high variance naturally leads to more conservative updates. Notably, this adaptive base algorithm is effec-
tively combined with the master employing log-barrier regularization to control the regret due to variance,
resulting in equation 15, which introduces a novel integration of adaptive learning and log-barrier regular-
ization for variance control.

For the master algorithm, inspired by the approach in Agarwal et al. (2017), we employ a log-barrier
regularizer with increasing learning rates. This design introduces a negative bias term that effectively offsets
the variance arising from the base algorithms, particularly by addressing the worst-case scenario in terms of
the variance threshold ρt(h†). The log-barrier regularizer is defined as:

Gηt
(p) = −

d∑
i=1

log p(i)
ηt(i)

,

where p ∈ Pd is the master distribution, and ηt = (ηt(1), . . . , ηt(d)) denotes the vector of learning rates
at time t. We describe the learning rate update procedures for both the master and the base algorithms
in Algorithm 2; all other components remain identical to those in Algorithm 1. The variance of the loss
estimator l′

t+1(h) = lt(at+1,h)1(ht+1 = h)/pt+1(h) for base h is given by 1/pt+1(h). If this variance exceeds
the threshold ρt(h), i.e., 1/pt+1(h) > ρt(h), the master increases the learning rate as: ηt+1(h) = γηt(h) for
some fixed γ > 1. Simultaneously, the variance threshold is updated to: ρt+1(h) = 2/pt+1(h) which is also
used to adaptively tune the base learning rate ξt(h) as described earlier. If the variance does not exceed the
threshold, both ηt(h) and ρt(h) remain unchanged from the previous time step.

In the following theorem, we provide a regret bound of Algorithm 2.
Theorem 3.2. For any switch number S ∈ [T − 1] and any ρ ≥ E[ρT (h†)], Algorithm 2 achieves a regret
bound of

RS(T ) = Õ
(

min
{√

SKTρ, S
√

KT
})

.

Proof Sketch. Here, we provide a proof sketch, and the full version is provided in Appendix A.2. As in the
Theorem 3.1, we decompose the regret into two parts: one is the regret from the master selecting a base at
each time, and the other is the regret from the base selecting an arm at each time. Let ts be the time when
the s-th switch of the best arm happens and tS+1 − 1 = T , t0 = 1. Also let ts+1 − ts = Ts. For any ts for
all s ∈ [0, S], the S-switch regret can be expressed as

RS(T ) =
T∑

t=1
E [lt(at)]−

S∑
s=0

min
ks∈[K]

ts+1−1∑
t=ts

lt(ks)

=
T∑

t=1
E [lt(at,ht

)]−
T∑

t=1
E

[
lt(at,h†)

]
+

T∑
t=1

E
[
lt(at,h†)

]
−

S∑
s=0

min
ks∈[K]

ts+1−1∑
t=ts

lt(ks). (11)
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Algorithm 2 Master-base OMD with adaptive learning rates
Input: T , K, H
Initialization: α = 1/(TH), β = 1/(TK), γ = e

1
log T , η =

√
H/T , ρ1(h) = 2H, η1(h) = η, p1(h) = 1/H,

p1,h(a) = 1/K for h ∈ H and a ∈ [K].
for t = 1, . . . , T do

Select a base and an arm:
Draw ht ∼ probabilities {pt(h)}h∈H.
Draw at,ht ∼ probabilities {pt,ht(a)}a∈[K].
Pull at = at,ht and Receive lt(at,ht) ∈ [0, 1].
Update loss estimators:
l′
t(ht) = lt(at,ht )

pt(ht) and l′
t(h) = 0 for h ∈ H/{ht}.

l′′
t,ht

(at,ht
) = l′

t(ht)
pt,ht (at,ht ) and l′′

t,h(a) = 0 for h ∈ H/{ht}, a ∈ [K]/{at,ht
}.

Update distributions:
pt+1 = arg minp∈Pα

H
⟨p, l′t⟩+ DGηt

(p, pt)
pt+1,h = arg minp∈Pβ

K
⟨p, l′′t,h⟩+ DFξt(h)(p, pt,h) for h ∈ H

Update learning rates:
For h ∈ H

If 1
pt+1(h) > ρt(h), then
ρt+1(h) = 2

pt+1(h) , ηt+1(h) = γηt(h).
Else, ρt+1(h) = ρt(h), ηt+1(h) = ηt(h).

end for

Regret from the near-optimal base. First we provide a bound for the following regret from base h†.
From equation 3, we can obtain

ts+1−1∑
t=ts

E
[
lt(at,h†)

]
−

ts+1−1∑
t=ts

lt(ks) ≤ βTsK + E

[
max
p∈Pβ

K

ts+1−1∑
t=ts

⟨pt,h† − p, l′′
t,h†⟩

]
. (12)

Then for the second term of the last inequality in equation 12, we provide the following lemma.

Lemma 3.3. For any p ∈ Pβ
K we can show that

ts+1−1∑
t=ts

E
[
⟨pt,h† − p, l′′

t,h†⟩
]
≤ E

[
2 log(1/β)

√
KTρT (h†)

h† + Ts

2

√
SKρT (h†)

T

]
.

Then from equation 8 and Lemma 3.3, we have

T∑
t=1

E
[
lt(at,h†)

]
−

S∑
s=0

min
1≤ks≤K

Ts+1−1∑
t=Ts

lt(ks) ≤ βT (K − 1) + E

[
2S log(1/β)

√
KTρT (h†)

h† + 1
2

√
TSKρT (h†)

]
.

(13)

Regret from the master. Next, we provide a bound for the regret from the master in the following:

T∑
t=1

E [lt(at,ht
)]−

T∑
t=1

E
[
lt(at,h†)

]
≤ O

(
H log(T )

η
+ Tη

)
− E

[
ρT (h†)

40η log T

]
+ αT (H − 1). (14)

The negative bias term in equation 14 is derived from the log-barrier regularizer and increasing learning
rates ηt(h). This term is critical to bound the worst case regret which will be shown soon. Also, H log(T )/η
is obtained from H log(1/(Hα))/η considering the clipped domain.
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Overall Regret. Then, putting equation 11, equation 13 and equation 14 altogether, we have

RS(T ) =
T∑

t=1
E [lt(at)]−

S∑
s=0

min
1≤ks≤K

Ts+1−1∑
t=Ts

lt(ks) = Õ

(
E

[√
SKTρT (h†)

])
− E

[
ρT (h†)

√
TK

40
√

H log(T )

]
, (15)

Then, we can obtain

RS(T ) = Õ
(

min
{√

SKTρ, S
√

KT
})

,

where Õ(S
√

KT ) is obtained from the worst case of ρT (h†). The worst case can be found by considering a
maximum value of the concave bound of the last equality in equation 15 with variable ρT (h†) > 0 such that
ρT (h†) = Θ̃(S). This concludes the proof.

We now provide a comparison of regret bounds with an existing approach. our regret bound depends on ρ,
which captures the variance of the loss estimators l′

t(h†) over the time horizon t ∈ [T ]. While the bound
is variance-dependent, it is noteworthy that in the worst case, it is always upper bounded by Õ(S

√
KT ).

Importantly, Algorithm 2 achieves a tight dependence of O(
√

T ) in the regret bound, in contrast to Algo-
rithm 1 and BOB (Cheung et al., 2019; Foster et al., 2020), which incur suboptimal T 2/3 and T 3/4 term,
respectively. Therefore, when T is sufficiently large, Algorithm 2 yields a strictly better regret guarantee
than Algorithm 1 and BOB. We also note that the variance term ρ is commonly observed in Luo et al. (2022),
but we control the worst case without information of S using an adaptive learning rate.
Remark 3.4. Since we incorporate ρt(h) into the adaptive learning rate for each base h as ξt(h) =√

h/KTρt(h), we can optimize the regret bound to depend on
√

ρT (h†), as demonstrated in Lemma 3.3.
Notably, this adaptive base algorithm is effectively combined with the master employing log-barrier regu-
larization Agarwal et al. (2017) to control the regret due to variance, resulting

√
SρT (h†) − ρT (h†). This

integration is the main reason why Algorithm 2 can achieve a order of
√

T , even in the worst case, without
the knowledge of S.
Remark 3.5. Our algorithms are designed to perform well across different regimes, particularly with re-
spect to T and S. To recall the regret bounds, Algorithm 1 achieves a regret of Õ(S1/2K1/3T 2/3), while
Algorithm 2 achieves Õ(min{

√
SKTρ, S

√
KT}). This indicates that Algorithm 1 is advantageous when S is

large, whereas Algorithm 2 is preferable for larger T due to its use of an adaptive learning rate that accounts
for the variance of the loss estimator.
Remark 3.6 (Implementation). For implementation of our algorithms, we briefly describe how to update
the policy pt using OMD. Let l̂s(a) denote a loss estimator for ls(a) for action a ∈ [d] and s ∈ [T ]. For the
negative-entropy regularizer, by solving the optimization in equation 1 (see Lattimore & Szepesvári (2020)),
we obtain

pt(a) =
exp

(
−η

∑t−1
s=1 l̂s(a)

)
∑

b∈[d] exp
(
−η

∑t−1
s=1 l̂s(b)

) .

For the log-barrier regularizer, the solution is pt(a) = (η
∑t−1

s=1 l̂s(a) + Z)−1, where Z is the normalization
constant ensuring

∑
a pt(a) = 1 (Luo et al., 2022). When the feasible set is the clipped simplex Pϵ/d

d =
{p ∈ ∆d : p(a) ≥ ϵ/d} for 0 < ϵ < 1, a computationally simple way to enforce feasibility is to mix with the
uniform distribution:

p̄t(a) ← (1− ϵ) pt(a) + ϵ/d for all a ∈ [d].

This “uniform-mixing” trick, following Auer et al. (2002), guarantees p̄t ∈ Pϵ/d
d to ensure a bounded vari-

ance of the loss estimator. We emphasize that this is an implementation convenience rather than the exact
Bregman projection onto Pϵ/d

d ; a rigorous regret analysis under this specific implementation is left for future
work.
Remark 3.7. The regret bounds in Theorems 3.1 and 3.2 also extend to non-stationary stochastic bandit
problems with unknown switching parameters, where the reward distributions may change over time. This
generalization is possible because the adversarial bandit setting encompasses the stochastic setting as a special
case.
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4 Conclusion

In this paper, we studied the adversarial bandit problem with S-switch regret, where the agent competes
against any sequence of arms that switches at most S times, without prior knowledge of S. To address
this challenge, we proposed two algorithms based on the master-base framework integrated with the Online
Mirror Descent (OMD) method.

First, we introduced Algorithm 1, which employs a simple OMD update with a fixed learning rate and
achieves a regret bound of Õ(S1/2K1/3T 2/3). To further improve performance with respect to T , we proposed
Algorithm 2, which incorporates adaptive learning rates to control the variance of the loss estimators.
This leads to an improved regret bound of Õ(min{

√
SKTρ, S

√
KT}) where ρ captures the variance of the

estimators associated with the near-optimal base.
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A Appendix

A.1 Proof of Theorem 3.1

Let ts be the time when the s-th switch of the best arm happens and tS+1 − 1 = T , t0 = 1. Also let
ts+1 − ts = Ts. For any ts for all s ∈ [0, S], the S-switch regret can be expressed as

RS(T ) =
T∑

t=1
E [lt(at)]−

S∑
s=0

min
ks∈[K]

ts+1−1∑
t=ts

lt(ks)

=
T∑

t=1
E [lt(at,ht

)]−
T∑

t=1
E

[
lt(at,h†)

]
+

T∑
t=1

E
[
lt(at,h†)

]
−

S∑
s=0

min
ks∈[K]

ts+1−1∑
t=ts

lt(ks), (16)

in which the first two terms are closely related with the regret from the master algorithm against the near
optimal base h†, and the remaining terms are related with the regret from h† base algorithm against the
best arms in hindsight. We note that the algorithm does not need to know h† in prior and h† is brought
here only for regret analysis.

First we provide a bound for the following regret from base h†:

T∑
t=1

E
[
lt(at,h†)

]
−

S∑
s=0

min
ks∈[K]

ts+1−1∑
t=ts

lt(ks).

Let k∗
s = arg mink∈[K]

∑ts+1−1
t=ts

lt(k) and ej,K denote the unit vector with 1 at j-index and 0 at the rest of
K − 1 indices. Then, we have

ts+1−1∑
t=ts

E
[
lt(at,h†)− lt(k∗

s)
]

=
ts+1−1∑

t=ts

E
[
⟨pt,h† − ek∗

s ,K , lt⟩
]

≤ max
p∈Pβ

K

E

[
ts+1−1∑

t=ts

⟨p− ek∗
s ,K , lt⟩+

ts+1−1∑
t=ts

⟨pt,h† − p, lt⟩
]

≤ βTs(K − 1) + max
p∈Pβ

K

E

[
ts+1−1∑

t=ts

⟨pt,h† − p, l′′
t,h†⟩

]
, (17)

where the first term in the last inequality is obtained from the clipped domain Pβ
K and the second term

is obtained from the unbiased estimator l′′
t,h† such that E[l′′

t,h† |Ft−1] = E[lt|Ft−1] where Ft−1 denotes the
natural filtration generated by the history up to round t − 1. We can observe that the clipped domain
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controls the distance between the initial distribution at ts and the best arm unit vector for the time steps
over [ts, ts+1 − 1]. Let

p̃t+1,h† = arg min
p∈RK

⟨p, l′′
t,h†⟩+ DF

ξ(h†)
(p, pt,h†).

Then, by solving the optimization problem, for all k ∈ [K] we can obtain

p̃t+1,h†(k) = pt,h†(k) exp(−ξ(h†)l′′
t,h†(k)).

For the second term of the last inequality in equation 17, we provide a lemma in the following.
Lemma A.1 (Theorem 28.4 and Eq. 28.11 in Lattimore & Szepesvári (2020)). For any p ∈ Pβ

K we have

ts+1−1∑
t=ts

⟨pt,h† − p, l′′
t,h†⟩ ≤ DF

ξ(h†)
(p, pts,h†) +

ts+1−1∑
t=ts

DF
ξ(h†)

(pt,h† , p̃t+1,h†).

Proof. For completeness, we provide a proof for this lemma. Fix any p ∈ Pβ
K . By the first-order optimality

condition of the unconstrained mirror-descent step,

⟨l′′
t,h† +∇Fξ(h†)(pt+1,h†)−∇Fξ(h†)(pt,h†), p− pt+1,h†⟩ ≥ 0.

This gives
⟨pt+1,h† − p, l′′

t,h†⟩ ≤ ⟨∇Fξ(h†)(pt+1,h†)−∇Fξ(h†)(pt,h†), p− pt+1,h†⟩.
Using the definition of Bregman divergence,

⟨∇Fξ(h†)(pt+1,h†)−∇Fξ(h†)(pt,h†), p−pt+1,h†⟩ = DF
ξ(h†)

(p, pt,h†)−DF
ξ(h†)

(p, pt+1,h†)−DF
ξ(h†)

(pt+1,h† , pt,h†),

we obtain

⟨pt+1,h† − p, l′′
t,h†⟩ ≤ DF

ξ(h†)
(p, pt,h†)−DF

ξ(h†)
(p, pt+1,h†)−DF

ξ(h†)
(pt+1,h† , pt,h†). (18)

We now decompose

⟨pt,h† − p, l′′
t,h†⟩ = ⟨pt,h† − pt+1,h† , l′′

t,h†⟩+ ⟨pt+1,h† − p, l′′
t,h†⟩.

Combining with equation 18 yields

⟨pt,h† − p, l′′
t,h†⟩ ≤ ⟨pt,h† − pt+1,h† , l′′

t,h†⟩ −DF
ξ(h†)

(pt+1,h† , pt,h†) + DF
ξ(h†)

(p, pt,h†)−DF
ξ(h†)

(p, pt+1,h†).
(19)

Recall the unconstrained mirror step

p̃t+1,h† = arg min
u

{
⟨l′′

t,h† , u⟩+ DF
ξ(h†)

(u, pt,h†)
}

.

By the first-order optimality condition,

l′′
t,h† +∇Fξ(h†)(p̃t+1,h†)−∇Fξ(h†)(pt,h†) = 0. (20)

Taking the inner product of equation 20 with pt,h† − pt+1,h† yields

⟨pt,h† − pt+1,h† , l′′
t,h†⟩ =

〈
pt,h† − pt+1,h† , ∇Fξ(h†)(pt,h†)−∇Fξ(h†)(p̃t+1,h†)

〉
. (21)

From the above, by using the definition of Bregman divergences, we have

⟨pt,h† − pt+1,h† , l′′
t,h†⟩ =

〈
pt,h† − pt+1,h† , ∇Fξ(h†)(pt,h†)−∇Fξ(h†)(p̃t+1,h†)

〉
= DF

ξ(h†)
(pt+1,h† , pt,h†) + DF

ξ(h†)
(pt,h† , p̃t+1,h†)−DF

ξ(h†)
(pt+1,h† , p̃t+1,h†)

≤ DF
ξ(h†)

(pt+1,h† , pt,h†) + DF
ξ(h†)

(pt,h† , p̃t+1,h†). (22)
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Then from equation 19 and equation 22, we have

⟨pt,h† − p, l′′
t,h†⟩ ≤ DF

ξ(h†)
(p, pt,h†)−DF

ξ(h†)
(p, pt+1,h†) + DF

ξ(h†)
(pt,h† , p̃t+1,h†).

Summing over t = ts, . . . , ts+1 − 1 gives a telescoping series in the middle terms:

ts+1−1∑
t=ts

⟨pt,h† − p, l′′
t,h†⟩ ≤ DF

ξ(h†)
(p, pts,h†)−DF

ξ(h†)
(p, pts+1,h†) +

ts+1∑
t=ts

DF
ξ(h†)

(pt,h† , p̃t+1,h†).

Since DF
ξ(h†)

(p, pts+1,h†) ≥ 0 by the nonnegativity of Bregman divergences, the term can be safely dropped.
Therefore,

ts+1−1∑
t=ts

⟨pt,h† − p, l′′
t,h†⟩ ≤ DF

ξ(h†)
(p, pts,h†) +

ts+1−1∑
t=ts

DF
ξ(h†)

(pt,h† , p̃t+1,h†),

which concludes the proof.

In Lemma A.1, the first term is for the initial point diameter at time ts and the second term is for the
divergence of the updated policy. Using the definition of the Bregman divergence and the fact that pts,h†(k) ≥
β, the initial point diameter term can be shown to be bounded as follows:

DF
ξ(h†)

(p, pts,h†) ≤ 1
ξ(h†)

∑
k∈[K]

p(k) log(1/pts,h†(k))

≤ log(1/β)
ξ(h†) . (23)

Next, for the updated policy divergence term, using p̃t+1,h†(k) = pt,h†(k) exp(−ξ(h†)l′′
t,h†(k)) for all k ∈ [K],

we have
ts+1−1∑

t=ts

E
[
DF

ξ(h†)
(pt,h† , p̃t+1,h†)

]

=
ts+1−1∑

t=ts

K∑
k=1

E
[

1
ξ(h†)pt,h†(k)

(
exp(−ξ(h†)l′′

t,h†(k))− 1 + ξ(h†)l′′
t,h†(k)

)]

≤
ts+1−1∑

t=ts

K∑
k=1

E
[

ξ(h†)
2 pt,h†(k)l′′

t,h†(k)2
]

≤
ts+1−1∑

t=ts

K∑
k=1

E
[

ξ(h†)
2pt(h†)

]
≤ ξ(h†)KTs

2α
, (24)

where the first inequality comes from exp(−x) ≤ 1 − x + x2/2 for all x ≥ 0, the second inequality comes
from E[l′′

t,h†(k)2 | pt,h†(k), pt(h†)] ≤ 1/(pt(h†)pt,h†(k)), and the last inequality is obtained from pt(h†) ≥ α
from the clipped domain. We can observe that the clipped domain controls the variance of estimators. Then
from equation 17, Lemma A.1, equation 23, and equation 24, by summing up over s ∈ [S], we have

T∑
t=1

E
[
lt(at,h†)

]
−

S∑
s=0

min
ks∈[K]

ts+1−1∑
t=ts

lt(ks) ≤ βT (K − 1) + S log(1/β)
ξ(h†) + ξ(h†)KT

2α
. (25)

Next, we provide a bound for the following regret from the master:

T∑
t=1

E [lt(at,ht
)]−

T∑
t=1

E
[
lt(at,h†)

]
.
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Let p̃t+1 = arg minp∈RH ⟨p, l′
t⟩+ DFη

(p, pt) and eh,H denote the unit vector with 1 at base h-index and 0 at
the rest of H − 1 indices. For ease of presentation, we define l̃t(h) = lt(at,h) for h ∈ [H]. Then, we have

T∑
t=1

E
[
lt(at,ht

)− lt(at,h†)
]

=
T∑

t=1
E

[
⟨pt − eh†,H , l̃t⟩

]
≤ max

p∈Pα
H

E

[
T∑

t=1
⟨p− eh†,H , l̃t⟩+

T∑
t=1
⟨pt − p, l̃t⟩

]

≤ αT (H − 1) + max
p∈Pα

H

E

[
T∑

t=1
⟨pt − p, l̃t⟩

]
. (26)

For bounding the second term in equation 26, we use the following lemma.
Lemma A.2 (Theorem 28.4 and Eq. 28.11 in Lattimore & Szepesvári (2020)). For any p ∈ Pα

H we have

E

[
T∑

t=1
⟨pt − p, l̃t⟩

]
≤ E

[
DFη

(p, p1) +
T∑

t=1
DFη

(pt, p̃t+1)
]

.

Proof. For completeness, we provide a proof for this lemma. Fix any p ∈ Pα
H . By the first-order optimality

condition of the unconstrained mirror-descent step,

⟨l′
t +∇Fη(pt+1)−∇Fη(pt), p− pt+1⟩ ≥ 0.

This gives
⟨pt+1 − p, l′

t⟩ ≤ ⟨∇Fη(pt+1)−∇Fη(pt), p− pt+1⟩.
Using the three-point identity for Bregman divergences,

⟨∇Fη(pt+1)−∇Fη(pt), p− pt+1⟩ = DFη
(p, pt)−DFη

(p, pt+1)−DFη
(pt+1, pt),

we obtain
⟨pt+1 − p, l′

t⟩ ≤ DFη
(p, pt)−DFη

(p, pt+1)−DFη
(pt+1, pt). (27)

We now decompose
⟨pt − p, l′

t⟩ = ⟨pt − pt+1, l′
t⟩+ ⟨pt+1 − p, l′

t⟩.
Combining with equation 27 yields

⟨pt − p, l′
t⟩ ≤ ⟨pt − pt+1, l′

t⟩ −DFη
(pt+1, pt) + DFη

(p, pt)−DFη
(p, pt+1). (28)

Recall the unconstrained mirror step

p̃t+1 = arg min
u

{
⟨l′

t, u⟩+ DFη
(u, pt)

}
.

By the first-order optimality condition,

l′
t +∇Fη(p̃t+1)−∇Fη(pt) = 0. (29)

Taking the inner product of equation 29 with pt − pt+1 yields

⟨pt − pt+1, l′
t⟩ =

〈
pt − pt+1, ∇Fη(pt)−∇Fη(p̃t+1)

〉
. (30)

From the above, by using the definition of Bregman divergences, we have

⟨pt − pt+1, l′
t⟩ =

〈
pt − pt+1, ∇Fη(pt)−∇Fη(p̃t+1)

〉
= DFη

(pt+1, pt) + DFη
(pt, p̃t+1)−DFη

(pt+1, p̃t+1)
≤ DFη

(pt+1, pt) + DFη
(pt, p̃t+1). (31)
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Then from equation 28 and equation 31, we have

⟨pt − p, l′
t⟩ ≤ DFη

(p, pt)−DFη
(p, pt+1) + DFη

(pt, p̃t+1).

Summing over t = 1, . . . , T gives a telescoping series in the middle terms:

T∑
t=1
⟨pt − p, l′

t⟩ ≤ DFη (p, p1)−DFη (p, pT +1) +
T∑

t=1
DFη (pt, p̃t+1).

Since DFη
(p, pT +1) ≥ 0 by the nonnegativity of Bregman divergences, the term can be safely dropped.

Therefore,
T∑

t=1
⟨pt − p, l′

t⟩ ≤ DFη (p, p1) +
T∑

t=1
DFη (pt, p̃t+1),

which concludes the proof with E[
∑T

t=1⟨pt − p, l′
t⟩] = E[

∑T
t=1⟨pt − p, l̃t⟩].

From equation 26 and Lemma A.2, we have

T∑
t=1

E [lt(at,ht)]−
T∑

t=1
E

[
lt(at,h†)

]
≤ αT (H − 1) + max

p∈Pα
H

E

[
DFη

(p, p1) +
T∑

t=1
DFη

(pt, p̃t+1)
]

≤ αT (H − 1) + log(H)
η

+ ηTH

2 , (32)

where the last inequality is obtained from the fact that

DFη
(p, p1) = 1

η

∑
h∈[H]

p(h) log( p(h)
p1(h) ) ≤ log(H)

η

and from

E

[
T∑

t=1
DFη (pt, p̃t+1)

]
= E

(1/η)
T∑

t=1

∑
h∈[H]

pt(h)(exp(−ηl′
t(h))− 1 + ηl′

t(h))


≤ η

2E

 T∑
t=1

∑
h∈[H]

pt(h)l′
t(h)2

 ≤ ηTH

2 .

Therefore, putting equation 16, equation 25, and equation 32 altogether, we have

RS(T ) =
T∑

t=1
E [lt(at)]−

S∑
s=0

min
1≤ks≤K

Ts+1−1∑
t=Ts

lt(ks)

≤ αTH + log(H)
η

+ ηTH

2 + βT (K − 1) + S log(1/β)
ξ(h†) + ξ(h†)KT

2α

= Õ(S1/2T 2/3K1/3),

where α = K1/3/(T 1/3H1/2), β = 1/(KT ), η = 1/
√

TH, ξ(h†) = (h†)1/2
/(K1/3T 2/3), h† = Θ(S), and

H = log(T ). This concludes the proof.
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A.2 Proof of Theorem 3.2

Let ts be the time when the s-th switch of the best arm happens and tS+1 − 1 = T , t0 = 1. Also let
ts+1 − ts = Ts. For any ts for all s ∈ [0, S], the S-switch regret can be expressed as

RS(T ) =
T∑

t=1
E [lt(at)]−

S∑
s=0

min
ks∈[K]

ts+1−1∑
t=ts

lt(ks)

=
T∑

t=1
E [lt(at,ht

)]−
T∑

t=1
E

[
lt(at,h†)

]
+

T∑
t=1

E
[
lt(at,h†)

]
−

S∑
s=0

min
ks∈[K]

ts+1−1∑
t=ts

lt(ks), (33)

in which the first two terms are closely related with the regret from the master algorithm against the near
optimal base h†, and the remaining terms are related with the regret from h† base algorithm against the
best arms in hindsight.

First we provide a bound for the following regret from base h†. From equation 17, we can obtain

ts+1−1∑
t=ts

E
[
lt(at,h†)

]
− min

ks∈[K]

ts+1−1∑
t=ts

lt(ks) ≤ βTsK + max
p∈Pβ

K

E

[
ts+1−1∑

t=ts

⟨pt,h† − p, l′′
t,h†⟩

]
. (34)

Then for the second term of the last inequality in equation 34, we provide a following lemma.
Lemma A.3 (Restatement of Lemma 3.3). For any p ∈ Pβ

K we can show that

ts+1−1∑
t=ts

E
[
⟨pt,h† − p, l′′

t,h†⟩
]
≤ E

[
2 log(1/β)

√
KTρT (h†)

h† + Ts

2

√
SKρT (h†)

T

]
.

Proof. For ease of presentation, we define the negative entropy regularizer without a learning rate as

F (p) =
K∑

i=1
(p(i) log p(i)− p(i))

and define learning rate ξ0(h†) = ∞. From the first-order optimality condition for pt+1,h† and using the
definition of the Bregman divergence,

⟨pt+1,h† − p, l′′
t,h†⟩

≤ 1
ξt(h†) ⟨p− pt+1,h† ,∇F (pt+1,h†)−∇F (pt,h†)⟩

= 1
ξt(h†)

(
DF (p, pt,h†)−DF (p, pt+1,h†)−DF (pt+1,h† , pt,h†)

)
. (35)

Also, we have

⟨pt,h† − pt+1,h† , l′′
t,h†⟩

= 1
ξt(h†) ⟨pt,h† − pt+1,h† ,∇F (pt,h†)−∇F (p̃t+1,h†)⟩

= 1
ξt(h†) (DF (pt+1,h† , pt,h†) + DF (pt,h† , p̃t+1,h†)−DF (pt+1,h† , p̃t+1,h†))

≤ 1
ξt(h†) (DF (pt+1,h† , pt,h†) + DF (pt,h† , p̃t+1,h†)). (36)
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Then, we can obtain

ts+1−1∑
t=ts

⟨pt,h† − p, l′′
t,h†⟩ ≤

ts+1−1∑
t=ts

⟨pt,h† − pt+1,h† , l′′
t,h†⟩

+
ts+1−1∑

t=ts

1
ξt(h†)

(
DF (p, pt,h†)−DF (p, pt+1,h†)−DF (pt+1,h† , pt,h†)

)
=

ts+1−1∑
t=ts

⟨pt,h† − pt+1,h† , l′′
t,h†⟩+

ts+1−1∑
t=ts+1

DF (p, pt,h†)
(

1
ξt(h†) −

1
ξt−1(h†)

)

+ 1
ξts

(h†)DF (p, pts,h†)− 1
ξts+1−1(h)DF (p, pts+1,h†)−

ts+1−1∑
t=ts

1
ξt(h†)DF (pt+1,h† , pt,h†)

≤
ts+1−1∑

t=ts

⟨pt,h† − pt+1,h† , l′′
t,h†⟩+ log(1/β)

ts+1−1∑
t=ts+1

(
1

ξt(h†) −
1

ξt−1(h†)

)

+ 1
ξts

(h†)DF (p, pts,h†)− 1
ξts+1−1(h)DF (p, pts+1,h†)−

ts+1−1∑
t=ts

1
ξt(h†)DF (pt+1,h† , pt,h†)

≤ 2 log(1/β)
ξT (h†) +

ts+1−1∑
t=ts

DF (pt,h† , p̃t+1,h†)
ξt(h†)

= 2 log(1/β)
√

KTρT (h†)
h† +

ts+1−1∑
t=ts

DF (pt,h† , p̃t+1,h†)
ξt(h†) , (37)

where the first inequality is obtained from equation 35, the second last inequality is obtained from
DF (p, pt,h†) ≤ log(1/β) and 1/ξt(h†) ≥ 1/ξt−1(h†) from non-decreasing ρt(h†), and the last inequality
is obtained from equation 36, DF (p, pts,h†) ≤ log(1/β), and ξs(h†) ≥ ξT (h†) for s ∈ [T ] from non-decreasing
ρs(h†).

For the second term in the last inequality in equation 37, using p̃t+1,h†(k) = pt,h†(k) exp(−ξ(h†)l′′
t,h†(k)) for

all k ∈ [K], we have

ts+1−1∑
t=ts

E
[

DF (pt,h† , p̃t+1,h†)
ξt(h†)

]
=

ts+1−1∑
t=ts

K∑
k=1

E
[

1
ξt(h†)pt,h†(k)

(
exp(−ξt(h†)l′′

t,h†(k))

−1 + ξt(h†)l′′
t,h†(k)

)]
≤

ts+1−1∑
t=ts

K∑
k=1

E
[

ξt(h†)
2 pt,h†(k)l′′

t,h†(k)2
]

≤
ts+1−1∑

t=ts

K∑
k=1

E
[

ξt(h†)
2pt(h†)

]

≤
ts+1−1∑

t=ts

K∑
k=1

E
[

ξt(h†)ρt(h†)
2

]

≤
ts+1−1∑

t=ts

K∑
k=1

E

[
1
2

√
h†ρt(h†)

KT

]

≤ Ts

√
h†K

T

E
[
ρT (h†)1/2]

2 , (38)
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where the first inequality comes from exp(−x) ≤ 1−x+x2/2 for all x ≥ 0, the second inequality comes from
E[l′′

t,h†(k)2 | pt,h†(k), pt(h†)] ≤ 1/(pt(h†)pt,h†(k)), and the third inequality is obtained from 1/pt(h†) ≤ ρt(h†).

Then from equation 34 and Lemma A.3, we have

T∑
t=1

E
[
lt(at,h†)

]
−

S∑
s=0

min
1≤ks≤K

Ts+1−1∑
t=Ts

lt(ks)

≤ βT (K − 1) + E

[
2S log(1/β)

√
KTρT (h†)

h† + 1
2

√
TSKρT (h†)

]
. (39)

Next, we provide a bound for the regret from the master in the following lemma.
Lemma A.4 (Lemma 13 in Agarwal et al. (2017)).

T∑
t=1

E [lt(at,ht
)]−

T∑
t=1

E
[
lt(at,h†)

]
≤ O

(
H log(T )

η
+ Tη

)
− E

[
ρT (h†)

40η log T

]
+ αT (H − 1).

Proof. For ease of presentation, define l̃t(h) = lt(at,h) for h ∈ [H]. Then

T∑
t=1

E
[
lt(at,ht

)− lt(at,h†)
]

=
T∑

t=1
E

[
⟨pt − eh†,H , l̃t⟩

]
≤ max

p∈Pα
H

E

[
T∑

t=1
⟨p− eh†,H , l̃t⟩+

T∑
t=1
⟨pt − p, l̃t⟩

]

≤ αT (H − 1) + max
p∈Pα

H

E

[
T∑

t=1
⟨pt − p, l̃t⟩

]
(40)

= αT (H − 1) + max
p∈Pα

H

E

[
T∑

t=1
⟨pt − p, l′t⟩

]
. (41)

Bounding the mirror-descent term. We next bound E
[∑

t⟨pt − p, l′t⟩
]

using the OMD analysis of
Agarwal et al. (2017, Lemma 13). The master update is

pt+1 = arg min
p∈Pα

H

{
⟨p, l′t⟩+ DGηt

(p, pt)
}

,

where Gηt(p) =
∑H

h=1
1

ηt(h) p(h) log p(h) and DGηt
is the corresponding Bregman divergence. Applying the

standard mirror-descent inequality, for any p ∈ Pα
H ,

⟨pt − p, l̃t⟩ ≤ DGηt
(p, pt)−DGηt

(p, pt+1) +
H∑

h=1
ηt(h) pt(h)2 l′

t(h)2. (42)

Summing over t = 1, . . . , T gives

T∑
t=1
⟨pt − p, l̃t⟩ ≤

T∑
t=1

(
DGηt

(p, pt)−DGηt
(p, pt+1)

)
+

T∑
t=1

H∑
h=1

ηt(h) pt(h)2 l′
t(h)2. (43)

Bounding the potential differences. We first control the telescoping term in equation 43. Since
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DGηt
(·, ·) ≥ 0 and the learning rates ηt(h) are nondecreasing in t for each h, we have

T∑
t=1

(
DGηt

(p, pt)−DGηt
(p, pt+1)

)
≤ DGη1

(p, p1) +
T −1∑
t=1

H∑
h=1

(
1

ηt+1(h) −
1

ηt(h)

)
h

(
p(h)

pt+1(h)

)
, (44)

where h(y) = y − 1 − log y ≥ 0 is the log-barrier Bregman core. For the initial term, using that Gη1 is
(scaled) negative entropy on the clipped simplex Pα

H with α = 1/(TH), we obtain the standard bound

max
p∈Pα

H

DGη1
(p, p1) = O

(
H log(1/α)

η

)
= O

(
H log T

η

)
. (45)

Adaptive-rate gain (negative correction). By the adaptive schedule in Algorithm 2, if 1
pt+1(h) > ρt(h),

then ρt+1(h) = 2
pt+1(h) and ηt+1(h) = γ ηt(h) with γ = e1/ log T , while otherwise ηt+1(h) = ηt(h). As

in (Agarwal et al., 2017, Lemma 13), this implies that whenever the coordinate h† is assigned too little
probability, the factor

( 1
ηt+1(h†) −

1
ηt(h†)

)
is negative of order −1/(η log T ), and it multiplies the nonnegative

barrier increment h
(

p(h†)
pt+1(h†)

)
where h(y) = y − 1 − log(y). Aggregating these events over t = 1, . . . , T − 1

yields

T −1∑
t=1

H∑
h=1

(
1

ηt+1(h) −
1

ηt(h)

)
h

(
p(h)

pt+1(h)

)
≤

T −1∑
t=1

(
1

ηt+1(h†) −
1

ηt(h†)

)
h

(
p(h†)

pt+1(h†)

)
≤ − ρT (h†)

40 η log T
, (46)

where ρT (h†) is the final density parameter maintained by the schedule. Combining equation 44, equation 45,
and equation 46, and for p ∈ Pα

H , we obtain

T∑
t=1

(
DGηt

(p, pt)−DGηt
(p, pt+1)

)
≤ O

(
H log T

η

)
− ρT (h†)

40 η log T
. (47)

Bounding the variance term. It remains to bound
∑T

t=1
∑H

h=1 ηt(h) pt(h)2 l′
t(h)2. Recall that l′

t(h) ∈
[0, 1/pt(h)] and only the sampled coordinate can be nonzero. Since each increase at least doubles the density
ρt(h) and ρt(h) ≤ 2TH from pt(h) ≥ α = 1/TH, the number of entire updates for each h is at most
C1 log(HT ) for a constant C1 > 0. This implies that ηt(h) ≤ ηT (h) ≤ ηγC1 log(2HT ) ≤ ηeC2 for a constant
C2 > 0. Therefore

T∑
t=1

H∑
h=1

ηt(h) pt(h)2 l′
t(h)2 =

T∑
t=1

ηt(ht) pt(ht)2 l′
t(ht)2 ≤ TηT (h) = O(Tη). (48)

Putting the pieces together. Apply equation 47 and equation 48 to equation 43, then maximize over
p ∈ Pα

H and take expectations. Combining with equation 41 yields

T∑
t=1

E[lt(at,ht)]−
T∑

t=1
E

[
lt(at,h†)

]
≤ O

(
H log T

η

)
+ O(Tη) − E

[
ρT (h†)

40 η log T

]
+ αT (H − 1),

which is the desired bound.

The negative bias term in Lemma A.4 is derived from the log-barrier regularizer and increasing learning
rates ηt(h). This term is critical to bound the worst case regret which will be shown soon. Also, H log(T )/η is
obtained from H log(1/(Hα))/η considering the clipped domain. Then, putting equation 33 and Lemmas A.3
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and A.4 altogether, we have

RS(T ) =
T∑

t=1
E [lt(at)]−

S∑
s=0

min
1≤ks≤K

Ts+1−1∑
t=Ts

lt(ks)

≤ O

(
H log T

η
+ Tη

)
− E

[
ρT (h†)

40η log T

]
+ αT (H − 1) + βT (K − 1)

+ E

[
2S log(1/β)

√
KTρT (h†)

h† + 1
2

√
SKTρT (h†)

]

= Õ

(
E

[√
SKTρT (h†)

])
− E

[
ρT (h†)

√
TK

40
√

H log(T )

]
, (49)

where α = 1/(TH), β = 1/(TK), η =
√

H/T , H = log(T ), and h† = Θ(S). Then we can obtain

RS(T ) = Õ
(

min
{√

SKTρ, S
√

KT
})

,

where Õ(S
√

KT ) is obtained from the worst case of ρT (h†). The worst case can be found by considering a
maximum value of the concave bound of the last equality in equation 49 with variable ρT (h†) > 0 such that
ρT (h†) = Θ̃(S). This concludes the proof.
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