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Abstract

We study the adversarial bandit problem against arbitrary strategies, where the difficulty
is captured by an unknown parameter S, which is the number of switches in the best arm
in hindsight. To handle this problem, we adopt the master-base framework using the online
mirror descent method (OMD). We first provide a master-base algorithm with simple OMD,
achieving O(SY/2K/3T2/3)  in which T%/3 comes from the variance of loss estimators. To
mitigate the impact of the variance, we propose using adaptive learning rates for OMD and
achieve O(min{y/SKTp, Sv/KT}), where p is a variance term for loss estimators.

1 Introduction

The bandit problem is a fundamental framework in sequential decision-making that addresses the exploration-
exploitation trade-off. At each time step, an agent selects an action (referred to as an arm) and observes a
corresponding reward or loss. In applications such as recommendation systems, arms may represent items
presented to users, and user preferences can evolve over time. This dynamic nature can be modeled by
allowing the identity of the best arm to change, leading to the notion of switching best arms.

To capture such evolving environments, it is natural to consider performance against a changing sequence
of optimal arms rather than a single fixed one. The problem of competing against switching arms has been
extensively studied. In the expert setting with full-information feedback (Cesa-Bianchi et al.| [1997)), several
algorithms (Daniely et al.l |2015; |Jun et al.l 2017) have been developed that achieve a near-optimal regret
bound of O(v/ST) for S-switch regret (formally defined later), without requiring prior knowledge of the
number of switches S. In contrast, the bandit setting presents a greater challenge, as the agent only observes
the feedback for the selected arm rather than the full loss vector, making the problem significantly harder
than in the full-information case.

In the stochastic bandit setting where each arm’s reward distribution may change over time, commonly
referred to as the non-stationary bandit problem, several studies have addressed the challenge of switching
environments (Garivier & Moulines, 2008; |Auer et al. 2019; Russac et al., [2019; |Suk & Kpotufe, 2022).
Notably, |Auer et al. (2019) and |Suk & Kpotufe (2022) achieved near-optimal regret bounds of O(v SKT)
without requiring prior knowledge of the number of switches S. However, these methods rely on stochastic
assumptions and are not applicable in the adversarial setting, where losses can be chosen arbitrarily. For the
adversarial bandit setting, EXP3.S algorithm (Auer et al., [2002)) achieves a regret bound of O(\/ SKT), but
assumes that S is known in advance. When S is unknown, the Bandit-over-Bandit (BOB) approach has been
proposed, achieving a regret bound of O(v/SKT + T3/4) (Cheung et al., 2019; Foster et al. [2020). More
recently, [Luo et al.| (2022)) studied the problem of switching adversarial linear bandits and achieved a regret
of O(V/dST) under the assumption that S is known.

In this paper, we study adversarial bandit problems against arbitrarily switching arms. Crucially, we allow
the number of switches S to be unknown to the agent, thereby targeting arbitrary strategies without prior
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knowledge of their complexity. To address this setting, we adopt the master-base framework combined with
the online mirror descent (OMD) method, inspired by [Agarwal et al.| (2017)); [Pacchiano et al.| (2020); [Luo
et al| (2022). We begin by analyzing a master-base algorithm that employs OMD with a negative entropy
regularizer, and show that it achieves a regret bound of O(S'/2K'/3T?/3). However, this approach relies
on a fixed learning rate, which limits its ability to adapt to the variance of the loss estimators, leading to a
suboptimal regret term proportional to 7%/3,

Building on this analysis, we propose using adaptive learning rates within the OMD framework to bet-
ter control the variance of loss estimators. This refinement leads to an improved regret bound of
O(min{\/SKTp, SVKT}) with respect to T, where p captures the variance associated with a comparator
strategy. Crucially, rather than employing the standard negative entropy regularizer, we adopt a log-barrier
regularizer, which enables tighter control over worst-case scenarios in terms of the variance term p.

2 Problem Statement

We now formalize the problem setting. Let A = [K] denote the set of K arms, and let I; € [0,1]% be the
loss vector at time ¢, where I;(a) denotes the loss incurred by arm a € [K] at time ¢. The environment is
adversarial, generating an arbitrary sequence of loss vectors ly,ls,...,l7 € [0,1]X over a time horizon of T
rounds. At each round ¢ € [T, the agent selects an arm a; € [K] and observes only the loss I;(a;) of the
chosen arm. Our goal is to minimize the S-switch regret, which measures the performance gap between the
agent and the best sequence of actions that switches arms at most S times.

Formally, let k = {k1,K2,...,k7} € [K]T denote a sequence of comparator actions. For a positive integer
S < T, define the set of sequences with at most S switches as

T-1
BS = {/Q € [K]T : Z ]].{Iit # Iﬂ}t_;,_l} S S} .

t=1

Then, the S-switch regret is defined by

We consider the setting where the number of switches S is unknown to the agent (i.e., not provided in
advance). Our goal is to design algorithms that perform well against any sequence of actions, without
relying on prior knowledge of S. This requires the development of universal algorithms that achieve tight
regret bounds uniformly over all values of S € [T — 1], where S characterizes the hardness of the problem
(Auer et all[2002). Notably, this setting generalizes non-stationary stochastic bandit problems in which the
switching parameter is unknown (Auer et al., [2019; |Chen et al., |2019).

3 Algorithms and Regret Analysis

To address the problem of adversarial bandits with an unknown switching budget S, we propose algorithms
based on the master-base framework combined with the online mirror descent (OMD) method.

3.1 Master-Base Framework

In the master-base framework, a master algorithm selects one among several base algorithms at each round,
and the selected base then chooses an arm to play. Since the true switch parameter S is not known in
advance, we instantiate each base algorithm with a different candidate value of S from a predefined set.

Let ‘H denote the set of candidate values for S, defined as:

H = {70, TTos™T TTes™T ... T}
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Each base is associated with a candidate h € H and tunes its learning rate accordingly. Let H = |H| =
O(logT) be the number of base algorithms. When there is no ambiguity, we refer to a base instantiated
with parameter h € H simply as base h. Define hf € H as the largest candidate not exceeding the true
(unknown) value of S: h' = max{h € H : h < S}. By construction, this ensures

e 1S<hl <8,

which guarantees that h' provides a near-optimal approximation of S.

3.2 Online Mirror Descent (OMD)

We now present the Online Mirror Descent (OMD) method (Lattimore & Szepesvaril 2020), which serves
as the fundamental update rule for the master and each base algorithm in our framework. OMD generalizes
classic online gradient descent by incorporating a flexible geometry through a regularizer.

Let F : RY — R be a convex and differentiable regularizer function. This regularizer defines the Bregman
divergence between two points p, g € R%:

Dr(p,q) = F(p) — F(q) — (VF(q),p— q).

In our context, the decision variable is a probability distribution p; over d arms, i.e., p; € Py where Py
denotes the d-dimensional probability simplex. At each round ¢, given a loss vector I € R%, OMD computes
the next distribution by solving the following optimization problem:

pt+l :argmln{<p7l>+DF(p7pt)} (1)
PEPa

This formulation reflects the trade-off between exploiting current loss information (via the linear term) and
staying close to the previous distribution (via the Bregman divergence).

In practice, the update of equation [I]is often implemented in two steps for computational convenience:

Br1 = argmin { (p,) + Dir(p, 1)},
pER?

pi1 = argmin Dp(p, Pri1)-
PEPq
Here, the first step performs an unconstrained update in the dual space defined by F', while the second
step projects the intermediate point back onto the simplex, ensuring that the updated distribution is a
valid probability vector. The choice of regularizer F' determines the specific algorithm instance; it typically
includes a learning rate parameter that controls the step size and will be specified in subsequent sections.

Finally, in the bandit setting, since the learner does not observe the full loss vector I; but only the loss of
the selected arm, the true loss must be replaced with an appropriate unbiased estimator. This ensures that
OMD remains applicable even with partial feedback.

3.3 Master-Base OMD

We employ an OMD framework with a hierarchical structure consisting of a master and multiple bases.
We first present a simple Master-Base OMD algorithm (Algorithm [1)) that employs the negative entropy
regularizer:

U

= (1/n) > (p(i)log p(i) — p(i)),

i=1

where p € R%, p(i) denotes the i-index entry for p, and 7 is a learning rate. This regularizer is commonly
used in adversarial bandit algorithms, including the well-known EXP3 algorithm (Auer et al., 2002).

In Algorithm [I} at each round ¢, the master algorithm selects a base h; € H according to a probability
distribution p;. The selected base h; then chooses an arm a; € [K] using its internal distribution py p,
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and observes the incurred loss l;(a;). From this partial feedback, we construct unbiased estimators: 1;(h)
estimates the loss for each base h € H, and I}/, (a) estimates the loss for each arm a € [K] under base h.
Using these estimators, the algorithm updates both the master distribution p;,; and each base’s distribution
Pi+1,h via OMD.

To control variance in the estimator I} (h) = l;(a;)1(h = hy)/pi(h), we define the master’s update domain as
a clipped probability simplex P% = Py N [a, 1]# for some o > 0. This clipping ensures that each base is
selected with non-negligible probability, preventing high variance in the importance-weighted loss estimates.
Within this domain, the update of p;;1 is then computed using the negative entropy regularizer with learning
rate 7.

Each base h € H maintains its own arm selection distribution p; ;. The update for this distribution is
also based on the negative entropy regularizer but with a learning rate that adapts to the candidate switch
parameter h:

h1/2
§(h) = K1/3T2/3"

This choice of £(h) helps base h adapt to environments with up to h switches in the best arm sequence. The
domain for updating py p, is PIB( = Px N[B,1]¥ for B > 0. Unlike o, which controls variance in master-level
estimation, 8 acts as a regularization mechanism to stabilize learning under the switching best arms in
hindsight.

Algorithm 1 Master-base OMD
Input: T, K, H.
Initialization: o = K3 /(TY3HY?), 3 =1/(KT), n=1/vVTH, £&(h) = h'/?2/(K'/3T?/3), p1(h) = 1/H,
p1u(a) =1/K for h € H and a € [K].
fort=1,...,T do
Select a base and an arm:
Draw h; ~ probabilities {p:(h)}ren-
Draw ay p, ~ probabilities {p;n,(a)}ac|x]-
Pull a; = ayp, and Receive l;(asn,) € [0,1].
Obtain loss estimators:

I (he) = 220 and 1j(h) = 0 for h € H/{h¢}.

U (acn,) = 5 and 1, (a) = 0 for h € H/{h¢}, a € [K]/{arn,}
Update distributions:
Pry1 = argmingepa (p, ) + Dr, (P, p;)
Diy1n = argminpepfza{ (p, l;'y,) + DFg(h) (p, pt’h) forallhe H

end for

Now we provide a regret bound for the algorithm in the following theorem.

Theorem 3.1. For any switch number S € [T — 1], Algom'thm achieves a regret bound of

RS(T) _ 0(51/2K1/3T2/3)

Proof Sketch. Here, we provide a proof sketch, and the full version is provided in Appendix [A-T]

In our proof, we decompose the regret into two parts: one is the regret from the master selecting a base at
each time, and the other is the regret from the base selecting an arm at each time. Let t5 be the time when
the s-th switch of the best arm happens and tsy1 —1 =T, tg = 1. Also let t,41 —ts = Ts. For any t, for
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all s € [0, 5], the S-switch regret can be expressed as

T S tsy1—1
Rs(T) = > E[li(a;)] - k?éi[r;q > (k)
t=1 s=0 t=ts
T T T S tep1—1
=>» EJ[ —» EJl E |l - Le( 2
; [le(arn, )] ; [t(at,h“f)] +; [t(at,ht)] kIIGII[IIl( Z +( (2)

in which the first two terms are closely related with the regret from the master algorithm against the near
optimal base h', and the remaining terms are related with the regret from h! base algorithm against the
best arms in hindsight. We note that the algorithm does not need to know A’ in prior and h' is brought
here only for regret analysis.

Regret from the near-optimal base. First we provide a bound for the following regret from base h':

T S top1—1
;E[Zt(at,h’f)] - kﬂélrll(] tzt li(k

where the first term is the loss from the base and the second one is the loss from the optimal arm in hindsight.
Let k} = argminge (g Zt 171 (k) and ej,k denote the unit vector with 1 at j-index and 0 at the rest of
K — 1 indices. Then, we have

tsr1—1 tsy1—1
> Ellagn) = L(k)] < ALK — 1)+ max E | D (pye — 2.4 40) | (3)
t—t, PEP t—t,

where the first term in the last inequality is obtained from the clipped domain PK and the second term
is obtained from the unbiased estimator If;; such that E[l}', ;|F;—1] = E[l|F;—1] where F;_; denotes the
natural filtration generated by the hlstory up to round ¢t — 1. We can observe that the clipped domain
controls the distance between the initial distribution at ¢ts; and the best arm unit vector for the time steps
over [ts,ts+1 — 1]. Let

D1t = AIG min(p, lt i)+ DF cnt) (p, Py nt)-
peRK

Then, by solving the optimization problem, for all k € [K] we can obtain

ﬁtJrl,hT(k) = DPt,ht (k) exp(—f(hT) t, m(k))

For the second term of the last inequality in equation |3| we have for any p € 77?(,

tsy1—1 tsy1—1
Z (Peni — Pl i) < D, (m)(l’a Pr, i) Z DFg(hT)(pt,hTai)t-‘,-l,hT)' (4)
t=t, t=t.

The first term is for the initial point diameter at time ¢; and the second term is for the divergence of the
updated policy. Using the definition of the Bregman divergence and the fact that p,_ (k) > 3, the initial
point diameter term can be shown to be bounded as follows:

Dp, 1, (P, Py, p1) < W- (5)

Next, for the updated policy divergence term, using ;1 pt (k) = pspt (k) exp(—E(h1)1] it (k) for all k € [K],
we have

ter1—1

§(h) KT,
> B[ Dy B Braass)| £ 50 (6)
t=ts
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Then from equation |3 equation 4] equation [5| and equation @ by summing up over s € [S], we have

o o e Slog(1 WKT
ZE[lt(at,hT)]_ >, it ST (k) <BT(K —1) + Z%/Ef)/B)Jrg( 2)04 . (7)

t=ts

Next, we provide a bound for the following regret from the master:

T T
> Elli(arn)] = > E [Liagnt)]

Let p,,, = argmin,cpn (p, ) + Dp, (p, p;) and e, denote the unit vector with 1 at base h-index and 0 at
the rest of H — 1 indices. For ease of presentation, we define I;(h) = l;(as,5). Then, we have

t=1 t=1

S E [li(arn,) — lelag )] < oT(H — 1) + max E [Zm ~p, L>] . (8)

Regret from the master. For bounding the second term in equation [§] which arises from the master, we
use the following: for any p € Py

T T

Z<Pt - P7~lt> < Fn(p) - Fn(Pl) + ZDFn(ptvi)t—l-l)' 9)

t=1 t=1

From equation [§] and equation [9] we have

T T
> Elli(arn)] = > E [li(agnr)]
t=1 t=1

T
< oT(H —1)+ max E |\ Fy(p) - Fy(p1) +>_ Dr, (s Bry1)
t=1

log(H) n nTH

<oT(H-1)+ 5

(10)

Overall Regret. Therefore, putting equation [2], equation [7], and equation [10] altogether, we have

T S Tsy1—1
RS(T):;E[Zt(at)]—S_ | Jnin Z 1 (k
log(H) | nTH Slog(1/8)  E(h)KT
< PL— _
oTH + ———= o + 2 +08T(K —1)+ £(hh) 5
— 6(51/2T2/3K1/3)7
1/2

where o = K'Y/3/(TY3HY?), B = 1/(KT), n = 1/VTH, &ht) = (RY)77/(KY/3T%/3), bt = ©(S9), and
H =log(T). This completes the proof. O

Compared to the prior parameter-free algorithm based on the Bandit-over-Bandit (BOB) approach (Cheung
et al., [2019), which incurs a suboptimal dependence on the time horizon T, specifically, a regret term of
order T3/, our algorithm achieves a tighter regret bound in terms of 7. In particular, when T' = w(S°K*),
Algorithm [T] achieves a tighter regret bound than that of BOB.

However, the regret bound achieved by Algorithm (I remains of order O(T2/ 3), rather than the optimal
O(\/T ), due to the high variance in the loss estimators. This variance arises from the double sampling
process—first selecting a base, then an arm—at each round. To address this issue, we next propose an
improved algorithm that leverages adaptive learning rates to better control the variance of the estimators.
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3.4 Master-Base OMD with Adaptive Learning Rates

We now propose Algorithm [2] which incorporates adaptive learning rates to better control the variance of
the loss estimators. We begin by describing the base algorithm. Each base employs the negative entropy
regularizer, but with a time-varying adaptive learning rate &:(h), defined as:

d

Fe,(n)(p i) log p(i) — p(i)),

z:l

where p € R? is a probability distribution over arms. The learning rate & (h) is dynamically adjusted at
each round ¢ based on the variance of the loss estimators, and is given by:

ft(h) = h/(KTPt(h)),

where p¢(h) is a variance threshold term that will be defined later. This formulation ensures that when the
variance of the estimators is small, a larger learning rate is used—allowing for more aggressive updates—while
high variance naturally leads to more conservative updates. Notably, this adaptive base algorithm is effec-
tively combined with the master employing log-barrier regularization to control the regret due to variance,
resulting in equation which introduces a novel integration of adaptive learning and log-barrier regular-
ization for variance control.

For the master algorithm, inspired by the approach in |[Agarwal et al.| (2017)), we employ a log-barrier
regularizer with increasing learning rates. This design introduces a negative bias term that effectively offsets
the variance arising from the base algorithms, particularly by addressing the worst-case scenario in terms of
the variance threshold p;(h'). The log-barrier regularizer is defined as:

d .
_x logp(i)
GTlt (P) - ; e (Z) )

where p € Py is the master distribution, and n; = (n:(1),...,n:(d)) denotes the vector of learning rates
at time ¢t. We describe the learning rate update procedures for both the master and the base algorithms
in Algorithm [2} all other components remain identical to those in Algorithm The variance of the loss
estimator l{  (h) = l¢(as41,n)L(hig1 = h)/peg1(h) for base h is given by 1/pyy1(h). If this variance exceeds
the threshold p:(h), i.e., 1/pt41(h) > pe(h), the master increases the learning rate as: n:11(h) = yn(h) for
some fixed v > 1. Simultaneously, the variance threshold is updated to: p;y1(h) = 2/pi11(h) which is also
used to adaptively tune the base learning rate £;(h) as described earlier. If the variance does not exceed the
threshold, both n:(h) and p;(h) remain unchanged from the previous time step.

In the following theorem, we provide a regret bound of Algorithm [2}
Theorem 3.2. For any switch number S € [T — 1] and any p > E[pr(h1)], Algorithm 2 achieves a regret

bound of
Rs(T) =0 (min{\/SKiT7 S\/ﬁ}) )

Proof Sketch. Here, we provide a proof sketch, and the full version is provided in Appendix As in the
Theorem [3.1] we decompose the regret into two parts: one is the regret from the master selecting a base at
each time, and the other is the regret from the base selecting an arm at each time. Let t5 be the time when
the s-th switch of the best arm happens and tgy1 — 1 =T, tg = 1. Also let 541 — ts = Ts. For any t, for
all s € [0, 5], the S-switch regret can be expressed as

T S tsy1—1
Rg(T) =Y El[li(ar)] - krréi[r;(] > (k)
t=1 s=0""° t=t,
T T T S tsp1—1
=Y E[i( E [1:( E [l(a 1)) — i li(ky). 11
2 Bl = 3 [blaes)] + 3B bfars)] =3 ruip, :Z o(ks) (11)
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Algorithm 2 Master-base OMD with adaptive learning rates
Input: T, K, H
Initialization: a« = 1/(TH), =1/(TK), v = eToeT, n=+H/T, p1(h) =2H, ni(h) =n, p1(h) =1/H,
pir(a) =1/K for h € H and a € [K].
fort=1,...,7T do
Select a base and an arm:
Draw h; ~ probabilities {p:(h)}ren-
Draw ay,p, ~ probabilities {pn, (a)}ac|x]-
Pull a; = a; 5, and Receive l;(arp,) € [0,1].
Update loss estimators:

I (he) = ") and 1j(h) = 0 for h € H/{h.}.

U, (aen,) = 58— and 1Y, (a) = 0 for h € H/{h.}, a € [K]/{ain,}.
Update distributions:
D1 = argmingepe (p, 1) + D, (p, p,)
Pr1,p = Argmingps (p, Uy) + Dre, ., (P Dy ) for h € H
Update learning rates:
For h E H
If

p1+1( 5 > pt(h), then

pf+1( ) le(h),Tltﬂ(h) :7nt(h)'

Else, pi+ 1(h) = Pt(h)vnt+1(h) = nt(h)-
end for

Regret from the near-optimal base. First we provide a bound for the following regret from base hf.
From equation [3, we can obtain

tep1—1 tsy1—1 tsy1—1
> E[l(agnr) Z L(ks) < BTK +E | max > (B —p,lgthf>‘|. (12)
t=t, PEFK  t=t,

Then for the second term of the last inequality in equation we provide the following lemma.

Lemma 3.3. For any p € Pé we can show that

toy1—1

KTpr(ht T, |SKpr(ht
S E [ponr — p.8f)] <E |210801/8) K00 T[S )
t=ts

Then from equation [§ and Lemma we have

S Ts+1—1

T
ZE [le(agpi)] — min Z le(ks) < BT(K —1)+E
t=1

1<k; <K

KT
2S1og(1/8)1/ 27; W/TSKpT ht) ]

(13)

5=0
Regret from the master. Next, we provide a bound for the regret from the master in the following:

T T o - +
> B (e~ LB )] <0 (TED o) g [ L0 o arar-n. ay

The negative bias term in equation is derived from the log-barrier regularizer and increasing learning
rates n:(h). This term is critical to bound the worst case regret which will be shown soon. Also, H log(T)/n
is obtained from H log(1/(H«))/n considering the clipped domain.
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Overall Regret. Then, putting equation [T1], equation [I3] and equation [14] altogether, we have

S Toi1—1

T
- e 5 _g | LrWVTE
RS(T)f;E[zt( ¢)] 2, t:ZTS lt(kS)O(E [\/mb E [40\/ﬁlog(T)

;o (15)

Then, we can obtain

Rs(T) = O (min {\/SKTp,SVKT}),

where O(SV/KT) is obtained from the worst case of pr(h'). The worst case can be found by considering a
maximum value of the concave bound of the last equality in equation [L5| with variable p7(h') > 0 such that

pr(h’) = ©(S). This concludes the proof. O

We now provide a comparison of regret bounds with an existing approach. our regret bound depends on p,
which captures the variance of the loss estimators I;(h!) over the time horizon ¢ € [T]. While the bound
is variance-dependent, it is noteworthy that in the worst case, it is always upper bounded by O(S VKT ).
Importantly, Algorithm |5| achieves a tight dependence of O(v/T) in the regret bound, in contrast to Algo-
rithm (1| and BOB (Cheur?g et all 2019; [Foster et al., |2020), which incur suboptimal 7%/3 and T3/* term,
respectively. Therefore, when T is sufficiently large, Algorithm [2 yields a strictly better regret guarantee
than Algorithm and BOB. We also note that the variance term p is commonly observed in|Luo et al.| (2022),
but we control the worst case without information of S using an adaptive learning rate.
Remark 3.4. Since we incorporate pi(h) into the adaptive learning rate for each base h as &(h) =
h/KTpi(h), we can optimize the regret bound to depend on +/pr(h'), as demonstrated in Lemma 3.5.
Notably, this adaptive base algorithm is effectively combined with the master employing log-barrier regu-
larization |Agarwal et al.| (2017) to control the regret due to variance, resulting \/Spr(ht) — pr(ht). This
integration is the main reason why Algorithm 2 can achieve a order of /T, even in the worst case, without
the knowledge of S.

Remark 3.5. Our algorithms are designed to perform well across different regimes, particularly with re-
spect to T and S. To recall the regret bounds, Algorithm 1 achieves a regret of 0(51/2K1/3T2/3), while
Algorithm 2 achieves O(min{/SKTp, SV KTY}). This indicates that Algorithm 1 is advantageous when S is
large, whereas Algorithm 2 is preferable for larger T due to its use of an adaptive learning rate that accounts
for the variance of the loss estimator.

Remark 3.6 (Implementation). For implementation of our algorithms, we briefly describe how to update

the policy p, using OMD. Let 1,(a) denote a loss estimator for ly(a) for action a € [d] and s € [T]. For the
negative-entropy reqularizer, by solving the optimization in equatz’on (see |Lattimore & Szepesvari (2020)),

we obtain R
exp( a3 AT )
pt(a) = PPN .
Zbe[d] exp<fn e ls (b))

For the log-barrier reqularizer, the solution is pi(a) = (n Zi;lli;(a) + Z)~t, where Z is the normalization

constant ensuring » . pi(a) = 1 (Luo et al., |2022). When the feasible set is the clipped simplex ’P;/d =
{p € Ay: pla) > ¢/d} for 0 < e <1, a computationally simple way to enforce feasibility is to mix with the
uniform distribution:

pi(a) +— (1 —¢e)p(a)+e€/d  for all a € [d].

This “uniform-mizing” trick, following |Auer et al| (2002), guarantees p; € 79:/ * to ensure a bounded vari-
ance of the loss estimator. We emphasize that this is an implementation convenience rather than the exact
Bregman projection onto Pé/d; a rigorous regret analysis under this specific implementation is left for future
work.

Remark 3.7. The regret bounds in Theorems [3.1] and [3.3 also extend to non-stationary stochastic bandit
problems with unknown switching parameters, where the reward distributions may change over time. This
generalization is possible because the adversarial bandit setting encompasses the stochastic setting as a special
case.
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4 Conclusion

In this paper, we studied the adversarial bandit problem with S-switch regret, where the agent competes
against any sequence of arms that switches at most S times, without prior knowledge of S. To address
this challenge, we proposed two algorithms based on the master-base framework integrated with the Online
Mirror Descent (OMD) method.

First, we introduced Algorithm [I} which employs a simple OMD update with a fixed learning rate and
achieves a regret bound of O(S 12 K1/372/3), To further improve performance with respect to 7', we proposed
Algorithm which incorporates adaptive learning rates to control the variance of the loss estimators.
This leads to an improved regret bound of O(min{y/SKTp, Sv'KT}) where p captures the variance of the
estimators associated with the near-optimal base.
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A Appendix

A.1 Proof of Theorem [3.1]

Let t5 be the time when the s-th switch of the best arm happens and tg41 — 1 = T, tg = 1. Also let
ts+1 —ts = Ts. For any t, for all s € [0,.5], the S-switch regret can be expressed as

T s top1—1
RS(T) = Y Efi(a)] =3 min > h(k)
t=1 s=0""° t=t
T T T S tep1—1
= Elli(arn)] = D E [h(agnt)] + D E [liagnt)] - krrél[rfl( Z Li(k (16)

t=1 t=1 t=1

in which the first two terms are closely related with the regret from the master algorithm against the near
optimal base hf, and the remaining terms are related with the regret from h' base algorithm against the
best arms in hindsight. We note that the algorithm does not need to know h' in prior and h' is brought
here only for regret analysis.

First we provide a bound for the following regret from base h':

T S ts41—1

ZIE [le(agpi)] — knénll(] Z ly(k

t=1 t=t.

+11

Let k3 = arg mingc (g Zt l¢(k) and e; x denote the unit vector with 1 at j-index and 0 at the rest of

K — 1 indices. Then, we have

ts41—1

Z E [li(asnt) — L(k2)]

ts+1—1
= E [(prnr — ers, k5 b)]
t=t,
tsp1—1 tsp1—1
S ST T >]
PEPK t—t, t=t,
s+1—1
<BT(K = 1)+ max E | Y (popr — Pl pi) | (17)
PEPK t=t

where the first term in the last inequality is obtained from the clipped domain P and the second term
is obtained from the unbiased estimator I}, ; such that E[l”m |Fio1] = E[l|Fi-1] Where F;_1 denotes the
natural filtration generated by the history up to round ¢ — 1. We can observe that the clipped domain

11



Published in Transactions on Machine Learning Research (10/2025)

controls the distance between the initial distribution at ¢t; and the best arm unit vector for the time steps
over [ts,ts+1 — 1]. Let

i’t+1,hT = arg min(p, lQ’,h+> + DFs(hT) (p, pt,hT)-
peERK

Then, by solving the optimization problem, for all k € [K] we can obtain
ﬁt+1,h'f(k) = Pt,ht (k) eXP(*f(hT) :/slht(k))

For the second term of the last inequality in equation we provide a lemma in the following.
Lemma A.1 (Theorem 28.4 and Eq. 28.11 in Lattimore & Szepesvari (2020)). For any p € Plﬁ( we have

t5+171 ts+171
Z (et — P, l;/,m> < DFg(hT)(p’ Pi,pt) + Z DFg(hf)(pt,hTapH—l,hT)'
t=ts t=ts

Proof. For completeness, we provide a proof for this lemma. Fix any p € Pﬁ. By the first-order optimality
condition of the unconstrained mirror-descent step,

(U i + VEenty(Pegr,nt) — VFe(nty(Pent)s P — Peyrnt) > 0.

This gives
(Prsrnt — DU i) S AVFent)y(Pegrnt) = VEeuty(Prpt)s P— Pigint)-

Using the definition of Bregman divergence,

(VFenty(Peg1,01) =V Fenty(Pent), P—Prs1,nt) = D

E(hf)(p7pt,h7)_DF

cnt) (p, DPt+1,nt )_DFs(m (pt+1,m » Pt nt )a

we obtain

<pt+1,h1‘ - pJZm) < DFg(m) (p, Pt,hT) - DFE(hT)(PvththT) - DFE(th)(thrl,hTapt,hT)' (18)

We now decompose
(Pept = DU i) = (Pent — Peyrnt> Up) + Pegrnt — D1 1)
Combining with equation [I§] yields

<pt,h1‘ 22 l;/,m> < <Pt,hf - pt+1,hT7l1lgl,hw‘> - DFE(W (pt+1,hTapt,h’f) + DF{(M)(P,Pt,hT) - DFg(m (P7Pt+1,m)-
(19)

Recall the unconstrained mirror step
Provn = argmind (1) + Dr (. pens) ).
By the first-order optimality condition,
Ut + VFent)yBry1nt) — VEnty(Pept) = 0. (20)
Taking the inner product of equation 20| with p; 1 — Py11 5t yields
(Pent = Pepints U i) = (Pent — Peints VEeuy(Pent) — VEnt)(Brs1,nt))- (21)
From the above, by using the definition of Bregman divergences, we have

(Pent = Prgints Wpt) = (Pent — Prsrnts VEenty@int) = VEFety(Bryint))
=Dr, .+ (Pes1.ntsPent) + Dr, 1, (Pe.nts Prs1nt) — Dr, .+, (P10t Pri1nt)

< DF:(M) (pt+1,hfapt,hf) + DFg(hT) (pt,h’f 715t+1,m)~ (22)

12



Published in Transactions on Machine Learning Research (10/2025)

Then from equation [19] and equation 22] we have

(Pent =PV pt) < Dry, (PPewt) = Dry iy (P Prsint) + Dr o (Pents Praant)-

&n
Summing over t = tg,...,ts41 — 1 gives a telescoping series in the middle terms:
tsy1—1 tst1
Y ot =2 1) < Dryy (PPnt) = Drgy (8,01 nt) + Y Dy (Pt Brrant)-
t=ts t=tg

Since D Fent) (P, Pt L nt) > 0 by the nonnegativity of Bregman divergences, the term can be safely dropped.

Therefore,
tepr1—1 tst1—1
Z (Pept — .U i) < Dr, o (P, Pe, pt) Z Dr, .+, (Pent, Preant),
t=tg t=ts
which concludes the proof. O

In Lemma [A7T] the first term is for the initial point diameter at time ¢y and the second term is for the
divergence of the updated policy. Using the definition of the Bregman divergence and the fact that p;_ (k) >
[, the initial point diameter term can be shown to be bounded as follows:

Dr, 1, (P, Py, nt) <

< s 0 p(k)og(1/pr, 1 (k)
) 2"

log(1/)
= el

Next, for the updated policy divergence term, using p;1 pt (k) = pg pt (k) exp(—f(hT)l;’m
we have

(23)
(k)) for all k € [K],

top1—1

; E[Dr,,;, (Ponts Prorit)]

) tzt: liE E(if)pt’“(’c) (exp(—€(hN4s (k) = 1+ (k) tm<k>)}

< _Ziﬂa S0 07

StsgléE:gii?;)] gg(h;)fn, o)

where the first inequality comes from exp(—x) < 1 — 2 + 22/2 for all > 0, the second inequality comes
from E[l}’, ; (k )2 | peni (k), pe(RY)] < 1/(pe(hT)psnt (K)), and the last inequality is obtained from p,(h') > «
from the clipped domain. We can observe that the clipped domain controls the variance of estimators. Then
from equation Lemma equation and equation by summing up over s € [S], we have

T S ts41—1
X Slog(1/8) | &(hT)KT
2B [l = 3 i, 2 ki) < BT(K = 1)+ == + =5 (25)

Next, we provide a bound for the following regret from the master:

T

T
ZElt atht ZE lt ath.
t=1 t=1

13
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Let P, ; = argmin,cgu (p, 1) + D, (p, p;) and ey, i denote the unit vector with 1 at base h-index and 0 at
the rest of H — 1 indices. For ease of presentation, we define I;(h) = l;(a; ;) for h € [H]. Then, we have

T T
> B [lan,) = (aent)] =Y E[(p, — ent i, b))
=1 t=1
t . ~ )
< maxE | (p—en k) +D (P~ P h)]
H t=1 t=1

> (- p,~lt>] : (26)

For bounding the second term in equation we use the following lemma.
Lemma A.2 (Theorem 28.4 and Eq. 28.11 in [Lattimore & Szepesvari| (2020)). For any p € Pg we have

T T
ElZ(m—p,M <E|Dg,(p,p1) + Y _ Dr,(Py Prs1)

t=1 t=1

Proof. For completeness, we provide a proof for this lemma. Fix any p € Pg. By the first-order optimality
condition of the unconstrained mirror-descent step,

(It + VE,(Pr41) — VE(Pr), P — Pes1) 2 0.
This gives
(Prr1 —p, 1) < (VE,(Pt41) = VE,(P), P — Pey1)-
Using the three-point identity for Bregman divergences,

(VE,(pt11) — VFy(pi), P — Pi+1) = Dr, (P, pt) — Dr, (P, Pt41) — Dr, (Pt41, 1),

we obtain
(P41 — 1) < Dp, (P, pt) — Dp, (P, Pi+1) — Dr, (Pes1,Pt).- (27)

We now decompose
(D — P, 1) = (Bt — Per1, 1) + (P — P, 1Y)
Combining with equation 27] yields

(Pt — P, 1) < (Pt — Pe41,1;) — D, (Pi41,P¢) + Dr, (P, Pt) — Dr, (P, Pr+1)- (28)
Recall the unconstrained mirror step
Pir1 = argnﬁn{ (li,uw) + Dp, (u, pt)}.
By the first-order optimality condition,
l;+ VE,(pt4+1) — VF,(p) = 0. (29)
Taking the inner product of equation 29| with p; — p;11 yields
(Pt — Pey1, 1) = (Pt — Peg1, VFy(pr) — VF,(Pes1))- (30)
From the above, by using the definition of Bregman divergences, we have

(Pt — Pey1, l£> = <Pt — Pe+1, VE(pe) — VFn(ﬁt+1)>
= Dr, (pt+1,Pt) + Dk, (Pt, Pr+1) — Dr, (Prt1, Prt1)
< Dr, (Pt+1,Pt) + Dr, (Pt, Pr+1)- (31)

14
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Then from equation 28 and equation [31] we have

(pt — p,1;) < Dp,(p,pt) — Dr, (P, Pt+1) + Dr, (Pt, Pes1)-

Summing over t = 1,...,T gives a telescoping series in the middle terms:
T T
Z ) < Dr,(p,p1) — Dr, (P, Pr+1) + Z Dp, (pt, Pr+1)-
t=1 t=1

Since Df, (p,pr+1) > 0 by the nonnegativity of Bregman divergences, the term can be safely dropped.

Therefore,
T

T
> (pt —p,1}) < Dp, (p,p1) + > Dr, (Pt Pra1),

t=1 t=1

which concludes the proof with E[Zfﬂ(pt -p )] = ]E[Z;‘ll(pt —p,1)]. O

From equation [26] and Lemma we have

T

T
Z lt atht ZE lt athT
t=1

t=1

T
< ol(H 1)+ max E | Dr, (p,p1) + > D, (py Brs1)
t=1
1 TH
gaT(H—1)+£+nT, (32)

where the last inequality is obtained from the fact that

1 p(h log(H
D (p.p0) =+ 3 plitog( L) < PEUD
helH) P n
and from
T T
E ZDF,,,(ptaﬁt-q-l = (1/n) Z Z pe(h)(exp(—nly(h)) — 1+ nli(h))
t=1 t=1 he[H]
N % nTH
/ 2
<Te 33wy | < T
t=1 he[H]

Therefore, putting equation equation and equation [32] altogether, we have

T S Ts41—1
Rs(T) = ZIE [le(at)] — 1<r£111<1K Z le(k
t=1 s=0
log(H) | nTH Slog(1/8) | &(W)KT
S aTH + =5 + 2 4 BT(K = 1)+ =5 o
— O(511/2{2’!2/3[{1/3)7

where a = K'/3/(T'V3HY?), 8 = 1/(KT), n = 1/VTH, () = (h))"?/(K'/3T%/3), bt = O(S), and
= log(T). This concludes the proof.

15



Published in Transactions on Machine Learning Research (10/2025)

A.2 Proof of Theorem

Let ts be the time when the s-th switch of the best arm happens and tg41 —1 = T, tg = 1. Also let
ts+1 —ts = Ts. For any t, for all s € [0,.5], the S-switch regret can be expressed as

T S tsp1—1
RS(T) = Yo Bli(a)] =) min > h(k)
t=1 s=0 t—tg
- a T S tsp1—1
= ;E [l (at,n, )] — ;E [lt(at,m)] + ;E [lt(at,m)] — kng{x;{ Z 1i(k (33)

in which the first two terms are closely related with the regret from the master algorithm against the near
optimal base h', and the remaining terms are related with the regret from h' base algorithm against the
best arms in hindsight.

First we provide a bound for the following regret from base hf. From equation we can obtain

tsp1—1 tsp1—1 tsy1—1
. 1
t; E [li(agpt)] — Jmin ; li(ks) < BTK + o E l ; (Pt — P, lt,m] : (34)

Then for the second term of the last inequality in equation [34] we provide a following lemma.
Lemma A.3 (Restatement of Lemma . For any p € Plﬂ( we can show that

T 1
210g(1/8) LT';’;U‘ ) 4 %\/L@;(h )|

top1—1

> E [<Pt,m - p, l;’,m} <E

t=ts

Proof. For ease of presentation, we define the negative entropy regularizer without a learning rate as

K

F(p) = _(p(i)logp(i) — p(i))

=1

and define learning rate & (h') = oco. From the first-order optimality condition for Dit1,nt and using the
definition of the Bregman divergence,

<pt+1,h’f - D, lzhﬁ

1
< ——(p— ,VF —VF
< ft(m) (p Dit1,nt (Pt+1,hf) (pt,hf)>
1
= m (DF(pa pt,h‘r) — Dr(p, pt+1,hT) - DF(pt+1,h1‘7pt,hT)) : (35)
Also, we have

1
<pt h* — Pt41,nt> lt,m>

€ (hT) <Pt bt — Pt+1,thF(Pt,hf) - VF(i’t+1,hT)>

1 - -
= ) (DF (P nts Pent) + DE(Pept Perant) — Dr(Per1nts Py nt))

1 -
L (hT) (DF(Pt+1,hhpt,hf) + DF(pt,hhpt—i-l,h’F))' (36)

<

I
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Then, we can obtain

tsy1—1 toy1—1
Z <pt,hT - b l;ihf> < Z <pt7h1‘ - pt+17h4r,lg7h1>
t=ts t=t,
ts41—1
* Z &( hT (P, Py, nt) — Dr(p, pt+1,hf) - DF(thrl,hT:pt,hT))
tsp1—-1 toy1—1 1 )
= _ 1 + D ’ < 7 )
t;ﬁ (Pent = Pryrnt Uipt) t:%ﬂ F(P: Py i) &(hT) €1 (hT)
1 1 tsy1—1
+ —F=Pr(p, — ——Dr(p, Do
R r(p Pts,m) &..1(h) (p Py, ht) Z & hT Pt+1 Rt ptlT)
ts41—1 tor1—1 ) )
S - ’l// + 10 1 ( —_ )
t:z;s (Pe,nt = Proa i b pt) + log( //5’)t:§1 &(T) &1 (1)
1 1 ts41—1
——D ——FF—D
+ &. () F(p, Pts,m) na(h) F(p; ptb+1,h1 Z & h’f Pt+1 ht> Pept)
top1—1 .
< 2log(1//3’) i Dp(Pynts Pryant)
&r(ht) & (ht)

1— 1
|KT **
= 2log(1/8) i;:

where the first inequality is obtained from equation

F(p; m,Pf+1 ht)
& (hT) ’

(37)

the second last inequality is obtained from

Dp(p,py i) < log(1/B) and 1/&(h') > 1/&_1(h') from non-decreasing p;(h'), and the last inequality
is obtained from equation Dp(p, p;, i) <log(1/p), and & (hT) > &r(hT) for s € [T] from non-decreasing

ps(hT).

For the second term in the last inequality in equation using Py 1 i (k) = pepi (k) exp(—€(hT)

all k € [K], we have

l//

t pi(K)) for

tap1—1 ts+1—1 K r
{ Dp(Pynt> Pri, m)} < 1 .
]E = E t k X t h t, k
tzts [ & (hT) tzt ; §t(h’f)pv’”( )(e p(=& (Al 1 (k)
L &1 (0)
t -1 K -
s+1 hT
< Z ZE §t(2 )pt7h’f(k)lg}ﬁ(k)2:|
t=ts k=1 L
tsr1—1 K -
&i(h) }
E
= tzt ; | 2p¢(hT)
tst1—1 K -
< S [
t=ts k=1 L
tsy1—1 K '1 Wi (h,T)
< X XE TR
t=t, k=1 L
WMKE [pT(hT)l/Q]
STS\/T > (38)
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where the first inequality comes from exp(—x) < 1 —x+22/2 for all z > 0, the second inequality comes from
B[y, (k )2 | pent (K),pe(RT)] < 1/(pe(RY)p; 41 (k)), and the third inequality is obtained from 1/p,(h") < py(hT).

O

Then from equation [34] and Lemma [A73] we have

t=1 s=0

2S1og(1/8) ,/KT’;‘ \/TSKpT ht) 1 (39)

Next, we provide a bound for the regret from the master in the following lemma.
Lemma A.4 (Lemma 13 in|Agarwal et al.| (2017)).

<BT(K—-1)+E

T

T
Hlog(T) pr(hT)
E [I4( E[li(agn)] <O —>—=+Tn) -E |- T(H —1).
; oeen) ; ) ( 7 " n) L%logT + o )

Proof. For ease of presentation, define I;(h) = l;(as 1) for h € [H]. Then

T T

ZE[lt(at,ht) —li(agpt)] = Z]E[@t — ent gy )]

t=1 t=1
T
Z<p — €t Ha + Z ]

=1

> (», ] (40)
XT: ] . (41)

Bounding the mirror-descent term. We next bound E[Zt@t - p, l2>] using the OMD analysis of
Agarwal et al.| (2017, Lemma 13). The master update is

~~
\ |
o

Py 1 = arg min {(p, ;) + Dg,, (p,p;)}
PEPYH

where Gy, (p) = Zthl ﬁ p(h)logp(h) and Dg, is the corresponding Bregman divergence. Applying the
standard mirror-descent inequality, for any p € Pg,

H

(p, — . b) < Da,, (p.p,) — Dy, (P pyy1) + D me(h) pe(h)* 1 (h)?. (42)
h=1
Summing over t = 1,...,T gives
T . T T H
> (p = 2.4) 3 (Day, (9.2) = Daty, (B 2sr)) + D0 D m(h) pi(h)* (). (43)
t=1 t=1 t=1 h=1

Bounding the potential differences. We first control the telescoping term in equation 43 Since
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Dg,, (-;-) > 0 and the learning rates 7;(h) are nondecreasing in ¢ for each h, we have

T T—-1 H

h
Z(DGTM b, pt DGm (p7 pt+1)> < DGm (p’ pl) + ZZ(WH—i(h) N Ut%@) h(l’j—(l()h)) ’ (44)
t=1 t=1h=1

where h(y) = y — 1 —logy > 0 is the log-barrier Bregman core. For the initial term, using that G, is
(scaled) negative entropy on the clipped simplex P% with a = 1/(TH), we obtain the standard bound

max Dg,, (p.p1) = 0<Hl()g;7(1/a)> = O<Hl?]gT>' (45)

Adaptive-rate gain (negative correction). By the adaptive schedule in Algorithm |2 1f h) > pi(h),
then pi41(h) = = (h) and 1;11(h) = yn(h) with v = el/logT
in (Agarwal et al., 2017, Lemma 13), this implies that whenever the coordinate h' is assigned too little
probability, the factor (% - W) is negative of order —1/(nlogT), and it multiplies the nonnegative

barrier increment h( (1 (T,I)T)) where h(y) = y — 1 — log(y). Aggregating these events over t = 1,...,T — 1

, while otherwise 77t+1(h) = n(h). As

yields
T—1 H T-1 +
0 L p(h!) __pr(hY)
¢ 1;(’““(“ m<h>) h(mﬂh)) = 2<ﬁt+1<m> m(hw) h(pm(m)) = 40nlog T’ (46)
= =1 t=

where pr(h') is the final density parameter maintained by the schedule. Combining equation equation
and equation 46} and for p € Pg, we obtain

(HlogT) ~_pr(h) (47)

D -D )=<o .
Z( GTIt p7pt Gnt(p’pt"’l) — n 407710gT

t=

—

Bounding the variance term. It remains to bound Zthl Z,Ile n¢(h) pe(h)? 1, (h)%. Recall that I;(h) €
[0,1/p:(h)] and only the sampled coordinate can be nonzero. Since each increase at least doubles the density
pt(h) and py(h) < 2TH from py(h) > o = 1/TH, the number of entire updates for each h is at most
Cylog(HT) for a constant C; > 0. This implies that n;(h) < nr(h) < ny“1 10g(2HT) < peC2 for a constant
C5 > 0. Therefore

T H T
Zznt(h)pt(h)wi(h)Q :Znt(ht)pt(ht)Qli(ht)Q < Tnr(h) = O(Tn). (48)
t=1 h=1 t=1

Putting the pieces together. Apply equation [£7] and equation 8] to equation then maximize over
p € Pg and take expectations. Combining with equation 41| yields

T T
HlogT pr(h7)
_ < _ PNt _
;E[zt(at,htn ;E[zt(at,m] < 0( ; ) + O(Tn) E[ WnlogT| + OTUH =D
which is the desired bound. ]

The negative bias term in Lemma [A]is derived from the log-barrier regularizer and increasing learning
rates 7:(h). This term is critical to bound the worst case regret which will be shown soon. Also, H log(T')/n is
obtained from H log(1/(Hc))/n considering the clipped domain. Then, putting equation[33Jand Lemmas

19



Published in Transactions on Machine Learning Research (10/2025)

and altogether, we have
T S Tsy1—1

= LBl -2 iy 2 bl

HlogT PT(hT)
< T —E|—/—
—O( N ") [40n10gT

+aT(H —1)+ BT(K —1)

2Slog(1/8)4/ %ﬁ(m) + ;\/SKTpT(hT)]

-0 (IE { SKTpT(hT)D —E [m

+E

where a« = 1/(TH), B=1/(TK), n=+/H/T, H =log(T), and h' = ©(S). Then we can obtain
Rs(T)=0 (mm {«/SKT 75\/KT}) ,

where O(SV/KT) is obtained from the worst case of pr(h'). The worst case can be found by considering a

maximum value of the concave bound of the last equality in equation |49 with variable pr(hT) > 0 such that
pr(h’) = ©(S). This concludes the proof.
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