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ABSTRACT

Solving partial differential equations (PDEs) is a fundamental problem in science
and engineering. While neural PDE solvers can be more efficient than established
numerical solvers, they often require large amounts of training data that is costly to
obtain. Active Learning (AL) could help surrogate models reach the same accuracy
with smaller training sets by querying classical solvers with more informative initial
conditions and PDE parameters. While AL is more common in other domains,
it has yet to be studied extensively for neural PDE solvers. To bridge this gap,
we introduce AL4PDE, a modular and extensible active learning benchmark. It
provides multiple parametric PDEs and state-of-the-art surrogate models for the
solver-in-the-loop setting, enabling the evaluation of existing and the development
of new AL methods for neural PDE solving. We use the benchmark to evaluate
batch active learning algorithms such as uncertainty- and feature-based methods.
We show that AL reduces the average error by up to 71% compared to random
sampling and significantly reduces worst-case errors. Moreover, AL generates
similar datasets across repeated runs, with consistent distributions over the PDE
parameters and initial conditions. The acquired datasets are reusable, providing
benefits for surrogate models not involved in the data generation.

1 INTRODUCTION

Partial differential equations describe numerous physical phenomena such as fluid dynamics, heat
flow, and cell growth. Because of the difficulty of obtaining exact solutions for PDEs, it is common
to utilize numerical schemes to obtain approximate solutions. However, numerical solvers require a
high temporal and spatial resolution to obtain sufficiently accurate numerical solutions, leading to
high computational costs. This issue is further exacerbated in settings like parameter studies, inverse
problems, or design optimization, where many iterations of simulations must be conducted. Thus,
it can be beneficial to replace the numerical simulator with a surrogate model by training a neural
network to predict the simulator outputs (Takamoto et al., 2022; Lippe et al., 2023; Brandstetter
et al., 2021; Gupta & Brandstetter, 2023; Li et al., 2020b). In addition to being more efficient, neural
surrogate models have other advantages, such as being end-to-end differentiable.

One of the main challenges of neural PDE surrogates is that their training data is often obtained from
the same expensive simulators they are intended to ultimately replace. Hence, training a surrogate
provides a computational advantage only if the generation of the training data set requires fewer
simulations than will be saved during inference. Moreover, it is non-trivial to obtain training data
for a diverse set of initial conditions and PDE parameters required to train a surrogate model with
sufficient generalizability. For instance, contrary to training foundation models for text and images,
foundation models for solving PDEs require targeted and expensive data generation to generalize
well.

Active learning is a possible solution to these challenges as it might help to iteratively select a smaller
number of the most informative and diverse training trajectories, thereby reducing the total number
of simulations required to reach the same level of accuracy. Furthermore, AL may also improve
the reliability of the surrogate models by covering challenging dynamical regimes with enough
training data, which may otherwise be hard to find through hand-tuned input distributions. However,
developing neural PDE solvers is a challenging problem for AL due to the complex regression tasks
characterized by high-dimensional input and output spaces and time series data. While AL has
been used extensively for other scientific ML domains such as material science (Lookman et al.,
2019; Wang et al., 2022; Zaverkin et al., 2022; 2024), it has only been recently applied to PDEs
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Figure 1: An extensible benchmark framework for pool-based active learning for neural PDE solvers.

in the context of physics-informed neural networks (PINNs; Wu et al. 2023a; Sahli Costabal et al.
2020; Aikawa et al. 2023), specific PDE domains (Pestourie et al., 2021; 2023), or direct prediction
models (Li et al., 2023; 2020b). Hence, AL is still unexplored for a broader class of neural PDE
solvers, which currently rely on extensive, brute-force numerical simulations to generate a sufficient
amount of training data.

Contributions. This paper presents AL4PDE, the first AL framework for neural PDE solvers.
The benchmark supports the study of existing AL algorithms in scientific ML applications and
facilitates the development of novel PDE-specific AL methods. In addition to various AL algo-
rithms, the benchmark provides differentiable numerical simulators for multiple PDEs, such as
compressible Navier-Stokes, and neural surrogate models, such as the U-Net (Ronneberger et al.,
2015; Gupta & Brandstetter, 2023). The benchmark is extensible, allowing new algorithms, mod-
els, and tasks to be added. Using the benchmark, we conducted several experiments exploring
the behavior of AL algorithms for PDE solving. These experiments show that AL can increase
data efficiency and especially reduce worst-case errors. Among the methods, the largest cluster
maximum distance (LCMD) and stochastic batch active learning (SBAL) are consistently the two
best-performing algorithms. We demonstrate that using AL can result in more accurate surrogate
models trained in less time. Additionally, the generated data distribution is consistent between
random repetitions, initial datasets, and models, showing that AL can reliably generate reusable
datasets for neural PDE solvers that were not used to gather the data. The code is available at
https://anonymous.4open.science/r/al4pde_benchmark.

2 BACKGROUND

We seek the solution u : [0, T ] × X → RNc of a PDE with a D-dimensional spatial domain X ,
x = [x1, x2, . . . , xD]⊤ ∈ X , temporal domain t ∈ [0, T ], and Nc field variables or channels c
(Brandstetter et al., 2021):

∂t u = F (λ, t,x,u, ∂x u, ∂xx u, . . .) , (t,x) ∈ [0, T ]×X (1)

u(0,x) = u0(x), x ∈ X ; B[u](t,x) = 0, (t,x) ∈ [0, T ]× ∂X (2)

Here, the boundary condition B (Eq. 2) determines the behavior of the solution at the boundaries
∂X of the spatial domain X , and the initial condition (IC) u0 defines the initial state of the system
(Eq. 2). The vector λ = (λ1, ..., λl)

⊤ ∈ Rl with λi ∈ [ai, bi] denotes the PDE parameters which
influence the dynamics of the physical system governed by the PDE such as the diffusion coefficient
in Burgers’ equation. The field variables c refer to the different physical quantities modeled in the
solution, e.g. the density and pressure fields in fluid dynamics. In the following, we only consider
a single boundary condition for simplicity, and thus a single initial value problem can be identified
by the tuple ψ = (u0,λ). The inputs to the initial value problem are drawn from the test input
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distribution pT , ψ ∼ pT (ψ) = pT (u
0)pT (λ). The distributions are typically only given implicitly,

i.e., we are given an IC generator pT (u0) and a PDE parameter generator pT (λ), from which we can
draw samples. For instance, the ICs may be drawn from a superposition of sinusoidal functions with
random amplitudes and phases (Takamoto et al., 2022), while the PDE parameters (λi) are typically
drawn uniformly from their interval [ai, bi].

The ground truth data is generated using a numerical solver, which can be defined as a forward
operator G : U × Rl → U , mapping the solution at the current timestep to the one at the next
timestep (Li et al., 2020b; Takamoto et al., 2022), u(t+∆t, ·) = G(u(t, ·),λ) with timestep size ∆t.
Here, U is a suitable space of functions u(t, ·). The solution u is uniformly discretized across the
spatial dimensions, yielding Nx spatial points in total and the temporal dimension into Nt timesteps.
The forward operator is applied autoregressively, i.e., feeding the output state back into G (also called
rollout), to obtain a full trajectory u = (u0,u1, ...,uNt). We aim to replace the numerical solver
with a neural PDE solver. While there are also other paradigms such as PINNs (Raissi et al., 2019),
we restrict ourselves to autoregressive solvers Gθ with û(t + ∆t, ·) = Gθ(û(t, ·),λ) (Lippe et al.,
2023). The training set for the said Gθ(u(t, ·),λ) consists of aligned pairs ofψ and the corresponding
solutions obtained from the numerical solver, i.e., Strain = {(ψ1,u1), . . . , (ψNtrain

,uNtrain)}. The
neural network parameters θ are minimized using the root mean squared error (RMSE) on the training
samples,

LRMSE(u, û) =

√√√√ 1

NtNxNc

Nt∑
i=1

Nx∑
j=1

∥u(ti,xj)− û(ti,xj)∥22 (3)

where û denotes the estimated solutions of the neural surrogate models.

3 RELATED WORK

Neural surrogate models for solving parametric PDEs is a popular area of research (Takamoto et al.,
2023; Kapoor et al., 2023; Lippe et al., 2023; Cho et al., 2024). Most existing works, however, often
focus on single or uniformly sampled parameter values for the PDE coefficients and improving the
neural architectures to boost the accuracy. In the context of neural PDE solvers, AL has primarily
been applied to select the collocation points of PINNs. A typical approach is to sample the collocation
points based on the residual error directly (Arthurs & King, 2021; Gao & Wang, 2023; Mao & Meng,
2023; Wu et al., 2023a). While this strategy can be effective, it differs from standard AL since it
uses the “label”, i.e., the residual loss, when selecting data points. In this line of work, Bruna et al.
(2024) use AL to select collocation points for Neural Galerkin Schemes. Aikawa et al. (2023) use a
Bayesian PINN to select points based on uncertainty, whereas Sahli Costabal et al. (2020) employ a
PINN ensemble for AL of cardiac activation mapping.

Pestourie et al. (2020) use AL to approximate Maxwell equations using ensemble-based uncertainty
quantification for metamaterial design. Uncertainty-based AL was also employed for diffusion,
reaction-diffusion, and electromagnetic scattering (Pestourie et al., 2023). In multi-fidelity AL, the
optimal spatial resolution of the simulation is chosen (Li et al., 2020a; 2021; Wu et al., 2023b). For
instance, Li et al. (2023) use an ensemble of FNOs in the single prediction setting. Wu et al. (2023c)
apply AL to stochastic simulations using a spatio-temporal neural process. Bajracharya et al. (2024)
investigate AL to predict the stationary solution of a diffusion problem. They consider AL using two
different uncertainty estimation techniques and selecting based on the diversity in the input space.
Pickering et al. (2022) use AL to find extreme events using ensembles of DeepONets (Lu et al., 2019).
Gajjar et al. (2022) provide theoretical results for AL of PDEs for single neuron models. Closely
related to AL is the field of design of experiments (DoE, Garud et al., 2017; Qu, 2023; Huan et al.,
2024) which has also been applied to neural PDE solvers (Wu et al., 2023a; Li et al., 2024a). For
example, space-filling, static DoE methods such as Latin Hypercube sampling (McKay et al., 1979)
can be applied to avoid clustering induced by pure random sampling of the PDE input parameters (Wu
et al., 2023a; Li et al., 2024a; Chandra et al., 2024). Next to using AL, it is also possible to reduce
the data generation time using Krylov Subspace Recycling (Wang et al., 2023) or by applying data
augmentation techniques such as Lie-point symmetries (Brandstetter et al., 2022). Such symmetries
could also be combined with AL using LADA (Kim et al., 2021).

In recent years, several benchmarks for neural PDE solvers have been published (Takamoto et al.,
2022; Gupta & Brandstetter, 2023; Hao et al., 2023; Luo et al., 2023; Liu et al., 2024). For instance,
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Figure 2: Structural overview of the AL4PDE benchmark.

PDEBench (Takamoto et al., 2022) and PDEArena (Gupta & Brandstetter, 2023) provide efficient
implementations of numerical solvers for multiple hydrodynamic PDEs such as Advection, Navier-
Stokes, as well as recent implementations of neural PDE solvers (e.g., DilResNet, U-Net, FNO) for
standard and conditioned PDE solving. Similarly, CODBench (Burark et al., 2023) compares the
performance of different neural operators. WaveBench (Liu et al., 2024) is a benchmark specifically
aimed at wave propagation PDEs that are categorized into time-harmonic and time-varying problems.
For a more detailed discussion of related benchmarks, see Appendix A.3. Contrary to prior work,
AL4PDE is the first framework for evaluating and developing AL methods for neural PDE solvers.

4 AL4PDE: AN AL FRAMEWORK FOR NEURAL PDE SOLVERS

The AL4PDE benchmark consists of three major parts: (1) AL algorithms, (2) surrogate models,
and (3) PDEs and the corresponding simulators. It follows a modular design to make the addition
of new approaches or problems as easy as possible (Fig. 2). The following sections describe the
AL approaches, including the general problem setup, acquisition and similarity functions, and batch
selection strategies. Moreover, we describe the included PDEs and surrogate models.

4.1 PROBLEM DEFINITION AND SETUP

AL aims to select the most informative training samples so that the model can reach the same
generalization error with fewer calls to the numerical solver. We measure the error using test
trajectories on random samples from an input distribution pT . Fig. 1 shows the full AL cycle. Since
it requires retraining the NN(s) after each round, we use batch AL with sufficiently large batches.
Specifically, in each round, a batch of simulator inputs Sbatch = {ψ1, ...,ψNbatch

} is selected. It is then
passed to the numerical solver, which computes the output trajectories using numerical approximation
schemes. The new trajectories are then added to the training set, and the cycle is repeated.

We implement pool-based active learning methods, which select from a set of possible inputs
Spool = {ψ1, ...,ψNpool

} called “pool”. The selected batch is then removed from the pool, simulated,
and added to the training set Strain:

Spool ← Spool \ Sbatch, Strain ← Strain ∪ solve(Sbatch). (4)

We sample the pool set randomly from a proposal distribution π. In our experiments, we sample
pool and test set from the same input distribution π = pT , although pT might not always be known
in practice. Following common practice, the initial batch is selected randomly. Besides pool-based
methods, our framework is also compatible with query-synthesis AL methods that are not restricted
to a finite pool set. Several principles are useful for the design of AL methods (Wu, 2018): First,
they should select highly informative samples that allow the model to reduce its uncertainty. Second,
selecting inputs that are representative of the test input distribution at test time is often desirable. Third,
the batch should be diverse, i.e., the individual samples should provide non-redundant information.
The last point is particular to the batch setting, which is essential to maintain acceptable runtimes.
In the following, we will investigate batch AL methods that first extract latent features or direct
uncertainty estimates from the neural surrogate model for each sample in the pool and subsequently
apply a selection method to construct the batch.
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4.2 UNCERTAINTIES AND FEATURES

Since neural PDE solvers provide high-dimensional autoregressive rollouts without direct uncertainty
predictions, many AL methods cannot be applied straightforwardly. In the AL4PDE framework, we
select the following two different classes of methods: the uncertainty-based approach, which directly
assigns an uncertainty score to each candidate, and the feature-based framework of Holzmüller et al.
(2023), which uses features (or kernels) to evaluate the similarity between inputs.

Uncertainties. Epistemic uncertainty is often used as a measure of sample informativeness. While
a more costly Bayesian approach is possible, we adopt the query-by-committee (QbC) approach
(Seung et al., 1992), a simple but effective method that utilizes the variance between the ensemble
members’ outputs as an uncertainty estimate:

aQbC(ψi) :=
1

NtNxNc

Nt∑
j=1

Nx∑
k=1

1

Nm

Nm∑
m=1

∥ûi,m(tj ,xk)− ûi(tj ,xk)∥22 . (5)

Here, ûi is the mean prediction of all Nm models with ûi(t,x) =
∑

m ûi,m(t,x)/Nm. The ensemble
members produce different outputs ûi due to the inherent randomness resulting from the weight
initialization and stochastic gradient descent. The assumption of QbC is that the variance of the
ensemble member predictions correlates positively with the error. A high variance, therefore, points
to a region of the input space where we need more data. Using the variance of the model outputs
directly corresponds to minimizing the expected MSE. Note that many more error metrics can be
considered for PDEs (Takamoto et al., 2022), for which measures other than the variance may be
more appropriate.

Features. Many deep batch AL methods rely on some feature representation ϕ(ψ) ∈ Rp of inputs
and utilize a distance metric in the feature space as a proxy for the similarity between inputs, which
can help to ensure diversity of the selected batch. A typical representation is the inputs to the last
neural network layer, but other representations are possible (Holzmüller et al., 2023). For neural PDE
solvers, we compute the trajectory and concatenate the last-layer features at each timestep. Since this
can result in very high-dimensional feature vectors, we follow Holzmüller et al. (2023) and apply
Gaussian sketching. Specifically, we use ϕsketch(ψ) := Uϕ(ψ)/

√
p′ ∈ Rp′

, to reduce the feature
space to a fixed dimension p′ using a random matrix U ∈ Rp′×p with i.i.d. standard Gaussian entries.

While ensemble-based AL methods can also be formulated in terms of feature maps (Kirsch, 2023),
the use of latent features allows AL methods to work with a single model. Moreover, methods
based on distances of latent features can naturally incorporate diversity into batch AL by avoiding
the selection of highly similar examples. Feature-based AL methods are, however, not translation
equivariant. In the considered settings with periodic boundary conditions, an IC translated along the
spatial axis will produce a trajectory shifted by the same amount. By using periodic padding within
the convolutional layers of U-Net, the network is equivariant w.r.t. translations; hence, adding a
translated version of the same IC is redundant. Uncertainty-based approaches based on ensembles are
translation-invariant since all ensemble model outputs are shifted by the same amount and produce
the same outputs. To make feature-based AL translation invariant, we take the spatial average over
the features.

4.3 BATCH SELECTION STRATEGIES

Given uncertainties or features, we need to define a method to select a batch of pool samples. As
a generic baseline, we compare to the selection of a (uniformly) random sampling of the inputs
according to the input distribution, ψ ∼ pT (ψ). Additionally, we include Latin Hypercube Sampling
(LHS) as a static DoE baseline (McKay et al., 1979).

Uncertainty-based selection strategies. When given a single-sample acquisition function a such
as the ensemble uncertainty, a simple and common approach to selecting a batch of k samples is
Top-K, taking the k most uncertain samples. However, this does not ensure that the selected batch is
diverse. To improve diversity, Kirsch et al. (2023) proposed stochastic batch active learning (SBAL).
SBAL samples inputs ψ from the remaining pool set Spool without replacement according to the
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probability distribution ppower(ψ) ∝ a(ψ)m, where m is a hyperparameter controlling the sharpness
of the distribution. Random sampling corresponds to m = 0 and Top-K to m =∞. The advantage
of SBAL is that it selects samples from input regions that are not from the highest mode of the
uncertainty distribution and encourages diversity.

Feature-based selection strategies. In the simpler version of their Core-Set algorithm, Sener &
Savarese (2018) iteratively select the input from the remaining pool with the highest distance to
the closest selected or labeled point. While Core-Set produces batches of diverse and informative
samples, its objective is to cover the feature space uniformly. Hence, Core-Set, in general, does not
select samples that are representative of the proposal distribution. To alleviate this issue, Holzmüller
et al. (2023) propose to replace the greedy Core-Set with LCMD, a similarly efficient method inspired
by k-medoids clustering. LCMD interprets previously selected inputs as cluster centers, assigns
all remaining pool points to their closest center, selects the cluster with the largest sum of squared
distances to the center, and from this cluster selects the point that is furthest away from the center. The
newly selected point then becomes a new center and the process is repeated until a batch of the desired
size is obtained. While finding efficient Bayesian AL methods for our setting with high-dimensional
outputs and autoregressive generation is challenging, we can apply efficient Bayesian AL methods to
the proxy task of single-output Bayesian linear regression on given features. In particular, BAIT (Ash
et al., 2021) aims to minimize the average posterior predictive variance (Holzmüller et al., 2023). We
apply BAIT to the same aggregated features as LCMD and Core-Set.

4.4 PDES

Burgers KS CE

CNS t = 0.8s t = 1.0s t = 0.6s t = 0.4s t = 0.2s t = 0.0s 

x
y

x
t

Figure 3: Example trajectories of the PDEs.

PDE T in s Sim. Res. Train. Res.
(Nt, Nx, [Ny], [Nz ]) (Nt, Nx, [Ny ], [Nz ])

Burgers 2 (201, 1024) (41, 256)
KS 40 (801, 512) (41, 256)
CE 4 (501, 64) (51, 64)
1D CNS 2 (201, 512) (41, 128)
2D CNS 1 (21, 128, 128) (21, 64, 64)
3D CNS 1 (21, 64, 64, 64) (21, 32, 32, 32)

Table 1: Discretizations of the PDEs.

We consider 1D, 2D, and 3D parametric PDEs with periodic boundary conditions except for
1D CNS. Table 1 lists the selected resolutions. The first 1D PDE is the Burgers’ equation
from PDEBench (Takamoto et al., 2022) with kinematic viscosity ν: ∂tu+ u∂xu = (ν/π)∂xxu .
Secondly, the Kuramoto–Sivashinsky (KS) equation, ∂tu+ u∂xu+ ∂xxu+ ν∂xxxxu = 0 , from
Lippe et al. (2023) demonstrates diverse dynamical behaviors, from fixed points and periodic limit
cycles to chaos (Hyman & Nicolaenko, 1986). Next to the viscosity ν, the domain length L is also
varied. Thirdly, to test a multiphysics problem with more parameters, we include the so-called
combined equation (CE) from Brandstetter et al. (2021) where we set the forcing term δ = 0:
∂tu+ ∂x

(
αu2 − β∂xu+ γ∂xxu

)
= 0 . Depending on the value of the PDE coefficients (α, β, γ),

this equation recovers the Heat, Burgers, or the Korteweg-de-Vries PDE. Finally, we use the com-
pressible Navier-Stokes (CNS) equations in 1D, 2D, and 3D from PDEBench (Takamoto
et al., 2022), ∂tρ+∇ · (ρv) = 0 , ρ(∂tv + v · ∇v) = −∇p+ η△v + (ζ + η/3)∇(∇ · v) ,

∂t(ϵ+ ρv2/2) +∇ · [(p+ ϵ+ ρv2/2)v − v · σ′] = 0 . The ICs are generated from random
initial fields. For 1D CNS, we consider an out-going boundary condition. Full details on PDEs, ICs,
and the PDE parameter distributions can be found in Appendix B.

4.5 NEURAL SURROGATE MODELS

Currently, the benchmark includes the following neural PDE solvers: (i) a recent version of U-
Net (Ronneberger et al., 2015) from Gupta & Brandstetter (2023), (ii) SineNet (Zhang et al., 2024),
which is an enhancement of the U-Net model that corrects the feature misalignment issue in the
residual connections of modern U-Nets and can be considered a model with state of the art accuracy,
specifically for advection-type equations, and (iii) the Fourier neural operator (FNO, Li et al., 2020b).
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Figure 4: Error over the number of trajectories in the training set (N). The shaded area represents
the 95% confidence interval of the mean calculated over multiple seeds. AL can reduce the error
relative to random sampling of the inputs on all tested PDEs but CNS, where the difference was not
significant.

5 SELECTION OF EXPERIMENTS

We investigate (i) the impact of AL methods on the average error, (ii) the error distribution, (iii) the
variance and reusability of the generated data, (iv) the temporal advantage of AL, and (v) conduct an
ablation study concerning the different design choices of SBAL and LCMD. We use a smaller version
of the modern U-Net from Gupta & Brandstetter (2023). We train the model on sub-trajectories (two
steps) to strike a balance between learning auto-regressive rollouts and fast training. For 1D CNS, we
found a trajectory length of four to be necessary for stable training. The training is performed for
500 epochs with a cosine schedule, which reduces the learning rate from 10−3 to 10−5. The batch
size is set to 512 (2D CNS: 64). We use an exponential data schedule, i.e., in each AL iteration, the
amount of data added is equal to the current training set size (Kirsch et al., 2023). For 1D equations,
we start with 256 trajectories (2D CNS: 128). The pool size is fixed to 100,000 candidates. The
uncertainty is estimated using two ensemble members (for a fair comparison, just the first model of
the ensemble is used to measure the error). For Burgers, we choose the parameter space ν ∈ [0.001, 1)
and sample values uniformly at random but on a logarithmic scale. For the KS equation, besides the
viscosity ν ∈ [0.5, 4), we vary the domain length L ∈ [0.1, 100) as the second parameter. For CE,
the parameter space is defined to be α ∈ [0, 3), β ∈ [0, 0.4), γ ∈ [0, 1). For the 1D and 2D CNS
equations, we set η, ζ ∈ [10−4, 10−1) and draw values on a logarithmic scale as with the Burgers’
PDE. Additionally, we use random Mach numbers m ∈ [0.1, 1) for the IC generator. We repeat all
experiments with five random seeds (Burgers: ten) and report the 95% confidence interval of the
mean unless stated otherwise. The test set consists of 2048 trajectories simulated with random inputs
drawn from pT (ψ). Due to the memory and compute-intensive nature of 3D time-dependent PDEs,
we had to use smaller train and test sets, as well as choose different model and training parameters
and use a conditional version of the 3D FNO model (see Appendix C).

Comparison of AL methods. Figure 4 shows the RMSE for the various AL methods and PDEs.
AL often reduces the error compared to sampling uniformly at random for the same amount of data.
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Figure 5: Error quantiles over the number of trajectories in the training set (N). The 50%, 95%, and
99% quantiles are displayed using full, dashed, and dotted lines, respectively. AL especially improves
the higher error quantiles, making the trained model more reliable.

The advantage of AL is especially large for CE, which is likely due to the diverse dynamic regimes
found in the PDE. SBAL and LCMD achieve similar errors on all PDEs with the exception of KS,
where only SBAL can improve over random sampling. SBAL and LCMD can reach lower error
values with only a quarter of the data points in the case of CE and Burgers. However, the greedy
methods Top-K and Core-Set even increase the error for some PDEs. The difference in the CNS
task was not significant, likely due to the performance of the base model training (see Fig. 8a) for a
stronger model). Worst-case errors are of special interest when solving PDEs. Since we found the
absolute maximum error to be unstable, we show the RMSE quantiles in Figure 5. Notably, all AL
algorithms reduce the higher quantiles while the 50 % percentile error is increased in some cases.

Different Error Functions. It is important to consider error metrics for surrogate model training
besides the RMSE (Takamoto et al., 2022). Thus, we explore the impact of AL on the mean absolute
error (MAE) as an example of an alternative metric. As depicted in Figure 7a, SBAL, when using the
absolute difference between the models as the uncertainty, can also successfully reduce the MAE.
However, the MAE does not improve greatly relative to random sampling when the standard variance
between the models is used. Hence, it is crucial to tailor the AL method to the relevant metric.

Generated Datasets. The marginal distributions of the PDE and the IC generator parameters
implicitly sampled from by AL are shown in Figure 6 for CE. These distributions are highly similar
for different random seeds, and thus, AL reliably selects similar training datasets. The various AL
methods generally sample similar parameter values but can differ substantially in certain regions of
the parameter space (Appendix G.3). In general, the methods appear to sample more in the region of
the chaotic KdV equation (α = 3, β = 0, γ = 1). For α and γ, a difference between the two QbC
methods Top-K and SBAL to the feature-based ones LCMD and Core-Set is observable. Appendix G
provides the distributions for all PDEs and visual examples. To investigate the effect of the generated
data on other models, we use an FNO ensemble to select the data that we use to train the standard
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Figure 6: Marginal distribution of the PDE parameters (α, β, γ) for CE and the amplitudes of the IC
in the training set generated by AL for CE (relative to the uniform distribution). The shaded area
represents the standard deviation between the random seeds. All AL methods exhibit a small standard
deviation, indicating that they reliably generate similar datasets between independent runs.
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Figure 7: (a) AL with the MAE as the objective on Burgers, compared to the MAE of the same setup
trained with the RMSE (dashed). Considering the desired error metric in the uncertainty estimate and
training loss is essential. (b) Error of the standard U-Net on Burgers, with data generated using FNO
or U-Net with SBAL. The selected data is also helpful for a model not used during AL. (c) Error of
the standard U-Net on Burgers over the required total time. Using smaller FNOs to select the data,
SBAL can provide smaller errors in the same amount of time.

U-Net. Figure 7b depicts the error of the U-Net over the number of samples selected using the FNO
ensemble, showing the selected data is beneficial for models not used for the AL-based data selection.
The reusability of the data is especially important since, otherwise, the whole AL procedure would
have to be repeated every time a new model is developed.

Temporal Behavior. The main experiments only provide the error over the number of data points
since we use problems with rather fast solvers to accelerate the benchmarking of the AL methods.
Additionally, a more lightweight model, trained for a shorter time, might be enough for data selection
even if it does not reach the best possible accuracy. To investigate AL in terms of time efficiency
gains, we perform one experiment on the Burgers’ PDE, for which the numerical solver is the most
expensive among all 1D PDEs due to its higher resolution. We use SBAL with an ensemble of smaller
FNOs (See Appendix C.6 for more details). We train a regular U-Net on the AL collected data, which
allows us to use a small, lightweight model for data selection only and an expensive one to evaluate
the data selected. Figure 7c shows the accuracy of the evaluation U-Net over the cumulative time
consumed for training the selection model, selecting the inputs, and simulation. For the random
baseline, only the simulation time is considered. On Burgers, AL provides better accuracy for the
same time budget.

Ablations. We ablate different design choices for the considered AL algorithms. For the SBAL
algorithm, we investigate the base model architecture (Fig. 8a) and the ensemble size (Fig. 8b). On
2D CNS, the accuracy of both SineNet and FNO can be significantly improved using SBAL, showing
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Figure 8: (a) Different base models on 2D CNS using SBAL (solid) and random sampling (dashed).
SBAL can also improve the accuracy of other models besides the U-Net. (b) Ablation study on
SBAL. SBAL already works reliably with only M = 2 models in the ensemble. Using the PINO
loss (Li et al., 2024b) instead of the ensemble uncertainty does not provide a meaningful uncertainty,
as shown by the error on par with random sampling. (c) Comparison of different feature vectors for
LCMD on CE. Shown are the last layer feature map (LL), its spatial average (LL), as well as the
features of the mid layer (ML) and its spatial average (ML). Averaging the feature maps improves
the error, indicating the importance of considering the model invariances.

that AL is also helpful for other architectures. The improvement is even clearer than with the U-Net,
which did not show a statistically significant advantage.

Consistent with prior work (Pickering et al., 2022), choosing an ensemble size of two models is
already sufficient (Fig. 8b). In general, the average uncertainty and error of a trajectory with two
ensemble members are correlated with a Pearson coefficient of 0.41 on CE in the worst case up
to 0.94 on 2D CNS (Table 10). Adaptive sampling methods utilized in the field of PINNs (Gao
& Wang, 2023; Wu et al., 2023a), select collocation points based on the PDE loss. While this is
not directly transferable to our setting (Section 3), we try to use the PINO loss (Li et al., 2024b) as
an uncertainty estimate in combination with SBAL. As shown in Figure 8b, this is not an effective
selection criterion for autoregressive neural PDE solvers. Figure 8c) compares different feature
choices for the LCMD algorithm, which are used to calculate the distances. Using the spatial average
of the last layer features produces higher accuracy than using the full feature vector or the features
from the bottleneck step in the middle of the U-Net. Thus, it is indeed important for distance-based
selection to consider the equivariances of the problem in the distance function.

6 CONCLUSION

This paper introduces AL4PDE, an extensible framework to develop and evaluate AL algorithms for
neural PDE solvers. AL4PDE includes a diverse set of PDEs in 1D, 2D, and 3D spatial dimensions,
surrogate models including U-Net, FNO, and SineNet, and AL algorithms such as SBAL and LCMD.
An initial study shows that existing AL algorithms can already be advantageous for neural PDE
solvers and can allow a model to reach the same accuracy with up to four times fewer data points.
Thus, our work shows the potential of AL for making neural PDE solvers more data-efficient and
reliable for future application cases. However, the experiments also showed that stable model training
can be difficult depending on the base architecture (2D CNS). Such issues especially impact AL since
the model is trained repeatedly with different data sets, and the data selection relies on the model.
Hence, more work on the reliability of the surrogate model training is necessary. Another general
open issue of AL is the question of how to select hyperparameters that work sufficiently well on the
growing, unseen datasets during AL. To be closer to realistic engineering applications, future work
should also consider more complex geometries and boundary conditions, as well as irregular grids.
AL could be especially helpful in such settings due to the inherently more complex input space from
which to select.
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REPRODUCIBILITY STATEMENT

The code is available at https://anonymous.4open.science/r/al4pde_benchmark. The repository
contains the full configuration files of all reported experiments. Appendix B and C describe the
main experimental as well as the model details. For reliable results, we repeat all experiments with
ten seeds (Burgers), five seeds (KS, CE, and CNS), and three seeds (3D CNS) and report the 95%
confidence interval of the mean unless stated otherwise.
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A ADDITIONAL BACKGROUND ON RELATED WORK

In this section, we elaborate on related works that tackle active learning in relevant settings and
problems discussed here. Moreover, we summarize related work on uncertainty quantification and
SciML benchmarks closely related to the proposed AL4PDE benchmark.

A.1 GENERAL ACTIVE LEARNING

Most AL algorithms are evaluated on classic image classification datasets (Ash et al., 2021; 2019)
and many benchmarks also consider the more common classification setting (Rauch et al., 2023; Yang
& Loog, 2018; Zhan et al., 2021). There is also work on specialized tasks such as entity matching
(Meduri et al., 2020), structural integrity (Moustapha et al., 2022), material science (Wang et al.,
2022), or drug discovery (Mehrjou et al., 2021). Holzmüller et al. (2023) present a benchmark for AL
of single-output, tabular regression tasks. Wu et al. (2023a) study different adaptive and non-adaptive
methods for selecting collocation points for PINNs. Ren et al. (2023) benchmark pool-based AL
methods on simulated, mostly tabular regression tasks.

Related to AL is the field of design of experiments (DoE, Garud et al., 2017; Qu, 2023; Huan
et al., 2024). In static DoE, a set of inputs is selected without using feedback from the investigated
process. Space-filling DoE methods try to cover the input space optimally without considering any
model assumption or feedback (Huan et al., 2024). A pure random sampling of the input space may
lead to an undesirable clustering of samples, leading to redundant information. For example, Latin
Hypercube sampling (McKay et al., 1979) divides each input variable into equally-spaced intervals,
takes one sample from the interval, and then mixes the samples from the different variables. In
D-optimal experimental design, the next sample is selected such that the uncertainty in the parameters
of a linear regression model is reduced by minimizing the determinant of its Fisher information
matrix (Wald, 1943; Kiefer, 1958; Huan et al., 2024). Most similar to AL is sequential DoE. For
instance, in sequential Bayesian optimal design, the prior of a Bayesian linear regression model is
updated iteratively to the posterior over the model parameters after including the new measurements
(Huan et al., 2024). Based on the posterior, a criterion such as the expected information gain (Lindley,
1956; Huan et al., 2024) can be utilized to select the optimal next sample. While such methods have a
strong theoretical underpinning, they have been developed for linear regression models and, hence,
are not directly applicable to neural networks.

In terms of deep active learning methods for regression, there are multiple approaches: Query-by-
committee (Seung et al., 1992) uses ensemble prediction variances as uncertainties. Tsymbalov et al.
(2018) use Monte Carlo dropout to obtain uncertainties; however, their method is only applicable by
training with dropout. Approaches based on last-layer Bayesian linear regression (Pinsler et al., 2019;
Ash et al., 2021) are often convenient since they do not require ensembles or dropout. These methods
are applicable in principle in our setting but lose their original Bayesian interpretation since the last
layer of a neural operator is applied multiple times during the autoregressive rollout. Distance-based
methods like Core-Set (Sener & Savarese, 2018; Geifman & El-Yaniv, 2017) and the clustering-based
LCMD (Holzmüller et al., 2023) exhibit better runtime complexity than last-layer Bayesian methods
while sharing their other advantages (Holzmüller et al., 2023). Since these algorithms just require
some distance function between two input points, we can adapt them to the neural PDE solver setting
in Section 4.2.

A.2 UNCERTAINTY QUANTIFICATION (UQ)

Uncertainty quantification has been studied in the context of SciML simulations. Psaros et al. (2023)
provide a detailed overview of UQ methods in SciML, specifically for PINNs and DeepONets.
However, effective and reliable UQ methods for neural operators (i.e., mapping between function
spaces) and high dimensionality of data, which is common in PDE solving, remain challenging.

Neural PDE Solvers. LE-PDE-UQ (Wu et al., 2024) deals with a method to estimate the uncertainty
of neural operators by modeling the dynamics in the latent space. The model has been shown to
outperform other UQ approaches, such as Bayes layer, Dropout, and L2 regularization on Navier-
Stokes turbulent flow prediction tasks. Unlike the considered setting in our case, the model utilizes
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a history of 10 timesteps and has been tested only on a fixed PDE parameter. Hence, it is unclear
whether the robustness of this approach remains when these settings change.

Mouli et al. (2024) aim to develop a cost-efficient method for uncertainty quantification of parametric
PDEs, specifically one that works well in the out-of-domain test settings of PDE parameters. First,
the study shows the challenges of existing UQ methods, such as the Bayesian neural operator
(BayesianNO) for out-of-domain test data. It then shows that ensembling several neural operators is
an effective strategy for UQ that is well-correlated with prediction errors and proposes diverse neural
operators (DiverseNO) as a cost-effective way to estimate uncertainty with just a single model based
on FNO outputting multiple predictions.

Thakur (2023) studies UQ in the context of neural operators and develops a probabilistic FNO model
to quantify aleatoric and epistemic uncertainties. Weber et al. (2024) study UQ for FNO and propose
a Laplace approximation for the Fourier layer to effectively compute uncertainty.

A.3 FURTHER SCIENTIFIC MACHINE LEARNING BENCHMARKS

In recent years, various benchmarks and datasets for SciML have been published. We outline some
of the major open-source benchmarks below.

PDEBench (Takamoto et al., 2022) is a large-scale SciML benchmark of 1D to 3D PDE equations
modeling hydrodynamics ranging from Burgers’ to compressible and incompressible Navier-Stokes
equations. PDEArena (Gupta & Brandstetter, 2023) is a modern surrogate modeling benchmark in-
cluding PDEs such as incompressible Navier-Stokes, Shallow Water, and Maxwell equations (Brand-
stetter et al., 2023). CFDBench (Luo et al., 2023) is a recent benchmark comprising four flow
problems, each with three different operating parameters, the specific instantiations of which include
varying boundary conditions, physical properties, and geometry of the fluid. The benchmark com-
pares the generalization capabilities of a range of neural operators and autoregressive models for each
of the said operating parameters. LagrangeBench (Toshev et al., 2023) is a large-scale benchmark
suite for modeling 2D and 3D fluid mechanics problems based on the Lagrangian specification
of the flow field. The benchmark provides both datasets and baseline models. For the former, it
introduces seven datasets of varying Reynolds numbers by solving a weak form of NS equations using
smoothed particle hydrodynamics. For the latter, efficient JAX implementations of GNN baseline
models such as Graph Network-based Simulator and (Steerable) Equivariant GNN are included.
EAGLE (Janny et al., 2023) introduces an industrial-grade dataset of non-steady fluid mechanics
simulations encompassing 600 geometries and 1.1 million 2D meshes. In addition, to effectively
process a dataset of this scale, the benchmark proposes an efficient multi-scale attention model, mesh
transformer, to capture long-range dependencies in the simulation. BubbleML (Hassan et al., 2023) is
a thermal simulations dataset comprising boiling scenarios that exhibit multiphase and multiphysics
phase change phenomena. It also consists of a benchmark validating the dataset against U-Nets and
several variants of FNO.

B ADDITIONAL PROBLEM DETAILS

In the following section, we will discuss the tasks considered in detail. Table 1 shows the temporal
and spatial resolution of the considered PDEs.

B.1 BURGERS’ EQUATION

The 1D Burgers’ equation is written as

∂tu+ u∂xu = (ν/π)∂xxu. (6)

The spatial domain is set to x ∈ [0, 1]. Following the parameter spacing of the PDE parameters
values in PDEBench (Takamoto et al., 2022) and CAPE (Takamoto et al., 2023), we draw them on a
logarithmic scale, i.e., we first draw λi,normed uniformly from [0, 1) and then transform the parameter
to its domain [ai, bi) using

λi = ai exp(log(bi/ai)λi,normed). (7)
We use the FDM-based JAX simulator and the initial condition generator from PDEBench (Takamoto
et al., 2022). The ICs are constructed based on a superposition of sinusoidal waves (Takamoto et al.,
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2022),

u0(x) =

Nw∑
i=1

Ai sin(2πkix/L+ ϕi) (8)

where the wave number ki is an integer sampled uniformly from [1, 5), amplitude Ai is sampled
uniformly from [0, 1), and phase ϕi from [0, 2π). The number of waves Nw is set to 2. Windowing
is applied afterward with a probability of 10%, where all parts of the IC are set to zero outside of
[xL, xR]. xL is drawn uniformly from [0.1, 0.45) and xR from [0.55, 0.9). Lastly, the sign of u0 is
flipped for all entries with a probability of 10%.

B.2 KURAMOTO-SIVASHINSKY (KS)

The 1D KS equation reads as

∂tu+ u∂xu+ ∂xxu+ ν∂xxxxu = 0 x ∈ [0, L]. (9)

The ICs are generated using the superposition of sinusoidal waves (Eq. (8)), but ki is sampled from
[1, 10), Ai from [−1, 1) and ϕi from [0, 2π). No windowing or sign flips are applied. The total
number of waves Nw in this case is set to 10. Since we cannot omit the first part of the simulations
as Lippe et al. (2023), we reduce the simulation time to 40s, but allow for more variance in the
ICs to reach the chaotic behavior easier by increasing the number of wave functions of the IC. The
trajectories are obtained using JAX-CFD (Dresdner et al., 2023). The PDE parameters are drawn
uniformly from their range (no logarithmic scale).

B.3 COMBINED EQUATION (CE)

We adopt the combined equation albeit without the forcing term and the corresponding numerical
solver from Brandstetter et al. (2021).

∂tu+ ∂x
(
αu2 − β∂xu+ γ∂xxu

)
= 0 (10)

As for the IC, the domain of ki is set to [1, 3) and for Ai it is set as [−0.4, 0.4). The number of waves
Nw is set to 5, and no windowing or sign flips are applied either. The PDE parameters are also drawn
uniformly from their range. Depending on the choice of the PDE coefficients (α, β, γ), this equation
recovers the Heat (0, 1, 0), Burgers (0.5, 1, 0), or the Korteweg-de-Vries (3, 0, 1) PDE. The spatial
domain is set to x ∈ [0, 16].

B.4 COMPRESSIBLE NAVIER-STOKES (CNS)

The CNS equations from PDEBench (Takamoto et al., 2022) are written as

∂tρ+∇ · (ρv) = 0, (11a)

ρ(∂tv + v · ∇v) = −∇p+ η△v + (ζ + η/3)∇(∇ · v), (11b)

∂t(ϵ+ ρv2/2) +∇ · [(p+ ϵ+ ρv2/2)v − v · σ′] = 0, (11c)

where σ′ is the viscous tensor. For 2D, the equation has four channels (density ρ, pressure p, velocity
x-component vx, and y-component vy, whereas, for 3D, we have an extra velocity-z component vz
as the fifth channel in addition to the above. The spatial domain is set to x ∈ [0, 1]× [0, 1] for 2D,
and as the unit cube ([0, 1]× [0, 1]× [0, 1]) for 3D. We use the JAX simulator and IC generator from
PDEBench (Takamoto et al., 2022) for CNS equations. The PDE parameters are drawn in logarithmic
scale as in Eq. (7). The IC generator for the pressure, density, and velocity channels is also based on
the superposition of sinusoidal functions. However, the velocity channels are renormalized so that
the IC has a given input Mach number. Secondly, we constrain the density channel to be positive by

uρ = ρ0(1 + ∆ρ u
′
ρ /max

x
(|u′

ρ(x)|) (12)

where ρ0 is sampled from [0.1, 10) and ∆ρ from [0.013, 0.26). The pressure channel p is similarly
transformed using ∆p ∈ [0.04, 0.8). The offset p0 is defined relatively to ρ0 as p0 = T0ρ0 with
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T0 ∈ [0.1, 10). The compressibility is reduced using a Helmholtz-decomposition (Takamoto et al.,
2022). A windowing is applied with a probability of 50% to a channel. For 3D CNS, the considered
domain for the PDE coefficients is η, ζ ∈ [10−3, 10−1). For 1D CNS, the PDE coefficients are set to
be equal and not independently drawn.

C ADDITIONAL MODEL AND TRAINING DETAILS

This section describes the baseline surrogate models used in more detail, lists the hyperparameters,
and explains various training methods. First, we provide a short description of the base models used.
Then, we explain the training methods and list the hyperparameters.

C.1 FOURIER NEURAL OPERATORS (FNOS)

We use the FNO (Li et al., 2020b) implementation provided by PDEBench (Takamoto et al., 2022).
FNOs are based on spectral convolutions, where the layer input is transformed using a Fast Fourier
Transformation (FFT), multiplied in the Fourier space with a weight matrix, and then transformed
back using an inverse FFT. Following the recent observations made in Lanthaler et al. (2023; 2024)
that only a small fixed number of modes are sufficient to achieve the needed expressivity of FNO,
we retain only a limited number of low-frequency Fourier modes and discard the ones with higher
frequencies. The raw PDE parameter values are appended as additional constant channels to the
model input (Takamoto et al., 2023).

C.2 U-SHAPED NETWORKS (U-NETS)

U-Net (Ronneberger et al., 2015) is a common architecture in computer vision, particularly for
perception and semantic segmentation tasks. The structure resembles an hourglass, where the inputs
are first successively downsampled at multiple levels and then gradually, with the same number of
levels, upsampled back to the original input resolution. This structure allows the model to capture
and process spatial information at multiple scales and resolutions. The U-Net used in this paper is
based on the modern U-Net version of Gupta & Brandstetter (2023), which differs from the original
U-Net (Ronneberger et al., 2015) by including improvements such as group normalization (Wu & He,
2018). The model is conditioned on the input PDE parameter values, where they are transformed into
vectors using a learnable Fourier embedding (Vaswani et al., 2017) and a projection layer and are
then added to the convolutional layers’ inputs in the up and down blocks.

C.3 SINENET

U-Nets were originally designed for semantic segmentation problems in medical images (Ronneberger
et al., 2015). Due to its intrinsic capabilities for multi-scale representation modeling, U-Nets have
been widely adopted by the SciML community for PDE solving (Takamoto et al., 2022; Gupta &
Brandstetter, 2023; Lippe et al., 2023; Rahman et al., 2022; Ovadia et al., 2023). One of the important
components of U-Nets to recover high-resolution details in the upsampling path is by the fusion
of feature maps using skip connections. This does not cause an issue for semantic segmentation
tasks since the desired output for a given image is a segmentation mask. However, in the context of
time-dependent PDE solving, specifically for advection-type PDEs modeling transport phenomena,
this is not well-suited since there will be a “lag” in the feature maps of the downsampling path since
the upsampling path is expected to predict the solution u for the next timestep. This detail was
overlooked in U-Net adaptations for time-dependent PDE solving. SineNet is a recently introduced
image-to-image model that aims to mitigate this problem by stacking several U-Nets, called waves,
drastically reducing the feature misalignments. More formally, SineNet learns the mapping

xt = P ({ut−h+1, . . . ,ut})

ut+1 = Q(xt+1)

xt+∆k
= Vk(xt−∆k−1

), k = 1, . . . ,K

Unlike the original SineNet, our adaptation uses only one temporal step as a context to predict the
solution for the subsequent timestep.
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C.4 HYPERPARAMETERS AND TRAINING PROTOCOLS

During AL, we use m = 1 for power sampling and a prediction batch size of 200 for the pool, except
for 3D CNS for which we use 16 due to memory limitations. The features of all inputs are projected
using the sketch operator to a dimension of 512. Table 2 lists the model hyperparameters.

U-Net

Activation GELU (Hendrycks & Gimpel, 2016)
Conditioning Fourier (Vaswani et al., 2017)
Channel multiplier [1, 2, 2, 4]
Hidden Channels 16
# Params 3,378,865 (1D) / 9,182,036 (2D)

FNO

Activation GELU (Hendrycks & Gimpel, 2016)
Conditioning Additional input channel
Layers 4
Width 64 (1D) / 32 (2D & 3D)
Modes 20
# Params 680,834 (1D) / 6,563,110 (2D) / 262,153,959 (3D)

SineNet

Activation GELU (Hendrycks & Gimpel, 2016)
Conditioning Fourier (Vaswani et al., 2017)
Hidden Channels 32
Waves 4
# Params 5,020,840 (2D)

Table 2: Model hyperparameters. For FNO 1D, the parameter counts are for Burger’s PDE, whereas
for FNO 2D and 3D, the CNS equations of respective spatial dimensions are considered.

The inputs are channel-wise normalized using the standard deviation of the different channels on the
initial data set. The outputs are denormalized accordingly. The input only consists of the current
state ut, not including data from prior timesteps. All models are used to predict the difference to the
current timestep (for U-Net, the outputs are multiplied with a fixed factor of 0.3 following Lippe et al.
(2023)).

We employ one- and two-step training strategies during the training phase and a complete rollout
of the trajectories during validation. For the FNO model in the 2D and 3D experiments, we found
it better to use the teacher-forcing schedule from Takamoto et al. (2023). We found it necessary to
add gradient clipping to prevent a sudden divergence in the training curve. To account for the very
different gradient norms among problems, we set the upper limit to 5 times the highest gradient found
in the first five epochs. Afterward, the limit is adapted using a moving average.

We conduct experiments on the time-dependent 3D spatial Navier-Stokes equations and evaluate
the efficacy of active learning in this challenging setup. For 3D, we set the pool size for the active
learning methods on 3D CNS as 30,000 due to memory and compute time limitations. We train the
ML models, 3D FNO, using a teacher forcing schedule (Takamoto et al., 2023) with a batch size of
10 for four active learning iterations. The ‘initial’ training data consists of 64 trajectories, whereas
the validation and test sets each have 512 trajectories.

C.5 HARDWARE AND RUNTIME

The experiments were performed on NVIDIA GeForce RTX 4090 GPUs (one per experiment), except
for the 3D CNS case, which was performed on a single 96 GB H100 GPU. Table 3 shows the
runtime and GPU memory required for the PDEs during training.
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Burgers KS CE 1D CNS 2D CNS 3D CNS

Runtime in h

Random 15.1 12.9 16.8 19.2 37.9 9.5
SBAL 22.9 20.1 25.6 27.5 54.4 14.45
LCMD 14.5 13.9 17.2 19.9 39.0 12.57
Core-Set 14.5 13.4 16.6 21.1 39.7 12.58
Top-K 22.1 29.8 26.4 27.9 55.5 14.42

Training Memory in GB

All 8.16 8.18 4.47 6.88 7.29 66.63

Table 3: Total runtime of the different AL methods and the memory during training (since all methods
train the same model, the memory usage during training is identical).

C.6 TIMING EXPERIMENT

A realistic time measurement for the simulator of Burgers’ equation is challenging. Firstly, we
observed that we can reach the shortest time per trajectory by setting the batch size to 4096 (0.52
seconds). Therefore, we use this as the fixed time per trajectory. The actual simulation times per
AL iteration are higher since we start with batch sizes below this saturation point. Secondly, the
simulation step size is adapted to the PDE parameter value due to the CFL condition (Lewy et al.,
1928). Therefore, it would be beneficial to batch similar parameter values together and also to
consider the parameter simulation costs in the acquisition function. Figure 9 shows training, selection,
and simulation times.

1 2 3 4 5
AL Iteration

102

103

Ti
m

e 
in

 s

Ttrain
Tsel
Tsim

Figure 9: Cumulative training, selection, and simulation times necessary to reach the given active
learning iteration (e.g., time to select data for iteration 2 counted in iteration 2) for 1D Burgers PDE.

The FNO surrogate used for selection is only trained for 20 epochs with a batch size of 1024. We use
one-step training, and the learning rate of 0.001 is not annealed. The model itself has a width of 20
and uses 20 modes, resulting in 36,706 parameters. During selection, a batch size of 32,768 is used.

D FRAMEWORK OVERVIEW

The framework has three major components: Model, BatchSelection, and Task. Task
acts as a container of all the PDE-specific information and contains the Simulator,
PDEParamGenerator, and ICGenerator classes. PDEParamGenerator and
ICGenerator can draw samples from the test input distribution pT . The inputs are first
drawn from a normalized range and then transformed into the actual inputs. Afterward, the inputs
can be passed to the simulator to be evolved into a trajectory. Listing 1 shows the pseudocode of
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the (random) data generation pipeline. In order to implement a new PDE, a user has to implement
a new subclass of Simulator overwrite the __call__ function and, if desired, add a new
ICGenerator.

1 class PDEParamGenerator:
2

3 def get_normed_pde_params(self, n):
4 # Generates the random PDE parameters in a normed space
5 # (e.g. between 0 and 1).
6

7 def get_pde_params(self, pde_params_normed):
8 # Transforms the normed parameters to their true value.
9

10

11 class ICGenerator:
12

13 def initialize_ic_params(self, n):
14 # Generates the random parameters of an IC (e.g. Mach number).
15

16 def generate_initial_conditions(self, ic_params, pde_params)
17 # Transforms the IC parameters and PDE parameters to the IC.
18

19

20 class Simulator:
21

22 def __call__(self, ic, pde_params, grid):
23 # Evolves the IC for a given PDE parameter.
24

25

26 # generate pde parameters
27 pde_params_normed = pde_gen.get_normed_pde_params(n)
28 pde_params = pde_gen.get_pde_params(pde_params_normed)
29

30 # generate ICs
31 ic_params = ic_gen.initialize_ic_params(n)
32 ic_gen.generate_initial_conditions(ic_params, pde_params)
33

34 trajectories = sim(ic, pde_param, grid)

Listing 1: Interface and example code for generating inputs and simulation.

Listing 2 shows the interface for the Model and ProbModel classes. Model provides functions
to rollout a surrogate and deals with the training and evaluation. In order to add a new surrogate, a
user has to overwrite the forward method. The rollout function also allows to get the internal
model features for distance-based acquisition functions. ProbModel is an extension of the Model
class, which adds the possibility of getting an uncertainty estimate. After training the model, the
BatchSelection class is called in order to select a new set of inputs. The most important subclass
is the PoolBased class, which deals with managing the pool and provides the select_next
method, which a new pool-based method has to overwrite.
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1 class Model(nn.Module):
2

3 def init_training(self, al_iter):
4 # Reset model, optimizer, scheduler, ...
5

6 def forward(self, xx, grid, param, return_features):
7 # Predic next state.
8

9 def rollout(self, xx, grid, final_step, param, return_features):
10 # Autoregressive rollout of the model until timestep final_step.
11

12 def evaluate(self, step, loader, prefix):
13 # Evaluate the model on the given dataset (e.g. validation, train).
14

15 def train_single_epoch(self, current_epoch, total_epoch, num_epoch):
16 # Train the model for one epoch.
17

18 def train_n_epoch(self, al_iter, num_epoch):
19 # Train the model .
20

21

22 class ProbModel(Model):
23

24 def uncertainty(self, xx, grid, param):
25 # Get uncertainty over next state.
26

27 def unc_roll_out(self, xx, grid, final_step, param, return_features):
28 # Compute prediction and uncertainty of the rollout.
29

30

31 class BatchSelection:
32

33 def generate(self, prob_model, al_iter, train_loader):
34 # Selects new inputs and passes them to the simulator.
35

36

37 class PoolBased(BatchSelection):
38

39 def select_next(self, step, prob_model, ic_pool, pde_param_pool,
40 ic_train, pde_param_train, grid, al_iter):
41 # Selects new input from (ic_pool, pde_param_pool).
42

43

44 for al_iter in range(num_al_iter):
45 # retrain model
46 prob_model.train_n_epoch(al_iter, num_epoch)
47

48 # select next inputs
49 batch_sel.generate(prob_model, al_iter, train_loader)

Listing 2: Interface and example code for the neural operator models and AL methods.
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E ADDITIONAL EXPERIMENTS

Figure 10 shows an experiment with a smaller pool that is completely labeled after the last AL
iteration. Sufficient pool size is important for the AL algorithm in order to be able to focus on the
difficult dynamical regions.

256 512 1024 2048 4096 8192

N

0.01R
M

SE

Small Pool

Random
SBAL
SBAL Large Pool

Figure 10: Error over the number of trajectories for an experiment with a pool size of only 8192
possible inputs (including initial data). Compared to the main SBAL results with the larger pool of
100,000 samples.

F DETAILED RESULTS

Tables 4-9 list the results from the main experiments. Table 10 shows the Pearson and Spearman
coefficient of the average uncertainty per trajectory with the average error per trajectory. Among
the PDEs, the Pearson correlation coefficient is the lowest on CE. The Spearman coefficient, which
measures the correlation in terms of the ranking, is above 0.73 on average for all experiments.
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Iteration 1 2 3 4 5

RMSE ×10−2

Random 3.684± 1.203 3.278± 2.107 1.607± 0.485 1.062± 0.614 0.552± 0.133
SBAL 3.684± 1.203 1.179± 0.223 0.586± 0.106 0.400± 0.075 0.259 ± 0.028
LCMD 3.684± 1.203 0.808 ± 0.053 0.521 ± 0.052 0.394 ± 0.043 0.269± 0.014

Core-Set 3.684± 1.203 1.021± 0.160 0.659± 0.100 0.476± 0.134 0.292± 0.015
Top-K 3.684± 1.203 1.494± 0.250 0.964± 0.258 0.477± 0.044 0.360± 0.096

50% Quantile ×10−2

Random 0.182± 0.015 0.122 ± 0.015 0.083 ± 0.010 0.058 ± 0.005 0.044 ± 0.007
SBAL 0.182± 0.015 0.178± 0.032 0.105± 0.011 0.078± 0.011 0.054± 0.006
LCMD 0.182± 0.015 0.129± 0.014 0.101± 0.015 0.068± 0.008 0.050± 0.006

Core-Set 0.182± 0.015 0.169± 0.017 0.133± 0.013 0.094± 0.014 0.063± 0.008
Top-K 0.182± 0.015 0.197± 0.020 0.176± 0.024 0.109± 0.010 0.078± 0.012

95% Quantile ×10−2

Random 1.468± 0.136 0.834± 0.125 0.502 ± 0.037 0.343 ± 0.014 0.255 ± 0.025
SBAL 1.468± 0.136 1.054± 0.248 0.544± 0.065 0.409± 0.064 0.269± 0.026
LCMD 1.468± 0.136 0.669 ± 0.069 0.503± 0.091 0.347± 0.030 0.259± 0.020

Core-Set 1.468± 0.136 0.865± 0.123 0.662± 0.090 0.503± 0.113 0.336± 0.034
Top-K 1.468± 0.136 1.273± 0.177 1.045± 0.200 0.575± 0.064 0.449± 0.077

99% Quantile ×10−2

Random 6.315± 0.838 3.327± 0.724 1.653± 0.111 0.968± 0.046 0.649± 0.027
SBAL 6.315± 0.838 3.169± 0.945 1.360± 0.213 0.987± 0.239 0.599± 0.056
LCMD 6.315± 0.838 1.802 ± 0.157 1.223 ± 0.237 0.819 ± 0.108 0.573 ± 0.041

Core-Set 6.315± 0.838 2.461± 0.500 1.756± 0.360 1.153± 0.295 0.703± 0.056
Top-K 6.315± 0.838 4.456± 1.685 3.251± 1.039 1.347± 0.129 1.048± 0.326

Table 4: Error metrics on Burgers’ equation.
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Iteration 1 2 3 4 5

RMSE

Random 0.452± 0.026 0.370± 0.012 0.312± 0.013 0.272± 0.010 0.229± 0.010
SBAL 0.452± 0.0260.347 ± 0.0200.281 ± 0.0100.236 ± 0.0080.200 ± 0.012
LCMD 0.452± 0.026 0.370± 0.009 0.315± 0.013 0.266± 0.019 0.219± 0.018

Core-Set0.452± 0.026 0.389± 0.011 0.335± 0.013 0.278± 0.006 0.235± 0.020
Top-K 0.452± 0.026 0.378± 0.018 0.305± 0.011 0.264± 0.014 0.225± 0.015

50% Quantile

Random 0.021± 0.0050.011 ± 0.0020.008 ± 0.0010.005 ± 0.0010.003 ± 0.001
SBAL 0.021± 0.005 0.016± 0.004 0.013± 0.003 0.008± 0.001 0.006± 0.001
LCMD 0.021± 0.005 0.020± 0.003 0.016± 0.003 0.009± 0.003 0.006± 0.001

Core-Set0.021± 0.005 0.022± 0.003 0.021± 0.002 0.014± 0.002 0.009± 0.002
Top-K 0.021± 0.005 0.020± 0.003 0.018± 0.002 0.012± 0.003 0.010± 0.002

95% Quantile

Random 0.603± 0.1060.363 ± 0.0200.231 ± 0.0240.143 ± 0.0110.094 ± 0.006
SBAL 0.603± 0.106 0.376± 0.060 0.255± 0.031 0.163± 0.022 0.119± 0.018
LCMD 0.603± 0.106 0.458± 0.024 0.344± 0.024 0.230± 0.035 0.140± 0.023

Core-Set0.603± 0.106 0.501± 0.025 0.425± 0.034 0.295± 0.021 0.213± 0.053
Top-K 0.603± 0.106 0.458± 0.017 0.340± 0.026 0.257± 0.039 0.188± 0.016

99% Quantile

Random 2.368± 0.153 1.844± 0.105 1.382± 0.117 1.040± 0.092 0.708± 0.048
SBAL 2.368± 0.1531.655 ± 0.1371.177 ± 0.1000.844 ± 0.1030.619 ± 0.093
LCMD 2.368± 0.153 1.811± 0.056 1.440± 0.097 1.151± 0.123 0.802± 0.149

Core-Set2.368± 0.153 1.920± 0.077 1.571± 0.090 1.230± 0.046 0.982± 0.202
Top-K 2.368± 0.153 1.860± 0.126 1.356± 0.092 1.138± 0.086 0.873± 0.119

Table 5: Error metrics on KS.
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Iteration 1 2 3 4 5

RMSE ×10−2

Random 4.651± 1.293 3.814± 1.121 2.609± 0.466 1.630± 0.257 1.108± 0.117
SBAL 4.651± 1.293 1.597± 0.083 0.931± 0.125 0.496 ± 0.087 0.318 ± 0.048
LCMD 4.651± 1.293 1.528± 0.121 0.957± 0.114 0.609± 0.107 0.338± 0.041

Core-Set 4.651± 1.293 1.596± 0.235 1.033± 0.076 0.761± 0.230 0.424± 0.053
Top-K 4.651± 1.293 1.678± 0.099 0.904± 0.101 0.529± 0.103 0.373± 0.077
BAIT 4.651± 1.293 1.415 ± 0.187 0.900 ± 0.102 0.660± 0.159 0.424± 0.124
LHS 5.130± 0.808 3.626± 1.011 2.668± 0.383 1.852± 0.301 1.312± 0.144

50% Quantile ×10−2

Random 0.238± 0.025 0.166 ± 0.036 0.125 ± 0.021 0.083± 0.005 0.065± 0.004
SBAL 0.238± 0.025 0.200± 0.024 0.125± 0.009 0.076 ± 0.008 0.052 ± 0.004
LCMD 0.238± 0.025 0.171± 0.007 0.128± 0.015 0.083± 0.008 0.054± 0.004

Core-Set 0.238± 0.025 0.224± 0.070 0.168± 0.020 0.143± 0.059 0.083± 0.009
Top-K 0.238± 0.025 0.211± 0.019 0.155± 0.016 0.111± 0.015 0.073± 0.008
BAIT 0.238± 0.025 0.186± 0.018 0.146± 0.011 0.108± 0.011 0.080± 0.006
LHS 0.249± 0.030 0.145± 0.022 0.117± 0.019 0.085± 0.011 0.066± 0.003

95% Quantile ×10−2

Random 2.373± 0.220 1.619± 0.222 1.090± 0.050 0.695± 0.039 0.516± 0.019
SBAL 2.373± 0.220 1.723± 0.126 0.980 ± 0.070 0.510 ± 0.036 0.313 ± 0.014
LCMD 2.373± 0.220 1.485 ± 0.121 1.038± 0.087 0.609± 0.061 0.361± 0.020

Core-Set 2.373± 0.220 1.902± 0.379 1.389± 0.126 1.102± 0.469 0.598± 0.095
Top-K 2.373± 0.220 1.901± 0.100 1.236± 0.099 0.739± 0.151 0.416± 0.039
BAIT 2.373± 0.220 1.567± 0.152 1.121± 0.085 0.753± 0.075 0.515± 0.047
LHS 2.537± 0.213 1.516± 0.098 1.080± 0.098 0.709± 0.057 0.530± 0.013

99% Quantile ×10−2

Random 10.192± 1.523 7.260± 1.226 4.741± 0.281 2.893± 0.227 1.870± 0.099
SBAL 10.192± 1.523 4.756± 0.215 2.701 ± 0.251 1.433 ± 0.070 0.896 ± 0.053
LCMD 10.192± 1.523 4.198 ± 0.103 2.787± 0.210 1.631± 0.178 0.991± 0.038

Core-Set10.192± 1.523 5.056± 0.827 3.526± 0.212 2.638± 1.069 1.446± 0.290
Top-K 10.192± 1.523 5.382± 0.373 3.174± 0.181 1.756± 0.448 0.972± 0.092
BAIT 10.192± 1.523 4.290± 0.307 2.896± 0.141 1.939± 0.172 1.301± 0.104
LHS 10.785± 1.740 6.863± 0.578 4.778± 0.272 3.090± 0.546 1.874± 0.056

Table 6: Error metrics on CE.
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Iteration 1 2 3 4 5

RMSE

Random 3.054± 1.276 1.966 ± 0.248 1.293 ± 0.092 0.997± 0.079 0.695± 0.104
SBAL 3.054± 1.276 2.093± 0.380 1.347± 0.180 0.867± 0.097 0.581± 0.077
LCMD 3.054± 1.276 2.291± 1.030 1.354± 0.131 0.856 ± 0.092 0.555 ± 0.049

Core-Set 3.054± 1.276 2.486± 0.831 1.922± 0.583 1.232± 0.160 0.753± 0.227
Top-K 3.054± 1.276 2.586± 1.117 1.467± 0.158 0.986± 0.223 0.618± 0.087

50% Quantile

Random 1.158± 0.387 0.758 ± 0.122 0.479 ± 0.044 0.347 ± 0.043 0.206± 0.019
SBAL 1.158± 0.387 0.893± 0.150 0.589± 0.084 0.371± 0.055 0.231± 0.046
LCMD 1.158± 0.387 1.028± 0.491 0.604± 0.065 0.351± 0.040 0.196 ± 0.017

Core-Set 1.158± 0.387 1.108± 0.282 0.963± 0.301 0.574± 0.102 0.313± 0.093
Top-K 1.158± 0.387 1.186± 0.391 0.702± 0.069 0.462± 0.101 0.272± 0.047

95% Quantile

Random 6.356± 3.150 3.944 ± 0.632 2.580 ± 0.256 1.942± 0.145 1.247± 0.151
SBAL 6.356± 3.150 4.236± 0.939 2.709± 0.405 1.696± 0.250 1.149± 0.181
LCMD 6.356± 3.150 4.774± 2.267 2.719± 0.314 1.688 ± 0.209 1.055 ± 0.102

Core-Set 6.356± 3.150 5.029± 2.019 3.998± 1.348 2.540± 0.326 1.519± 0.523
Top-K 6.356± 3.150 5.444± 2.520 3.022± 0.373 1.988± 0.530 1.225± 0.189

99% Quantile

Random 11.293± 4.832 7.296± 0.897 4.860± 0.482 3.687± 0.291 2.537± 0.215
SBAL 11.293± 4.832 7.290 ± 1.582 4.720± 0.761 2.969 ± 0.315 2.035 ± 0.267
LCMD 11.293± 4.832 8.009± 3.637 4.651 ± 0.522 3.090± 0.388 2.095± 0.253

Core-Set11.293± 4.832 8.403± 2.948 6.103± 1.648 4.191± 0.546 2.649± 0.796
Top-K 11.293± 4.832 8.677± 4.075 4.835± 0.516 3.305± 0.719 2.098± 0.334

Table 7: Error metrics on 1D CNS.
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Iteration 1 2 3 4 5

RMSE

Random 2.662± 0.339 2.162± 0.029 1.856± 0.106 1.572± 0.072 1.362± 0.065
SBAL 2.662± 0.339 1.979 ± 0.226 1.790± 0.203 1.458± 0.140 1.205 ± 0.027
LCMD 2.662± 0.339 1.991± 0.293 1.734± 0.189 1.356 ± 0.081 1.277± 0.083

Core-Set 2.662± 0.339 2.322± 0.350 1.731 ± 0.168 1.613± 0.202 1.343± 0.186
Top-K 2.662± 0.339 2.684± 1.129 2.070± 0.368 1.623± 0.524 1.313± 0.106

50% Quantile

Random 0.506± 0.119 0.447 ± 0.156 0.356 ± 0.111 0.266 ± 0.087 0.209 ± 0.034
SBAL 0.506± 0.119 0.480± 0.116 0.543± 0.344 0.336± 0.063 0.295± 0.053
LCMD 0.506± 0.119 0.574± 0.361 0.412± 0.234 0.317± 0.065 0.312± 0.085

Core-Set 0.506± 0.119 0.562± 0.154 0.411± 0.085 0.433± 0.191 0.408± 0.120
Top-K 0.506± 0.119 0.653± 0.165 0.521± 0.133 0.483± 0.174 0.400± 0.065

95% Quantile

Random 4.421± 0.630 3.491± 0.154 2.828± 0.314 2.317± 0.207 1.927± 0.170
SBAL 4.421± 0.630 3.308± 0.550 2.936± 0.370 2.310± 0.349 1.821 ± 0.128
LCMD 4.421± 0.630 3.263 ± 0.561 2.758 ± 0.351 2.025 ± 0.177 2.003± 0.326

Core-Set 4.421± 0.630 4.235± 0.899 2.952± 0.375 2.690± 0.396 2.189± 0.437
Top-K 4.421± 0.630 5.009± 2.402 3.891± 0.921 2.911± 1.392 2.238± 0.289

99% Quantile

Random 11.378± 1.863 9.135± 0.253 7.754± 0.507 6.620± 0.340 5.735± 0.320
SBAL 11.378± 1.863 8.295± 1.062 7.195 ± 0.786 6.058± 0.573 4.933 ± 0.112
LCMD 11.378± 1.863 8.196 ± 0.926 7.229± 0.609 5.569 ± 0.362 5.265± 0.399

Core-Set11.378± 1.863 9.739± 1.416 7.263± 0.707 6.646± 0.794 5.404± 0.722
Top-K 11.378± 1.863 11.424± 5.585 8.531± 1.478 6.466± 2.101 5.237± 0.417

Table 8: Error metrics on 2D CNS.
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Iteration 1 2 3 4

RMSE

Random 3.159± 0.915 2.550± 0.338 2.364± 0.429 2.022± 0.201
SBAL 3.159± 0.915 2.265 ± 0.402 1.901± 0.079 1.680± 0.098
LCMD 3.159± 0.915 2.382± 0.600 2.011± 0.222 1.795± 0.032

Core-Set 3.159± 0.915 2.383± 0.648 1.890 ± 0.199 1.632 ± 0.197
Top-K 3.159± 0.915 2.635± 0.216 2.056± 0.194 1.823± 0.231

50% Quantile

Random 1.092± 0.187 0.599 ± 0.070 0.381 ± 0.083 0.268 ± 0.046
SBAL 1.092± 0.187 0.639± 0.072 0.420± 0.048 0.332± 0.054
LCMD 1.092± 0.187 0.862± 0.435 0.393± 0.074 0.288± 0.064

Core-Set 1.092± 0.187 0.852± 0.180 0.455± 0.114 0.314± 0.043
Top-K 1.092± 0.187 0.952± 0.404 0.615± 0.138 0.598± 0.285

95% Quantile

Random 5.519± 0.857 4.255± 0.480 3.885± 0.682 3.162± 0.150
SBAL 5.519± 0.857 4.058 ± 0.873 3.215 ± 0.143 2.725 ± 0.442
LCMD 5.519± 0.857 4.289± 1.636 3.433± 0.375 3.020± 0.262

Core-Set 5.519± 0.857 4.520± 1.904 3.549± 0.833 2.806± 0.841
Top-K 5.519± 0.857 4.935± 1.120 3.878± 0.720 3.275± 0.424

99% Quantile

Random 12.929± 6.254 11.013± 1.485 10.187± 2.298 8.527± 0.916
SBAL 12.929± 6.254 9.128± 2.003 7.844± 0.410 6.787± 0.209
LCMD 12.929± 6.254 9.245± 2.225 8.367± 0.805 7.491± 0.183

Core-Set12.929± 6.254 9.062 ± 2.095 7.649 ± 0.618 6.713 ± 0.686
Top-K 12.929± 6.254 9.744± 2.160 8.253± 0.703 7.072± 0.737

Table 9: Error metrics on 3D CNS.

Iteration 1 2 3 4

Pearson

KS 87.1± 3.8 84.9± 2.3 78.0± 5.4 80.5± 3.7
CE 49.2± 16.2 62.0± 14.6 41.3± 22.1 73.8± 20.9

CNS 78.2± 6.4 78.9± 18.0 90.8± 2.7 94.3± 2.0

Burgers M = 2 92.0± 6.3 71.3± 27.1 71.4± 11.5 67.9± 18.4
Burgers M = 6 89.5± 8.2 60.9± 26.7 67.9± 19.6

Spearman

KS 86.4± 2.8 83.0± 2.8 83.9± 4.2 82.7± 0.4
CE 87.4± 1.7 83.9± 2.1 81.2± 1.0 80.5± 1.5

CNS 94.6± 2.4 93.4± 2.3 91.1± 3.9 93.4± 1.6

Burgers M = 2 87.5± 2.7 83.2± 11.0 75.2± 5.0 73.7± 5.3
Burgers M = 6 90.3± 0.9 84.5± 2.3 80.8± 2.2

Table 10: Correlation coefficients in percent between the error and the uncertainty averages per
trajectory, including the standard deviation. Computed for SBAL on the main experiments as well as
the ensemble size ablation experiment.
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G OVERVIEW OF THE GENERATED DATASETS

In the following sections, we show visual examples of the data selected by random sampling and
SBAL, and the marginal distributions of all PDE and IC parameters afterwards.

G.1 EXAMPLE TRAJECTORIES
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Figure 11: Example ground truth trajectories of random and SBAL on Burgers. The number on the
top left of the trajectories shows the PDE parameter ν.
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Figure 12: Example ground truth trajectories of random and SBAL on KS. The number on the top
left of the trajectories shows the parameters (ν, L). The x-axis is shown in normalized values between
0 and 1 independent of the variable domain length L.
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Figure 13: Example ground truth trajectories of random and SBAL on CE. The numbers on the top
left of the trajectories show the PDE parameters (α, β, γ).
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Figure 14: Example ground truth trajectories of random and SBAL on 1D CNS. The numbers on the
top left of the trajectories show the PDE parameters (η = ζ).
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Figure 15: Example ground truth trajectory of 2D CNS.
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Figure 16: XY, YZ, and XZ planar views of the density channel from a random 3D CNS trajectory in
the validation dataset representing a simulation of the compressible flow on the unit cube.
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Figure 17: XY, YZ, and XZ planar views of the velocity (x⃗) channel from a random 3D CNS
trajectory in the validation dataset showing a simulation of the compressible flow on the unit cube.
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Figure 18: XY, YZ, and XZ planar views of the velocity (y⃗) channel from a random 3D CNS
trajectory in the validation dataset showing a simulation of the compressible flow on the unit cube.
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Figure 19: XY, YZ, and XZ planar views of the velocity (z⃗) channel from a random 3D CNS
trajectory in the validation dataset showing a simulation of the compressible flow on the unit cube.
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Figure 20: XY, YZ, and XZ planar views of the pressure channel from a random 3D CNS trajectory
in the validation dataset representing a simulation of the compressible flow on the unit cube.
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G.2 IC PARAMETER MARGINAL DISTRIBUTIONS

Figures 21-26 show the marginal distributions of the random parameters of the IC generators, i.e., the
random variables drawn which are then transformed using a deterministic function to the actual IC.
For example, the KS IC generator draws amplitudes and phases from a uniform distribution and uses
them afterward for the superposition of sine waves. If multiple numbers are drawn from each type of
variable, we put them together, e.g., in the case of KS, multiple amplitudes are drawn for the different
waves, but Figure 22 only shows the distribution of all amplitude variables mixed. The distribution
curves for continuous variables are computed using kernel density estimation. The shaded areas
(vertical lines for discrete variables) show the standard deviation between the marginal distributions
of different random seeds.
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Figure 21: Marginal distribution of the parameters of the ICs sampled by the AL methods for Burgers.
Displayed as the ratio to the density of the uniform distribution.
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Figure 22: Marginal distribution of the parameters of the ICs sampled by the AL methods for KS.
Displayed as the ratio to the density of the uniform distribution.
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Figure 23: Marginal distribution of the parameters of the ICs sampled by the AL methods for CE.
Displayed as the ratio to the density of the uniform distribution.
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Figure 24: Marginal distribution of the parameters of the ICs sampled by the AL methods for 1D
CNS. Displayed as the ratio to the density of the uniform distribution.
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Figure 25: Marginal distribution of the parameters of the ICs sampled by the AL methods for 2D
CNS. Displayed as the ratio to the density of the uniform distribution.
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Figure 26: Marginal distribution of the parameters of the ICs sampled by the AL methods for 3D
CNS. Displayed as the ratio to the density of the uniform distribution.
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G.3 PDE PARAMETER MARGINAL DISTRIBUTIONS

Similarly, Figures 27 and 28 show the KDE estimates of the dataset after the final AL iteration for the
PDE parameters.
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Figure 27: Marginal distribution of the PDE parameters of Burgers, KS, and CE, including the
standard deviation between different runs. Displayed as the ratio to the density of the test distribution.
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Figure 28: Marginal distributions of the 1D, 2D, and 3D CNS PDE parameters, including the standard
deviation between different runs. Displayed as the ratio to the density of the test distribution.
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