
CXR Fact Encoder: Combining Large Language Models with Medical
Knowledge for Enhanced Radiological Text Representation

Anonymous ACL submission

Abstract

Recent advancements in representation learn-001
ing, although promising, often confront chal-002
lenges in specialized domains like medicine. In003
particular, the acquisition of expert annotations004
for medical texts and images is notably burden-005
some due to the limited availability and time006
constraints of medical professionals. Recogniz-007
ing this, Large Language Models (LLMs) offer008
a promising avenue to automatically extract an-009
notations from radiology reports at scale. In010
this work, we exploit the potential of pairing011
LLMs with domain-specific knowledge, thus012
reducing the dependency on time-intensive hu-013
man expert annotations for improved medical014
text representation. Specifically, we introduce a015
two-stage system for the extraction and encod-016
ing of facts from radiology reports using LLMs017
such as ChatGPT and T5, in tandem with spe-018
cialized medical knowledge sources. As a cor-019
nerstone of this system, we present CXR Fact020
Encoder—a BERT-based model fine-tuned for021
the enhanced representation of chest X-ray ra-022
diology reports. Additionally, we illustrate the023
applicability of our method by introducing CXR024
Fact Encoder Score, a novel evaluation metric025
crafted specifically for radiology text gener-026
ation, drawing from all the elements of our027
two-stage system. Our evaluations show the028
proposed system outperforms multiple baseline029
methods in tasks like sentence ranking, natural030
language inference, and label extraction from031
radiology reports. We make our model weights,032
data, and code publicly available.033

1 Introduction034

In the context of medical image analysis, radiol-035

ogy reports constitute a rich source of unstructured036

information. Such free-text radiology reports are037

written by radiologists as part of their regular prac-038

tice and are typically comprised of sections such039

as comparison, indication, findings, and impres-040

sion. Figure 1 shows an illustrative example of041

Comparison: Chest radiographs XXXX.
Indication: XXXX-year-old male, chest pain.
Findings: The cardiomediastinal silhouette is
within normal limits for size and contour. The
lungs are normally inflated without evidence
of focal airspace disease, pleural effusion, or
pneumothorax. Stable calcified granuloma
within the right upper lung. No acute bone
abnormality.
Impression: No acute cardiopulmonary
process.

Figure 1: Example image and report from the IU X-ray
dataset (Demner-Fushman et al., 2015)

such reports in the context of Chest X-ray (CXR) 042

images. 043

Radiology reports can be utilized in different 044

manners. One use case is label extraction to 045

provide structured supervision for medical image 046

tasks, such as abnormality classification or detec- 047

tion (Irvin et al., 2019; Smit et al., 2020; Jain 048

et al., 2021b; Bustos et al., 2019; Syeda-Mahmood 049

et al., 2020; Wu et al., 2021; Jain et al., 2021a). 050

Other use cases include radiology report generation 051

(Messina et al., 2022; Miura et al., 2021; Delbrouck 052

et al., 2022; Tanida et al., 2023) and summariza- 053

tion (Chen et al., 2023b; Ma et al., 2023). Another 054

recent trend is the development of multimodal mod- 055

els that can jointly understand medical images and 056

text using different techniques, such as image and 057

text masking and contrastive learning (Wang et al., 058

2022; Boecking et al., 2022; Bannur et al., 2023; 059

Moon et al., 2022; Chen et al., 2022). 060

For all these tasks, a key step is the correct under- 061

standing of the factual information contained in the 062

report. In particular, the findings and impression 063

sections of a report can be viewed as a collection of 064

facts about the imaging exam. Facts may include 065

observations (of abnormalities, diseases, devices, 066

etc.), an interpretation or inference from one or 067

more observations, references to some anatomical 068

location, discussions of the level of severity or de- 069

gree of confidence, comparisons with respect to 070

a previous study, etc. For example, in Figure 1, 071

one fact is that there is no acute bone abnormal- 072
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ity (a normal observation), and another fact is that073

there is stable calcified granuloma within the right074

upper lung (an abnormal observation in a specific075

anatomical location).076

The lack of suitable methods for fact extrac-077

tion and encoding for medical reports motivates078

us to develop a new method to tackle this problem.079

Specifically, our proposed method can extract med-080

ical facts, encoding them into a high-quality latent081

representation that captures clinical details while082

accounting for variations in radiology report free-083

text. Our approach is also inspired by the capabili-084

ties of Large Language Models (LLMs) like GPT-085

3.5 and GPT-4—often referred to as versions of086

ChatGPT—which have demonstrated exceptional087

medical performance (Katz et al., 2023; Liu et al.,088

2023b; Adams et al., 2023). We also leverage in-089

sights from expert-annotated datasets, including090

Chest ImaGenome (Wu et al., 2021), RadGraph091

(Jain et al., 2021a), MedNLI (Romanov and Shiv-092

ade, 2018), and RadNLI (Miura et al., 2021).093

Paper contributions. In light of these motiva-094

tions, our work presents the following contribu-095

tions:096

• A fact extractor: a novel and simple approach097

to extracting facts from Chest X-ray radiology098

reports by leveraging LLMs. We use ChatGPT099

and a fine-tuned version of T5 (Raffel et al.,100

2020) in order to capture relevant information101

from reports, without requiring annotations102

from radiologists.103

• A fact encoder: CXR Fact Encoder for CXR104

reports. The model is based on the BERT105

architecture and shares the same tokenizer106

and initial weights as CXR-BERT-specialized107

(Boecking et al., 2022), but is further fine-108

tuned with a multi-task supervisory approach109

that leverages domain expertise from radiol-110

ogists as well as ChatGPT and T5 generated111

annotations. As a result, CXR Fact Encoder112

exhibits significant advancements in fact com-113

prehension, as demonstrated by improved sen-114

tence ranking and natural language inference115

capabilities. Moreover, the entire system (fact116

extraction + encoding) can be used for label117

extraction from reports, outperforming several118

baselines.119

• A new evaluation metric for radiology text120

generation, that we name CXR Fact Encoder121

Score, that measures the factual correctness122

of a generated text with respect to a ground- 123

truth text, by extracting and comparing the 124

embeddings of the facts in each one. This is 125

one of the many possible applications of our 126

two-stage system. 127

We release the weights of CXR Fact Encoder, 128

the weights of the fine-tuned version of T5 for fact 129

extraction, as well as data and code necessary to 130

replicate the results. We also release CXR Fact 131

Encoder Score as a Python library for ease of use 132

by the research community. 133

Paper organization. The remainder of the paper 134

is structured as follows: Section 2 explores related 135

work, emphasizing BERT-based radiology text rep- 136

resentation, label extraction, factual correctness in 137

radiology text generation, and LLMs. Then Sec- 138

tions 3 and 4 present the two stages of our proposed 139

system, namely, fact extraction and fact encoding, 140

respectively. Section 5 describes the datasets used 141

in our experiments, including details about our an- 142

notation strategy. Our experimental evaluation is 143

captured in Section 6, where we present various 144

tasks, emphasizing the efficacy of our approach. 145

We conclude in Section 7 with key insights and 146

contributions, while Section 8 acknowledges limi- 147

tations and suggests future research avenues. 148

2 Related Work 149

BERT for Radiology Text Representation. In 150

recent years, BERT (Devlin et al., 2019) has rev- 151

olutionized various domains of natural language 152

processing (NLP), offering remarkable improve- 153

ments in text representation. Consequently, sub- 154

sequent works have developed new variants of 155

BERT for different text-related applications. Some 156

examples in the medical domain are BioClinical- 157

BERT (Alsentzer et al., 2019), PubMedBERT (Gu 158

et al., 2020), BioLinkBERT (Yasunaga et al., 2022), 159

CXR-BERT (Boecking et al., 2022) and BioViL-T 160

(Bannur et al., 2023). Like these works, we follow 161

the common practice of making BERT the basis 162

of our model. However, our work differs in the 163

fact that we follow a different training protocol that 164

takes advantage of LLMs like ChatGPT to generate 165

supervision at large scale, in addition to supervi- 166

sion obtained from datasets annotated by domain 167

experts. 168

Label extraction from Radiology Reports. 169

Our work is also related to the problem of extract- 170

ing information, usually in the form of labels, from 171

free-text radiology reports. A well-known exam- 172
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ple in the literature is the CheXpert labeler (Smit173

et al., 2020), which uses a rule-based system to174

infer the presence or absence of 13 observations175

(plus the label "No findings"). CheXbert (Smit176

et al., 2020) and VisualCheXbert (Jain et al., 2021b)177

are subsequent versions that follow the same label-178

ing standard of CheXpert but are based on BERT.179

The Chest ImaGenome dataset (Wu et al., 2021)180

is another example that made use of a rule-based181

NLP system to label reports in order to build scene182

graphs for the corresponding frontal images in the183

MIMIC-CXR dataset (Johnson et al., 2019a). Rad-184

Graph (Jain et al., 2021a) proposed a labeling stan-185

dard of entities and relations for radiology reports,186

and trained a variant of BERT, DyGIE++ (Wad-187

den et al., 2019), for entity and relation extraction188

on examples annotated by radiologists. PadChest189

(Bustos et al., 2019) followed a similar approach,190

by labeling Spanish reports with a LSTM that was191

previously trained on examples annotated by physi-192

cians. Our work contributes in this domain by193

proposing a different method for information ex-194

traction, by combining the powerful representation195

capabilities BERT with the remarkable natural lan-196

guage skills of ChatGPT and T5, in order to extract197

and encode facts from reports.198

Factual Correctness in Radiology Text Gener-199

ation. One important area of application motivat-200

ing this work is the evaluation of factual correctness201

in systems that generate radiological text. Recent202

works have stressed the importance of improving203

and optimizing the correctness of the facts gen-204

erated by a system in applications such as report205

generation (Miura et al., 2021; Delbrouck et al.,206

2022) and summarization (Zhang et al., 2020b).207

Likewise, Yu et al. (2022) conducted a study on208

metrics to evaluate progress in automatic CXR re-209

port generation, and concluded that the best ones210

were all based on BERT. Thus, a direct application211

of our work is the use of CXR Fact Encoder as a212

learned metric of medical factual correctness, by213

extracting and comparing facts in a latent space.214

LLMs in Medicine. Our work falls under the215

category of applications of LLMs to the medical216

domain. Specifically, in this work we make use217

of ChatGPT versions GPT-3.5 and GPT-4 through218

OpenAI’s API1. Previous works have successfully219

applied ChatGPT to medical tasks. Liu et al.220

(2023b) used ChatGPT to generate short sentences221

with plausible symptoms of medical conditions for222

1
https://platform.openai.com/

interpretable zero-shot medical image diagnosis. 223

Adams et al. (2023) used GPT-4 to transform free- 224

text radiology reports into structured templates, 225

with remarkable results. GPT-4 is also known for 226

having passed the bar exam (Katz et al., 2023). 227

Knowledge Distillation from LLMs. Our ap- 228

proach can be also viewed as a form of LLM 229

knowledge distillation, where a LLM ("teacher") is 230

queried to generate annotations for training a more 231

compact model ("student"). Shi et al. (2023) illus- 232

trated this idea by using ChatGPT to extract knowl- 233

edge graphs from text to train a smaller model for 234

text classification. Similarly, Gu et al. (2023) ap- 235

plied this concept in the biomedical field, distilling 236

knowledge from GPT-3.5 for adverse drug event 237

extraction, with student models like PubMedBERT 238

and BioGPT. 239

3 Fact Extraction 240

Figure 2 outlines our method for extracting facts 241

from radiology reports, with an example from 242

the MIMIC-CXR dataset (Johnson et al., 2019b). 243

Initially, we use regular expressions and simple 244

rules to pinpoint relevant radiological sections in 245

MIMIC-CXR reports, mainly Findings and Impres- 246

sion, but we also handle alternate headings. These 247

sections are then divided into sentences. For sim- 248

plicity, we use the sent_tokenize function from the 249

NLTK library 2, resulting in 677,694 unique sen- 250

tences after processing the entire dataset. Finally, 251

we retrieve facts from each sentence. The rationale 252

for this is that radiologists occasionally compose 253

intricate sentences that encapsulate multiple obser- 254

vations. As an example, Figure 2 demonstrates 255

a sentence conveying three distinct facts. Given 256

the recent success of Large Language Models, an 257

effective strategy to achieve this extraction is by 258

directing an LLM, like ChatGPT, using a custom 259

prompt. The precise prompt and an example are 260

provided in Figure 11 in the Appendix. 261

In principle, this entire stage could accomplished 262

by LLMs. However, we faced a challenge due 263

to the high costs associated with using pay-per- 264

use APIs for LLMs, which can escalate signifi- 265

cantly for large text annotation tasks. A solution 266

is to annotate a strategic subset of sentences with 267

a costly LLM and then distil the knowledge cap- 268

tured by these annotations into a more affordable 269

sequence-to-sequence model, such as T5, via fine- 270

tuning. As a precedent, this strategy is similar 271

2
https://www.nltk.org/
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Figure 2: Fact extraction procedure for radiology reports.

to Yang et al.’s approach (2023) where they fine-272

tuned T5 to condense GPT-3’s verbose descrip-273

tions in LLM-assisted image classification. In our274

case, we annotated 14,999 sentences with GPT-4-275

0613, 69,936 with GPT-3.5-turbo-0613, and used276

T5-small for the remaining 592,759 sentences after277

its fine-tuning. This process resulted in 1,323,687278

facts, including duplicates, and 583,202 unique279

facts post-duplicate removal.280

4 CXR Fact Encoder281

After we extract facts, we encode them by repre-282

senting them as vectors in a latent space via a text283

embedding model, which we refer to as CXR Fact284

Encoder. In our experiments we rely on CXR-285

BERT (Boecking et al., 2022) to implement our286

fact encoder. Specifically, we use the CXR-BERT-287

specialized variant available on the Huggingface288

hub3. CXR-BERT is a BERT-based text encoder289

with a domain-specific tokenizer for CXR reports.290

It was trained with three phases of pretraining that291

include masked language modeling, radiology sec-292

tion matching, regularisation, and text augmenta-293

tions. CXR-BERT-specialized is a version that294

is further fine-tuned via a multimodal contrastive295

learning framework that matches CXR images and296

reports, similar to the CLIP framework (Radford297

et al., 2021), so that the latent representation of298

the [CLS] token is used to align text/image embed-299

dings.300

Building on top of CXR-BERT-specialized, we301

explore 6 different approaches to enhancing the la-302

tent representation of radiological sentences: triplet303

loss for sentence ranking (T), natural language in-304

ference (NLI), quadruplet loss to enforce a sepa-305

3
https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-specialized

Figure 3: CXR Fact Encoder model.

ration between entailment and contradiction pairs 306

(EC), entity and relation extraction (ER), sentence 307

classification tasks (C), and sentence decoding 308

(SD). Figure 3 presents a high level summary of 309

the different tasks and datasets used to fine-tune 310

the model. Details for each task’s implementation 311

can be found in Section A.1 of the Appendix. 312

Thus, by combining the two stages, the whole 313

system can accurately extract and encode facts 314

from CXR reports, thus providing a rich and conve- 315

nient representation of the factual information for 316

downstream applications. 317

5 Datasets 318

The primary dataset used in our experiments is 319

MIMIC-CXR (Johnson et al., 2019b), which we 320

already alluded to in the previous sections. This 321

dataset comes with 227,827 radiology reports as- 322

sociated with 377,110 chest X-ray images. In this 323

paper we only carry out experiments using the re- 324

ports, leaving the use of images and multi-modality 325

for future work. 326

In addition, we utilize annotations from the 327

Chest ImaGenome (Wu et al., 2021) dataset. Chest 328

ImaGenome was created to offer a relatively broad 329

label set that links multiple observations to anatom- 330

ical image locations. For every one of the 242,072 331
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frontal view images in MIMIC-CXR, Chest Im-332

aGenome gives a scene graph connecting report ob-333

servations to image anatomical locations via bound-334

ing boxes. This is achieved through a combined335

rule-based NLP and atlas-based bounding box de-336

tection process, backed by a CXR lexicon and on-337

tology crafted with radiologists’ help. We leverage338

this dataset for two main reasons: 1. The scene339

graphs pinpoint the exact report sentence where340

each observation and location are derived, facili-341

tating the creation of a binary multi-label classifi-342

cation task for a text encoder to predict sentence-343

based observations and locations. 2. Chest Im-344

aGenome introduces a radiologist-informed an-345

notation standard, covering 74 observation types346

(grouped in categories such as anatomical finding,347

disease, and texture) and 38 anatomical locations348

(e.g., right upper lung zone and spine).349

Similarly, RadGraph (Jain et al., 2021a) provides350

graph-based annotations for radiology reports. A351

subset of 500 MIMIC-CXR reports were manually352

annotated by board-certified radiologists using a353

specific entity and relation schema. These anno-354

tations trained a DyGIE++ model (Wadden et al.,355

2019) for entity and relation extraction, which then356

automatically annotated the rest of the MIMIC-357

CXR reports. The dataset also features a test set358

comprising 100 MIMIC-CXR and CheXpert re-359

ports, each annotated by two board-certified radi-360

ologists, and 500 CheXpert reports annotated by361

DyGIE++. RadGraph is incorporated into our ex-362

periments due to its rich domain-specific annota-363

tions.364

As we conduct experiments on NLI, we also365

leverage the datasets MedNLI (Romanov and Shiv-366

ade, 2018), RadNLI (Miura et al., 2021) and MS-367

CXR-T (Bannur et al., 2023), which we describe368

in more detail in Section 5.3. We also use the IU369

X-ray dataset (Demner-Fushman et al., 2015) for370

sentence ranking evaluation, as we will explain in371

Section 6.372

5.1 Extracting and annotating facts373

We first run the fact extraction procedure presented374

in Section 3. After that, we enhance these anno-375

tations in several ways. We employ ChatGPT to376

generate paraphrases of the facts, an example of377

which is in Figure 12 in the Appendix. Each fact is378

further annotated with a JSON metadata object, en-379

compassing fields like "anatomical location", "de-380

tailed observation", "short observation", "category",381

"health status" and "comparison status". The re-382

spective prompt for this is in Figure 14. To refine 383

the "comparison status" field, we utilize another 384

prompt displayed in Figure 15. Furthermore, we 385

prompt ChatGPT to label in line with the Chest Im- 386

aGenome dataset’s annotation standards, as demon- 387

strated in Figures 16 and 17. Notably, when adding 388

metadata and Chest ImaGenome labels to facts, we 389

adopt the approach detailed in Section 3: we se- 390

lectively use ChatGPT for a subset and then train 391

T5 for the remaining annotations. This method lets 392

us expand Chest ImaGenome annotations to more 393

sentences than originally included in the dataset. 394

5.2 Triplet Sampling Heuristics 395

CXR Fact Encoder is trained to generate sentence 396

embeddings that cluster semantically similar sen- 397

tences in the embedding space through a triplet 398

ranking task with binary cross-entropy loss. This 399

approach uses a dataset of triplets, each one with an 400

anchor, a positive sample (akin to the anchor), and a 401

negative one. The difference in similarities is com- 402

puted as ∆sim(a, p, n) = sim(a, p) − sim(a, n) 403

from their embeddings’ dot product. By minimiz- 404

ing the binary cross-entropy loss, the encoder en- 405

sures closely related sentences are nearer and unre- 406

lated ones are more distant in the embedding space. 407

To define our triplet sampling heuristics, we use 408

the notation E(x) for the embedding of sentence x, 409

cos(E(x), E(y)) for the cosine similarity between 410

embeddings of x and y, lev(x, y) for the leven- 411

shtein string distance between them, and levsim(x, 412

y) = 1 - lev(x, y) / max(len(x), len(y)). c(x) indi- 413

cates the cluster id for sentence x after running a 414

clustering algorithm like K-Means on the sentence 415

embeddings. With this, we sample triplets based 416

on these heuristics: 417

Rule 1: Rank paraphrases very high. 418

∆sim(a, p, n) > 0 if p is a paraphrase of a gen- 419

erated by ChatGPT and n is any other sentence (un- 420

less cos(E(a), E(p)) < cos(E(a), E(n)) and lev(a, 421

p) > lev(a, n)). 422

Rule 2: Sample triplets according to the con- 423

sensus of E and lev, while anchor and positive 424

share the same health status. ∆sim(a, p, n) > 425

0 if HS(a) = HS(p), c(p) = c(a), c(p) ̸= c(n), 426

cos(E(a), E(p)) > cos(E(a), E(n)) + margincos and 427

levsim(a, p) > levsim(a, n) + marginlev. 428

Rule 3: Short observation, detailed obser- 429

vation and the original fact (and their para- 430

phrases) should be close to each other. Given 431

a fact f , ∆sim(a, p, n) > 0 if a and p ∈ S(f ), n 432

/∈ S(f ) and c(a) ̸= c(n) (unless cos(E(a), E(p)) < 433
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cos(E(a), E(n)) and lev(a, p) > lev(a, n)). Here,434

S(f ) stands for the union of f , its detailed observa-435

tion, its short observation and all the paraphrases436

(if any) generated for all of them with ChatGPT.437

Rule 4: Sample triplets according to Chest Im-438

aGenome labels. ∆sim(a, p, n) > 0 if CIGL(a) ∩439

CIGL(p) ̸= ∅, CIGL(a) ∩ CIGL(n) = ∅, CIGL(p)440

∩ CIGL(n) = ∅, and if (cos(E(a), E(p)) > cos(E(a),441

E(n)) AND levsim(a, p) > levsim(a, n)). Here,442

CIGL(x) stands for the set of Chest ImaGenome443

labels of the sentence x.444

Rule 5: Rank triplets according to the over-445

lap of entities and relations from RadGraph.446

∆sim(a, p, n) > 0 if c(a) = c(p), c(a) ̸= c(n), and447

J(RG(a), RG(p)) > J(RG(a), RG(n)) + marginRG.448

Here, RG(x) stands for the set of RadGraph entities449

and relations for the sentence x, and J for Jaccard450

similarity.451

Rule 6: Hard triplets generated by ChatGPT.452

∆sim(a, p, n) > 0 if (a, p, n) is a hard triplet gener-453

ated by ChatGPT. Figure 18 shows the prompt used454

to generate these triplets along with an example.455

For each rule, we create approximately 3 mil-456

lion training triplets, and 1,000 each for validation457

and testing. Rule 1 additionally involves generat-458

ing paraphrases for anatomical location sentences,459

with the prompt displayed in Figure 13. Many of460

these rules utilize an auxiliary embedding for sen-461

tence clustering and cosine similarity. In our exper-462

iments, we choose BioViL-T (Bannur et al., 2023),463

an advanced version of CXR-BERT available on464

Huggingface4. This version retains the original ar-465

chitecture but offers enhanced comprehension of466

temporal text descriptions.467

5.3 Natural Language Inference468

Natural Language Inference (NLI) classifies the469

relationship between a premise and a hypothesis470

into "entailment", "neutral", or "contradiction". For471

instance, in a CXR report, a premise might state472

“There are no evident signs of pleural effusion”,473

while a hypothesis says “There are evident signs474

of pleural effusion”. Although structurally similar,475

they contradict each other, emphasizing the im-476

portance of nuanced comprehension in radiology477

reports. The goal of using NLI during training is478

to perfect sentence embeddings at detecting these479

subtle distinctions.480

For training, all MedNLI splits (Romanov and481

Shivade, 2018) are used, amounting to 14,049 an-482

4
https://huggingface.co/microsoft/BiomedVLP-BioViL-T

notated medical sentence pairs. Radiology-specific 483

datasets include RadNLI (Miura et al., 2021) with 484

960 pairs and MS-CXR-T (Bannur et al., 2023), an 485

evaluation set with 361 pairs emphasizing condi- 486

tion evolution over time. Given the limited NLI 487

samples from CXR reports, the RadNLI develop- 488

ment set (480 pairs) is used for training, and the rest 489

is left for evaluation. To enrich the training dataset, 490

we use GPT-4 to obtain 147,509 new pairs using 491

four distinct prompts (see Figures 19, 20, 21, 22 in 492

the Appendix), resulting in a total of 162,036 pairs 493

categorized as 26,442 entailment, 39,817 neutral, 494

and 95,777 contradiction pairs. 495

6 Experimental Results 496

In the majority of our experiments, we assess vari- 497

ous versions of CXR Fact Encoder. Each version is 498

trained on two or more of the tasks listed in Figure 499

3. For triplet loss, we employ the loss function 500

and dataset described in Section 5.2. The classifica- 501

tion tasks include category (5 classes), health status 502

(4 classes), comparison status (15 classes), Chest 503

ImaGenome observations (74 classes) and anatom- 504

ical locations (38 classes). For RadGraph entity 505

and relation extraction we augment CXR Fact En- 506

coder with SpERT (Eberts and Ulges, 2020). For 507

sentence decoding, we attach a lightweight trans- 508

former decoder to the model. We refer the reader 509

to Section A.1 in the Appendix for a more detailed 510

description of each task. 511

Triplet and Sentence Ranking. We evaluate 512

CXR Fact Encoder and multiple baselines from 513

the literature on triplet ranking accuracy. We also 514

report AUC on a sentence ranking evaluation with 515

8617 sentences from IU X-ray reports. In this eval- 516

uation, given two sentence x and y, we heuristically 517

say that y is relevant for x if J(RG(x),RG(y)) ≥ 0.4 518

or (J(RG(x),RG(y)) ≥ 0.2 and (CXP(x) = CXP(y) 519

or CXB(x) = CXB(y))). Here J stands for Jaccard, 520

RG for RadGraph entities and relations, CXP for 521

CheXpert labels and CXB for CheXbert labels. 522

Table 1: Triplet and sentence ranking results.

ID Text Model Triplets Test Set (1000 samples per rule) IU X-ray
R1 (obs) R1 (anat) R2 R3 R4 R5 R6 AUC

1 BioLinkBERT (Yasunaga et al., 2022) 0.753 0.725 0.786 0.756 0.644 0.774 0.520 0.862
2 PubMedBERT (Gu et al., 2020) 0.901 0.853 0.905 0.873 0.767 0.834 0.603 0.908
3 BioClinicalBERT (Alsentzer et al., 2019) 0.922 0.864 0.933 0.912 0.834 0.948 0.601 0.924
4 CheXbert (Smit et al., 2020) 0.855 0.771 0.908 0.884 0.760 0.937 0.635 0.933
5 CXR-BERT-specialized (Boecking et al., 2022) 0.880 0.804 0.992 0.914 0.904 0.932 0.717 0.852
6 BioViL-T (Bannur et al., 2023) 0.910 0.851 1.000 0.938 1.000 0.944 0.765 0.866

7 CXR Fact Encoder (T) 0.968 0.955 0.925 0.964 0.798 0.952 0.946 0.914
8 CXR Fact Encoder (T+C) 0.967 0.945 0.967 0.982 0.926 0.988 0.937 0.944
9 CXR Fact Encoder (T+R) 0.962 0.946 0.917 0.961 0.798 0.954 0.927 0.904
10 CXR Fact Encoder (T+SD) 0.981 0.966 0.954 0.977 0.875 0.981 0.898 0.953
11 CXR Fact Encoder (T+EC) 0.963 0.952 0.942 0.969 0.797 0.964 0.942 0.807
12 CXR Fact Encoder (T+EC+NLI) 0.941 0.944 0.925 0.945 0.751 0.936 0.919 0.758
13 CXR Fact Encoder (T+C+EC+NLI+ER) 0.976 0.948 0.969 0.980 0.905 0.979 0.929 0.901
14 CXR Fact Encoder (T+C+EC+NLI+SD) 0.973 0.964 0.976 0.989 0.905 0.982 0.940 0.909

Table 1 presents the results. Notably, all different 523
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versions of CXR Fact Encoder outperform all the524

baselines in triplet rules where ChatGPT is heavily525

involved, namely, paraphrases (R1, R3) and hard526

triplets (R6). BioViL-T achieves perfect scores in527

R2 and R4 but this is by design, as BioViL-T is528

used as auxiliary embedding in triplet sampling529

(see Section 5.2). Sentence decoding (SD) and530

classification (C) appear to be helpful auxiliary531

tasks since most of the best scores are achieved by532

variants that include them (rows 8, 10, 14).533

NLI. Table 2 shows NLI results using cosine sim-534

ilarity between sentence vectors, following a simi-535

lar evaluation protocol as in Bannur et al. (2023).536

Only entailment and contradiction pairs are consid-537

ered, excluding RadNLI’s neutral pairs. Results538

are determined based on a similarity threshold.539

Notably, the use of the entailment/contradiction540

quadruplet loss (rows 11-14) is key for top per-541

formance, significantly outperforming all the base-542

lines, whereas variants without EC (rows 7-10)543

show weaker separation.544

Table 3 displays accuracy on the RadNLI test545

set, including RadNLI’s neutral pairs (280), along546

with entailment (102) and contradiction (98) pairs.547

In this setting, the NLI classification head of CXR548

Fact Encoder is applied (refer to Figure 9). CXR549

Fact Encoder fine-tuned solely for NLI scores550

79.8, practically equal to PTUnifier’s 80.0 and just551

slightly behind DoT5 (82.1), which follows a so-552

phisticated sequence-to-sequence approach based553

on T5. CXR Fact Encoder (T+C+EC+NLI+SD)554

closely follows with 78.1. To estimate an upper555

bound for how much NLI knowledge could be dis-556

tilled from GPT-4, we test its performance using the557

prompt in Figure 21. GPT-4 achieves 82.3, which558

to the best of our knowledge would be considered559

SOTA, although only marginally better than the560

other methods. For further inspection, Figure 4561

provides confusion matrices for both CXR Fact562

Encoder and GPT-4, highlighting good distinction563

between contradiction and entailment but some con-564

fusion with neutral pairs.565

Label extraction. We evaluate our two-stage566

system (ChatGPT/T5 + CXR Fact Encoder) against567

three radiology report label extraction methods:568

CheXpert labeler (Irvin et al., 2019), CheXbert569

(Smit et al., 2020), and Chest ImaGenome (Wu570

et al., 2021). For Chest ImaGenome, we use the571

labels from the dataset’s scene graphs, as the orig-572

inal NLP algorithm is not publicly available. We573

created an evaluation protocol to measure factual574

correctness and completeness: for each MIMIC-575

CXR test set report and label extraction method, 576

labels are extracted, converted into a report using 577

templates, and then evaluated against the original 578

report using report generation metrics. For CheX- 579

pert labeler and CheXbert we employ the templates 580

suggested by Pino et al. (2021), while Chest Im- 581

aGenome uses basic templates like “(no) {obser- 582

vation} in {anatomical location}”. CXR Fact En- 583

coder employs a label extraction method based on 584

K-Medoids clustering of fact and anatomical lo- 585

cation embeddings, resulting in labels represented 586

as pairs (fact_cluster_id, anatomy_cluster_id) or 587

just fact_cluster_id if an anatomical location is not 588

available for the fact. Reports are generated from 589

these labels using representative sentences from 590

our dataset. Further procedure details can be found 591

in Section A.2 in the Appendix. Table 5 provides 592

examples of template-based reports. 593

CXR Fact Encoder Score. As part of the evalua- 594

tion, we introduce CXR Fact Encoder Score. Given 595

a reference and generated report, we extract facts 596

from each and represent them as embedding vec- 597

tors, denoting the sets for the original and generated 598

reports as O and G respectively. The cosine simi- 599

larity matrix M of size |O| × |G| is formed, where 600

Mi,j represents the cosine similarity between the 601

ith vector of O and the jth vector of G. Using a 602

similarity threshold t, we compute precision (P ), 603

recall (R), and F1-score (F1). A "soft" version of 604

the metric calculates average similarities Srow, Scol, 605

and S. 606

P =
∑

j 1(maxi Mi,j≥t)

|G| Scol =
∑

j maxi Mi,j

|G|

R =
∑

i 1(maxj Mi,j≥t)
|O| Srow =

∑
i maxj Mi,j

|O|
F1 = 2× P×R

P+R S = Srow+Scol
2

607

608

Label extraction results. Table 4 presents re- 609

sults of template-based report generation using 610

various label extraction methods. We report re- 611

sults with the new CXR Fact Encoder Score and 612

also include RadGraph metrics (Jaccard similar- 613

ity, F1 score, Precision, Recall), CheXpert and 614

CheXbert metrics (accuracy, F1 macro average). 615

Notice that CXR Fact Encoder, CheXpert labeler, 616

and CheXbert are applied in both label extraction 617

and evaluation. In addition, we report BERTScore 618

(Zhang et al., 2020a), BLEU (Papineni et al., 2002), 619

CIDEr-D (Vedantam et al., 2015), ROUGE-L (Lin, 620

2004), and METEOR (Banerjee and Lavie, 2005). 621

We observe a consistent improvement across all 622

metrics using CXR Fact Encoder as the number of 623

clusters and labels increases. As an upper bound, 624
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Table 2: Results on NLI as sentence similarity. Acc∗E+C denotes an upper
bound in the accuracy with an optimal similarity threshold tuned in the same
evaluation data.

NLI mixed dataset
(Used to adjust similarity threshold)

Entailment pairs: 26,442
Contradiction pairs: 95,777

RadNLI test set
Entailment pairs: 102

Contradiction pairs: 98

MS-CXR-T
Entailment pairs: 141

Contradiction pairs: 220

ID Text Model Best threshold AccE AccC AccE+C AccE AccC AccE+C Acc∗E+C AccE AccC AccE+C Acc∗E+C

1 PubMedBERT (Gu et al., 2020) 0.833 100.0 0.0 50.0 100.0 0.0 50.0 63.8 100.0 0.0 50.0 56.5
2 BioLinkBERT-large (Yasunaga et al., 2022) 1.000 0.0 100.0 50.0 0.0 100.0 50.0 65.9 0.0 100.0 50.0 58.1
3 BioClinicalBERT (Alsentzer et al., 2019) 0.660 100.0 0.0 50.0 100.0 0.0 50.0 69.2 100.0 0.0 50.0 69.5
4 CheXbert (Smit et al., 2020) 0.598 85.6 34.5 60.1 91.2 85.7 88.4 90.4 100.0 1.8 50.9 63.3
5 CXR-BERT-specialized (Boecking et al., 2022) 0.713 74.0 49.2 61.6 59.8 89.8 74.8 82.3 100.0 12.2 56.1 77.5
6 BioViL-T (Bannur et al., 2023) 0.735 73.0 52.0 62.5 58.8 93.9 76.3 77.9 100.0 10.0 55.0 87.8

7 CXR Fact Encoder (T) 0.713 79.1 58.3 68.7 69.6 89.8 79.7 87.3 100.0 21.8 60.9 78.0
8 CXR Fact Encoder (T+C) 0.942 46.0 72.2 59.1 41.1 95.9 68.5 75.4 97.9 12.7 55.3 62.6
9 CXR Fact Encoder (T+R) 0.651 82.5 54.1 68.3 70.6 91.8 81.2 86.0 99.3 17.3 58.3 78.5
10 CXR Fact Encoder (T+SD) 0.629 71.0 48.4 59.7 78.4 79.6 79.0 81.9 99.3 13.2 56.2 70.3
11 CXR Fact Encoder (T+EC) 0.362 95.1 89.5 92.3 98.0 81.6 89.8 94.9 97.2 75.5 86.3 92.9
12 CXR Fact Encoder (T+EC+NLI) 0.313 96.0 89.9 93.0 99.0 89.8 94.4 94.9 98.6 71.4 85.0 94.4
13 CXR Fact Encoder (T+C+EC+NLI+ER) 0.491 95.6 83.0 89.3 96.1 81.6 88.9 93.1 100.0 61.4 80.7 94.9
14 CXR Fact Encoder (T+C+EC+NLI+SD) 0.512 95.8 81.8 88.8 95.1 83.7 89.4 93.5 100.0 50.9 75.5 94.9

Table 3: RadNLI test set accuracy
results. Results for CXR-BERT,
IFCC, PTUnifier and DoT5 are
from the original papers.

ID Text Model Test Accuracy

1 CXR-BERT (Boecking et al., 2022) 65.2
2 IFCC (Miura et al., 2021) 77.8
3 PTUnifier (Chen et al., 2023a) 80.0
4 DoT5 (Liu et al., 2023a) 82.1

4 CXR Fact Encoder (T+EC+NLI) 71.3
5 CXR Fact Encoder (T+C+EC+NLI+ER) 75.6
6 CXR Fact Encoder (T+C+EC+NLI+SD) 78.1
7 CXR Fact Encoder (NLI fine-tuning) 79.8

8 GPT-4 + prompt engineering (see Fig. 21) 82.3

CXR Fact Encoder (T+EC+NLI) CXR Fact Encoder (T+C+EC+NLI+SD) CXR Fact Encoder (NLI fine-tuning) GPT-4

Figure 4: RadNLI test set confusion matrices

Table 4: Template-based report generation metrics on MIMIC-CXR test set for different label extraction methods.
Notation: f denotes number of fact clusters, a denotes number of anatomical location clusters, and n denotes the
maximum number of labels (only the n most frequent labels are kept). For CXR Fact Encoder Score with use CXR
Fact Encoder (T+C+EC+NLI+SD) with a threshold of 0.7.

ID Label Extraction Method CXR Fact Encoder Score RadGraph CheXpert CheXbert BERTScore BLEU CIDEr-D ROUGE-L METEORF1 P R Sim Jac F1 P R Acc F1 Acc F1 F1 P R

1 CheXpert labeler (Irvin et al., 2019) 0.451 0.671 0.371 0.661 0.066 0.121 0.159 0.106 0.999 0.990 0.970 0.854 0.849 0.860 0.838 0.056 0.023 0.123 0.179
2 CheXbert (Smit et al., 2020) 0.454 0.677 0.371 0.664 0.067 0.122 0.161 0.107 0.974 0.921 0.992 0.907 0.849 0.860 0.838 0.056 0.023 0.123 0.179
3 Chest ImaGenome (Wu et al., 2021) 0.506 0.470 0.603 0.687 0.051 0.095 0.065 0.220 0.869 0.693 0.874 0.751 0.811 0.801 0.822 0.029 0.002 0.086 0.170

4 CXR Fact Encoder (f=200, a=50, n=1000) 0.831 0.840 0.826 0.833 0.140 0.241 0.287 0.214 0.867 0.633 0.863 0.671 0.865 0.878 0.853 0.088 0.033 0.189 0.240
5 CXR Fact Encoder (f=1000, a=300, n=10000) 0.932 0.939 0.928 0.897 0.186 0.307 0.342 0.287 0.885 0.686 0.909 0.747 0.875 0.888 0.863 0.116 0.070 0.223 0.290
6 CXR Fact Encoder (f=10000, a=300, n=50000) 0.974 0.983 0.966 0.943 0.268 0.414 0.444 0.398 0.937 0.826 0.944 0.844 0.890 0.901 0.880 0.164 0.138 0.289 0.364
7 CXR Fact Encoder (all facts) 0.982 0.993 0.974 0.986 0.644 0.776 0.799 0.768 0.986 0.964 0.979 0.946 0.927 0.939 0.916 0.366 0.555 0.523 0.630

CXR Fact Encoder (all facts) uses all the facts from625

ChatGPT/T5 without clustering, yielding the high-626

est scores. This underscores the efficacy of the627

fact extraction process. Interestingly, CXR Fact En-628

coder Score suggests Chest ImaGenome surpasses629

CheXpert labeler and CheXbert in recall and F1630

score but lags in precision. Yet, all three base-631

line methods are far from fully capturing the entire632

report information, a conclusion that is also sup-633

ported by the RadGraph metrics, potentially due to634

their rigid annotation standards.635

7 Conclusions636

We have presented a novel two-stage system for the637

extraction and encoding of the factual information638

in radiology reports. The fact extraction stage can639

be effectively implemented by leveraging LLMs640

(ChatGPT and T5). For fact encoding, we have pre-641

sented CXR Fact Encoder, a variant of CXR-BERT- 642

specialized (Boecking et al., 2022) fine-tuned via 643

multitask learning, with tasks like triplet ranking, 644

quadruplet loss, natural language inference, sen- 645

tence classification, sentence decoding and entity 646

and relation extraction. In several of these tasks 647

we leverage ChatGPT and T5 for added super- 648

vision, complementing expert-annotated datasets. 649

The evaluations support the efficacy of our sys- 650

tem. In addition, we release CXR Fact Encoder 651

Score, a new radiology text generation evaluation 652

metric that leverages the two stages of our system. 653

We hope our work may inspire research towards 654

better fact extraction and representation, improved 655

LLM use, more advanced training protocols, and 656

broader applications to downstream tasks such as 657

image-based fact classification, fact visual ground- 658

ing, VQA, report generation and summarization. 659

8



8 Limitations and Future Work660

One significant limitation of our study is the ab-661

sence of a thorough assessment by domain experts,662

such as radiologists, on both the prompts and the663

outputs generated by ChatGPT. While we diligently664

iterated the prompts and manually inspected the665

outputs on multiple examples, the ideal method666

would involve radiologists in the prompt engineer-667

ing process, complemented by stringent evaluation668

protocols. This would ensure the most effective669

prompt strategies for the radiology field. Given670

this, we believe there’s untapped potential in uti-671

lizing LLMs more effectively for tasks like data672

augmentation, information extraction, and supervi-673

sion generation. In this paper we’ve only scratched674

the surface of what is possible with these technolo-675

gies.676

Building on the earlier point, we see substantial677

potential for refining the triplet sampling heuristics678

outlined in Section 5.2. Involving radiologists in679

the heuristic design and validation of the generated680

triplets could be beneficial. Additionally, optimiz-681

ing the use of LLMs with better prompts for triplet682

sampling and incorporating superior auxiliary em-683

beddings could further enhance our approach.684

Another significant limitation of our work is the685

omission of chest X-ray images paired with the686

reports. While our tests show advancements using687

just text, we recognize the critical value of visual688

data. Thus, we’re keen on exploring how CXR Fact689

Encoder can integrate image information within a690

multimodal framework. This could enhance tasks691

like image-driven report generation, VQA, and vi-692

sual grounding of facts, to name a few. Exploring693

these avenues will be a primary focus in our subse-694

quent research.695

In this paper, our emphasis was on extracting696

facts from the findings and impression sections of697

a report. Yet, sections like comparison, indication,698

and history offer deeper insights and context about699

the patient. Expanding our fact extraction to en-700

compass these sections and investigating how this701

broader patient information can be utilized to bol-702

ster downstream models’ performance is also an703

important avenue for future research.704

Lastly, we acknowledge that our fact extrac-705

tion algorithm faces a technical constraint: it ex-706

tracts facts sentence-by-sentence, based on the707

sent_tokenize function from the NLTK library. This708

method could falter when a fact spans multiple sen-709

tences connected through co-reference. While such710

occurrences are relatively uncommon in our ob- 711

servations, a deeper exploration of this linguistic 712

aspect could guide the development of a more re- 713

fined fact extraction mechanism that overcomes 714

this challenge. 715
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A Appendix1021

A.1 CXR Fact Encoder’s Tasks Details1022

CXR Fact Encoder is a fine-tuned version of1023

CXR-BERT-specialized, which can be downloaded1024

from https://huggingface.co/microsoft/1025

BiomedVLP-CXR-BERT-specialized. One of the1026

tasks we explore for model fine-tuning is sentence1027

ranking via triplet loss. Figure 5 illustrates this1028

task. Concretely, we forward 3 sentences (anchor,1029

positive, negative) through CXR-BERT-specialized1030

with weight sharing, obtaining three vectors a,1031

b, and c each of dimension 128, and compute1032

∆sim(a, p, n) = a · p− a · n. This is serves as the1033

input logit for a binary cross-entropy loss.1034

A second group of tasks are classification tasks1035

(Figure 6). These include category (5 classes:1036

anatomical finding, disease, technical assessment,1037

tubes and lines and device), health status (4 classes:1038

i.e., normal, abnormal, ambiguous, unknown),1039

comparison status (15 classes, see Figure 15),1040

Chest ImaGenome observations (74 classes, see1041

Figure 16) and anatomical locations (38 classes,1042

see Figure 17). Category, Health Status and Com-1043

parison Status are single-label multi-class classi-1044

Figure 5: Triplet loss (T)

fication tasks, whereas Chest ImaGenome obser- 1045

vations and anatomical locations are multi-label 1046

multi-class classification tasks. Implementing these 1047

tasks require attaching fully connected heads on 1048

top of CXR-BERT-specialized’s built-in projection 1049

layer in order to perform the classification. 1050

Figure 6: Sentence classification (C)

Another task is sentence decoding (Figure 7). 1051

We attach a lightweight, shallow Transformer De- 1052

coder to CXR-BERT-specialized’s projection layer 1053

in order to generate back the original sentence. This 1054

can be viewed a sort of text autoenconder, forcing 1055

the projection layer to capture as much information 1056

as possible of the input sentence to facilitate the 1057

reconstruction of the sentence by the Transformer 1058

Decoder. We use a Transfomer Decoder with em- 1059

bedding, hidden and feedforward dimension 256, 1060

only one self-attention head and only one layer. 1061

Figure 7: Sentence decoding (SD)

The next task is what we refer to as entailment/- 1062
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contradiction quadruplet loss (Figure 8). The goal1063

of this task is to promote a generalized separation1064

of entailment and contradiction sentence pairs in1065

the latent space, by randomly sampling entailment1066

and contradiction pairs and requiring that the en-1067

tailment pair have greater similarity than the con-1068

tradiction pair. This loss was crucial to achieve1069

state-of-the-art results in Table 2.1070

Figure 8: Entailment/contradiction quadruplet loss (EC)

For NLI, we adopt an approach similar to that of1071

SBERT (Reimers and Gurevych, 2019), by concate-1072

nating the embeddings of the premise, hypothesis1073

and their element-wise multiplication, followed by1074

a softmax layer for NLI classification (see Figure1075

9).1076

Figure 9: Natural language inference (NLI)

Lastly, for entity and relation extraction we aug-1077

ment CXR-BERT-specialized with the layers pro-1078

posed by SpERT (Eberts and Ulges, 2020). This1079

adaptation was relatively straightforward, since1080

the authors of SpERT released an implementation1081

(https://github.com/lavis-nlp/spert/) that1082

is compatible with Huggingface models like CXR-1083

BERT-specialized.1084

A.2 Label Extraction Details1085

In order to extract labels with our two-stage sys-1086

tem, we set as a goal to select representative facts1087

that would be assigned as labels to a given re-1088

port. For that, we run K-Medoids clustering5 over1089

5
https://scikit-learn-extra.readthedocs.io/en/stable/generated/

sklearn_extra.cluster.KMedoids.html

Figure 10: Entity and relation extraction (ER) with
SpERT

all fact sentence embeddings (2,212,958 count- 1090

ing paraphrases) with F cluster centers, and K- 1091

Medoids clustering for all anatomical location sen- 1092

tences (296,434 counting paraphrases) with A clus- 1093

ter centers. Then, for each fact f extracted from 1094

a report, we assign to it the closest fact cluster 1095

center and the closest anatomical location clus- 1096

ter center (if the fact has an anatomical location). 1097

This produces labels of the form (fact_cluster_id, 1098

anatomy_cluster_id) or just fact_cluster_id. Then 1099

we count the frequency of these labels and keep 1100

the N most frequent. For fact_cluster_id la- 1101

bels, we simply choose the fact that K-Medoids 1102

clustering determined as the cluster center. For 1103

(fact_cluster_id, anatomy_cluster_id) labels, we 1104

go over all the facts producing the same pair and 1105

choose the fact that minimizes the sum of the in- 1106

verse of the frequency of each word as a way of 1107

estimating the rareness of a sentence (i.e., we pick 1108

the least "rare" fact). Please refer to Table 5 to 1109

see examples of template-based reports built in this 1110

way, along with examples for CheXpert labeler, 1111

CheXbert and Chest ImaGenome. 1112

A.3 Implementation Details 1113

All of our experiments are implemented using 1114

Python 3.10.10 with PyTorch version 1.13.1+cu117 1115

(Paszke et al., 2017). All experiments are con- 1116

ducted on a computing node equipped with a 1117

20-core Intel(R) Core(TM) i9-9900X CPU @ 1118

3.50GHz, two NVIDIA GPUs - one GeForce RTX 1119

2080 Ti with 11GB memory and one GeForce RTX 1120

3090 with 24GB memory. The system is comple- 1121

mented by 125GB of RAM. 1122

We implement multitask learning for CXR Fact 1123

Encoder through gradient accumulation. This is 1124

achieved by multiple model forwards, each fed 1125

by interleaved dataloaders for different tasks. We 1126

use the AdamW optimizer (Loshchilov and Hut- 1127

ter, 2019) with a cyclic exponential learning rate 1128
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Table 5: Examples of template-based generated reports for different label extraction algorithms.

Ground-truth Report
CXR Fact Encoder

(all facts)
CXR Fact Encoder

(f=10000, a=300, n=50000)
CXR Fact Encoder

(f=1000, a=300, n=10000)
New PICC line on the right
is projecting with its tip
somewhere in the medi-
astinum. Appears to cross
the midline, there is con-
cern for potential arterial lo-
cation. The initial line con-
cerns were communicated
over the telephone at the
time of the wet read. Repeat
PA and lateral radiograph,
taken approximately an hour
after the radiograph demon-
strated the PICC line in the
mid SVC. Potential small
right pleural effusion. Sta-
ble moderate cardiomegaly.

new PICC line on the right.
tip of the PICC line in the
mediastinum. potential ar-
terial location crossing the
midline. PICC line in the
mid SVC. potential small
right pleural effusion. sta-
ble moderate cardiomegaly

CXR Fact Encoder Score
(sim): 1.000
RadGraph F1: 0.796
CheXpert Acc: 1.0
CheXbert Acc: 1.0

new right PICC. tip of the
PICC line in the medi-
astinum. catheter crosses
midline. PICC in mid SVC.
likely right effusion. mild to
moderate cardiomegaly un-
changed

CXR Fact Encoder Score
(sim): 0.954
RadGraph F1: 0.539
CheXpert Acc: 1.0
CheXbert Acc: 1.0

new right PICC. tip of
the PICC line in the me-
diastinum. projecting over
the midline. PICC in mid
SVC. small right effusion.
unchanged evidence of car-
diomegaly

CXR Fact Encoder Score
(sim): 0.934
RadGraph F1: 0.455
CheXpert Acc: 1.0
CheXbert Acc: 1.0

CXR Fact Encoder
(f=200, a=50, n=1000)

CheXbert CheXpert labeler Chest ImaGenome

right pleural tube. The right
PICC line terminates in the
middle of the SVC. femoral
catheter. tip of the mid SVC.
right effusion. stable car-
diomegaly is unchanged

CXR Fact Encoder Score
(sim): 0.794
RadGraph F1: 0.460
CheXpert Acc: 0.929
CheXbert Acc: 0.929

the heart is enlarged. the car-
diomediastinal silhouette is
enlarged. no focal consoli-
dation. the lungs are free of
focal airspace disease. no at-
electasis. a device is seen.
pleural effusion is seen. no
fibrosis. no pneumonia. no
pneumothorax is seen. no
pulmonary edema. no pul-
monary nodules or mass le-
sions identified. no fracture
is seen

CXR Fact Encoder Score
(sim): 0.517
RadGraph F1: 0.021
CheXpert Acc: 1.0
CheXbert Acc: 1.0

the heart is enlarged. the car-
diomediastinal silhouette is
enlarged. no focal consoli-
dation. the lungs are free of
focal airspace disease. no at-
electasis. a device is seen.
pleural effusion is seen. no
fibrosis. no pneumonia. no
pneumothorax is seen. no
pulmonary edema. no pul-
monary nodules or mass le-
sions identified. no fracture
is seen

CXR Fact Encoder Score
(sim): 0.517
RadGraph F1: 0.021
CheXpert Acc: 1.0
CheXbert Acc: 1.0

enlarged cardiac silhouette
in cardiac silhouette. abnor-
mal cardiac silhouette. picc
in left shoulder. picc in
mediastinum. lung opac-
ity in right costophrenic an-
gle. pleural effusion in right
costophrenic angle. abnor-
mal right costophrenic an-
gle. lung opacity in right
lung. pleural effusion in
right lung. abnormal right
lung. picc in right shoulder.
picc in svc. enlarged car-
diac silhouette. lung opacity.
pleural effusion. picc

CXR Fact Encoder Score
(sim): 0.647
RadGraph F1: 0.103
CheXpert Acc: 0.929
CheXbert Acc: 0.929
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that varies from 8e-5 to 1e-6 over 8 epochs. Here,1129

an epoch consists of roughly 800 batches. Typi-1130

cally, our experiments run for 10-12 hours, after1131

which we observe no significant gains in validation1132

metrics.1133

A.4 ChatGPT prompts1134

15



Figure 11: Screenshot of OpenAI’s playground web interface showing the prompt used to extract facts from chest
X-ray report sentences. The screenshot was manipulated in order to display the full instructions given to ChatGPT.
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Figure 12: Fact to paraphrases
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Figure 13: Anatomy location to paraphrases
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Figure 14: Fact to metadata
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Figure 15: Fact to comparison status
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Figure 16: Fact to observations

Figure 17: Fact to anatomical locations
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Figure 18: Hard triplets generated by ChatGPT

Figure 19: NLI Prompt 1

Figure 20: NLI Prompt 2
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Figure 21: NLI Prompt 3

Figure 22: NLI Prompt 4
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