
Volatility-Aware Masking Improves Performance and
Efficiency of Pretrained EHR Foundation Models

Anonymous Author(s)
Affiliation
Address
email

Abstract

Masked autoencoder (MAE) models are increasingly applied to electronic health1

records (EHR) as a pre-training method to learn general-purpose representations2

that support diverse downstream clinical tasks. However, existing approaches3

typically rely on uniform random masking, implicitly assuming that all clinical4

features are equally predictable. In practice, laboratory tests exhibit substantial5

heterogeneity in temporal volatility: certain biomarkers (e.g., sodium) remain6

relatively stable, whereas others (e.g., lactate) fluctuate considerably and are more7

challenging to model. To address this limitation, we propose Volatility-Aware8

Masking strategy (CV-Masking), a pretraining strategy that adaptively adjusts9

masking probabilities according to the intrinsic variability of each feature. Our10

experiments on a large panel of laboratory tests demonstrate that CV-Masking11

consistently outperforms both random and variance-based masking strategies,12

yielding improved downstream predictive performance and faster convergence.13

1 Introduction14

Foundation models are transforming healthcare research by enabling the learning of general-purpose15

representations from large-scale electronic health records (EHR) [10, 14]. Depending on the ar-16

chitecture and application, these models are pretrained using diverse strategies and architectures,17

including state-space models [4], generative modeling [13, 17], contrastive learning [7], or zero-shot18

transfer [15]. Among these approaches, masked autoencoders (MAEs) have emerged as a powerful19

framework for representation learning in EHR, reconstructing masked inputs from partially observed20

sequences [16]. For laboratory test modeling, MAEs are particularly relevant since they can accurately21

reconstruct missing values, not only reflecting representation quality but also enabling clinically22

meaningful applications such as decision support and risk prediction [2, 6, 16].23

However, existing MAE pretraining strategies almost exclusively adopt uniform random masking,24

implicitly assuming that all features are equally predictable. This is especially critical in clinical data25

such as lab values, where biomarkers differ substantially in their temporal volatility. For example,26

sodium levels remain tightly regulated, whereas lactate varies considerably during acute illness.27

Ignoring this variability can waste model capacity, slow convergence, and limit the clinical utility of28

learned representations.29

To address this gap, we propose Volatility-Aware Masking (CV-Masking), a pretraining strategy30

that adapts masking probabilities to the intrinsic variability of each laboratory test. Inspired by31

curriculum learning [3, 5] and informed masking policies [9, 11], CV-Masking focuses learning on32

less predictable signals, improving both efficiency and representation quality.33

Our contributions are threefold:34
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1. CV-Masking Strategy. A principled masking policy guided by the coefficient of variation35

(CV). By prioritizing inherently volatile laboratory values, CV-Masking creates a natural36

curriculum that directs learning capacity toward clinically uncertain signals.37

2. Value-Only Masked Autoencoder Objective (VO-MAE). We adapt the masked autoen-38

coder framework to a VO-MAE, where lab identifiers and timestamps remain visible while39

only results are masked. This design mirrors real-world clinical workflows—orders are40

observed, but outcomes are unknown—and encourages the model to learn meaningful value41

representations in temporal context.42

3. Comprehensive Empirical Validation. Using 100 high-frequency laboratory tests from43

MIMIC-IV [8], we show that CV-Masking (i) improves reconstruction accuracy on 71% of44

labs, (ii) enhances downstream prediction of in-ICU mortality, in-hospital mortality, and45

30-day readmission, and (iii) achieves up to 50% faster convergence compared to random46

masking. Perturbation analysis further demonstrates that CV-Masking promotes deeper47

reliance on patient-specific temporal context.48

These results demonstrate that integrating clinical volatility into masking strategies substantially49

improves the efficiency, robustness, and clinical relevance of MAE-based EHR foundation models.50

2 Methods51

2.1 Data and Preprocessing52

The experiments use data from the MIMIC-IV [8] critical care database, structured in the MEDS53

format [1]. This representation organizes a patient’s history into a sequence of (time, code, value)54

triplets, where each triplet represents a laboratory measurement with its timestamp, test identifier,55

and numeric result. To ensure robust statistical comparisons, our evaluation focuses on a fixed set56

of 100 target laboratory tests representing the most clinically relevant and frequently ordered tests57

in critical care settings. This selection follows established practices in clinical MAE literature and58

avoids statistical noise from rare or infrequently ordered laboratories.59

2.2 Architecture60

Our model follows an asymmetric encoder-decoder MAE framework, with a transformer encoder61

processing unmasked events and a lightweight transformer decoder reconstructing masked values62

(see Appendix Figure 3 for complete architecture details). The key innovation is our value-only63

masking objective: given input sequences of (time, code, value) triplets, we mask only the value64

components while preserving temporal and categorical context, enabling the model to focus learning65

on the challenging value prediction task. We apply a 25% masking ratio weighted by CV probabilities,66

ensuring a consistent training signal while focusing on high-volatility laboratories.67

2.3 Masking Policies68

We implement and compare three distinct masking strategies:69

• Random Masking (Baseline): Each lab value has a uniform masking probability, treating70

all tests as equally learnable.71

• Variance-Based Masking: Masking probability proportional to raw variance (σ2). This72

scale-sensitive approach overweights labs with large numerical ranges regardless of relative73

clinical volatility.74

• CV-Based Masking (Proposed): Our proposed principled approach where the masking75

probability is proportional to a lab’s Coefficient of Variation (CV), calculated as CV =76

σ/µ. The CV is a dimensionless measure of relative variability, making it well-suited for77

weighting heterogeneous lab tests. This enables the masking policy to prioritize labs that are78

unpredictable relative to their baseline, rather than those with large values. Masking weights79

are precomputed from training statistics and remain fixed.80
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3 Experiments and Results81

3.1 Intrinsic Evaluation: CV-Based Masking Systematically Improves Reconstruction82

To establish that principled masking strategies are needed, we analyzed which laboratory character-83

istics predict imputation difficulty. Evaluating reconstruction performance (R² score) against CV84

across 100 labs revealed that CV serves as a meaningful predictor of imputation difficulty (Pearson’s85

r = −0.486, p < 0.000001), with CV explaining 23.6% of variance in reconstruction performance.86

While the relationship shows expected variability across diverse laboratory types, this provides87

statistical support for using CV to guide masking strategies.88

CV-based masking consistently outperforms both baselines, achieving superior reconstruction on89

71.0% of laboratories compared to random masking and 68.0% compared to variance-based masking,90

with statistically significant improvements (p < 0.000009, Wilcoxon signed-rank test) exceeding91

chance expectation. Figure 1 demonstrates both the statistical foundation and systematic improve-92

ments across laboratory types.93

(a) Systematic Performance Gains (b) Top 10 Laboratory Improvements

Figure 1: CV-Based Masking Systematically Improves Reconstruction Performance. (a) System-
atic performance gains show CV-based masking wins on 71% of all 100 laboratories, demonstrating
systematic rather than random improvements. (b) Top 10 laboratory improvements with most signifi-
cant R² gains, sorted by magnitude.

Win rates: CV vs. Random (71.0%), Variance vs. Random (65.0%), CV vs. Variance (68.0%), all94

statistically significant after Bonferroni correction.95

3.2 Extrinsic Evaluation: Downstream Tasks Evaluation96

We evaluated pretrained encoders on three high-stakes downstream prediction tasks using linear97

probes on frozen representations. Following the evaluation protocol established in MEDS-Torch98

[12], we assess performance on in-ICU mortality, in-hospital mortality, and 30-day readmission99

prediction tasks. These tasks represent clinically meaningful outcomes with varying prediction100

horizons and class imbalance characteristics. The CV-based model achieves the highest performance101

across all tasks and metrics (Table 1). The substantial gains in AUPRC, a metric sensitive to minority102

class performance, are particularly noteworthy, suggesting learned representations better capture103

subtle patterns indicative of adverse clinical outcomes. The CV-based approach achieves an in-ICU104

mortality AUROC of 0.713, representing meaningful improvements over random masking (0.682)105

and variance-based masking (0.694) on this challenging clinical task.106

3.3 Mechanistic Analysis: CV-Masking Promotes Deeper Contextual Learning107

Analysis of reconstruction error against patient history reveals that CV-based masking more effectively108

leverages available context (see Appendix Figure 5). While all methods improve with more historical109

data, the performance gap between CV-based models and baselines widens as more patient history110

becomes available, indicating superior contextual learning.111
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Table 1: Downstream Task Performance on Clinical Prediction
Task Metric Random Variance CV-Based

In-ICU Mortality AUROC 0.682 ± 0.017 0.694 ± 0.017 0.713 ± 0.017
AUPRC 0.083 ± 0.009 0.091 ± 0.009 0.107 ± 0.009

In-Hospital Mortality AUROC 0.657 ± 0.014 0.668 ± 0.014 0.691 ± 0.014
AUPRC 0.124 ± 0.007 0.131 ± 0.007 0.149 ± 0.007

30-Day Readmission AUROC 0.618 ± 0.016 0.627 ± 0.016 0.648 ± 0.016
AUPRC 0.156 ± 0.008 0.162 ± 0.008 0.173 ± 0.008

To validate that CV-based masking learns meaningful patient-specific temporal patterns rather than112

simple memorization, we implemented a controlled perturbation experiment. We corrupted historical113

laboratory values with Gaussian noise while preserving target predictions and temporal context.114

CV-based models exhibited 2.1× greater performance degradation compared to random masking115

(9.8% vs 4.7% MAE increase, Figure 2), providing causal evidence that CV-based masking learns116

meaningful temporal patterns. See Appendix 4.3 for detailed methodology.117

Figure 2: Perturbation analysis demonstrates deeper contextual learning in CV-based models.
When historical laboratory values are artificially corrupted, CV-based models show 2.1× greater
performance degradation across representative laboratory types (n=10), indicating stronger reliance
on patient-specific temporal patterns. Notable effects in clinically critical markers: hematology
(Basophils, Monocytes), electrolytes (Sodium, Potassium), and metabolic indicators (Triglycerides).

4 Discussion and Conclusion118

Our results demonstrate that clinically-informed masking curricula are essential for EHR foundation119

models operating in complex healthcare environments. CV-Masking achieves consistent improve-120

ments across reconstruction, downstream prediction, and mechanistic analyses, establishing clinical121

volatility as a meaningful signal for guiding pretraining strategies. This work advances domain-122

aware self-supervised learning by moving beyond naive architectural adaptations toward principled123

integration of medical expertise into foundational model training.124

While our focus was on CV-Masking’s clinical impact, future studies should consider comprehensive125

ablation analyses to disentangle value-only masking contributions from CV-Masking policy effects.126

Such investigations could further illuminate the complementary roles of architectural choices and127

masking strategies across diverse clinical domains.128

CV-Masking offers a principled pathway toward more efficient and robust EHR foundation models129

while highlighting a broader insight: that aligning pretraining objectives with domain-specific charac-130

teristics can yield both performance and efficiency gains. As the field moves toward deployment-ready131

clinical AI systems, incorporating clinical knowledge into self-supervised objectives appears essential132

for developing models that are both technically sound and clinically meaningful.133
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Appendix187

4.1 Architecture Overview188

Figure 3: Value-Only MAE Architecture with CV-Based Masking. The complete workflow from
MEDS triplet input through pretraining to downstream fine-tuning. During pretraining, only labora-
tory values are masked while preserving temporal and categorical context. The lightweight decoder
reconstructs masked values using cross-attention between learnable mask tokens and encoded visible
representations. For downstream tasks, the frozen encoder provides contextualized representations to
task-specific classifiers.

Training Details: Models are trained with a masking ratio of 25%, using AdamW optimizer with189

learning rate 1e-4 and weight decay 0.05, for 100 epochs on NVIDIA A10 GPUs. We use a batch190

size of 256 and normalize laboratory values using z-score standardization computed per-lab across191

the training set. The model architecture consists of 8 encoder layers with 256 embedding dimensions192

and 8 attention heads.193

4.2 Computational Efficiency194

While variance-based masking required 100 epochs and random masking required approximately 66195

epochs to converge, CV-based masking achieved optimal performance in just 33 epochs - representing196

a 67% and 50% reduction in training time respectively. This efficiency gain likely stems from the197

principled curriculum learning effect [3, 5], where the model focuses computational resources on198

truly challenging prediction tasks rather than easy, low-variance tests.199

This efficiency gain likely stems from the principled curriculum learning effect of CV-based masking,200

where the model focuses computational resources on truly challenging prediction tasks rather than201

easy, low-variance laboratories.202

4.3 Detailed Mechanistic Analysis203

Historical Context Utilization: We analyzed reconstruction error as a function of available patient204

history, measuring performance across varying amounts of lab-specific history (prior occurrences205
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(a) Random Masking (66
epochs)

(b) Variance Masking (100
epochs)

(c) CV-Based Masking (33
epochs)

Figure 4: Training Efficiency Comparison. Training efficiency comparison across masking strate-
gies. CV-Masking converges in 33 epochs, representing a 50% reduction in training time compared
to random masking.

of the same test) and general patient context (timeline length). CV-based masking consistently206

shows superior contextual learning, with performance gaps widening as more historical data becomes207

available.208

(a) Error vs. Prior Lab Occurrences (b) Error vs. Training Frequency (Log)

Figure 5: CV-Based Masking Shows Superior Learning from Patient Context. (a) Performance
improves with more lab-specific history for all models, with CV-based model benefiting most. (b)
CV-based model maintains superior performance across all data availability levels.

Perturbation Stress Test: To validate meaningful learning vs. memorization, we implemented a209

controlled experiment corrupting historical laboratory values while preserving prediction targets.210

Experimental Protocol:211

• Corruption: Historical values of the same lab type corrupted with adaptive Gaussian noise:212

v′i = vi +N (0, σadaptive)213

• Noise scaling: σadaptive = std(vprior)× 0.6× (1 + 0.5)214

• Controls: Identical corruption (50% intensity, fixed seeds) for fair comparison215

• Preservation: Target values and temporal/categorical context unchanged216

Performance Measurement:217

Degradation =
MAEcorrupted − MAEoriginal

MAEoriginal
× 100%
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Results: CV-based models showed 2.1× greater degradation (9.8% vs 4.7%), indicating stronger re-218

liance on patient-specific temporal patterns across diverse laboratory categories including hematology,219

electrolytes, and metabolic markers.220
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