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Abstract

Masked autoencoder (MAE) models are increasingly applied to electronic health
records (EHR) as a pre-training method to learn general-purpose representations
that support diverse downstream clinical tasks. However, existing approaches
typically rely on uniform random masking, implicitly assuming that all clinical
features are equally predictable. In practice, laboratory tests exhibit substantial
heterogeneity in temporal volatility: certain biomarkers (e.g., sodium) remain
relatively stable, whereas others (e.g., lactate) fluctuate considerably and are more
challenging to model. To address this limitation, we propose Volatility-Aware
Masking strategy (CV-Masking), a pretraining strategy that adaptively adjusts
masking probabilities according to the intrinsic variability of each feature. Our
experiments on a large panel of laboratory tests demonstrate that CV-Masking
consistently outperforms both random and variance-based masking strategies,
yielding improved downstream predictive performance and faster convergence.

1 Introduction

Foundation models are transforming healthcare research by enabling the learning of general-purpose
representations from large-scale electronic health records (EHR) [10, [14]. Depending on the ar-
chitecture and application, these models are pretrained using diverse strategies and architectures,
including state-space models [4], generative modeling [13}[17]], contrastive learning [7]], or zero-shot
transfer [[15]. Among these approaches, masked autoencoders (MAEs) have emerged as a powerful
framework for representation learning in EHR, reconstructing masked inputs from partially observed
sequences [16]]. For laboratory test modeling, MAEs are particularly relevant since they can accurately
reconstruct missing values, not only reflecting representation quality but also enabling clinically
meaningful applications such as decision support and risk prediction [2} 16} [16]].

However, existing MAE pretraining strategies almost exclusively adopt uniform random masking,
implicitly assuming that all features are equally predictable. This is especially critical in clinical data
such as lab values, where biomarkers differ substantially in their temporal volatility. For example,
sodium levels remain tightly regulated, whereas lactate varies considerably during acute illness.
Ignoring this variability can waste model capacity, slow convergence, and limit the clinical utility of
learned representations.

To address this gap, we propose Volatility-Aware Masking (CV-Masking), a pretraining strategy
that adapts masking probabilities to the intrinsic variability of each laboratory test. Inspired by
curriculum learning [3} 5] and informed masking policies [9,[11]], CV-Masking focuses learning on
less predictable signals, improving both efficiency and representation quality.

Our contributions are threefold:
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1. CV-Masking Strategy. A principled masking policy guided by the coefficient of variation
(CV). By prioritizing inherently volatile laboratory values, CV-Masking creates a natural
curriculum that directs learning capacity toward clinically uncertain signals.

2. Value-Only Masked Autoencoder Objective (VO-MAE). We adapt the masked autoen-
coder framework to a VO-MAE, where lab identifiers and timestamps remain visible while
only results are masked. This design mirrors real-world clinical workflows—orders are
observed, but outcomes are unknown—and encourages the model to learn meaningful value
representations in temporal context.

3. Comprehensive Empirical Validation. Using 100 high-frequency laboratory tests from
MIMIC-1V [8]], we show that CV-Masking (i) improves reconstruction accuracy on 71% of
labs, (ii) enhances downstream prediction of in-ICU mortality, in-hospital mortality, and
30-day readmission, and (iii) achieves up to 50% faster convergence compared to random
masking. Perturbation analysis further demonstrates that CV-Masking promotes deeper
reliance on patient-specific temporal context.

These results demonstrate that integrating clinical volatility into masking strategies substantially
improves the efficiency, robustness, and clinical relevance of MAE-based EHR foundation models.

2 Methods

2.1 Data and Preprocessing

The experiments use data from the MIMIC-IV [§]] critical care database, structured in the MEDS
format [1]]. This representation organizes a patient’s history into a sequence of (time, code, value)
triplets, where each triplet represents a laboratory measurement with its timestamp, test identifier,
and numeric result. To ensure robust statistical comparisons, our evaluation focuses on a fixed set
of 100 target laboratory tests representing the most clinically relevant and frequently ordered tests
in critical care settings. This selection follows established practices in clinical MAE literature and
avoids statistical noise from rare or infrequently ordered laboratories.

2.2 Architecture

Our model follows an asymmetric encoder-decoder MAE framework, with a transformer encoder
processing unmasked events and a lightweight transformer decoder reconstructing masked values
(see Appendix Figure [3|for complete architecture details). The key innovation is our value-only
masking objective: given input sequences of (time, code, value) triplets, we mask only the value
components while preserving temporal and categorical context, enabling the model to focus learning
on the challenging value prediction task. We apply a 25% masking ratio weighted by CV probabilities,
ensuring a consistent training signal while focusing on high-volatility laboratories.

2.3 Masking Policies

We implement and compare three distinct masking strategies:

* Random Masking (Baseline): Each lab value has a uniform masking probability, treating
all tests as equally learnable.

* Variance-Based Masking: Masking probability proportional to raw variance (o). This
scale-sensitive approach overweights labs with large numerical ranges regardless of relative
clinical volatility.

* CV-Based Masking (Proposed): Our proposed principled approach where the masking
probability is proportional to a lab’s Coefficient of Variation (CV), calculated as CV =
o/u. The CV is a dimensionless measure of relative variability, making it well-suited for
weighting heterogeneous lab tests. This enables the masking policy to prioritize labs that are
unpredictable relative to their baseline, rather than those with large values. Masking weights
are precomputed from training statistics and remain fixed.
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3 Experiments and Results

3.1 Intrinsic Evaluation: CV-Based Masking Systematically Improves Reconstruction

To establish that principled masking strategies are needed, we analyzed which laboratory character-
istics predict imputation difficulty. Evaluating reconstruction performance (R? score) against CV
across 100 labs revealed that CV serves as a meaningful predictor of imputation difficulty (Pearson’s
r = —0.486, p < 0.000001), with CV explaining 23.6% of variance in reconstruction performance.
While the relationship shows expected variability across diverse laboratory types, this provides
statistical support for using CV to guide masking strategies.

CV-based masking consistently outperforms both baselines, achieving superior reconstruction on
71.0% of laboratories compared to random masking and 68.0% compared to variance-based masking,
with statistically significant improvements (p < 0.000009, Wilcoxon signed-rank test) exceeding
chance expectation. Figure|l|demonstrates both the statistical foundation and systematic improve-
ments across laboratory types.
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Figure 1: CV-Based Masking Systematically Improves Reconstruction Performance. (a) System-
atic performance gains show CV-based masking wins on 71% of all 100 laboratories, demonstrating
systematic rather than random improvements. (b) Top 10 laboratory improvements with most signifi-
cant R? gains, sorted by magnitude.

Win rates: CV vs. Random (71.0%), Variance vs. Random (65.0%), CV vs. Variance (68.0%), all
statistically significant after Bonferroni correction.

3.2 Extrinsic Evaluation: Downstream Tasks Evaluation

We evaluated pretrained encoders on three high-stakes downstream prediction tasks using linear
probes on frozen representations. Following the evaluation protocol established in MEDS-Torch
[[12]], we assess performance on in-ICU mortality, in-hospital mortality, and 30-day readmission
prediction tasks. These tasks represent clinically meaningful outcomes with varying prediction
horizons and class imbalance characteristics. The CV-based model achieves the highest performance
across all tasks and metrics (Table [I). The substantial gains in AUPRC, a metric sensitive to minority
class performance, are particularly noteworthy, suggesting learned representations better capture
subtle patterns indicative of adverse clinical outcomes. The CV-based approach achieves an in-ICU
mortality AUROC of 0.713, representing meaningful improvements over random masking (0.682)
and variance-based masking (0.694) on this challenging clinical task.

3.3 Mechanistic Analysis: CV-Masking Promotes Deeper Contextual Learning

Analysis of reconstruction error against patient history reveals that CV-based masking more effectively
leverages available context (see Appendix Figure [5). While all methods improve with more historical
data, the performance gap between CV-based models and baselines widens as more patient history
becomes available, indicating superior contextual learning.
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Table 1: Downstream Task Performance on Clinical Prediction

Task Metric Random Variance CV-Based
In-ICU Mortalit AUROC 0.682+0.017 0.694 +0.017 0.713 £0.017
y AUPRC 0.083 +£0.009 0.091 £0.009 0.107 = 0.009
In-Hospital Mortalit AUROC 0.657+£0.014 0.668 +0.014 0.691 = 0.014
p Y AUPRC 0.124+0.007 0.131+0.007 0.149 + 0.007
30-Dav Readmission AUROC 0.618+0.016 0.627 £0.016 0.648 = 0.016
Y AUPRC 0.156 £0.008 0.162 +£0.008 0.173 = 0.008

To validate that CV-based masking learns meaningful patient-specific temporal patterns rather than
simple memorization, we implemented a controlled perturbation experiment. We corrupted historical
laboratory values with Gaussian noise while preserving target predictions and temporal context.
CV-based models exhibited 2.1 x greater performance degradation compared to random masking
(9.8% vs 4.7% MAE increase, Figure [2), providing causal evidence that CV-based masking learns
meaningful temporal patterns. See Appendix [4.3]for detailed methodology.

Performance Degradation Under Context Corruption
CV-Based vs Random Masking
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Figure 2: Perturbation analysis demonstrates deeper contextual learning in CV-based models.
When historical laboratory values are artificially corrupted, CV-based models show 2.1x greater
performance degradation across representative laboratory types (n=10), indicating stronger reliance
on patient-specific temporal patterns. Notable effects in clinically critical markers: hematology
(Basophils, Monocytes), electrolytes (Sodium, Potassium), and metabolic indicators (Triglycerides).

4 Discussion and Conclusion

Our results demonstrate that clinically-informed masking curricula are essential for EHR foundation
models operating in complex healthcare environments. CV-Masking achieves consistent improve-
ments across reconstruction, downstream prediction, and mechanistic analyses, establishing clinical
volatility as a meaningful signal for guiding pretraining strategies. This work advances domain-
aware self-supervised learning by moving beyond naive architectural adaptations toward principled
integration of medical expertise into foundational model training.

While our focus was on CV-Masking’s clinical impact, future studies should consider comprehensive
ablation analyses to disentangle value-only masking contributions from CV-Masking policy effects.
Such investigations could further illuminate the complementary roles of architectural choices and
masking strategies across diverse clinical domains.

CV-Masking offers a principled pathway toward more efficient and robust EHR foundation models
while highlighting a broader insight: that aligning pretraining objectives with domain-specific charac-
teristics can yield both performance and efficiency gains. As the field moves toward deployment-ready
clinical Al systems, incorporating clinical knowledge into self-supervised objectives appears essential
for developing models that are both technically sound and clinically meaningful.
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Appendix

4.1 Architecture Overview
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Figure 3: Value-Only MAE Architecture with CV-Based Masking. The complete workflow from
MEDS triplet input through pretraining to downstream fine-tuning. During pretraining, only labora-
tory values are masked while preserving temporal and categorical context. The lightweight decoder
reconstructs masked values using cross-attention between learnable mask tokens and encoded visible
representations. For downstream tasks, the frozen encoder provides contextualized representations to
task-specific classifiers.

Training Details: Models are trained with a masking ratio of 25%, using AdamW optimizer with
learning rate 1e-4 and weight decay 0.05, for 100 epochs on NVIDIA A10 GPUs. We use a batch
size of 256 and normalize laboratory values using z-score standardization computed per-lab across
the training set. The model architecture consists of 8 encoder layers with 256 embedding dimensions
and 8 attention heads.

4.2 Computational Efficiency

While variance-based masking required 100 epochs and random masking required approximately 66
epochs to converge, CV-based masking achieved optimal performance in just 33 epochs - representing
a 67% and 50% reduction in training time respectively. This efficiency gain likely stems from the
principled curriculum learning effect [3, 5], where the model focuses computational resources on
truly challenging prediction tasks rather than easy, low-variance tests.

This efficiency gain likely stems from the principled curriculum learning effect of CV-based masking,
where the model focuses computational resources on truly challenging prediction tasks rather than
easy, low-variance laboratories.

4.3 Detailed Mechanistic Analysis

Historical Context Utilization: We analyzed reconstruction error as a function of available patient
history, measuring performance across varying amounts of lab-specific history (prior occurrences



206
207
208

209
210

211

212
213

214

215

216

2

7

(a) Random Masking (66 (b) Variance Masking (100 (c) CV-Based Masking (33
epochs) epochs) epochs)

Figure 4: Training Efficiency Comparison. Training efficiency comparison across masking strate-
gies. CV-Masking converges in 33 epochs, representing a 50% reduction in training time compared
to random masking.

of the same test) and general patient context (timeline length). CV-based masking consistently
shows superior contextual learning, with performance gaps widening as more historical data becomes
available.
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Figure 5: CV-Based Masking Shows Superior Learning from Patient Context. (a) Performance
improves with more lab-specific history for all models, with CV-based model benefiting most. (b)
CV-based model maintains superior performance across all data availability levels.

Perturbation Stress Test: To validate meaningful learning vs. memorization, we implemented a
controlled experiment corrupting historical laboratory values while preserving prediction targets.

Experimental Protocol:

* Corruption: Historical values of the same lab type corrupted with adaptive Gaussian noise:
U;‘ =v; + N(Oa Jadaptive)

* Noise scaling: cugapiive = 8td(Uprior) X 0.6 x (14 0.5)
* Controls: Identical corruption (50% intensity, fixed seeds) for fair comparison

* Preservation: Target values and temporal/categorical context unchanged

Performance Measurement:

MAEcorrupted - MAEori ginal

x 100%
MAEoriginal

Degradation =




218 Results: CV-based models showed 2.1 x greater degradation (9.8% vs 4.7%), indicating stronger re-
219 liance on patient-specific temporal patterns across diverse laboratory categories including hematology,
220 electrolytes, and metabolic markers.
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