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ABSTRACT

We present Polite Teacher, a simple yet effective method for the task of semi-
supervised instance segmentation. The proposed architecture relies on the
Teacher-Student mutual learning framework. To filter out noisy pseudo-labels,
we use confidence thresholding for bounding boxes and mask scoring for masks.
The approach has been tested with CenterMask, a single-stage anchor-free detec-
tor. Tested on the COCO 2017 val dataset, our architecture significantly (approx.
+8 pp. in mask AP) outperforms the baseline at different supervision regimes. To
the best of our knowledge, this is one of the first works tackling the problem of
semi-supervised instance segmentation and the first one devoted to an anchor-free
detector. The code is available.

1 INTRODUCTION

The advent of deep learning transformed computer vision pipelines both in academia and industry.
However, progress is often hindered, since deep learning models are expensive to train for several
reasons. Leaving the hardware and computational expenses aside, the vast share of costs often comes
from providing the right amount of samples to learn from. For a number of supervised problems in
computer vision, it is relatively easy to obtain data. However, labelling them is often the real source
of expenses. Semi-supervised learning methods are tailored to deal with the situation in which there
are enough data samples, but access to the labels is severely limited.

Semantic segmentation (sometimes called dense classification) is a classical computer vision task
of assigning each pixel a category. This enables clustering images into semantically coherent parts.
Object detection is concerned with the location and identification of semantic objects on images.
Instance segmentation combines these two – it is concerned with locating and identifying enti-
ties with pixel-wise accuracy. While an intense research activity can be observed in the areas of
semi-supervised semantic segmentation (Tarvainen & Valpola, 2017; Chen et al., 2021) and object
detection Liu et al. (2021; 2022b), very little attention has been devoted to semi-supervised instance
segmentation methods in the computer vision community.

We propose Polite Teacher, a simple yet effective method for the task of semi-supervised instance
segmentation. The architecture is built on the Teacher-Student framework. Its politeness in the name
is an acronym for pseudo-label thresholding, which is concerned with filtering noisy pseudo-labels
in detection and mask heads. Our contribution is two-fold:

• We present Polite Teacher – one of the first works devoted to semi-supervised instance
segmentation and the first one devoted to modern anchor-free detectors. Our approach uses
mask scoring (Huang et al., 2019) for the pseudo-mask thresholding.

• The presented method significantly (approx. +8 pp. in mask AP) improves baseline per-
formance with different supervision regimes on COCO 2017 and sets the new baseline for
further comparison, becoming de facto the new state-of-the-art for this dataset.

The paper is organised as follows. Section 2 contains a comprehensive survey of related research.
In Section 3, we present the details of our method – Polite Teacher. The results of the evaluation are
discussed in Section 4, along with the detailed analysis and ablation studies. The paper is concluded
with a short summary in Section 5.
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2 RELATED RESEARCH

This section presents a comprehensive survey of areas adjacent to our work. We present recent
research in the area of instance segmentation. Then, we summarise the recent progress in semi-
supervised learning. Finally, we combine these two areas and briefly discuss the body of knowledge
for semi-supervised instance segmentation.

Instance segmentation. Instance segmentation is a computer vision problem concerned with
pixel-wise delineating instances of semantic classes. As it can be perceived as a combination of
object detection and semantic segmentation, the advances in instance segmentation are tightly cou-
pled with the two aforementioned tasks (especially the former). In recent years, two kinds of object
detectors were popular: single- and two-staged. A typical example of the latter category is Faster
R-CNN (Ren et al., 2015). It consists of the backbone feature extractor (eg. ResNet) and two heads:
the region proposals network (RPN) and the second one for final detections (RoI – the region of
interests head). The proposal candidates are searched on a pre-defined set of anchors using RPN
and they are later refined with the RoI head. He et al. (2017) introduced Mask R-CNN, which added
the mask head to Faster R-CNN to solve segmentation tasks on predicted bounding boxes. Mask
scoring (Huang et al., 2019) adds another head on top of that – it regresses the IoU (intersection
over union) score of the predicted masks to improve model robustness. Single-stage detectors try to
achieve the outcomes of the aforementioned architecture in a single pass. This often results in higher
speed at the expense of precision. A notable examples of such detectors include the YOLO family
(Redmon et al., 2016) or RetinaNet (Lin et al., 2017). More recently, Lee & Park (2020) proposed
CenterMask, an anchor-free instance segmentation framework targeted at real-time applications. It
is build on FCOS (Tian et al., 2020), which details are discussed in Section 3. The architecture of
CenterMask2 introduces spatial attention-guided masks (SAG-Mask) along with backbone feature
extractors tailored for instance segmentation. Recently, there is a surge of research on architectures
utilising the concept of self-attention (also called transformers). Dosovitskiy et al. (2021) intro-
duced the visual transformer (ViT), which successfully adapted self-attention to computer vision.
This seminal work has sparked research interest in transformers in the vision community. For in-
stance, DINO (Caron et al., 2021) adapts the Teacher-Student paradigm and self-supervised learning
for various vision tasks, such as object detection. Recently, MaskDINO (Li et al., 2022) added mask
prediction to DINO and topped several instance segmentation benchmarks. However, while display-
ing exceptional performance, solutions purely based on ViT suffer from quadratic computational
complexity, which hinders their adoption.

Semi-supervised learning. Semi-supervised learning techniques can be framed as a middle
ground between supervised and unsupervised learning since data with and without labels partici-
pate in the learning process. It is related to weakly supervised and self-supervised learning. Some
approaches to the problem of semi-supervised learning such as Γ model (Rasmus et al., 2015), Π
model or temporal ensembling (Laine & Aila, 2017) use the notion of self-ensembling. However,
more modern ones are focused on the non-standard architecture during the training phase, often
incorporating multiple subnetworks. For instance, Tarvainen & Valpola (2017) introduced Mean
Teacher, which is a popular semi-supervised training framework. It overcomes the limitations of
Temporal Ensembling and Π models. Instead of using the standard gradient-based approach, the
teacher is updated using the exponential moving average (EMA). Unbiased Teacher (Liu et al., 2021)
builds on top of the Mean Teacher framework – it does add focal loss and confidence thresholding
of pseudo labels. Focal loss borrowed from the work of Lin et al. (2017) helps with the class imbal-
ance, whereas confidence bounding box thresholding reduces the influence of noisy pseudo-labels.
The recent Ubiased Teacher v2 (Liu et al., 2022b) extends it to anchor-free detectors and tackles the
issue of the pseudo-labelling on bounding box regression. Besides the Teacher-Student paradigm,
there are also other approaches. Cross pseudo supervision for semantic segmentation (Chen et al.,
2021) is an example of a consistency regularisation method. Here, two networks are trained on the
output of each other and are penalised for discrepancies in predictions. Contrastive methods con-
stitute another approach to semi-supervised learning. For instance, regional contrast, abbreviated as
ReCo (Liu et al., 2022a) belongs to this category. While using the Teacher-Student framework, this
model introduces a dedicated loss function and utilises the semantic relationship between classes.
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Semi-supervised instance segmentation. Contrary to object detection and semantic segmenta-
tion, instance segmentation in the semi-supervised setting received little attention among scholars
so far. Concurrently to our work, Wang et al. (2022) presented Noisy Boundaries (NB). This frame-
work also uses the Teacher-Student paradigm and introduces different bounding box thresholds per
category, drawing from the work of Radosavovic et al. (2018). The NB architecture has also two spe-
cial features: the noise-tolerant mask head and boundary preserving re-weighting. While the noise-
tolerant head works with low-level resolution features to suppress the noise on mask boundaries, the
boundary preserving map is focused on highlighting the boundary region for the segmentation part.
At the time of writing this publication, the problem of semi-supervised instance segmentation with
anchor-free detectors has never been tackled in the literature.

3 POLITE TEACHER

This section is devoted to the introduction of Polite Teacher. First, we formulate the problem we
are solving – semi-supervised instance segmentation. Then, we introduce the architecture of our
solution – used detectors, the Teacher-Student learning paradigm, and pseudo-label thresholding.
The section is concluded with a detailed description of the used loss function.

Problem formulation. We consider the problem of semi-supervised instance segmentation. In-
stance segmentation is a computer vision task which combines object detection and semantic seg-
mentation. Semi-supervised setting means that only part of the data available during the training
phase is labelled. More formally, we consider training dataset D consisting of a set of Nsup labelled
(Dsup = {xi,yi}Nsup

i=1 ) and Nunsup unlabelled (Dunsup = {xi}Nunsup

i=1 ) images. Here, xi and yi stand
for images and their labels (instances categories along with their bounding boxes and masks) respec-
tively. Typically, Nunsup >> Nsup. In this work, we assume that Dsup and Dunsup come from the
same distribution.

3.1 ARCHITECTURE

The architecture of Polite Teacher depends on several components. The first one is the detector,
which is used twice due to the Teacher-Student paradigm. We use CenterMask (Lee & Park, 2020).
This is a single-stage anchor-free detector, which has a relatively simple architecture and therefore
it is easy to tune. Two such networks are then framed in the Teacher-Student paradigm to handle
both labelled and unlabelled data. Finally, two-fold pseudo-label thresholding takes place to remove
noisy ones. The first one uses bounding box uncertainty, and the second one rejects masks with an
estimated low IoU score.

Detector. To properly present CenterMask, FCOS should be discussed first. Tian et al. (2020)
introduced Fully Convolutional One-Stage Object Detector (abbreviated as FCOS), an anchor-free
object detector. In general, one-stage detectors due to the lack of the proposal generation phase have
fewer hyper-parameters to tune and therefore there are easier to train. Being anchor-free means elim-
inating pre-defined anchors, which diminishes the computational burden related to calculating IoU
scores. FCOS frames detection as a per-pixel prediction task, which resembles semantic segmenta-
tion. Three loss components are subject to optimisation: classification, regression, and centre-ness.
While classification works similarly to other detectors, the regression targets are quite different. In-
stead of predicting bounding box corners (like in e.g. Faster R-CNN), the four regressed values are
l (the distance from the centre of a bounding box to its left border), t (top), r (right), b (bottom).
Finally, the centre-ness denotes the centre of a given bounding box. Ground-truth centre-ness for
(l∗, t∗, r∗, b∗) is defined as follows:

centreness∗ =

√
min(l∗, r∗)

max(l∗, r∗)
× min(t∗, b∗)

max(t∗, b∗)
. (1)

Intuitively, this approach promotes bounding boxes which are located at the centre of a given object.

Lee & Park (2020) introduced CenterMask, which extends FCOS for the task of instance segmen-
tation. This is done similarly to how Faster R-CNN (Ren et al., 2015) is extended by Mask R-CNN
(He et al., 2017). However, there are some differences. For instance, the RoI assignment function
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Figure 1: Architecture of Polite Teacher (the unsupervised part).

is redefined due to the different levels of the feature pyramid (FPN) which are used. Instead of the
mask head from Mask R-CNN, CenterMask utilises the spatial attention-guided mask (abbreviated
as SAG-Mask). For x, which here mean features extracted from RoI align, the attention-guided
feature map is calculated as follows:

xsag = σ (conv3×3 (concat (Pmax, Pavg)))⊙ x, (2)

where σ denotes sigmoid function, conv3×3 is convolutional layer with 3 × 3 filter, Pmax and Pavg
are the results of max and average pooling, and concat stands for the concatenation.

Teacher-Student Learning. We adopt a 2-step training procedure. In the first step, the model
is trained using only labelled data (Dsup), which makes this part a standard supervised instance
segmentation. Instead of using a fixed number of batches for this step – as burn-in stage in Unbiased
Teacher (Liu et al., 2021) – we rather train it as long as it converges in terms of mask AP and take
the best model θ to ensure the highest results. Naturally, this step is expected to take longer with
a higher number of supervised examples. In the second step, mutual Teacher-Student learning with
pseudo-labels takes part. The best model from the first step is used and copied to be used as student
and teacher models (θs ← θ, θt ← θ). The model can be trained with the burn-in stage as well.

Teacher and student models receive the same input data – they are augmented differently, though.
The teacher receives moderately augmented images (weak augmentations – we use random flipping),
whereas the student consumes visibly perturbed images (strong augmentations – same as weak, plus
colour jitter, random grayscale, gaussian blur, and random patch erasing). During the training, the
predictions from the teacher model serve as pseudo-labels (bounding boxes with their classes and
masks) for the student. The teacher is updated using the exponential moving average – see equations
6 and 7 in the next subsection. Figure 1 illustrates the unsupervised part of the process (the second
step).

Pseudo-Label Thresholding. As the teacher is used to generate pseudo-labels ŷ in the semi-
supervision regime, they can be noisy – especially with a high share of unsupervised data. Therefore,
Polite Teacher uses two-step pseudo-label thresholding: one is concerned with bounding boxes,
whereas the second one refines the masks. Similarly to STAC Sohn et al. (2020) and Unbiased
Teacher (Liu et al., 2021), we introduce a bounding box confidence threshold – τcls. Bounding
boxes with a classification score smaller than τcls are discarded and not used further in the training.
The sigmoid output of the classification is treated here as confidence. Inspired by the work of Huang
et al. (2019), we also use a mask-scoring mechanism. It regresses the IoU values of the generated
masks and improves instance segmentation performance due to the prioritisation of more accurate
masks. While not directly designed for the task of semi-supervised learning, the output of this block
can be used for filtering noisy pseudo-masks in a straight-forward manner. That is, only masks
satisfying ŷIoU > τIoU are used in the unsupervised learning stage. The other ones are considered
uncertain and receive zero gradients.
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3.2 OPTIMISATION

The overall batch-wise loss L for supervised {(xi,yi)}
Bsup
i=1 and unsupervised {(xj , ŷj)}Bunsup

j=1 exam-
ples in a batch is computed as follows:

L =

Bsup∑
i

Lsup (xi,yi) + λ

Bunsup∑
j

Lunsup (xj , ŷj) , (3)

where Lsup is the loss of the supervised part, and Lunsup is the loss of the unsupervised part. The
unsupervised part is scaled by λ. The supervised component is calculated as follows:

Lsup (x,y) = Lsup
cls (x,y) + Lsup

centre (x,y) + L
sup
box (x,y) + L

sup
mask (x,y) + L

sup
IoU (x,y) , (4)

where Lsup
cls is the supervised classification loss, Lsup

centre is the supervised centreness loss, Lsup
box repre-

sents the supervised bounding box regression loss, and Lsup
mask is the supervised segmentation mask

loss, andLsup
mask IoU is the supervised segmentation mask scoring loss. Regarding the pseudo-labelling

loss, we use the following definition:
Lunsup (x, ŷ) = 1ŷcls>τclsL

unsup
cls (x, ŷ) + 1ŷIoU>τIoUL

unsup
mask (x, ŷ) + Lunsup

IoU (x, ŷ) , (5)
where Lunsup

cls is the unsupervised classification loss, Lunsup
mask is the unsupervised segmentation mask

loss, and Lunsup
IoU is the unsupervised segmentation mask scoring loss. Regarding the particular loss

functions implementation, we follow FCOS and CenterMask: Lsup
cls is focal loss (Lin et al., 2017),

Lsup
box is UnitBox IoU loss (Yu et al., 2016),Lsup

centre is binary cross-entropy loss,Lsup
mask is average binary

cross-entropy loss (He et al., 2017), and Lsup
IoU is L2 loss. The same losses are used for unsupervised

components (where applicable).

The student is trained using a standard stochastic gradient descent, whereas the teacher can be per-
ceived as an ensemble of the students:

θs ← θs − γ
∂ (Lsup + λLunsup)

∂θs
, (6)

θt ← αθt + (1− α)θs. (7)
Here θt and θs represent the teacher and student model parameters respectively and α is the EMA
coefficient (a hyperparameter). Following Liu et al. (2021), the teacher trained in such a way is
more robust to the sudden changes of decision boundaries caused by the minority classes in batches
– especially in the presence of pseudo-labels. An important practical implication of this is the fact
that there is no need to store gradients for the teacher model, which reduces GPU memory usage
(compared to simply training two models).

4 EVALUATION

This section describes the evaluation of Polite Teacher. We start with discussing the training setup,
implementation details, and dataset. Then, we present the result of our main experiment, which is
followed by the detailed analysis and ablation studies of particular components of Polite Teacher.

4.1 SETUP

Setup and implementation. All the experiments were performed either on a2-highgpu-4g
instances on Google Cloud Platform (4xA100, 40 GB RAM each) or various machines with 8 GPUs
(up to 16 GB RAM each) on the proprietary cluster (each of which contained Titan V, RTX 2080 Ti,
or Titan X GPUs). Polite Teacher was developed on CenterMask2 and Unbiased Teacher codebase
– both built on the Detectron2 framework (Wu et al., 2019).

Data and evaluation metrics. We evaluate Polite Teacher on the MS-COCO 2017 dataset (Lin
et al., 2014) using different supervision regimes (1%, 2%, 5% and 10% supervised). The supervised-
unsupervised split is taken from the Unbiased Teacher Liu et al. (2021) – while it was originally
meant to be used for evaluation of semi-supervised object detection, it can be used with our method
as well. We report evaluation results on val subset, as the test one is not publicly available. The
reported metric used in this study is mask mAP (mean average precision, simply called AP later
on), which is calculated as an average of AP with IoU thresholds set from 0.5 to 0.95 (with 0.05
intervals). Bounding box AP is also reported for selected experiments.
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Table 1: Results with ResNet50 backbone. Oracle results reported by Lee & Park (2020). The
results for two-stage detectors are taken from the work of Wang et al. (2022). Notice that it uses a
random split of the dataset – in particular, this is different from the one used by us. Therefore, these
results cannot be directly compared, but we report them in order to trace the comparison with their
baselines.

Architecture % supervised
1 2 5 10

Mask AP, single-stage detectors (oracle: 34.70%), COCO 2017 val, split from Liu et al. (2021)

CenterMask2 (Lee & Park, 2020) 10.07 13.46 18.04 22.08
Polite Teacher (ours) 18.33(+8.26) 22.28(+8.82) 26.46(+8.42) 30.08(+8.00)

Mask AP, two-stage detectors (oracle: 34.50%), COCO 2017 val, split from Wang et al. (2022)

Mask R-CNN (He et al., 2017) 3.5 9.4 17.3 22.0
DD (Radosavovic et al., 2018) 3.8 (+0.30) 11.8 (+2.40) 20.4 (+3.10) 24.2 (+2.20)

NB (Wang et al., 2022) 7.7 (+4.20) 16.3 (+6.90) 24.9 (+7.60) 29.2 (+7.20)

Hyperparameters. As base hyperparameters, we used the ones set in CenterMask2. The EMA
coefficient α for Teacher learning is set to 0.9996. The models were trained for up to 270,000
batches with stochastic gradient descent. We used batch size 32 (16 supervised and 16 unsupervised
samples) with a learning rate γ = 0.006, weight decay of 0.0001 and momentum 0.9. Similarly
to the CenterMask2, the learning rate has been decreased by a factor of 10 on steps 210,000 and
250,000. However, such a long training was often not necessary, as models overfitted on much
earlier stages. These experiments have been early stopped. Regarding the pseudo-label threshodling,
we used τcls = 0.6 and τIoU = 0.9. The unsupervised weight has been set to λ = 2. More details
on the last three values are in Section 4.3. We use ResNet-50 backbone (He et al., 2016) for all the
experiments.

4.2 RESULTS

Table 1 shows results for the main experiment conducted on MS-COCO 2017 validation dataset.
Polite Teacher reached 18.33/22.28/26.46/30.08 mask AP on 1%/2%/5%/10% respectively, which
stands for +8.26/+8.82/+8.42/+8.00 pp. change in this metric over the baseline CenterMask2 re-
spectively. Figure 2 presents qualitative results from different models created in this experiment at
different levels of supervision.

For the vast majority of our experiments, we thought that our method will be the first one devoted to
semi-supervised instance segmentation. The recent Noisy Boundaries (NB) approach (Wang et al.,
2022), a concurrent work to Polite Teacher, is also concerned with this problem and has been evalu-
ated on a similar percentage of supervision on COCO 2017. However, these are different splits. We
did not perform direct comparisons, as we were not aware of this work for the majority of our re-
search – we report these results for scientific integrity, though. In general, Noisy Boundaries reported
a smaller increase in the mask AP (especially with low supervision), although for fair comparison
such claims should be made after running the models on exactly the same supervised/unsupervised
data splits. It is also unclear how much of this difference can be attributed to the different detectors
(a two-staged Mask R-CNN has been used). Following Wang et al. (2022), we also report the re-
sults for Data Distillation (DD) method Radosavovic et al. (2018), which was evaluated jointly with
NB. It was developed for the task of omni-supervised (known also as webly-supervised) learning, a
special case of semi-supervised learning in which unlabelled data from the Internet are considered
during the training. At the heart of this approach lies the pipeline of different data transformations.
The results are later ensembled to provide pseudo-labels.
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(a) 1% supervised (b) 2% supervised (c) 5% supervised (d) 10% supervised

Figure 2: Qualitative Polite Teacher results on COCO 2017 val with different supervision regimes.

Table 2: Influence of bounding box filtering threshold (5% supervision).

Metric τcls
0.5 0.55 0.6 0.65 0.7 0.8 0.9

AP (box) 25.77 26.91 27.46 25.67 23.71 21.16 18.73
AP (mask) 24.14 24.97 25.32 23.92 22.25 20.03 17.65

4.3 DETAILED ANALYSIS AND ABLATION STUDIES

In this section, a detailed analysis of the influence of hyperparameters and ablation studies is pre-
sented. Unless otherwise specified, all the configuration is the same as in Section 4.1. All experi-
ments have been performed with the 5% supervision regime.

Influence of bounding box filtering threshold. In this experiment, we investigate the importance
of bounding box filtering thresholds. To separate the influence of sole bounding box filtering, we did
not include mask IoU in the optimisation – it is a subject of another experiment. That is,Lsup

IoU (xi,yi)
and Lunsup

IoU (xj , ŷj) has been not taken into account in equations 4 and 5 respectively. As it turns out,
even this significantly improves mask AP over baselines. Table 2 and Figure 3 (left) present AP val-
ues for this experiment. The bounding box threshold value with the highest bounding box and mask
AP was 0.6. Interestingly, this is a slightly smaller threshold than in the original Unbiased Teacher
paper (0.7). The difference might stem from the different neural network architectures (Faster R-
CNN vs CenterMask). Note that this experiment used suboptimal λ = 0.75 from Equation 3 and
hence the results are slightly worse compared to the following experiments. This is because the
experiment to determine the correct unsupervised loss weight was yet to be carried out at this point.

Influence of unsupervised loss weight. We also examine the influence of the weight of unsuper-
vised loss, which is denoted as λ in equation 3. Figure 3 (centre) and Table 3 presents detailed

7



Under review as a conference paper at ICLR 2023

0.5 0.6 0.7 0.8 0.9

18

20

22

24

26

28

τcls

A
P

bbox
mask

2 4 6 8

λ

0 0.2 0.4 0.6 0.8
τIoU

Figure 3: Results for experiments controlled for different hyperparameters values in the 5% super-
vision regime (see Section 4.3, as well as Table 2, 3, and 4).

Table 3: Importance of unsupervised loss weight (5% supervision).

Metric λ
0.5 1.0 1.5 2.0 2.5 3.0 4.0 8.0

AP (box) 26.29 27.50 27.30 28.45 27.63 27.41 27.08 21.88
AP (mask) 24.37 25.43 25.36 26.37 25.69 25.53 25.20 20.53

results of this study. Similarly to the previous experiment, we did not include Lsup
IoU (xi,yi) and

Lunsup
IoU (xj , ŷj) from equations 4 and 5 as the optimisation components. We used τbbox = 0.6, which

is the result of the previous experiment. The highest mask AP has been obtained at λ = 2.0. Inter-
estingly, in Unbiased Teacher, which is a similar architecture, this parameter was set to λ = 4.0.

Influence of mask scoring filtering threshold. In this experiment, we investigate the importance
of mask filtering threshold τIoU. We use τcls = 0.6 and λ = 2.0, as these two values provided
best results in the previous experiments. Figure 3 (right) and Table 4 present the detailed results of
this experiment. Compared to the results without mask scoring, the best value (τIoU = 0.9) yielded
insignificant differences in mask AP (+0.03 pp.) and bounding box AP (−0.03 pp.). Interestingly,
the conducted experiment displayed a convex-like U-shaped relationship between τcls and mask AP.
Passing all pseudo-masks resulted in the highest bbox AP, whereas filtering most of them yielded
the highest mask AP.

Ablation on pseudo-bounding box thresholding. For an ablation study, we compare the base-
line CenterMask model to the Teacher-Student with bounding box thresholding. Essentially, such
a model is very similar to Unbiased Teacher (Liu et al., 2021), which is proven to greatly improve
results for semi-supervised object detection. While raw CenterMask achieved 18.04% on 5% su-
pervision, Polite Teacher yielded 26.46% mask AP, which is a +8.42 pp. increase (see tables 1 and

Table 4: Influence of mask scoring filtering threshold.

Metric τIoU
0.0 0.5 0.6 0.7 0.8 0.9

AP (box) 28.60 27.13 27.34 27.31 28.16 28.42
AP (mask) 25.90 25.38 25.17 25.68 25.96 26.40
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Figure 4: Mean results for Polite Teacher training with 5% supervised data, with (orange, 4 runs)
and without (blue, 3 runs) mask scoring.

3). This suggests that much of the mask AP gain can be attributed to the Teacher-Student paradigm
with bounding box thresholding.

Ablation on pseudo-mask thresholding. In this ablation, we compare the model with bounding
box thresholding to the model with bounding box and mask thresholding (that is, Polite Teacher).
Judging only by mask AP, the influence of the pseudo-mask filtering threshold on the final results
can be easily neglected, as shown in Figure 3 (right). However, applying mask scoring resulted
in visibly faster convergence. The model with mask scoring reached 26% mask AP in 40k steps,
whereas the model without it needed 74K steps to reach the same value, which is almost two times
longer. The highest mask AP values have been reached at 47k (26.39%) and 99k step (26.37%)
respectively, which is also close to two times longer. The detailed figures for this run are in tables 3
and 4. In order to check the stability of this behaviour, we repeat these experiments (Figure 4).

Variance examination. Due to the computational limitations, we are not reporting results as a se-
ries of experiments with their means and standard deviations. However, to assess the variance of the
proposed method we carried out a separate experiment, in which we ran Polite Teacher training with
5% supervised data several times – each time with a different seed value. Figure 4 presents mean
evaluation results per each step (batch), along with the standard deviations. While the experiment
has shown non-homogeneous variance for the variant with mask scoring, the maximum mask AP
values are similar: 26.39, 26.39, 26.01, 25.85 with a mean of 26.16 (σ = 0.27). The variant without
mask scoring achieved 26.03, 25.99, 25.99 max mask API (mean 26.00, σ = 0.02) – that is, an order
of magnitude smaller variance, but at the expense of slower convergence and lower metrics value.
Interestingly, for the model with the mask scoring head, without the last run, the mean would be
26.26 (σ = 0.22). While it seems that the last run missed the local optima and much of the per-step
variance can be attributed to it, we report all the obtained results for scientific integrity. The high
variance might suggest that another hyperparameter should be introduced (e.g. mask scoring head
weight) or learning rate should be readjusted.

5 SUMMARY

We presented Polite Teacher, a simple and effective architecture for semi-supervised instance seg-
mentation. Tested with a CenterMask, a single-stage detector, our approach yielded approx. +8
pp. mask AP on different supervision regimes with COCO 2017, while it introduces only three hy-
perparameters to tune. A certain limitation of this study is the lack of validation on other datasets.
Similarly, more single-stage detectors, as well as two-stage detectors can be taken into consider-
ation. For more robust evaluation results, several runs of the experiments to explore variance on
different values of supervision might be carried out. Therefore, future work should consider vali-
dating methods with more detectors, backbones and datasets. Providing a direct comparison with
Noisy Boundaries (Wang et al., 2022) might be considered as well. A natural next step would con-
sider taking pseudo-bounding boxes and pseudo-centre-ness regression into account.
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REPRODUCIBILITY STATEMENT

Along with the paper, we provide the source code for running our experiments. This allows recre-
ating the results from our experiments (up to the randomness). The implementation is built on the
Detectron2 framework (Wu et al., 2019). Our code is based on the freely available implementations
of CenterMask21 and Unbiased Teacher2, which were starting points for this research. After the
publication, the code for Polite Teacher will be released on GitHub as well.

ETHICS STATEMENT

To the best of our knowledge, this work does not possess any direct ethical issues or a negative social
impact.
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