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ABSTRACT

Vision-Language Models (VLM) can support clinicians by analyzing medical im-
ages and engaging in natural language interactions to assist in diagnostic and treat-
ment tasks. However, VLMs often exhibit ”hallucinatory” behavior, generating
textual outputs not grounded in contextual multimodal information. This chal-
lenge is particularly pronounced in the medical domain, where we do not only
require VLM outputs to be accurate in single interactions but also to be consistent
with clinical reasoning and diagnostic pathways throughout multi-turn conversa-
tions. For this purpose, we propose a new alignment algorithm that uses rule-
based representations of clinical reasoning to ground VLMs in medical knowl-
edge. These representations are utilized to (i) generate visual instruction tun-
ing data at scale, simulating clinician-VLM conversations with demonstrations
of clinical reasoning, and (ii) to derive a rule-based reward function that auto-
matically evaluates the clinical validity of VLM responses throughout clinician-
VLM interactions. Our algorithm eliminates the need for human involvement in
training data generation or reward model construction, reducing costs compared
to standard reinforcement learning with human feedback (RLHF). We apply our
alignment algorithm to develop Dr-LLaVA, a conversational VLM finetuned for
analyzing bone marrow pathology slides, demonstrating strong performance in
single and multi-turn medical conversations.

1 INTRODUCTION

Vision-language models (VLMs) (1–3), which integrate large language models (LLMs) (4–8) with
vision encoders, have demonstrated strong capabilities in answering complex questions that require
both visual and textual reasoning. In the medical domain, VLMs hold great promise—they could
serve as helpful assistants for clinicians, researchers, and trainees, providing an interactive natural
language interface for the analysis of medical images within clinical workflows (9–14). However,
the practical utility of present VLMs is significantly limited by their tendency to “hallucinate”. In this
context, hallucination refers not only to instances where the model generates responses ungrounded
in visual input but also to cases where, in multi-turn interactions, its responses are incoherent, con-
tradictory, or misaligned with diagnostic pathways and domain knowledge.

The currently predominant methods to reduce hallucinations in VLMs such as Reinforcement Learn-
ing from Human Feedback (RLHF) (15–18) are not well-suited for the multimodal medical context.
Using RLHF to align VLMs with visually-grounded clinical reasoning requires multimodal train-
ing data showcasing the reasoning process within multi-turn QA dialogues. These datasets are not
readily available in health systems. Synthesizing these datasets and collecting clinician feedback
on VLM responses is bottlenecked by the expertise of medical professionals. Unlike the LLaVA-
RLHF model in (18), which gathered human feedback from non-expert crowdworkers for simple,
common-sense visual QA tasks, this process cannot be scaled without the involvement of clinicians.
Due to these limitations, specialized medical VLMs like LLaVA-Med (9) and PathChat (2) have been
limited to supervised finetuning, relying on automatically generated QA tasks using image captions.
Moreover, both existing general-purpose and medical VLMs have only been finetuned for single-turn
QA, rather than for multi-turn conversations that convey complex and interactive clinical reasoning.
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In this work, we leverage the key insight that many
clinical reasoning pathways can be formalized as
a hierarchical set of rules. This formalization en-
ables the decomposition of ambiguous medical in-
quiries into a sequence of logical steps, where the
outcomes of earlier sub-analyses constrain the set
of permissible diagnoses in subsequent stages. For
instance, the example conversation in Fig. 1 fol-
lows a typical analysis workflow for bone marrow
pathology slides. It starts with an assessment of
image quality, then analyzes cell growth, identifies
the types of cells displaying growth, and ultimately
derives a final diagnosis. A good VLM should not
only arrive at a correct diagnosis but also provide
clinically consistent answers throughout the multi-
turn conversation. For example, if the model labels
an image as being of insufficient quality, we do not
want it to proceed to derive further diagnoses. Our

Is this patch quality good enough?

Yes, the patch is of good quality, making it suitable 
for diagnosis.

I'd like to take a closer look at the cells. Did you 
notice any indications of disease in the patch?

I have noticed a proliferation of certain cell types, 
which could be an early sign of blood cancer.

Which cell types exhibit an increased growth?

I can see a growth in Myeloblast cells.

I see. What is the diagnosis then?

The prevalence of Myeloblasts in this patient's 
blood sample is alarming, suggesting the 
possibility of Acute Myeloid Leukemia.

Rule-based clinical 
reasoning pathways

Figure 1: Rule-based clinical grounding. Using
rule-based models of diagnostic, we align conver-
sational VLMs with valid clinical reasoning.

proposed method leverages these rules to automatically synthesize finetuning datasets of realistic
multi-turn VLM-clinician conversations. Furthermore, we design a novel alignment algorithm that
extends the RLHF procedure by introducing a reward function that automatically evaluates VLM
responses, promoting accurate single-turn responses, while ensuring consistency with correct clin-
ical reasoning across the entire multi-turn dialogue. This enables us to adapt VLMs to multi-turn
imaging-based conversational diagnostic tasks, while eliminating the need for human involvement
in training data generation or feedback collection. Our method requires only a description of the key
clinical reasoning steps necessary to arrive at a specific diagnosis. Such information is for instance
readily available from clinical guidelines (19), which are abundant across medical domains (20–24).

We demonstrate the utility of our proposed algorithm by finetuning the LLaVA model (2) to develop
Dr-LLaVA, a VLM designed for diagnosing blood cancer using bone marrow pathology images. To
this end, we curated a dataset comprising 16,340 bone marrow image patches and generate cor-
responding multi-turn clinician-VLM conversations. Our results show that Dr-LLaVA outperforms
state-of-the-art VLMs in both single- and multi-turn conversational settings. Furthermore, ablation
experiments show that our instruction-tuning framework enables Dr-LLaVA to attain high robustness
to variations in question sequencing, and to outperform other baselines in identifying and correct-
ing erroneous information in clinician prompts. These findings underscore the value of integrating
clinical domain knowledge into fine-tuning approaches using a hybrid rule-based and data-driven
method, thereby developing trustworthy and accurate conversational assistants in medicine.

2 VISUAL INSTRUCTION TUNING WITH RULE-BASED CLINICAL
GROUNDING

Many medical diagnostic processes can be described using a relatively small number of logical rules
applied sequentially. Fig. 3(a) presents such a rule-based representation, constructed and adjudi-
cated by an expert pathologist, which outlines each step in the process for diagnosing blood cancer
based on bone marrow pathology slides. This decision tree delineates the valid reasoning pathways
that VLM responses must adhere to in order to maintain clinical coherence. Formally, we define

S = {(Low image quality) → Inconclusive, (High image quality ∧ No abnormality) → Healthy,

(High image quality ∧ Abnormality ∧ Plasma cell proliferation) → Multiple Myeloma, . . .}, (1)

as the subset of all decision rules S̄ that correspond to valid reasoning, determined by the represen-
tation in Fig. 3(a). Our instruction tuning framework leverages this rule-based representation to (a)
synthesize a dataset of clinician-VLM conversations, (b) automatically evaluate clinical consistency
of VLM responses, and (c) finetune the VLM to ensure clinical correctness and coherence (Fig. 2).

2.1 STEP 1: SYNTHESIZING CLINICIAN-VLM CONVERSATIONS

We synthesize clinician-VLM conversations using a dataset derived from bone marrow aspirate
(BMA) whole slide images, annotated by hematopathologists and sourced from the clinical archives

2
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Step 1: Synthesizing clinician-VLM conversations 

Input Image

• (Low image quality)  → Inconclusive

• (High image quality ⋀ Abnormality ⋀ Plasma cell 
proliferation) → Multiple Myeloma

• (High image quality ⋀ No abnormality) → Healthy

• (High image quality ⋀ Abnormality ⋀ Blast cell 
proliferation) → Acute Myeloid Leukemia

Valid rules

...
Annotations:

{High quality, Blast cells, AML}

GPT-4

Conversation template Rephrased conversation

Q: Is the patch quality 
adequate for analysis?

A: Yes, the quality is 
adequate

Q: Is the image quality 
good enough?

A: Yes it is

Step 2: Designing clinically-informed rule-based rewards

VLM responses in 
synthesized conversations

Q: Is the image quality good enough?

A: Yes it is

Q: Which cell type has increased growth?

A: Myeloblast cells

Q: What is the patient’s diagnosis?

A: Acute Myeloid Leukemia

Step 3: Finetuning the VLM for clinical correctness and consistency

Consistency reward

Correctness reward

Answers: 
{Yes, Myeloblast, AML}

Decision rule     : 
(High quality ⋀ Myeloblasts) → AML

Q: Is the image quality 
good enough?

A: High quality

Q: Which cell type has 
increased growth?

Q: What is the 
patient’s diagnosis?

A: Plasma cells

A: Multiple Myeloma

Sampled responses

Dr-LLaVA Rule-based reward model

Correctness & 
Consistency rewards

Figure 2: Pictorial depiction of the alignment algorithm (a) Multi-turn conversations consistent with rule-
based clinical reasoning are generated for each medical image, utilizing GPT-4 for diverse phrasing. (b) A
rule-based reward function evaluates VLM responses, checking individual correctness and clinical validity. (c)
Using the dataset from (a) and the reward model from (b), a pretrained VLM is finetuned via RL.

of an academic medical center. The dataset includes images indicative of various conditions: blood
contamination, particle-enriched contamination, acute myeloid leukemia, multiple myeloma, and
healthy states. For each image, we use the hematopathologist’s annotations to select the rule from
S that describe the corresponding diagnostic analysis. These rules are then used to construct a
multimodal instruction tuning dataset D = (Ii, Xt

i , Y
t
i t)i, where each image Ii is paired with

multi-turn clinical conversations Xt
i , Y

t
i . Each Xt

i represents the t-th clinician prompt, and Y t
i is

the corresponding target response, generated by applying textual templates to the image annotations
for the respective analysis step (e.g., image quality, cell types, diagnoses). The conversations consist
of five question-answer pairs that follow the diagnostic analysis process. To enhance diversity, GPT-
4 is employed to generate paraphrased prompts and responses, followed by a rigorous evaluation
to ensure no hallucinations are introduced within the template set. An illustration of this dataset
synthesis process is provided in Fig. 2. This dataset serves as the basis for our instruction-tuning
framework, which combines supervised finetuning and reinforcement learning.

2.2 STEP 2: DESIGNING CLINICALLY-INFORMED RULE-BASED REWARDS

In contrast to standard RLHF approaches that rely on human feedback to evaluate ambiguous qual-
ities of model outputs (18; 17; 25), our conversational diagnostic system leverages ruke-based rep-
resentations (Fig. 3) to convert complex diagnostic questions into a sequence of discrete decisions.
This approach enables us to define an efficient keyword-matching algorithm that evaluates VLM
responses against specific terms associated with a limited set of admissible answer categories in the
decision tree. This facilitates automated evaluation without costly human annotation. A comprehen-
sive list of keywords is provided in Appendix Table B.5.

Given this discrete categorization, we define a reward model that assesses both the correctness of
model responses and their alignment with valid clinical reasoning. For an input image Ii and a
sequence of prompted VLM outputs (Xt

i , Ŷ
t
i )t, we compute the reward function as:

R((Ŷ t
i , Y

t
i ), . . . , (Ŷ

T
i , Y T

i )) =
1

T

T∑
t=1

RC(Y
t
i , Ŷ

t
i )︸ ︷︷ ︸

Correctness of responses

+ λ ·RS({Ŷ t
i }t)︸ ︷︷ ︸

Consistency with valid reasoning

+Rl −Rm.

(2)

Here, RC evaluates the accuracy of individual model responses against ground truth, while RS(.)
assesses whether the VLM’s answer sequence aligns with a clinically valid reasoning path. In par-
ticular, the rule-based reward function RS(.) maps the VLM textual outputs {(Xt

i , Ŷ
t
i )}t to a rule

ŝi ∈ S̄, and then assigns a reward if the rule is valid, i.e., ŝi ∈ S ⊂ S̄. The hyperparameter λ
balances correctness and consistency rewards.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Image Quality?

LowHigh

Cell Quality?

AdequateBloodClot

Abnormality?

NoYes

Cell Proliferation?

Plasma CellsBlast Cells None

Diagnosis?

Multiple MyelomaAcute Myeloid Leukemia Healthy Inconclusive

(a) Rule-based representation of clinical reasoning in blood cancer diagnosis

Input Image

(b) Decision rules to generate and evaluate the validity of clinical reasoning processes

• (Low image quality)  → Inconclusive

• (High image quality ⋀ Abnormality ⋀ Plasma cell 
proliferation) → Multiple Myeloma

• (High image quality ⋀ No abnormality) → Healthy

• (High image quality ⋀ Abnormality ⋀ Blast cell 
proliferation) → Acute Myeloid Leukemia

• (Low image quality)  → Acute Myeloid Leukemia

• (High image quality ⋀ Abnormality ⋀ Plasma cell 
proliferation) → Healthy

• (Low image quality ⋀ No abnormality) → Healthy

• (High image quality ⋀ Abnormality ⋀ Blast cell 
proliferation) → Healthy

Valid decision rules

Invalid decision rules

...

...

Input Image

Conversational 
dataset

Synthesizing 
clinician-VLM 
conversations

Reward 
evaluation

Figure 3: Depiction of our rule-based representation of clinical reasoning in blood cancer diagnosis.

In addition to the correctness and consistency rewards, we use two additional penalties to counteract
reward-hacking, similar to (18). First, the penalty term Rm reduces scores for outputs that remain
ambiguous and cannot be clearly categorized for a given analysis step. This penalty is quantified by
the proportion of ambiguous answers within a conversation. Second, to address the potential for the
rule-based rewards to encourage either overly verbose responses that incidentally include relevant
keywords, or overly concise, keyword-dense answers, we implement a length-based penalty Rl

to discourage significant deviations between the length of the VLM’s answer and the target answer
length. This approach is designed to promote a conversational style that is both natural and engaging.

2.3 STEP 3: FINETUNING THE VLM FOR CLINICAL CORRECTNESS AND CONSISTENCY

We employ a two-stage approach to optimize the VLM for clinical tasks. First, we perform super-
vised finetuning (SFT) to obtain the initial policy model πϕ

SFT. To do so, we use the LLaVA architec-
ture (26; 18) and jointly instruction-tune a vision encoder and a pre-trained LLM using token-level
supervision to derive a supervised fine-tuned (SFT) model πϕ

SFT. Following prior work (2; 26), the
model is trained based on the LLMs original autoregressive training objective. Specifically, for an
answer sequence of length T , we compute the probability of the target answer as

p(Y t
i |Xt

i , Ii) = ΠT
t=1π

ϕ
SFT(yj |Ii, {X

t′

i , Y
t′

i }t′<t) (3)

where yj refers to the current prediction token in the answer sequence and {Xt′

i , Y
t′

i }t′<t refers
to the tokens in the previous parts of the answer sequence. Throughout this process we keep the
vision-encoder fixed and update the weights of the projection layer and the language model to adapt
to the clinical domain.

Subsequently, we refine this model using Reinforcement Learning (RL) based on our automatically
evaluated rule-based rewards. In the RL stage, we treat πϕ

SFT as our initial policy model and train
it to generate responses that maximize the reward function R, which assesses clinical correctness
and consistency. Following (17; 18), we implement Proximal Policy Optimization (PPO) (27) with
a per-token Kullback-Leibler (KL) penalty to mitigate reward hacking. This penalty constrains the
divergence of the RL-tuned model from that of the SFT model. Given a dataset of medical images,
clinical analysis prompts, and their respective answers DRL = {(Ii, {Xt

i , Y
t
i }t)}i we define the full

finetuning loss as:

L(πϕ
RL) = −E(I,X,Y )∈DRL,Ŷ∼πRL(Ŷ |I,X)

[
R({Ŷ t, Y t}t)− β ·DKL(π

ϕ
RL(Ŷ |I, X)∥πϕ

SFT(Ŷ |I, X))
]

Notably, unlike previous RLHF methods (18), our loss function L(πϕ
RL) is computed over the entire

multi-turn conversation, as the consistency reward in (2) is evaluated using the full sequence of
model responses.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 RELATED WORK

Vision-Language Models for medicine. Large Language Models (LLMs) (4; 8; 28–31; 5; 6; 32; 33)
have excelled in generating high-quality textual responses across diverse tasks, fueling advance-
ments in chat-based AI assistants (7; 34). Recent work has extended these models to handle multi-
modal image-text data (35–37), which has led to the emergence of powerful vision-language models
(VLM) including OpenFlamingo (38), MiniGPT-4 (39) and LLaVA (9). In the medical domain, the
integration of images and texts has been explored in areas such as ultrasound (40; 41), pathology
(42; 12), and radiology (43; 44), typically utilizing modality-specific vision encoders. Additionally,
recent studies have proposed models that directly finetune state-of-the-art VLMs for medical appli-
cations including Med-Alpaca (45), Med-Flamingo (46) and LLaVAMed (9). However, these models
solely leverage instruction-tuning with token-level supervision, which can lead to misalignment be-
tween image and text modalities, resulting in outputs insufficiently grounded in the visual context
(18). Moreover, such approaches do not regularize the model outputs on a conversation-level by
incorporating domain knowledge on diagnostic pathways.

Hallucination in generative models. In the Natural Language Processing (NLP) literature, ”hallu-
cination” is defined as the phenomenon where a model generates content diverging from the original
source material (47). With the advent of advanced LLMs, this definition has expanded. As noted in
(48), hallucination can manifest in three distinct ways: 1) Input-conflicting hallucination, observed
in scenarios like machine translation and summarization, where the model’s response alters or mis-
interprets the static context of the user’s prompt (49–52); 2) Context-conflicting hallucination, where
the model’s output contradicts its previous responses (53; 54); and 3) Fact-conflicting hallucination,
in which the generated content conflicts with established factual knowledge (55; 56). Our finetun-
ing framework represents a novel approach to address context-conflicting hallucinations, which are
particularly important in clinical applications (54; 57; 58). This is because medical practitioners
adhere to stringent logical processes in diagnosis and avoid conclusions that contradict previous
observations (59). Therefore, a VLM that accurately identifies the final diagnosis but fails to cor-
rectly respond to preceding observation-related questions would be deemed unreliable (60). Similar
to prior work, our reward model in (2) addresses input- and fact-conflicting hallucination, but is
distinguished by inclusion of the rule-based reward RS to address context-conflicting hallucination.

Addressing misalignment in Vision-Language Models. Reinforcement Learning from Human
Feedback (RLHF) (17; 16; 61; 62) is a predominant paradigm for aligning VLM outputs with spe-
cific domain requirements or general human preferences. This method relies on preference data from
human labelers to train a reward model, which is then used to fine-tune the VLM using reinforce-
ment learning techniques such as Proximal Policy Optimization (PPO) (27). Our work is particularly
related to approaches in the AI safety literature that aim to incorporate rule-based reward specifi-
cations into the alignment procedure (63; 64). For example, Sparrow (63) defines explicit rules to
obtain more concrete feedback from human labelers and incorporates rule adherence into the train-
ing process. However, their method still requires fitting a general preference model using human or
AI feedback, and their focus is on enhancing safety behavior. In contrast, we leverage rule-based
specifications to concretize questions and enable automatic response labeling, eliminating the need
for human-generated preference data. This approach not only reduces reliance on expensive special-
ist annotators but also improves model performance in terms of consistency in clinical reasoning. To
the best of our knowledge, our work is among the first to apply RL-based fine-tuning to VLMs in the
medical domain. We introduce a novel RL framework tailored to medical decision-making contexts
by using an automatic reward function that explicitly incorporates adherence to clinical reasoning
pathways into the alignment procedure.

4 EXPERIMENTS

We use our finetuning algorithm to develop Dr-LLaVA, a conversational VLM specialized in analyz-
ing bone marrow pathology slides. In this Section, we describe our training and evaluation setup,
and compare the performance of Dr-LLaVA with state-of-the-art VLMs in diagnosing blood cancer.

5
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Table 1: Performance comparision with VLM baselines in single and multi-turn conversational
settings. Metrics include Question-level Accuracy (AQ), Conversation-level Accuracy (AC), and
Diagnostic Accuracy (AD). Dr-LLaVA outperforms baselines across all settings.

Model Single-turn QA Results Multi-turn QA Results Diagnosis First Improvised Interaction
AQ AD AC AQ AD AC AQ AD AC AQ AD AC

LLaVA-0-shot (2) 16.5 12.6 0.0 15.2 11.0 0.0 16.7 12.6 0.0 14.7 12.3 0.0
OpenFlamingo-SFT (38) 60.5 55.8 31.3 81.4 69.9 46.4 65.2 55.2 40.3 70.0 72.0 41.2
LLaMA-Adapter-SFT (67) 68.6 70.2 37.8 70.4 75.4 42.5 65.2 74.6 40.2 66.4 70.0 43.5
MiniGPT-4-SFT (39) 64.1 50.0 32.9 75.8 75.4 44.2 66.2 50.0 40.8 72.2 71.4 41.6
LLaVA-Med-SFT (9) 78.2 76.5 55.6 91.2 90.3 85.6 86.2 82.2 70.8 85.4 81.3 71.6
LLaVA-SFT (2) 77.4 77.3 47.6 92.4 91.8 90.1 83.1 76.9 67.5 82.0 76.9 74.6
Dr-LLaVA 89.6 84.7 70.0 93.6 92.0 90.8 88.9 85.9 84.4 92.0 89.0 87.4

4.1 EXPERIMENTAL SET-UP

Training details. As our study concentrates on the performance of the finetuning algorithm, we
base Dr-LLaVA on the same model architecture as LLaVA (2). Our LLM utilizes Vicuna-V1.5-
7b (5; 6; 33), paired with the pre-trained CLIP visual encoder ViT-L/14 at an image resolution of
256 × 256 (65). Grid features are employed both before and after the final transformer layer to
enhance the model’s integration of visual data. We use a linear layer to map image features into
the word embedding space, drawing on the pre-trained linear projection matrix checkpoints from
LLaVA. We then conducted supervised fine-tuning for four epochs.

During the RL phase, following (66) and (18), we initialize the value model based on the LLavA-
13B-based reward model. We use LoRA-based finetuning with a rank of 64 for both the attention
and feed-forward network modules. Consistent with (66), we use a batch size of 512 and normalize
the advantage across the batch for each PPO step. The peak learning rate was set at 3 × 10−5,
applying cosine decay, and gradients were clipped by their Euclidean norm with a threshold of 1.
Training was conducted through four complete rounds using our held-out RL data. For generalized
advantage estimation, we set both λ and γ to 1, and adopted a constant KL regularizer coefficient of
0.1. The Dr-LLaVA model was trained using four A100 80 GB GPUs.

We leverage 80% of our synthesized clinical multi-turn conversation dataset for supervised finetun-
ing and RL and use the remaining 20% for evaluation. We split the data at the conversation level
such that all question-answer pairs pertaining to a particular image belong to the same sample.

Baselines. We evaluate Dr-LLaVA against state-of-the-art VLMs including the LLaVA (2), Open-
Flamingo (38), MiniGPT-4 (39), LLaMA-Adapter (67) and LLaVA-med (9). Given the poor zero-
shot performance of these models in this specialized domain, we perform supervised finetuning for
all models on our synthesized conversational data over four epochs before evaluation on the test set.

Evaluation metrics. We evaluate model performance using three metrics: Question-level Accuracy
(AQ), Conversation-level Accuracy (AC), and Diagnostic Accuracy (AD). AQ measures the pro-
portion of correctly answered questions across all conversations, while AC represents the fraction
of conversations where all questions were answered correctly. AD assesses the model’s ability to
make a correct final diagnosis, independent of its performance in preceding analysis steps.

4.2 RESULTS

Dr-LLaVA outperforms VLM baselines in single and multi-turn conversations. We start by
evaluating Dr-LLaVA with single-question scenarios, focusing on instances where a clinician seeks
clarification on a specific step in the image analysis process, without the model having access to
prior conversational context. The results, detailed in Table 1, reveal that our finetuning algorithm sig-
nificantly boosts Dr-LLaVA’s performance across all metrics, outperforming state-of-the-art VLMs.
Specifically, Dr-LLaVA achieved a Question-level Accuracy of 89.6%, 11.4 percentage points higher
than the top baseline model, LLaVA-Med-SFT. Furthermore, Dr-LLaVA exhibited a 14.4 percent-
age point increase in Conversation-level Accuracy over the best baseline, even in the absence of
conversational context.
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Table 2: Performance under misleading clini-
cian prompts

Model Metric CQ-R CQ-W RQ-R RQ-W

LLaVA-SFT AQ 99.2 13.8 91.5 33.3
AD 99.3 13.6 99.8 31.3

Dr-LLaVA AQ 99.0 22.7 93.0 39.0
AD 97.9 33.7 98.6 48.6

Table 3: Impact of different reward model com-
ponents

Scenarios Single-turn VQA Multi-turn VQA
AQ Hcc AQ Hcc

Dr-LLaVA 89.6 22.5 93.6 5.4
Dr-LLaVA w/o Rc 32.4 1.5 52.1 0.0
Dr-LLaVA w/o RS 78.4 47.5 83.0 20.2
Dr-LLaVA w/o Rm 85.2 30.6 87.6 8.8
Dr-LLaVA w/o Rl 87.9 25.8 89.1 7.0
Dr-LLaVA w/o Rm/Rl 84.2 33.1 87.2 10.1

In multi-turn conversational settings, Dr-LLaVA consistently achieves the highest performance
among all models and across all metrics, demonstrating the robustness and reliability of our ap-
proach. These improvements underscore the effectiveness of our fine-tuning algorithm in ensuring
that answers are consistent with clinical reasoning. Furthermore, we observe that fine-tuning gener-
ally yields substantial performance improvements within this specialized domain. This is evidenced
by the markedly enhanced results of baseline models after undergoing supervised fine-tuning, in
contrast to the zero-shot application of the LLaVA model, which achieves below 20% across all
metrics.

These results are particularly noteworthy as they indicate that the benefits of our alignment proce-
dure extend beyond enhancing performance in the specific conversational settings used in training.
The clinical grounding provided by our framework equips the model with a more comprehensive un-
derstanding of the task, enabling superior performance even in the absence of conversational context.

Dr-LLaVA can handle diverse styles of interactions with clinicians. We further evaluate Dr-
LLaVA in a conversational context. To capture the diverse forms of possible interactions between
clinicians and VLMs, we assess all VLMs using 3 conversational scenarios: (1) Standard Interac-
tion (SI) adheres to the logical dialogue sequence in Fig. 3, starting with image quality assessment
and advancing through morphological analysis to reach a final diagnosis; (2) Diagnosis First (DF)
inverts the sequence in Fig. 3, where the clinician starts by asking about the patient’s diagnosis and
then interacts with the model to understand the reasoning behind it; (3) Improvised Interaction (II)
mimics the unpredictability of real-world interactions by randomizing the question sequence, pre-
senting questions in a non-linear and potentially repetitive sequence. This is implemented by ran-
domly sampling questions pertaining to a specific conversation with replacement.

Table 1 presents the comparative results. While LLaVA-SFT, LLaVA-Med-SFT, and Dr-LLaVA all
perform well in SI conversations, Dr-LLaVA significantly outperforms the baseline models in non-
traditional sequences, with performance gains ranging from 2.7 to 15.8 percentage points. Notably,
Dr-LLaVA achieves conversation-level accuracy that is 13.6 percentage points higher than the best
baseline in the Diagnosis First setting and 15.8 percentage points higher in the Improvised Interac-
tion setting. This superior performance underlines Dr-LLaVA’s advanced adaptive reasoning capabil-
ities, allowing it to extract critical information from conversational contexts effectively, regardless
of the question sequencing. The ability of our model to handle these varied conversational dynamics
shows its potential in realistic clinical settings where dialogues may not follow a predefined order.

Dr-LLaVA is better at correcting wrong hypotheses by clinicians. We also evaluate the perfor-
mance of the model in scenarios where physicians incorporate hypotheses into their prompts. Specif-
ically, we examine two types of queries: Confirmation Queries (CQ), in which clinicians seek model
validation for their (potentially incorrect) hypotheses, and Rationalization Queries (RQ), where clin-
icians provide (potentially flawed) explanations for their hypotheses and request guidance on subse-
quent diagnostic steps. The details for each query type are detailed in Appendix C.2.

Table 2 presents the accuracy of various VLMs in distinguishing between accurate and misleading
information, with “R” indicating clinician prompts containing correct information and “W” denoting
misleading prompts. All models demonstrate robust performance when clinician prompts include
accurate hypotheses. However, accuracy significantly declines across all models when prompts con-
tain misleading information. In these challenging scenarios, Dr-LLaVA consistently exhibits a higher
rate of disagreement with the misleading content compared to baseline models. This suggests that
our alignment algorithm enables the model to ground its responses more effectively in visual evi-
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Ground-truth synthesized conversation

A1: While the image contains a variety of cellular structures, it is not possible to definitively identify any 
irregularities

Q1: Can you identify any irregularities in the image patch?
A1: The image patch displays patterns indicative of malignancy.

Q2: What is the most likely diagnosis based on this image patch?
A2: The provided image patch displays signs of acute myeloid leukemia 

LLaVA zero-shot

A2: While I can see that the image patch contains a variety of cellular structures, it is not possible to definitively 
discern the potential condition represented in the image patch without further context or expert analysis

A1: The provided image patch contains no visible irregularities that can be used to diagnose a medical condition

LLaVA SFT

A2: The presented image patch indicates acute myeloid leukemia 

A1: The image patch displays patterns indicative of a medical condition.

Dr LLaVA

A2: The provided image patch displays signs of a potential blood cancer such as acute myeloid leukemia 

a

Dr-LLaVA without no match penalty

A: The image patch displays signs of kidney disease. 

Dr-LLaVA with no match penalty

A: The image patch reveals no evidence of blood cancer, confirming the 
patient's healthy  condition.

Q: Could you discern the potential condition represented in the image patch?b

Dr-LLaVA without length penalty

A: Multiple myeloma 

Dr-LLaVA with length penalty

A: The image patch displays signs suggestive of multiple myeloma.

Q: Can you determine the possible illness depicted in this pathology 
image patch?

c

Figure 4: Qualitative examples of diagnostic responses from the Dr-LLaVA model and baselines.

dence and clinical decision-making pathways, thereby enhancing its robustness against misleading
clinician queries.

Ablation study for different components of the reward model. We examine the impact of ex-
cluding various components of the reward model in (2). Our findings, shown in Table 3, indicate
that omitting either the correctness or consistency rewards significantly reduces predictive accuracy.
As expected, removing the correctness reward (Rc) improves answer consistency. This occurs be-
cause the model is then primarily driven to align with rule-based reasoning, disregarding the actual
correctness of the responses in the context of the visual input. Eliminating the length penalty (Rl)
and no-match penalty (Rm) results in moderate, yet noticeable declines in both accuracy and consis-
tency. Qualitatively, the absence of these penalties demonstrates their vital role in preventing reward
hacking and maintaining the integrity of medical dialogue. For instance, the removal of the no-
match penalty causes a marked deterioration in content relevance and accuracy, with the model
occasionally generating blatantly unrelated medical suggestions. An example of this is the inappro-
priate reference to renal conditions when analyzing bone marrow images (Fig. 4(b)). Additionally,
without the length penalty, the model tends towards producing brief, often incomplete responses as
observed in Fig. 4(c).

Balancing the correctness and consistency trade-
off. The hyperparameter λ in (2) balances the
model’s correctness in responding to individual
questions with the overall alignment of these re-
sponses to a valid reasoning process throughout a
conversation. Setting λ to a large value imposes
strong regularization on the conversational output,
potentially encouraging the model to adhere to valid
reasoning processes that are not grounded in the
input image. For example, the model might con-
sistently follow a (Low image quality → Inconclusive)
judgment regardless of the input image. Conversely,
setting λ = 0 reverts to the standard supervised
fine-tuning setup, where the model optimizes solely
for question-level accuracy but is likely to exhibit
context-conflicting hallucinations within conversa-
tions.

Figure 5: Impact of the hyperparameter λ.

Fig. 5 demonstrates the impact of the choice of λ on the model performance in terms of AQ and the
corresponding rate of context-conflicting hallucinations Hcc. Here, we define Hcc as the fraction
of conversations that map to invalid decision rules, i.e., Hcc = E[1{ŝ /∈ S}]. The plot shows
that increasing λ initially improves accuracy and consistency (quantified through Hcc) reaching an
optimal point beyond which further increases in λ lead to diminished accuracy. These findings
show that our alignment with valid clinical reasoning not only improves the model’s coherence and
trustworthiness, but can also improve the model accuracy on individual questions by regularizing
the entire conversational output using prior knowledge on diagnostic scenarios.
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5 CONCLUSION

Vision-language models (VLMs) hold the potential to become valuable tools for clinicians, re-
searchers, and trainees, offering an interactive natural language interface for medical image analysis
within clinical workflows. Yet, their utility is often compromised by the generation of “hallucinated”
outputs that deviate from sound medical reasoning, leading to a lack of trust in their responses. In
this paper, we introduce a novel alignment algorithm that finetunes VLMs by grounding them in
rule-based representations of medical image analysis processes. This approach ensures the produc-
tion of clinically valid and consistent responses across both single-turn and multi-turn interactions.
Utilizing this algorithm, we develop Dr-LLaVA, a VLM specifically tailored for analyzing bone mar-
row image patches. Our findings reveal that Dr-LLaVA not only excels in single-turn question-answer
scenarios but also demonstrates superior adaptability and accuracy in complex, multi-turn clinical
dialogues, outperforming other state-of-the-art VLMs. These results suggest that grounding VLMs
in structured medical analysis pathways enhances their overall clinical reasoning capabilities, mak-
ing them more robust to variations in question sequencing and resilient against misleading physician
hypotheses. Furthermore, this alignment strategy can be readily applied to various domains where
decision-making processes can be decomposed into logical sequences of substeps, such as numerous
medical tasks governed by clinical practice guidelines that codify diagnostic workflows.
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A DATA

A.1 ADDITIONAL MEDICAL CONTEXT

In this paper, we focus on the analysis of bone marrow pathology slides for the diagnosis of blood
cancer disorders. Specifically, our dataset contains 512x512 pixel images of 16,340 pathology
patches corresponding to healthy, inconclusive, acute myeloid leukemia, and multiple myeloma
cases. The process for the analysis of bone marrow pathology slides, involves multiple steps. A
pathologists has to first identify image regions that are deemed adequate for evaluation, excluding
cases with either too low image quality or where the presence of other cells (e.g. red blood cells)
prevents accurate medical diagnosis. Subsequently, the remaining adequate regions are examined to
determine if they exhibit characteristics indicative of cancerous tissue. Specifically, in bone marrow
aspirates, the assessment focuses on whether there is abnormal proliferation of cells in the regions
of interest. Depending on the type of cells proliferating, the patient may be diagnosed with a corre-
sponding hematological disorder. For instance, in our dataset, the uncontrolled proliferation of blast
cells is indicative of acute myeloid leukemia, while similar proliferation of plasma cells suggests
multiple myeloma.

A.2 GENERATING A MULTI-TURN CONVERSATION DATASET

The below section provides further details on the steps we took to derive a multimodal multi-turn
conversation dataset in this specialist problem domain.

Image data: We obtained whole pathology slide images sourced from the clinical archives of an
academic medical center. These were then segmented into 512x512 pixel patches1 and labelled
as either ”adequate for analysis”, ”particle-enriched contamination” or ”blood contamination” after
pathologist review. Subsequently we leveraged specialist software in order to obtain cell-counts,
based on which a pathologist labelled cases with a high increase in blast or plasma cells as acute
myeloid leukemia or multiple myeloma, respectively. Table A.4 details the distribution of the final
diagnosis corresponding to the image data.

Question Answer generation: Next, we utilize the rule-based representation of the bone marrow
pathology slide analysis process to create clinically meaningful multi-turn conversations. This is
accomplished by filling in question and answer templates based on the respective label for each
analysis step. To prevent our model from overfitting to specific expressions in these templates, we
increased the diversity of questions and answers by obtaining multiple question templates from our
clinical collaborators and using GPT-4 to paraphrase these templates. The respective prompts are
provided below:

Prompt for question paraphrasing: ”Perform X times augmentation of the following sentence, it
is for medical questions so make sure you preserve the meaning concisely.”

Prompt for answer paraphrasing : ”Perform X times augmentation of the following sentence, it
is for medical diagnosis so make sure you preserve the meaning concisely: ’sentence’. Also note
that the question is ’question’, also don’t repeat anything related to in response to the question, just
make sure the single sentence is grammatically correct and makes sense.”

Table A.4: Distribution of Final Diagnoses in the Pathology Slide Image Dataset
Diagnosis Number
Blood contamination 10083
Particle enriched contamination 3510
Acute myeloid leukemia 1531
Multiple myeloma 932
Healthy 284

1During training, we resize the image to a resolution of 256x256 pixels before feeding it into the image
encoder.
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B INSTRUCTION TUNING DETAILS

B.1 VLM RESPONSE LABELLING

In this work we leverage a simple rule-based reward model that evaluates the correctness of LLM
responses based on the presence of relevant keywords in their answer. The respective keywords are
depicted in Table B.5. For a certain keyword to be valid we require it to appear without negation.
An answer is classified as ’no match’ in case it does not contain any of the considered keywords for
the respective analysis step.

B.2 TRAINING DETAILS

As our study concentrates on the performance of the finetuning algorithm, we base Dr-LLaVA on the
same model architecture as LLaVA (2). Our LLM utilizes Vicuna-V1.5-7b (5; 6; 33), paired with the
pre-trained CLIP visual encoder ViT-L/14 at an image resolution of 256 × 256 (65). Grid features
are employed both before and after the final transformer layer to enhance the model’s integration of
visual data. We use a linear layer to map image features into the word embedding space, drawing
on the pre-trained linear projection matrix checkpoints from LLaVA. We then conducted supervised
fine-tuning for four epochs.

During the RL phase, following (66) and (18), we initialized the value model based on the LLavA-
13B-based reward model. We used LoRA-based finetuning with a rank of 64 for both the attention
and feed-forward network modules. Consistent with (66), we used a batch size of 512 and normal-
ized the advantage across the batch for each PPO step. The peak learning rate was set at 3× 10−5,
applying cosine decay, and gradients were clipped by their Euclidean norm with a threshold of 1.
Training was conducted through four complete rounds using our held-out RL data. For generalized
advantage estimation, we set both λ and γ to 1, and adopted a constant KL regularizer coefficient of
0.1. The Dr-LLaVA model was trained using four A100 80 GB GPUs.

We leverage 80% of our synthesized clinical multi-turn conversation dataset for supervised finetun-
ing and RL and use the remaining 20% for evaluation. We split the data at the conversation level such
that all question-answer pairs pertaining to a particular image belong to the same sample. We use
different prompt templates and rephrasing for the question-answer pairs in the training and testing
sets to ensure that the models do not over-fit to specific phrasing of the clinician-VLM conversations
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Table B.5: Keywords considered in rule-based reward model

Analysis Steps Classification Keywords

Image Quality
Assessment

High quality effective, appropriate, suitable,
sufficient, optimal

Low quality not, no, inadequate, unsuitable

No Match -

Cell Quality
Assessment

Adequate optimal, advantageous, suitable,
adequate, well, prime

Blood blood, RBC

Clot particles

No Match -

Cell Abnormality
Analysis

Normal normal, healthy, no abnormality

Abnormal cancer, disorder, malignancy

Inadequate low, subpar, inadequate

No Match -

Detailed Cell
Proliferation
Reasoning

Blast Cell Proliferation myeloblast

Plasma Cell Proliferation plasma cells

Normal no abnormal, no proliferation, normal

Inadequate low, subpar, inadequate

No Match -

Final Diagnosis

Healthy no malignancy phenotype, healthy

Acute Myeloid Leukemia acute myeloid leukemia, AML

Multiple Myeloma multiple myeloma, MM

Inconclusive low quality, inadequate

No Match -
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C EVALUATION

C.1 EVALUATION METRICS

To effectively assess the performance of our proposed model, we measure the accuracy of our model
at the question, conversation and diagnosis level.

1. Question-level Accuracy (AQ): This metric evaluates the model’s performance at the
single question level. It is obtained by dividing the number of questions answered correctly
by the total number of questions:

AQ =
Number of correct answers
Total number of questions

(4)

2. Conversation-level Accuracy (AC): This metric assesses the model’s accuracy at the con-
versation level. Here we only consider a VLM’s response as correct if it is able to correctly
answer all questions pertaining to a multi-turn conversation about a specific case.

AC =
Number of conversations with all questions answered correctly

Total number of cases
(5)

This metric asses the model’s capability to consistently provide accurate answers across all
questions within a multi-turn conversation, enabling the model to be a trustworthy com-
panion throughout the full image analysis process.

3. Diagnostic Accuracy (AD): This metric focuses solely on the VLMs’ responses to ques-
tions about the final diagnosis, as this is often the primary concern for medical decision-
makers:

AD =
Number of correctly answered diagnosis questions

Total number of cases
(6)

In conclusion, these three distinct levels of accuracy—AQ, AC , and AD—provide a comprehensive
evaluation of the proposed model’s effectiveness in handling different aspects of medical inquiries.
By breaking down the analysis to question, conversation, and diagnosis levels, we can better un-
derstand the model’s strengths and pinpoint areas for improvement in handling complex medical
scenarios.

C.2 EXAMPLE PROMPTS TO EVALUATE MODEL PERFORMANCE GIVEN CLINICIAN
HYPOTHESES

This section presents example prompts crafted to evaluate our model’s ability to respond to scenarios
where physicians incorporate hypotheses into their prompts. The prompts are divided into two
categories: Confirmation Queries (CQ) and Rationalization Queries (RQ).

CONFIRMATION QUERY (CQ) PROMPTS

Confirmation Queries aim to assess the model’s ability to validate clinician opinions. These queries
challenge the model to either concur with or contest a clinician’s judgment, which may be accurate
(CQ-R) or erroneous (CQ-W).

Example Prompt 1 (CQ-R): ”After reviewing the image, the clinician believes that [correct state-
ment]. Do you agree with this assessment?”

Example Prompt 2 (CQ-W): ”After examining the image, the clinician suggests that [misleading
statement]. Do you concur with this opinion?”

RATIONALIZATION QUERY (RQ) PROMPTS

Rationalization Queries present the model with a previous conclusion, which may be correct (RQ-
R) or incorrect (RQ-W), and ask about the next diagnostic steps. These queries assess the model’s
ability to correct incorrect hypotheses even when not explicitly prompted to do so.
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Example Prompt 3 (RQ-R): ”A previous clinician reviewed the image and concluded that [accurate
rationale]. Considering this, what would be your next step in the diagnostic process? [Question]”

Example Prompt 4 (RQ-W): ”A previous clinician interpreted the image and believed [erroneous
rationale]. With this in mind, how would you proceed with the diagnosis? [Question]”

C.3 ASSESSING HALLUCINATION RATES

In this work we focus on context-conflicting hallucinations, which we define as an answer that
deviates from the expected pathways outlined in the rule-based representation of the pathology slide
analysis process, as illustrated in 3. We use a rule-based reward model to classify the VLM responses
according to the possible choices within the rule-based representation of medical reasoning. This
allows us to quantify the proportion of answers that do not follow any logical trajectory within this
framework.
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