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Abstract

Recent advancements in representation learn-
ing, although promising, often confront chal-
lenges in specialized domains like medicine. In
particular, the acquisition of expert annotations
for medical texts and images is notably burden-
some due to the limited availability and time
constraints of medical professionals. Recogniz-
ing this, Large Language Models (LLMs) offer
a promising avenue to automatically extract an-
notations from radiology reports at scale. In
this work, we exploit the potential of pairing
LLMs with domain-specific knowledge, thus
reducing the dependency on time-intensive hu-
man expert annotations for improved medical
text representation. Specifically, we introduce a
two-stage system for the extraction and encod-
ing of facts from radiology reports using LLMs
such as ChatGPT and TS5, in tandem with spe-
cialized medical knowledge sources. As a cor-
nerstone of this system, we present CXR Fact
Encoder—a BERT-based model fine-tuned for
the enhanced representation of chest X-ray ra-
diology reports. Additionally, we illustrate the
applicability of our method by introducing CXR
Fact Encoder Score, a novel evaluation metric
crafted specifically for radiology text gener-
ation, drawing from all the elements of our
two-stage system. Our evaluations show the
proposed system outperforms multiple baseline
methods in tasks like sentence ranking, natural
language inference, and label extraction from
radiology reports. We make our model weights,
data, and code publicly available.

1 Introduction

In the context of medical image analysis, radiol-
ogy reports constitute a rich source of unstructured
information. Such free-text radiology reports are
written by radiologists as part of their regular prac-
tice and are typically comprised of sections such
as comparison, indication, findings, and impres-
sion. Figure 1 shows an illustrative example of

Comparison: Chest radiographs XXXX.
Indication: XXXX-year-old male, chest pain.
Findings: The cardiomediastinal silhouette is
within normal limits for size and contour. The
lungs are normally inflated without evidence
of focal airspace disease, pleural effusion, or

Fiv-‘

] pneumothorax.  Stable calcified granuloma
b within the right upper lung. No acute bone
abnormality.
Impression: No acute cardiopulmonary

process.

Figure 1: Example image and report from the IU X-ray
dataset (Demner-Fushman et al., 2015)

such reports in the context of Chest X-ray (CXR)
images.

Radiology reports can be utilized in different
manners. One use case is label extraction to
provide structured supervision for medical image
tasks, such as abnormality classification or detec-
tion (Irvin et al., 2019; Smit et al., 2020; Jain
et al., 2021b; Bustos et al., 2019; Syeda-Mahmood
et al., 2020; Wu et al., 2021; Jain et al., 2021a).
Other use cases include radiology report generation
(Messina et al., 2022; Miura et al., 2021; Delbrouck
et al., 2022; Tanida et al., 2023) and summariza-
tion (Chen et al., 2023b; Ma et al., 2023). Another
recent trend is the development of multimodal mod-
els that can jointly understand medical images and
text using different techniques, such as image and
text masking and contrastive learning (Wang et al.,
2022; Boecking et al., 2022; Bannur et al., 2023;
Moon et al., 2022; Chen et al., 2022).

For all these tasks, a key step is the correct under-
standing of the factual information contained in the
report. In particular, the findings and impression
sections of a report can be viewed as a collection of
facts about the imaging exam. Facts may include
observations (of abnormalities, diseases, devices,
etc.), an interpretation or inference from one or
more observations, references to some anatomical
location, discussions of the level of severity or de-
gree of confidence, comparisons with respect to
a previous study, etc. For example, in Figure 1,
one fact is that there is no acute bone abnormal-



ity (a normal observation), and another fact is that
there is stable calcified granuloma within the right
upper lung (an abnormal observation in a specific
anatomical location).

The lack of suitable methods for fact extrac-
tion and encoding for medical reports motivates
us to develop a new method to tackle this problem.
Specifically, our proposed method can extract med-
ical facts, encoding them into a high-quality latent
representation that captures clinical details while
accounting for variations in radiology report free-
text. Our approach is also inspired by the capabili-
ties of Large Language Models (LLMs) like GPT-
3.5 and GPT-4—often referred to as versions of
ChatGPT—which have demonstrated exceptional
medical performance (Katz et al., 2023; Liu et al.,
2023b; Adams et al., 2023). We also leverage in-
sights from expert-annotated datasets, including
Chest ImaGenome (Wu et al., 2021), RadGraph
(Jain et al., 2021a), MedNLI (Romanov and Shiv-
ade, 2018), and RadNLI (Miura et al., 2021).

Paper contributions. In light of these motiva-
tions, our work presents the following contribu-
tions:

* A fact extractor: a novel and simple approach
to extracting facts from Chest X-ray radiology
reports by leveraging LLMs. We use ChatGPT
and a fine-tuned version of T5 (Raffel et al.,
2020) in order to capture relevant information
from reports, without requiring annotations
from radiologists.

* A fact encoder: CXR Fact Encoder for CXR
reports. The model is based on the BERT
architecture and shares the same tokenizer
and initial weights as CXR-BERT-specialized
(Boecking et al., 2022), but is further fine-
tuned with a multi-task supervisory approach
that leverages domain expertise from radiol-
ogists as well as ChatGPT and T5 generated
annotations. As a result, CXR Fact Encoder
exhibits significant advancements in fact com-
prehension, as demonstrated by improved sen-
tence ranking and natural language inference
capabilities. Moreover, the entire system (fact
extraction + encoding) can be used for label
extraction from reports, outperforming several
baselines.

* A new evaluation metric for radiology text
generation, that we name CXR Fact Encoder
Score, that measures the factual correctness

of a generated text with respect to a ground-
truth text, by extracting and comparing the
embeddings of the facts in each one. This is
one of the many possible applications of our
two-stage system.

We release the weights of CXR Fact Encoder,
the weights of the fine-tuned version of TS for fact
extraction, as well as data and code necessary to
replicate the results. We also release CXR Fact
Encoder Score as a Python library for ease of use
by the research community.

Paper organization. The remainder of the paper
is structured as follows: Section 2 explores related
work, emphasizing BERT-based radiology text rep-
resentation, label extraction, factual correctness in
radiology text generation, and LLMs. Then Sec-
tions 3 and 4 present the two stages of our proposed
system, namely, fact extraction and fact encoding,
respectively. Section 5 describes the datasets used
in our experiments, including details about our an-
notation strategy. Our experimental evaluation is
captured in Section 6, where we present various
tasks, emphasizing the efficacy of our approach.
We conclude in Section 7 with key insights and
contributions, while Section 8 acknowledges limi-
tations and suggests future research avenues.

2 Related Work

BERT for Radiology Text Representation. In
recent years, BERT (Devlin et al., 2019) has rev-
olutionized various domains of natural language
processing (NLP), offering remarkable improve-
ments in text representation. Consequently, sub-
sequent works have developed new variants of
BERT for different text-related applications. Some
examples in the medical domain are BioClinical-
BERT (Alsentzer et al., 2019), PubMedBERT (Gu
et al., 2020), BioLinkBERT (Yasunaga et al., 2022),
CXR-BERT (Boecking et al., 2022) and BioViL-T
(Bannur et al., 2023). Like these works, we follow
the common practice of making BERT the basis
of our model. However, our work differs in the
fact that we follow a different training protocol that
takes advantage of LLMs like ChatGPT to generate
supervision at large scale, in addition to supervi-
sion obtained from datasets annotated by domain
experts.

Label extraction from Radiology Reports.
Our work is also related to the problem of extract-
ing information, usually in the form of labels, from
free-text radiology reports. A well-known exam-



ple in the literature is the CheXpert labeler (Smit
et al., 2020), which uses a rule-based system to
infer the presence or absence of 13 observations
(plus the label "No findings"). CheXbert (Smit
etal., 2020) and VisualCheXbert (Jain et al., 2021b)
are subsequent versions that follow the same label-
ing standard of CheXpert but are based on BERT.
The Chest ImaGenome dataset (Wu et al., 2021)
is another example that made use of a rule-based
NLP system to label reports in order to build scene
graphs for the corresponding frontal images in the
MIMIC-CXR dataset (Johnson et al., 2019a). Rad-
Graph (Jain et al., 2021a) proposed a labeling stan-
dard of entities and relations for radiology reports,
and trained a variant of BERT, DyGIE++ (Wad-
den et al., 2019), for entity and relation extraction
on examples annotated by radiologists. PadChest
(Bustos et al., 2019) followed a similar approach,
by labeling Spanish reports with a LSTM that was
previously trained on examples annotated by physi-
cians. Our work contributes in this domain by
proposing a different method for information ex-
traction, by combining the powerful representation
capabilities BERT with the remarkable natural lan-
guage skills of ChatGPT and T3, in order to extract
and encode facts from reports.

Factual Correctness in Radiology Text Gener-
ation. One important area of application motivat-
ing this work is the evaluation of factual correctness
in systems that generate radiological text. Recent
works have stressed the importance of improving
and optimizing the correctness of the facts gen-
erated by a system in applications such as report
generation (Miura et al., 2021; Delbrouck et al.,
2022) and summarization (Zhang et al., 2020b).
Likewise, Yu et al. (2022) conducted a study on
metrics to evaluate progress in automatic CXR re-
port generation, and concluded that the best ones
were all based on BERT. Thus, a direct application
of our work is the use of CXR Fact Encoder as a
learned metric of medical factual correctness, by
extracting and comparing facts in a latent space.

LLMs in Medicine. Our work falls under the
category of applications of LLMs to the medical
domain. Specifically, in this work we make use
of ChatGPT versions GPT-3.5 and GPT-4 through
OpenAI’s API'. Previous works have successfully
applied ChatGPT to medical tasks. Liu et al.
(2023b) used ChatGPT to generate short sentences
with plausible symptoms of medical conditions for

1
https://platform.openai.com/

interpretable zero-shot medical image diagnosis.
Adams et al. (2023) used GPT-4 to transform free-
text radiology reports into structured templates,
with remarkable results. GPT-4 is also known for
having passed the bar exam (Katz et al., 2023).

Knowledge Distillation from LLMs. Our ap-
proach can be also viewed as a form of LLM
knowledge distillation, where a LLM ("teacher") is
queried to generate annotations for training a more
compact model ("student"). Shi et al. (2023) illus-
trated this idea by using ChatGPT to extract knowl-
edge graphs from text to train a smaller model for
text classification. Similarly, Gu et al. (2023) ap-
plied this concept in the biomedical field, distilling
knowledge from GPT-3.5 for adverse drug event
extraction, with student models like PubMedBERT
and BioGPT.

3 Fact Extraction

Figure 2 outlines our method for extracting facts
from radiology reports, with an example from
the MIMIC-CXR dataset (Johnson et al., 2019b).
Initially, we use regular expressions and simple
rules to pinpoint relevant radiological sections in
MIMIC-CXR reports, mainly Findings and Impres-
sion, but we also handle alternate headings. These
sections are then divided into sentences. For sim-
plicity, we use the sent_tokenize function from the
NLTK library 2, resulting in 677,694 unique sen-
tences after processing the entire dataset. Finally,
we retrieve facts from each sentence. The rationale
for this is that radiologists occasionally compose
intricate sentences that encapsulate multiple obser-
vations. As an example, Figure 2 demonstrates
a sentence conveying three distinct facts. Given
the recent success of Large Language Models, an
effective strategy to achieve this extraction is by
directing an LLM, like ChatGPT, using a custom
prompt. The precise prompt and an example are
provided in Figure 11 in the Appendix.

In principle, this entire stage could accomplished
by LLMs. However, we faced a challenge due
to the high costs associated with using pay-per-
use APIs for LLMs, which can escalate signifi-
cantly for large text annotation tasks. A solution
is to annotate a strategic subset of sentences with
a costly LLM and then distil the knowledge cap-
tured by these annotations into a more affordable
sequence-to-sequence model, such as TS5, via fine-
tuning. As a precedent, this strategy is similar
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(*) extraction method: t5-small-finetuned
- mild pectus deformity
The heart size is normal.
(*) extraction method: t5-small-finetuned
- normal heart size
The hilar and mediastinal contours are within normal limits.
(*) extraction method: t5-small-finetuned
- hilar contours within normal limits
- mediastinal contours within normal limits
There is no pneumothorax, focal consolidation, or pleural
effusion.
(*) extraction method: t5-small-finetuned
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- no focal consolidation
- no pleural effusion
No acute intrathoracic process.
(*) extraction method: gpt-3.5-turbo-0613
- no acute intrathoracic process
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- fact 1
- fact 2

- fact nJ

Figure 2: Fact extraction procedure for radiology reports.

to Yang et al.’s approach (2023) where they fine-
tuned TS to condense GPT-3’s verbose descrip-
tions in LLM-assisted image classification. In our
case, we annotated 14,999 sentences with GPT-4-
0613, 69,936 with GPT-3.5-turbo-0613, and used
T5-small for the remaining 592,759 sentences after
its fine-tuning. This process resulted in 1,323,687
facts, including duplicates, and 583,202 unique
facts post-duplicate removal.

4 CXR Fact Encoder

After we extract facts, we encode them by repre-
senting them as vectors in a latent space via a text
embedding model, which we refer to as CXR Fact
Encoder. In our experiments we rely on CXR-
BERT (Boecking et al., 2022) to implement our
fact encoder. Specifically, we use the CXR-BERT-
specialized variant available on the Huggingface
hub®. CXR-BERT is a BERT-based text encoder
with a domain-specific tokenizer for CXR reports.
It was trained with three phases of pretraining that
include masked language modeling, radiology sec-
tion matching, regularisation, and text augmenta-
tions. CXR-BERT-specialized is a version that
is further fine-tuned via a multimodal contrastive
learning framework that matches CXR images and
reports, similar to the CLIP framework (Radford
et al., 2021), so that the latent representation of
the [CLS] token is used to align text/image embed-
dings.

Building on top of CXR-BERT-specialized, we
explore 6 different approaches to enhancing the la-
tent representation of radiological sentences: triplet
loss for sentence ranking (T), natural language in-
ference (NLI), quadruplet loss to enforce a sepa-

3https ://huggingface.co/microsoft/BiomedVLP-CXR-BERT-specialized
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Figure 3: CXR Fact Encoder model.

ration between entailment and contradiction pairs
(EC), entity and relation extraction (ER), sentence
classification tasks (C), and sentence decoding
(SD). Figure 3 presents a high level summary of
the different tasks and datasets used to fine-tune
the model. Details for each task’s implementation
can be found in Section A.1 of the Appendix.

Thus, by combining the two stages, the whole
system can accurately extract and encode facts
from CXR reports, thus providing a rich and conve-
nient representation of the factual information for
downstream applications.

5 Datasets

The primary dataset used in our experiments is
MIMIC-CXR (Johnson et al., 2019b), which we
already alluded to in the previous sections. This
dataset comes with 227,827 radiology reports as-
sociated with 377,110 chest X-ray images. In this
paper we only carry out experiments using the re-
ports, leaving the use of images and multi-modality
for future work.

In addition, we utilize annotations from the
Chest ImaGenome (Wu et al., 2021) dataset. Chest
ImaGenome was created to offer a relatively broad
label set that links multiple observations to anatom-
ical image locations. For every one of the 242,072
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frontal view images in MIMIC-CXR, Chest Im-
aGenome gives a scene graph connecting report ob-
servations to image anatomical locations via bound-
ing boxes. This is achieved through a combined
rule-based NLP and atlas-based bounding box de-
tection process, backed by a CXR lexicon and on-
tology crafted with radiologists’ help. We leverage
this dataset for two main reasons: 1. The scene
graphs pinpoint the exact report sentence where
each observation and location are derived, facili-
tating the creation of a binary multi-label classifi-
cation task for a text encoder to predict sentence-
based observations and locations. 2. Chest Im-
aGenome introduces a radiologist-informed an-
notation standard, covering 74 observation types
(grouped in categories such as anatomical finding,
disease, and texture) and 38 anatomical locations
(e.g., right upper lung zone and spine).

Similarly, RadGraph (Jain et al., 2021a) provides
graph-based annotations for radiology reports. A
subset of 500 MIMIC-CXR reports were manually
annotated by board-certified radiologists using a
specific entity and relation schema. These anno-
tations trained a DyGIE++ model (Wadden et al.,
2019) for entity and relation extraction, which then
automatically annotated the rest of the MIMIC-
CXR reports. The dataset also features a test set
comprising 100 MIMIC-CXR and CheXpert re-
ports, each annotated by two board-certified radi-
ologists, and 500 CheXpert reports annotated by
DyGIE++. RadGraph is incorporated into our ex-
periments due to its rich domain-specific annota-
tions.

As we conduct experiments on NLI, we also
leverage the datasets MedNLI (Romanov and Shiv-
ade, 2018), RadNLI (Miura et al., 2021) and MS-
CXR-T (Bannur et al., 2023), which we describe
in more detail in Section 5.3. We also use the IU
X-ray dataset (Demner-Fushman et al., 2015) for
sentence ranking evaluation, as we will explain in
Section 6.

5.1 Extracting and annotating facts

We first run the fact extraction procedure presented
in Section 3. After that, we enhance these anno-
tations in several ways. We employ ChatGPT to
generate paraphrases of the facts, an example of
which is in Figure 12 in the Appendix. Each fact is
further annotated with a JSON metadata object, en-
compassing fields like "anatomical location", "de-
tailed observation", "short observation", "category",

"health status" and "comparison status". The re-

spective prompt for this is in Figure 14. To refine
the "comparison status" field, we utilize another
prompt displayed in Figure 15. Furthermore, we
prompt ChatGPT to label in line with the Chest Im-
aGenome dataset’s annotation standards, as demon-
strated in Figures 16 and 17. Notably, when adding
metadata and Chest ImaGenome labels to facts, we
adopt the approach detailed in Section 3: we se-
lectively use ChatGPT for a subset and then train
TS5 for the remaining annotations. This method lets
us expand Chest ImaGenome annotations to more
sentences than originally included in the dataset.

5.2 Triplet Sampling Heuristics

CXR Fact Encoder is trained to generate sentence
embeddings that cluster semantically similar sen-
tences in the embedding space through a triplet
ranking task with binary cross-entropy loss. This
approach uses a dataset of triplets, each one with an
anchor, a positive sample (akin to the anchor), and a
negative one. The difference in similarities is com-
puted as Asim(a,p,n) = sim(a,p) — sim(a,n)
from their embeddings’ dot product. By minimiz-
ing the binary cross-entropy loss, the encoder en-
sures closely related sentences are nearer and unre-
lated ones are more distant in the embedding space.

To define our triplet sampling heuristics, we use
the notation E(x) for the embedding of sentence ,
cos(E(z), E(y)) for the cosine similarity between
embeddings of x and y, lev(z, y) for the leven-
shtein string distance between them, and levsim(z,
y) =1 -lev(z, y) / max(len(x), len(y)). c(x) indi-
cates the cluster id for sentence x after running a
clustering algorithm like K-Means on the sentence
embeddings. With this, we sample triplets based
on these heuristics:

Rule 1: Rank paraphrases very high.
Asim(a,p,n) > 0 if p is a paraphrase of a gen-
erated by ChatGPT and 7 is any other sentence (un-
less cos(E(a), E(p)) < cos(E(a), E(n)) and lev(a,
p) > lev(a, n)).

Rule 2: Sample triplets according to the con-
sensus of E and lev, while anchor and positive
share the same health status. Asim(a,p,n) >
0 if HS(a) = HS(p), c(p) = c(a), c(p) # c(n),
cos(E(a), E(p)) > cos(E(a), E(n)) + marging,s and
levsim(a, p) > levsim(a, n) + marginjy.

Rule 3: Short observation, detailed obser-
vation and the original fact (and their para-
phrases) should be close to each other. Given
a fact f, Asim(a,p,n) > 0if a and p € S(f), n
¢ S(f) and c(a) # c(n) (unless cos(E(a), E(p)) <



cos(E(a), E(n)) and lev(a, p) > lev(a, n)). Here,
S(f) stands for the union of f, its detailed observa-
tion, its short observation and all the paraphrases
(if any) generated for all of them with ChatGPT.

Rule 4: Sample triplets according to Chest Im-
aGenome labels. Asim(a,p,n) > 0 if CIGL(a) N
CIGL(p) # 0, CIGL(a) N CIGL(n) = (, CIGL(p)
N CIGL(n) = ), and if (cos(E(a), E(p)) > cos(E(a),
E(n)) AND levsim(a, p) > levsim(a, n)). Here,
CIGL(x) stands for the set of Chest ImaGenome
labels of the sentence x.

Rule 5: Rank triplets according to the over-
lap of entities and relations from RadGraph.
Asim(a, p,n) > 0if c(a) = c(p), c(a) # c(n), and
J(RG(a), RG(p)) > J(RG(a), RG(n)) + margingg.
Here, RG(z) stands for the set of RadGraph entities
and relations for the sentence x, and J for Jaccard
similarity.

Rule 6: Hard triplets generated by ChatGPT.
Asim(a, p,n) > 0if (a, p, n) is a hard triplet gener-
ated by ChatGPT. Figure 18 shows the prompt used
to generate these triplets along with an example.

For each rule, we create approximately 3 mil-
lion training triplets, and 1,000 each for validation
and testing. Rule 1 additionally involves generat-
ing paraphrases for anatomical location sentences,
with the prompt displayed in Figure 13. Many of
these rules utilize an auxiliary embedding for sen-
tence clustering and cosine similarity. In our exper-
iments, we choose BioViL-T (Bannur et al., 2023),
an advanced version of CXR-BERT available on
Huggingface*. This version retains the original ar-
chitecture but offers enhanced comprehension of
temporal text descriptions.

5.3 Natural Language Inference

Natural Language Inference (NLI) classifies the
relationship between a premise and a hypothesis
into "entailment", "neutral", or "contradiction". For
instance, in a CXR report, a premise might state
“There are no evident signs of pleural effusion”,
while a hypothesis says “There are evident signs
of pleural effusion”. Although structurally similar,
they contradict each other, emphasizing the im-
portance of nuanced comprehension in radiology
reports. The goal of using NLI during training is
to perfect sentence embeddings at detecting these
subtle distinctions.

For training, all MedNLI splits (Romanov and
Shivade, 2018) are used, amounting to 14,049 an-
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notated medical sentence pairs. Radiology-specific
datasets include RadNLI (Miura et al., 2021) with
960 pairs and MS-CXR-T (Bannur et al., 2023), an
evaluation set with 361 pairs emphasizing condi-
tion evolution over time. Given the limited NLI
samples from CXR reports, the RadNLI develop-
ment set (480 pairs) is used for training, and the rest
is left for evaluation. To enrich the training dataset,
we use GPT-4 to obtain 147,509 new pairs using
four distinct prompts (see Figures 19, 20, 21, 22 in
the Appendix), resulting in a total of 162,036 pairs
categorized as 26,442 entailment, 39,817 neutral,
and 95,777 contradiction pairs.

6 Experimental Results

In the majority of our experiments, we assess vari-
ous versions of CXR Fact Encoder. Each version is
trained on two or more of the tasks listed in Figure
3. For triplet loss, we employ the loss function
and dataset described in Section 5.2. The classifica-
tion tasks include category (5 classes), health status
(4 classes), comparison status (15 classes), Chest
ImaGenome observations (74 classes) and anatom-
ical locations (38 classes). For RadGraph entity
and relation extraction we augment CXR Fact En-
coder with SpERT (Eberts and Ulges, 2020). For
sentence decoding, we attach a lightweight trans-
former decoder to the model. We refer the reader
to Section A.1 in the Appendix for a more detailed
description of each task.

Triplet and Sentence Ranking. We evaluate
CXR Fact Encoder and multiple baselines from
the literature on triplet ranking accuracy. We also
report AUC on a sentence ranking evaluation with
8617 sentences from IU X-ray reports. In this eval-
uation, given two sentence x and y, we heuristically
say that y is relevant for x if J(RG(x),RG(y)) > 0.4
or (J(RG(x),RG(y)) > 0.2 and (CXP(z) = CXP(y)
or CXB(x) = CXB(y))). Here J stands for Jaccard,
RG for RadGraph entities and relations, CXP for
CheXpert labels and CXB for CheXbert labels.

Table 1: Triplet and sentence ranking results.

‘Triplets Test Set (1000 samples per rule) 1U X-ray

Rl(obs) Rl(amat) R2 R3 R4 RS R6 | AUC
0753 0725 0786 0756 0644 0774 0520 | 0862
0901 0853 0905 0873 0767 0.834 0.603 | 0908
0922 0864 0933 0912 0834 0948 0601 | 0924
0855 0771 0908 0884 0760 0937 0.635| 0933
0880 0804 0992 0914 0904 0932 0717 | 0852
0910 0851  1.000 0938 1.000 0944 0765 | 0.866

0.968 0955 0925 0964 0798 0952 0946 | 0914
0.967 0.945 0.967 0982 0926 0988 0937 0.944
0.962 0.946 0917 0961 0798 0954 0927 0.904
0.981 0.966 0954 0977 0875 0981 0898 | 0.953
0.963 0952 0942 0969 0797 0964 0942 | 0.807

+] 0.941 0944 0925 0945 0751 0936 0919 | 0758
13 | C [+C+EC+NLI+ER) 0.976 0.948 0.969 0980 0905 0979 0929 0.901
14 | CXR Fact Encoder (T+C+EC+NLI+SD) 0.973 0.964 0976 0.989 0905 0982 0940 0.909

1D | Text Model

BioLinkBERT (

Table 1 presents the results. Notably, all different
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versions of CXR Fact Encoder outperform all the
baselines in triplet rules where ChatGPT is heavily
involved, namely, paraphrases (R1, R3) and hard
triplets (R6). BioViL-T achieves perfect scores in
R2 and R4 but this is by design, as BioViL-T is
used as auxiliary embedding in triplet sampling
(see Section 5.2). Sentence decoding (SD) and
classification (C) appear to be helpful auxiliary
tasks since most of the best scores are achieved by
variants that include them (rows 8, 10, 14).

NLI. Table 2 shows NLI results using cosine sim-
ilarity between sentence vectors, following a simi-
lar evaluation protocol as in Bannur et al. (2023).
Only entailment and contradiction pairs are consid-
ered, excluding RadNLI’s neutral pairs. Results
are determined based on a similarity threshold.
Notably, the use of the entailment/contradiction
quadruplet loss (rows 11-14) is key for top per-
formance, significantly outperforming all the base-
lines, whereas variants without EC (rows 7-10)
show weaker separation.

Table 3 displays accuracy on the RadNLI test
set, including RadNLI’s neutral pairs (280), along
with entailment (102) and contradiction (98) pairs.
In this setting, the NLI classification head of CXR
Fact Encoder is applied (refer to Figure 9). CXR
Fact Encoder fine-tuned solely for NLI scores
79.8, practically equal to PTUnifier’s 80.0 and just
slightly behind DoT5 (82.1), which follows a so-
phisticated sequence-to-sequence approach based
on T5. CXR Fact Encoder (T+C+EC+NLI+SD)
closely follows with 78.1. To estimate an upper
bound for how much NLI knowledge could be dis-
tilled from GPT-4, we test its performance using the
prompt in Figure 21. GPT-4 achieves 82.3, which
to the best of our knowledge would be considered
SOTA, although only marginally better than the
other methods. For further inspection, Figure 4
provides confusion matrices for both CXR Fact
Encoder and GPT-4, highlighting good distinction
between contradiction and entailment but some con-
fusion with neutral pairs.

Label extraction. We evaluate our two-stage
system (ChatGPT/T5 + CXR Fact Encoder) against
three radiology report label extraction methods:
CheXpert labeler (Irvin et al., 2019), CheXbert
(Smit et al., 2020), and Chest ImaGenome (Wu
et al., 2021). For Chest ImaGenome, we use the
labels from the dataset’s scene graphs, as the orig-
inal NLP algorithm is not publicly available. We
created an evaluation protocol to measure factual
correctness and completeness: for each MIMIC-

CXR test set report and label extraction method,
labels are extracted, converted into a report using
templates, and then evaluated against the original
report using report generation metrics. For CheX-
pert labeler and CheXbert we employ the templates
suggested by Pino et al. (2021), while Chest Im-
aGenome uses basic templates like “(no) {obser-
vation} in {anatomical location}”. CXR Fact En-
coder employs a label extraction method based on
K-Medoids clustering of fact and anatomical lo-
cation embeddings, resulting in labels represented
as pairs (fact_cluster_id, anatomy_cluster_id) or
just fact_cluster_id if an anatomical location is not
available for the fact. Reports are generated from
these labels using representative sentences from
our dataset. Further procedure details can be found
in Section A.2 in the Appendix. Table 5 provides
examples of template-based reports.

CXR Fact Encoder Score. As part of the evalua-
tion, we introduce CXR Fact Encoder Score. Given
a reference and generated report, we extract facts
from each and represent them as embedding vec-
tors, denoting the sets for the original and generated
reports as O and G respectively. The cosine simi-
larity matrix M of size |O| x |G| is formed, where
M; ; represents the cosine similarity between the
ith vector of O and the j** vector of G. Using a
similarity threshold ¢, we compute precision (P),
recall (R), and F1-score (F7). A "soft" version of
the metric calculates average similarities Syow, Scol,
and S.

- 1(max; M; ; >t -max; M; ;
P = 2 1 rei i21) Scol = 2t e :
R= 2 ﬂ(mj"g' M; ;>t) Srow = 2 m‘aaj M,
_ PxR _ Smw“l‘scol
B =2x g S = =y

Label extraction results. Table 4 presents re-
sults of template-based report generation using
various label extraction methods. We report re-
sults with the new CXR Fact Encoder Score and
also include RadGraph metrics (Jaccard similar-
ity, F1 score, Precision, Recall), CheXpert and
CheXbert metrics (accuracy, F1 macro average).
Notice that CXR Fact Encoder, CheXpert labeler,
and CheXbert are applied in both label extraction
and evaluation. In addition, we report BERTScore
(Zhang et al., 2020a), BLEU (Papineni et al., 2002),
CIDEr-D (Vedantam et al., 2015), ROUGE-L (Lin,
2004), and METEOR (Banerjee and Lavie, 2005).
We observe a consistent improvement across all
metrics using CXR Fact Encoder as the number of
clusters and labels increases. As an upper bound,



Table 2: Results on NLI as sentence similarity. Accf, denotes an upper
bound in the accuracy with an optimal similarity threshold tuned in the same Table 3: RadNLI test set accuracy

evaluation data.

results. Results for CXR-BERT,
IFCC, PTUnifier and DoT5 are

NLI mixed dataset . -
(Used ot ity sl . et pa: 14 from the original papers.
Entailment pairs: 26,442 Contradiction pairs: 98 Contradiction pairs: 220
Contradiction pairs: 95,777
ID | Text Model Best threshold  Accr  Accc  Accpic | Accr Acec Accpic  Acch,c | Aces Acec Acepic  Acch,
1 | PubMedBERT (Gu et al., 2020) 0.833 1000 0.0 50.0 | 100.0 0.0 50.0 6381000 0.0 50.0 56.5 D ‘ Text Model ‘ Test Accuracy
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8 | CXR Fact Encoder (T+C) 0942 460 722 590 | 411 959 685 754 979 127 553 626 5 | CXR Fact Encoder (T+C+EC+NLI+ER) 75.6
9 | CXR Fact Encoder (T+R) 0651 825 541 683 | 706 918 812 860 | 993 173 583 785 6 | CXR Fact Encoder (T+C+EC+NLI+SD) 78.1
10 | CXR Fact Encoder (T+SD) 0.629 710 484 59| 784 796 790  819| 993 132 562 703 7 | CXR Fact Encoder (NLI fine-tuning) 79.8
11 | CXR Fact Encoder (T+EC) 0.362 951 895 923 | 980 816 898 949 | 972 755 863 929
12 | CXR Fact Encoder (T+EC+NLI) 0313 9.0 89.9 93.0 | 990 898 94.4 949 | 986 714 85.0 94.4 8 | GPT-4 + prompt engineering (see Fig. 21) | 82.3
13 | CXR Fact Encoder (T+C+EC+NLI+ER) 0491 956 830 893 | 961 816 889  93.1|1000 614 807 949
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Figure 4: RadNLI test set confusion matrices

Table 4: Template-based report generation metrics on MIMIC-CXR test set for different label extraction methods.
Notation: f denotes number of fact clusters, a denotes number of anatomical location clusters, and n denotes the
maximum number of labels (only the n most frequent labels are kept). For CXR Fact Encoder Score with use CXR
Fact Encoder (T+C+EC+NLI+SD) with a threshold of 0.7.

CXR Fact Encoder (all facts) uses all the facts from
ChatGPT/T5 without clustering, yielding the high-
est scores. This underscores the efficacy of the
fact extraction process. Interestingly, CXR Fact En-
coder Score suggests Chest ImaGenome surpasses
CheXpert labeler and CheXbert in recall and F1
score but lags in precision. Yet, all three base-
line methods are far from fully capturing the entire
report information, a conclusion that is also sup-
ported by the RadGraph metrics, potentially due to
their rigid annotation standards.

7 Conclusions

We have presented a novel two-stage system for the
extraction and encoding of the factual information
in radiology reports. The fact extraction stage can
be effectively implemented by leveraging LLMs
(ChatGPT and T5). For fact encoding, we have pre-

" CXR Fact Encoder Score RadGraph CheXpert CheXbert BERTScore
D | Label Extraction Method ‘ F1 p R Sim | Jac F1 P R ‘ Ace F1 Ace F1 F1 P R BLEU CIDEr-D ROUGE-L METEOR
1 CheXpert labeler (Irvin et al., 2019) 0.451 0.671 0371 0.661 | 0.066 0.121 0.159 0.106 | 0.999 0.990 | 0.970 0.854 | 0.849 0.860 0.838 0.056 0.023 0.123 0.179
2 | CheXbert (Smit et al., 2020) 0454 0.677 0371 0.664 | 0.067 0.122 0.161 0.107 | 0.974 0.921 | 0.992 0.907 | 0.849 0.860 0.838 0.056 0.023 0.123 0.179
3 | Chest ImaGenome (Wu et al., 2021) 0.506 0.470 0.603 0.687 | 0.051 0.095 0.065 0.220 | 0.869 0.693 | 0.874 0.751 | 0.811 0.801 0.822 0.029 0.002 0.086 0.170
4 | CXR Fact Encoder (f=200, a=50, n=1000) 0.831 0.840 0.826 0.833 | 0.140 0.241 0.287 0.214 | 0.867 0.633 | 0.863 0.671 | 0.865 0.878 0.853 0.088 0.033 0.189 0.240
5 | CXR Fact Encoder (f=1000, a=300, n=10000) | 0.932 0.939 0.928 0.897 | 0.186 0.307 0.342 0.287 | 0.885 0.686 | 0.909 0.747 | 0.875 0.888 0.863 0.116 0.070 0.223 0.290
6 | CXR Fact Encoder (f=10000, a=300, n=50000) | 0.974 0.983 0.966 0.943 | 0.268 0.414 0.444 0.398 | 0.937 0.826 | 0.944 0.844 | 0.890 0.901 0.880 0.164 0.138 0.289 0.364
7 CXR Fact Encoder (all facts) 0982 0.993 0.974 0.986 | 0.644 0.776 0.799 0.768 | 0.986 0.964 | 0.979 0.946 | 0.927 0.939 0.916 0.366 0.555 0.523 0.630

sented CXR Fact Encoder, a variant of CXR-BERT-
specialized (Boecking et al., 2022) fine-tuned via
multitask learning, with tasks like triplet ranking,
quadruplet loss, natural language inference, sen-
tence classification, sentence decoding and entity
and relation extraction. In several of these tasks
we leverage ChatGPT and T5 for added super-
vision, complementing expert-annotated datasets.
The evaluations support the efficacy of our sys-
tem. In addition, we release CXR Fact Encoder
Score, a new radiology text generation evaluation
metric that leverages the two stages of our system.
We hope our work may inspire research towards
better fact extraction and representation, improved
LLM use, more advanced training protocols, and
broader applications to downstream tasks such as
image-based fact classification, fact visual ground-
ing, VQA, report generation and summarization.



8 Limitations and Future Work

One significant limitation of our study is the ab-
sence of a thorough assessment by domain experts,
such as radiologists, on both the prompts and the
outputs generated by ChatGPT. While we diligently
iterated the prompts and manually inspected the
outputs on multiple examples, the ideal method
would involve radiologists in the prompt engineer-
ing process, complemented by stringent evaluation
protocols. This would ensure the most effective
prompt strategies for the radiology field. Given
this, we believe there’s untapped potential in uti-
lizing LL.Ms more effectively for tasks like data
augmentation, information extraction, and supervi-
sion generation. In this paper we’ve only scratched
the surface of what is possible with these technolo-
gies.

Building on the earlier point, we see substantial
potential for refining the triplet sampling heuristics
outlined in Section 5.2. Involving radiologists in
the heuristic design and validation of the generated
triplets could be beneficial. Additionally, optimiz-
ing the use of LLMs with better prompts for triplet
sampling and incorporating superior auxiliary em-
beddings could further enhance our approach.

Another significant limitation of our work is the
omission of chest X-ray images paired with the
reports. While our tests show advancements using
just text, we recognize the critical value of visual
data. Thus, we’re keen on exploring how CXR Fact
Encoder can integrate image information within a
multimodal framework. This could enhance tasks
like image-driven report generation, VQA, and vi-
sual grounding of facts, to name a few. Exploring
these avenues will be a primary focus in our subse-
quent research.

In this paper, our emphasis was on extracting
facts from the findings and impression sections of
areport. Yet, sections like comparison, indication,
and history offer deeper insights and context about
the patient. Expanding our fact extraction to en-
compass these sections and investigating how this
broader patient information can be utilized to bol-
ster downstream models’ performance is also an
important avenue for future research.

Lastly, we acknowledge that our fact extrac-
tion algorithm faces a technical constraint: it ex-
tracts facts sentence-by-sentence, based on the
sent_tokenize function from the NLTK library. This
method could falter when a fact spans multiple sen-
tences connected through co-reference. While such

occurrences are relatively uncommon in our ob-
servations, a deeper exploration of this linguistic
aspect could guide the development of a more re-
fined fact extraction mechanism that overcomes
this challenge.
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A Appendix
A.1 CXR Fact Encoder’s Tasks Details

CXR Fact Encoder is a fine-tuned version of
CXR-BERT-specialized, which can be downloaded
from  https://huggingface.co/microsoft/
BiomedVLP-CXR-BERT-specialized. One of the
tasks we explore for model fine-tuning is sentence
ranking via triplet loss. Figure 5 illustrates this
task. Concretely, we forward 3 sentences (anchor,
positive, negative) through CXR-BERT-specialized
with weight sharing, obtaining three vectors a,
b, and c each of dimension 128, and compute
Asim(a,p,n) = a - p — a - n. This is serves as the
input logit for a binary cross-entropy loss.

A second group of tasks are classification tasks
(Figure 6). These include category (5 classes:
anatomical finding, disease, technical assessment,
tubes and lines and device), health status (4 classes:
i.e., normal, abnormal, ambiguous, unknown),
comparison status (15 classes, see Figure 15),
Chest ImaGenome observations (74 classes, see
Figure 16) and anatomical locations (38 classes,
see Figure 17). Category, Health Status and Com-
parison Status are single-label multi-class classi-
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Figure 5: Triplet loss (T)

Positive —>

Shared welghts

Negative —| (@.(;8:15:08

fication tasks, whereas Chest ImaGenome obser-
vations and anatomical locations are multi-label
multi-class classification tasks. Implementing these
tasks require attaching fully connected heads on
top of CXR-BERT-specialized’s built-in projection
layer in order to perform the classification.

Category
Health Status
Comparison
Status
Anatomical
Locations

Figure 6: Sentence classification (C)

Sentence —| ®.GLEE]

Another task is sentence decoding (Figure 7).
We attach a lightweight, shallow Transformer De-
coder to CXR-BERT-specialized’s projection layer
in order to generate back the original sentence. This
can be viewed a sort of text autoenconder, forcing
the projection layer to capture as much information
as possible of the input sentence to facilitate the
reconstruction of the sentence by the Transformer
Decoder. We use a Transfomer Decoder with em-
bedding, hidden and feedforward dimension 256,
only one self-attention head and only one layer.

Shallow

— | Slebee, —> Sentence
Decoder

Sentence —| @454

Figure 7: Sentence decoding (SD)

The next task is what we refer to as entailment/-
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contradiction quadruplet loss (Figure 8). The goal
of this task is to promote a generalized separation
of entailment and contradiction sentence pairs in
the latent space, by randomly sampling entailment
and contradiction pairs and requiring that the en-
tailment pair have greater similarity than the con-
tradiction pair. This loss was crucial to achieve
state-of-the-art results in Table 2.

E. Premise CXR BERT >

Shared |weights

E. Hypothesis CXR BERT

Loss

Shared

C. Premise — [ @8I58 >

weights

Shared |weights

C. Hypothesis —| @ GE:2048
Figure 8: Entailment/contradiction quadruplet loss (EC)

For NLI, we adopt an approach similar to that of
SBERT (Reimers and Gurevych, 2019), by concate-
nating the embeddings of the premise, hypothesis
and their element-wise multiplication, followed by
a softmax layer for NLI classification (see Figure
9).

Premise — @ GEE0E. p

A Cross-
Shared |weights 3 >
entropy

Hypothesis —| @.:iz3:48 | H

Figure 9: Natural language inference (NLI)

Lastly, for entity and relation extraction we aug-
ment CXR-BERT-specialized with the layers pro-
posed by SpERT (Eberts and Ulges, 2020). This
adaptation was relatively straightforward, since
the authors of SpERT released an implementation
(https://github.com/lavis-nlp/spert/) that
is compatible with Huggingface models like CXR-
BERT-specialized.

A.2 Label Extraction Details

In order to extract labels with our two-stage sys-
tem, we set as a goal to select representative facts
that would be assigned as labels to a given re-
port. For that, we run K-Medoids clustering’ over

5https ://scikit-learn-extra.readthedocs.io/en/stable/generated/
sklearn_extra.cluster.KMedoids.html
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Figure 10: Entity and relation extraction (ER) with
SpERT

all fact sentence embeddings (2,212,958 count-
ing paraphrases) with F' cluster centers, and K-
Medoids clustering for all anatomical location sen-
tences (296,434 counting paraphrases) with A clus-
ter centers. Then, for each fact f extracted from
a report, we assign to it the closest fact cluster
center and the closest anatomical location clus-
ter center (if the fact has an anatomical location).
This produces labels of the form (fact_cluster_id,
anatomy_cluster_id) or just fact_cluster_id. Then
we count the frequency of these labels and keep
the NV most frequent. For fact_cluster_id la-
bels, we simply choose the fact that K-Medoids
clustering determined as the cluster center. For
(fact_cluster_id, anatomy_cluster_id) labels, we
go over all the facts producing the same pair and
choose the fact that minimizes the sum of the in-
verse of the frequency of each word as a way of
estimating the rareness of a sentence (i.e., we pick
the least "rare" fact). Please refer to Table 5 to
see examples of template-based reports built in this
way, along with examples for CheXpert labeler,
CheXbert and Chest ImaGenome.

A.3 Implementation Details

All of our experiments are implemented using
Python 3.10.10 with PyTorch version 1.13.1+cul17
(Paszke et al., 2017). All experiments are con-
ducted on a computing node equipped with a
20-core Intel(R) Core(TM) i19-9900X CPU @
3.50GHz, two NVIDIA GPUs - one GeForce RTX
2080 Ti with 11GB memory and one GeForce RTX
3090 with 24GB memory. The system is comple-
mented by 125GB of RAM.

We implement multitask learning for CXR Fact
Encoder through gradient accumulation. This is
achieved by multiple model forwards, each fed
by interleaved dataloaders for different tasks. We
use the AdamW optimizer (Loshchilov and Hut-
ter, 2019) with a cyclic exponential learning rate
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Table 5: Examples of template-based generated reports for different label extraction algorithms.

Ground-truth Report

CXR Fact Encoder
(all facts)

CXR Fact Encoder
(f=10000, a=300, n=50000)

CXR Fact Encoder
(f=1000, a=300, n=10000)

New PICC line on the right
is projecting with its tip
somewhere in the medi-
astinum. Appears to cross
the midline, there is con-
cern for potential arterial lo-
cation. The initial line con-
cerns were communicated
over the telephone at the
time of the wet read. Repeat
PA and lateral radiograph,
taken approximately an hour
after the radiograph demon-
strated the PICC line in the
mid SVC. Potential small
right pleural effusion. Sta-
ble moderate cardiomegaly.

new PICC line on the right.
tip of the PICC line in the
mediastinum. potential ar-
terial location crossing the
midline. PICC line in the
mid SVC. potential small
right pleural effusion. sta-
ble moderate cardiomegaly

CXR Fact Encoder Score
(sim): 1.000

RadGraph F1: 0.796
CheXpert Acc: 1.0
CheXbert Acc: 1.0

new right PICC. tip of the
PICC line in the medi-
astinum. catheter crosses
midline. PICC in mid SVC.
likely right effusion. mild to
moderate cardiomegaly un-
changed

CXR Fact Encoder Score
(sim): 0.954

RadGraph F1: 0.539
CheXpert Acc: 1.0
CheXbert Acc: 1.0

new right PICC. tip of
the PICC line in the me-
diastinum. projecting over
the midline. PICC in mid
SVC. small right effusion.
unchanged evidence of car-
diomegaly

CXR Fact Encoder Score
(sim): 0.934

RadGraph F1: 0.455
CheXpert Acc: 1.0
CheXbert Acc: 1.0

CXR Fact Encoder
(f=200, a=50, n=1000)

CheXbert

CheXpert labeler

Chest ImaGenome

right pleural tube. The right
PICC line terminates in the
middle of the SVC. femoral
catheter. tip of the mid SVC.
right effusion. stable car-
diomegaly is unchanged

CXR Fact Encoder Score
(sim): 0.794

RadGraph F1: 0.460
CheXpert Acc: 0.929
CheXbert Acc: 0.929

the heart is enlarged. the car-
diomediastinal silhouette is
enlarged. no focal consoli-
dation. the lungs are free of
focal airspace disease. no at-
electasis. a device is seen.
pleural effusion is seen. no
fibrosis. no pneumonia. no
pneumothorax is seen. no
pulmonary edema. no pul-
monary nodules or mass le-
sions identified. no fracture
is seen

CXR Fact Encoder Score
(sim): 0.517

RadGraph F1: 0.021
CheXpert Acc: 1.0
CheXbert Acc: 1.0

the heart is enlarged. the car-
diomediastinal silhouette is
enlarged. no focal consoli-
dation. the lungs are free of
focal airspace disease. no at-
electasis. a device is seen.
pleural effusion is seen. no
fibrosis. no pneumonia. no
pneumothorax is seen. no
pulmonary edema. no pul-
monary nodules or mass le-
sions identified. no fracture
is seen

CXR Fact Encoder Score
(sim): 0.517

RadGraph F1: 0.021
CheXpert Acc: 1.0
CheXbert Acc: 1.0

enlarged cardiac silhouette
in cardiac silhouette. abnor-
mal cardiac silhouette. picc
in left shoulder. picc in
mediastinum. lung opac-
ity in right costophrenic an-
gle. pleural effusion in right
costophrenic angle. abnor-
mal right costophrenic an-
gle. lung opacity in right
lung. pleural effusion in
right lung. abnormal right
lung. picc in right shoulder.
picc in svc. enlarged car-
diac silhouette. lung opacity.
pleural effusion. picc

CXR Fact Encoder Score
(sim): 0.647

RadGraph F1: 0.103
CheXpert Acc: 0.929
CheXbert Acc: 0.929

14




that varies from 8e-5 to 1e-6 over 8 epochs. Here,
an epoch consists of roughly 800 batches. Typi-
cally, our experiments run for 10-12 hours, after
which we observe no significant gains in validation
metrics.

A4 ChatGPT prompts
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Playground

SYSTEM

Relevant facts:

1. observations of abnormalities

2. observations of diseases

3. observations of strange visual patterns
4. observations of devices

5. observations of foreign bodies

6. observations of specific anatomical
regions that look normal or healthy

7. absences of abnormalities (usually
expressed with a negation)

8. comparisons with respect to a previous
study (something changed or remained the
same)

Task:

Given a sentence taken from a chest x-ray
report, generate a JSON list of relevant
facts.

Each fact should be about one observation.
If a sentence mentions multiple
observations,

each observation should be extracted as a

separate fact.
Canh fant chauld inaliida tha anataminal

SYSTEM

Each fact should include the anatomical
location where it was observed. If multiple
facts

occur in the same location, repeat the
location in each fact.

If no relevant facts are mentioned, return []
(an empty array).

Examples:

Opacity and density in the right lobe
[

"opacity in the right lobe",

"density in the right lobe"

1

Lungs are well inflated without evidence of
focal airspace consolidation to suggest
pneumonia.

[

"well inflated lungs",

"lungs without evidence of focal airspace
consolidation",

"lungs without evidence of pneumonia"

1

Your presets

USER There is no pneumothorax, focal consolidation, or

pleural effusion

ASSISTANT [

"no pneumothorax",

"no focal consolidation”,

"no pleural effusion”

]

@ Add message

SYSTEM

consolidation",
"lungs without evidence of pneumonia"

]

Taken together, compared with less than 1
hr earlier, the findings are suggestive of
worsening of CHF, with new or significantly
increased |left greater right pleural
effusions and underlying bibasilar collapse
and/or consolidation, particularly on the
left.

[

"worsening of CHF",

"new or significantly increased left pleural
effusions",

"new or significantly increased right pleural
effusions",

"underlying bibasilar collapse on the left",
"underlying consolidation on the left",

1

No acute cardiopulmonary abnormality
[
"no acute cardiopulmonary abnormality"

1

Save View code Share

Mode

@ Chat

Model

gpt-4-0613

Temperature 0

Maximum length 512

Stop sequences
Enter sequence and press Tab

Top P 1
Frequency penalty 0
Presence penalty 0

& APIand Playground requests
will not be used to train our
models. Learn more

B Give us feedback

3 -

Figure 11: Screenshot of OpenAl’s playground web interface showing the prompt used to extract facts from chest
X-ray report sentences. The screenshot was manipulated in order to display the full instructions given to ChatGPT.
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SYSTEM

Given a fact extracted from a Chest X-ray
report, output a JSON array of strings.

Each string must be a paraphrased fact, with
similar semantics, expressing the same
finding/diagnosis.

These paraphrases will be used to train a fact
embedding with triplet loss.

Generate multiple examples (at least 14),
covering a wide variety and diversity of
radiological

terms, synonyms, abbreviations and
expressions that radiologists commonly use
to communicate the same idea.

Output format:

[

"paraphrase 1",
"paraphrase 2",

"paraphrase 14"

1

USER

ASSISTANT

osteoporosis

[

"Bone thinning is observed",

"Signs of bone loss are present",
"Indications of decreased bone density",
"Evidence of porous bones",
"Presence of brittle bones",
"Manifestations of bone weakening",
"Indications of bone fragility",
"Signs of demineralized bones",
"Presence of low bone mass",
"Manifestations of bone softening",
"Evidence of bone rarefaction",
"Indications of skeletal fragility",
"Signs of reduced bone strength",
"Presence of bone tissue loss"

1

@ Add message

P Give us feedback

Figure 12: Fact to paraphrases
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SYSTEM

Given a sentence referring to an
anatomical location in the context of a
chest X-ray, output a JSON array of strings
paraphrasing it, covering a wide diverse
range of terminology, synonyms and
abbreviations that radiologists commonly
use to express the same idea in a chest X-
ray report.

Examples:

gastroesophageal junction

[

"cardia",

"cardia of the stomach",

"cardiac orifice",

"esophagogastric junction",

"GE junction",

"esophagogastro junction”,
"esophagogastric junctional region",
"gastroesophageal interface",
"gastroesophageal transition zone",
"lower esophageal junction",
"esophagogastric transition",
"stomach-esophagus interface",

Hiimaticn hatinann cbamank and

USER

ASSISTANT

SYSTEM

- "junction between stomach and
esophagus",

SYSTEM

"costal margin of the diaphragm",
"angle formed by diaphragm and rib cage"

"cardioesophageal junction", ]

"junction of the esophagus and stomach",

"transition between the esophagus and R>L

stomach", [

"point where the esophagus meets the "right greater than left"
stomach", ]

"Z-line",

"distal end of the esophagus", base

"proximal start of the gastric cardia" [

] "lung base",

costodiaphragmatic recess

[

"costophrenic angle",
"costophrenic recess",
"costophrenic sulcus",
"costophrenic notch",
"costophrenic sinus",
"phrenicocostal sinus",
"diaphragm-chest wall interface",

"junction of diaphragm and chest wall",
"area where the diaphragm meets the

ribs",

[T N T TS

cardiomediastinal silhouette

[

"heart and mediastinal contour",
"cardiac and mediastinal silhouette",
"outline of the heart and mediastinum",
"cardiac and mediastinal shadow",
"cardiopulmonary silhouette",

"heart and mediastinal structure",
"cardiac and mediastinal shape",
"cardiac and mediastinal border",
"cardiac and mediastinal profile",
"cardiac and mediastinal image",
"cardiac and mediastinal area",
"cardiac and mediastinal configuration"”,
"cardiac and mediastinal pattern",
"cardiac and mediastinal appearance",
"cardiac and mediastinal contouring",
"cardiac and mediastinal form",
"cardiac and mediastinal outline",
"cardiac and mediastinal figure",
"cardiac and mediastinal boundary"

]

"base of the lung",

"lower lung area",

"basal lung region",

"basal portion of the lung",
"lung's basal part",
"bottom part of the lung",
"lower region of the lung",
"pulmonary base",

"base of the pulmonary structure",
"lower zone of the lung",
"lower pulmonary region",
"lower segment of the lung"

]

Mode
& Chat
Model

gpt-3.5-turbo-0613

Temperature 0

Maximum length 512

Stop sequences
Enter sequence and press Tab

Top P 1
Frequency penalty 0
Presence penalty 0

& APIand Playground requests
will not be used to train our
models. Learn more

Figure 13: Anatomy location to paraphrases
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SYSTEM

Given a medical fact, output a JSON object with 7
fields:

"anatomical location"
"detailed observation"
"short observation"
"category"

"health status"
"prev_study_comparison?"
. "comparison status"”

o s N

~

Definitions:

1."anatomical location" means the anatomical
location of the observation. If not given, it should
be ",

2. "detailed observation" means what was
observed, with all the details provided (but
excluding location, unless the location itself is the
main observation).

3. "short observation" should be a brief summary of
the previous field, without extra details, but
logically consistent.

4. "category" can be "anatomical finding",
"disease", "technical assessment", "tubes and
lines" or "device".

SYSTEM

5. "health status" can be "normal", "abnormal",
"ambiguous" or "unknown".

"normal"” means healthy.

"abnormal" means unhealthy.

"ambiguous" means it is not clear whetheritis
healthy or unhealthy, leaving room for
interpretation.

"unknown" means the observation provides no
information about abnormality/normality.

6. "prev_study_comparison?" is a boolean field.
Can be either "yes" or ""no". If the fact is comparing
the current study with a previous study (something
improved, worsened, changed or remained the
same), return "yes". Otherwise, return "no

7. "comparison status" can be "resolved", "new",
"improved", "worsened", "larger", "smaller",
"displaced", or "". If no comparison with a previous
study is made, the defaultis "" (empty).

Examples:

small to moderate size left pleural effusion

{

"anatomical location": "left",

"detailed observation™: "small to moderate size
pleural effusion”,

"short observation": "pleural effusion",

USER bilateral effusions equivocally getting worse

ASSISTANT {

"anatomical location": "bilateral",

"detailed observation": "effusions equivocally getting worse",

"short observation': "worsening effusions",

"category": "anatomical finding",
"health status': "abnormal",

"prev_study_comparison?": "yes",
"comparison status': "worsened"

}

Figure 14:

Fact to metadata
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SYSTEM

"category": "anatomical finding",
"health status": "abnormal",
"prev_study_comparison?": "'no",
"comparison status": ""

}

new finding of mass in the abdomen
{

"anatomical location

abdomen",

"detailed observation": "mass",
"short observation": "mass",
"category": "anatomical finding",
"health status": "abnormal",
"prev_study_comparison?": "yes",
"'comparison status': "new"

}

clear lung fields

{

"anatomical location": "lung fields",
"detailed observation': "clear lung fields",
"short observation": "clear lung fields",
"category": "anatomical finding",

"health status™: "normal",
"prev_study_comparison?": "'no",
"comparison status": ""

}

no ill-definition of right hemidiaphragm
Mode

@ Chat
Model

gpt-4-0613

Temperature 0

Maximum length 512

Stop sequences
Enter sequence and press Tab



USER

ASSISTANT

@ Addmessage

SYSTEM

Given a statement extracted from a chest X-ray
report, output a comparison category. The
category must be one item of the following list:

0. no comparison

1. new finding

2. resolved

3. improved

4. worsened

5. progressed

6. reappeared

7. larger

8.smaller

9.increase

10. decrease

11. position changed
12. stable/unchanged
13. unclear comparison
14. other

Examples:

right pleural effusion similar in size
12. stable/unchanged

pleural density on the left is somewhat increased
9.increase

new bibasal consolidations on the left

bilateral effusions equivocally getting worse

4. waorsened

SYSTEM

6. reappeared

7. larger

8.smaller

9.increase

10. decrease

11. position changed
12. stable/unchanged
13. unclear comparison
14. other

Examples:

right pleural effusion similar in size
12. stable/unchanged

pleural density on the left is somewhat increased
9.increase

new bibasal consolidations on the left
1. new finding

small foci of opacity in the left mid lung
0. no comparison

na ill-definition of right hemidiaphragm
0. no comparison

heart within upper limits of normal in size
0. no comparison

Mode

@ Chat

Model

Figure 15: Fact to comparison status

20

gpt-4-0613

Temperature



SYSTEM

Instructions:

Apply an annotation standard of observations to
raw phrases extracted from chest X-ray reports.
The standard considers the following observations:

airspace opacity
atelectasis

bone lesion

bronchiectasis

calcified nodule

clavicle fracture

consolidation

costophrenic angle blunting
cyst/bullae

diaphragmatic eventration (benign)
elevated hemidiaphragm

enlarged cardiac silhouette

enlarged hilum

hernia

hydropneumothorax

hyperaeration

increased reticular markings/ild pattern
infiltration

linear/patchy atelectasis
lobar/segmental collapse

lung lesion

lung opacity

mass/nodule (not otherwise specified)

USER

ASSISTANT

SYSTEM

mediastinal displacement
mediastinal widening
multiple masses/nodules
pleural effusion
pleural/parenchymal scarring
pneumomediastinum
pneumothorax

pulmonary edema/hazy opacity
rib fracture

scoliosis

shoulder osteoarthritis

spinal degenerative changes
spinal fracture
sub-diaphragmatic air
subcutaneous air

superior mediastinal mass/enlargement
tortuous aorta

vascular calcification
vascular congestion

vascular redistribution

aortic graft/repair

cabg grafts

cardiac pacer and wires
prosthetic valve

alveolar hemorrhage
aspiration

copd/emphysema

fluid overload/heart failure
goiter

dual chamber pacemaker

[
“cardiac pacer and wires"

]

® Addmessage

SYSTEM

Instructions:

Apply an annotation standard of anatomical
locations to raw phrases extracted from chest X-ray

reports.

The standard considers the following anatomical

locations:

abdomen

aortic arch

cardiac silhouette
carina

cavoatrial junction
left apical zone
leftarm

left breast

left chest wall

left clavicle

left costophrenic angle
left hemidiaphragm
left hilar structures
left lower lung zone
leftlung

left mid lung zone
left shoulder

left upper lung zone
mediastinum

neck

right apical zone

Figure 16: Fact to observations

SYSTEM

- rightarm
right atrium
right breast
right chest wall
right clavicle

right hemidiaphragm
right hilar structures
right lower lung zone
right lung

right mid lung zone
right shoulder

right upper lung zone
spine

svc

trachea

upper mediastinum

Output format:

JSON array of strings

Rules:

right costophrenic angle

SYSTEM

granulomatous disease
interstitial lung disease
lung cancer
pericardial effusion
pneumonia
artifact
breast/nipple shadows
low lung volumes
rotated
skin fold
chest port
chest tube
endotracheal tube
enteric tube
ijline
intra-aortic balloon pump
mediastinal drain

icc
pigtail catheter
subclavian line
swan-gang catheter
tracheostomy tube

Output format:
JSON array of strings

Rules:

Only output the anatomical locations from the

standard that best match the given phrase.

If none match the phrase, output an empty array

(.

USER dual chamber pacemaker

ASSISTANT [

"right atrium",
""right ventricle"

]

® Addmessage

SYSTEM

intra-aortic balloon pump
mediastinal drain

pice

pigtail catheter
subclavian line
swan-gang catheter
tracheostomy tube

Output format:
JSON array of strings
Rules:

Only output the observations from the standard
that best match or are supported by the phrase. If
none match the phrase, output an empty array ([]).

Example:
Increased bibasilar opacities likely representing
atelectasis, but cannot exclude aspiration or
pneumonia in the

correct clinical setting

[

“lung opacity",
“atelectasis",
“aspiration",
“"pneumonia"
o 1
Mode
@ Chat
Model
gpt-4-0613,
Temperature 0
Maximum length 512
SYSTEM

Only output the anatomical locations from the
standard that best match the given phrase.
If none match the phrase, output an empty array

().

Examples:

cardiomediastinal silhouette
[

“cardiac silhouette",
“mediastinum"

]
A tracheostomy tube is in place
[
"neck",
"trachea"
]
bilateral pulmonary nodules
[
"left lung",
"right lung"
]
left TJV
[
"neck"
]
Mode
& Chat v
Model
gpt-4-0613 v
Temperature 4]
Maximum length 512

Figure 17: Fact to anatomical locations
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SYSTEM

Given an anchor, output a list of positives and a list of
negatives.

The anchor will come from a chest X-ray report. The
positives must be 6 paraphrases of the anchor,
expressing the same idea with different terms and
synonyms (cover a wide range of medical
terminology)

The negatives must be 10 hard negatives, that is,
similar to the anchor but semantically different,

for example, by expressing a different diagnosis (if
applicable), by referring to a different anatomical
location (if applicable), etc.

Output format: a JSON object as follows
{

“positives™: [ ... ],

"negatives™: [ ...]

}

SYSTEM

Given a premise from a Chest X-ray report,
output an entailment, a contradiction and a
neutral sentence.

The entailment must strictly follow logically
from the premise. The neutral can optionally
be about a different chest X-ray observation.
The output format must be a JSON as
follows:

SYSTEM

You will receive a NLI example from a chest
X-ray dataset with premise, hypothesis and
label ("entailment", "contradiction" or
"neutral"). Generate 10 new NLI examples
with the same label and following a similar
writing style as the example provided. They
have to be about chest X-ray reports. Output
the examples as a JSON array of objects. If
the premise or the hypothesis (or both) are
complex (i.e. they say several things), create
challenging examples following a similar
structure as the provided example that
require a good understanding of logic in order
to deduce the label.

Avoid verbosity and words such as "patient"
or "X-ray". State observations succinctly.

USER

ASSISTANT

removal of endotracheal tube

{

"positives": [

"Endotracheal tube has been removed",
"Extraction of the endotracheal tube",
"Endotracheal tube has been taken out",
"Endotracheal tube has been extracted",
"Endotracheal tube removal has been performed",
"Discontinuation of the endotracheal tube"
1

"negatives": [

"Insertion of endotracheal tube",
"Removal of nasogastric tube",
"Removal of chest tube",

"Endotracheal tube is in place",
"Endotracheal tube repositioned",
"Removal of central venous catheter",
"Endotracheal tube is unchanged",
"Removal of tracheostomy tube",
"Endotracheal tube is malpositioned",
"Removal of urinary catheter"

]

}

Figure 18: Hard triplets generated by ChatGPT

USER

ASSISTANT

removal of endotracheal tube

g
"c": "The endotracheal tube is still in place.",
"n': "The patient's lungs appear clear."

}

@ Add message

USER

ASSISTANT

Figure 19: NLI Prompt 1

{"P": "No pleural effusions or pneumothorax.", "H": "Previously seen

pneumothorax is no longer visualized.", "L"

[

{"P": "No evidence of pulmonary edema or pneumonia.", "H": "The
previously noted pneumonia is not present.”, "L": "entailment"},
{"P": "No signs of lung nodules or masses.", "H": "The lung mass

: "The patient no longer has an endotracheal tube.",

entailment"}

seen before is not visible now.", "L": "entailment"},

{"P": "No visible signs of cardiomegaly or mediastinal widening.",
"H'": "The previously observed cardiomegaly is not seen.", "L":

"entailment"},

{"P": "No signs of pulmonary embolism or pleural effusion.", "H":

"The earlier detected pleural effusion is not visible.", "L":

"entailment"},

{"P": "No evidence of pneumothorax or lung collapse.", "H": "The
previously seen lung collapse is not present.”, "L": "entailment"},
{"P": "No signs of rib fractures or lung contusions.", "H": "The rib
fracture noted before is not visible now.", "L": "entailment"},
{"P": "No visible signs of bronchiectasis or lung fibrosis.", "H": "The
previously observed bronchiectasis is not seen.", "L": "entailment"},
{"P": "No signs of lung cancer or tuberculosis.", "H": "The earlier
: "entailment"},
{"P": "No evidence of aortic dissection or aneurysm.", "H": "The
previously seen aortic aneurysm is not present.”, "L": "entailment"},

SUDI KA cimne Af narinardial affiician ar haart failira 1T 1L 1Tha

detected tuberculosis is not visible.", "L’

Figure 20: NLI Prompt 2
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SYSTEM

USER
Context: natural language inference.
Given a premise and a hypothesis, output
"entailment", "contradiction", or "neutral".
ASSISTANT
Use "entailment" when the facts stated by
the premise necessarily entail the truth of the
hypothesis. USER

Use "contradiction" when premise and
hypothesis are mutually
exclusive/contradictory (both cannot be true
at the same time).

Use "neutral", if there is no contradiction
(premise and hypothesis are compatible), but
the premise does not entail the hypothesis
(it's possible for the premise to be true and
the hypothesis still be false). In other words,
use "neutral" when neither "entailment" nor
"contradiction" adequately fit.

SYSTEM USER

Given a premise from a Chest X-ray report,

output 5 statements that explicitly logically

contradict the premise, that is, the premise

and any generated statement cannot both be ASSISTANT
true at the same time. Include at least one
sentence that is very similar to the premise
but with a very slight difference, thus
creating a logical contradiction.

For example:

- "There is mid thoracic dextroscoliosis" vs.
"There is no mid thoracic dextroscoliosis"

- "Left basal consolidation has slightly
improved" vs. "Left basal consolidation has
slightly increased"

Output format: a JSON array of strings.

Premise: Lungs are well-expanded and clear without focal consolidation
concerning for pneumonia. | Hypothesis: Lungs are hyperinflated but
clear.

Neutral

Ente!

here

@ Add message

Figure 21: NLI Prompt 3

Lungs are well-expanded and clear without focal consolidation
concerning for pneumonia.

["Lungs are not well-expanded and clear without focal consolidation
concerning for pneumonia.”, "Lungs are well-expanded but show focal
consolidation concerning for pneumonia.”, "Lungs are collapsed and
clear without focal consolidation concerning for pneumonia.”, "Lungs
are well-expanded and clear with focal consolidation not concerning for
pneumonia.”, "Lungs are well-expanded and clear, but there is focal
consolidation concerning for pneumonia."]

@ Add message

Figure 22: NLI Prompt 4
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Temperature 0
Maximum length 10

Stop sequences
Enter sequence and press Tab

Top P 1
Frequency penalty 0
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Mode

@ Chat v
Model

gpt-4-0613 v
Temperature 0
Maximum length 500

Stop sequences
Enter sequence and press Tab

Top P 1



	Introduction
	Related Work
	Fact Extraction
	CXR Fact Encoder
	Datasets
	Extracting and annotating facts
	Triplet Sampling Heuristics
	Natural Language Inference

	Experimental Results
	Conclusions
	Limitations and Future Work
	Appendix
	CXR Fact Encoder's Tasks Details
	Label Extraction Details
	Implementation Details
	ChatGPT prompts


