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ABSTRACT

In this paper, we address the challenge of learning high-dimensional Gaussian
mixture models (GMMs), with a specific focus on estimating both the model or-
der and the mixing distribution from i.i.d. samples. We propose a novel algorithm
that achieves linear complexity relative to the sample size n, significantly im-
proving computational efficiency. Unlike traditional methods, such as the method
of moments or maximum likelihood estimation, our algorithm leverages Fourier
measurements from the samples, facilitating simultaneous estimation of both the
model order and the mixing distribution. The difficulty of the learning problem
can be quantified by the separation distance ∆ and minimal mixing weight wmin.
For stable estimation, a sample size of Ω

(
1

w2
min∆

4K−4

)
is required for the model

order, while Ω
(

1
w2

min∆
4K−2

)
is necessary for the mixing distribution. This high-

lights the distinct sample complexities for the two tasks. For D-dimensional mix-
ture models, we propose a PCA-based approach to reduce the dimension, reducing
the algorithm’s complexity to O(nD2), with potential further reductions through
random projections. Numerical experiments demonstrate the efficiency and ac-
curacy compared with the EM algorithm. In particular, we observe a clear phase
transition in determining the model order, as our method outperforms traditional
information criteria. Additionally, our framework is flexible and can be extended
to learning mixtures of other distributions, such as Cauchy or exponential distri-
butions.

1 INTRODUCTION

1.1 BACKGROUND

The Gaussian Mixture Model (GMM) is a widely used statistical model that has found numerous
applications in various fields, including machine learning, pattern recognition, data clustering, and
image processing. It is a powerful tool for modeling complex data and signals originating from
sub-populations or distinct sources. The GMM represents a probability distribution as a weighted
sum of Gaussian components, each characterized by its mean and covariance matrix. Formally, each
observation of the GMM follows:

x ∼
K∑
i=1

wiN (µi,Σi) (1)

where wi is the mixing weight such that wi > 0 and
∑K

i=1 wi = 1. The mean and the covariance
matrix of the i-th component are denoted as µi and Σi, respectively. For each sample x, we can
introduce a latent variable z ∈ {1, · · · ,K}, with the marginal distribution of z specified by the
mixing weights:

P(z = i) = wi.

Thus, the GMM can also be expressed conditionally as

x|(z = i) ∼ N (µi,Σi). (2)

Given the i.i.d. samples drawn from the mixture distribution, the challenge is to learn the underlying
model. Generally, there are three formulations for learning mixtures:
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• Clustering: estimate the latent variable zj for each sample xj ;
• Parameter estimation: estimate the weights wi’s, means µi’s and covariance matrix Σi’s

up to a global permutation;
• Density estimation: estimate the probability density function of the GMM under specific

loss functions.

Existing methodologies for clustering primarily rely on k-means, which seeks to minimize:

argmin
zj ,µi

n∑
j=1

K∑
i=1

1 {zj = i} ∥xj − µi∥2 , (3)

where 1 {zj = i} = 1 if zj = i otherwise 0. It is well-known that solving the k-means exactly
in the general case is NP-hard, even for two clusters (see Aloise et al. (2009)). Various computa-
tionally tractable approximation approaches have been proposed, including the widely used Lloyd’s
algorithm (Lloyd (1982)), nonnegative matrix factorization (NMF) (see Paatero & Tapper (1994);
He et al. (2011); Zhuang et al. (2023)), and semidefinite programming (SDP) (see Peng & Wei
(2007)). Note that Lloyd’s algorithm iterates a two-phase of re-assigning the samples to clusters and
re-computing the cluster means until convergence. The perfect clustering of the mixture depends on
the separation distance defined as:

∆ := min
1≤i<j≤K

∥µi − µj∥ . (4)

It has been shown in Ndaoud (2022) that the critical threshold for a perfect clustering of a two-
component Gaussian mixture with a unified covariance matrix σ2I in p-dimension is:

∆2 = σ2

(
1 +

√
1 +

2p

n log n

)
log n (5)

Similar results are obtained for the K-component mixture model in Chen & Yang (2021).

Parameter estimation and density estimation benefit from a larger sample size, contrasting with the
perfect clustering scenario (5). Existing methodologies for learning the mixture can be broadly
categorized into the maximum-likelihood method and the moment-based method. The maximum
likelihood method aims to maximize the likelihood of the given samples. The likelihood function is
defined as

L(xj’s|wi’s,µi’s,Σi’s) =
n∏

j=1

(
K∑
i=1

wig(xj ;µi,Σi)

)
,

where g(x;µ,Σ) is the probability density function of Gaussian distribution with mean µ and
covariance Σ. Numerous iterative methods for optimization are proposed to seek the maximum
or local maximum of the likelihood function. Among them, the most widely used one is the
EM(Expectation-Maximization) Algorithm(Dempster et al. (1977)). The EM algorithm iterates a
two-step operation to find a local maximum of the logarithm likelihood function, which may not
necessarily be the ground-truth parameters. The Lloyd’s algorithm can be regarded as a determinis-
tic version of the EM algorithm. The moment-based methods date back to Pearson (1894). However,
Pearson’s method has practical limitations due to its sensitivity to moment selection and the instabil-
ity of finding roots of high-degree polynomials. Various modifications of the method of moments are
proposed, such as the Generalized Method of Moments(Hansen (1982)) and the Denoised Method
of Moments(Wu & Yang (2020)). The Markov Chain Monte Carlo (MCMC) methods are also com-
monly used to generate parameter samples from the posterior distribution, with prominent samplers
including the Metropolis method (Metropolis et al. (1953)). Additionally, relating to this paper,
Fourier approach is proposed and utilized to learn the GMMs in Qiao et al. (2022); Liu & Zhang
(2024).

It is worth noting that both the clustering via k-means and the parameter estimation by maximum
likelihood and moment-based methods require the model order K as an input. However, the model
order is often unknown a priori, necessitating a method for determining the appropriate order for
model learning. To address the challenge of model order selection, various statistical criteria and
information-theoretic measures have been proposed. These include the Akaike Information Cri-
terion (AIC, Akaike (1998)) and Bayesian Information Criterion (BIC, Schwarz (1978)). These
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methods aim to balance model complexity and goodness of fit, providing a quantitative measure to
evaluate the trade-off between model complexity and data fidelity. Bayesian approaches can also be
used to determine the model order. The variational inference method proposed by Corduneanu &
Bishop (2001) allows for model order determination by assigning appropriate prior distributions to
the parameters and maximizing the variational posterior distribution.

1.2 PROBLEM SETTING AND MAIN CONTRIBUTIONS

Given n independent samples drawn from a D-dimensional Gaussian mixture distribution with a
unified covariance matrix:

xj ∼
K∑
i=1

wiN (µi,Σ), j = 1, · · ·n. (6)

We assume that the covariance matrix Σ ∈ RD×D is known as prior information. This scenario is
referred to as the Gaussian location mixture if Σ = σ2I . We define the separation distance ∆ and
the minimal weight wmin of the model (6) as

∆ = min
1≤i<i≤K

∥µi − µj∥ , wmin = min
1≤i≤K

wi.

In this paper, we focus on the parameter estimation of the mixture model (6). Specifically, we aim
to determine the model order K and estimate the mixing distribution ν(x) =

∑K
i=1 wiδµi

(x) of the
model from the independent samples.

Contributions: We propose an efficient algorithm to estimate the model order and parameters si-
multaneously for high-dimensional GMMs, extending the previous work in Liu & Zhang (2024) for
one dimension. The time complexity of the proposed algorithm is linear in the sample size n, mak-
ing it highly scalable. The main novelty of our approach is the leverage of the Fourier measurements
of the samples. This is naturally connected to the problem of super-resolution and of line spectral
estimation, which can be solved efficiently using subspace methods such as the MUltiple SIgnal
Classification (MUSIC) algorithm. To handle high-dimensional data, we apply Principal Compo-
nent Analysis (PCA) to reduce the dimension to reduce the complexity to O(D2), significantly
improving computational efficiency in large-scale applications. We compare our algorithm with the
EM algorithm to highlight its advantages across different scenarios. We note that the Fourier ap-
proach in this paper differs from the one in Qiao et al. (2022), which primarily focuses on spherical
GMMs in low-dimensional settings and is based on estimating the Fourier transform of the mixture
at carefully chosen frequencies.

We establish a fundamental limit to estimating the model order and mixing distribution in the mix-
ture model using the Fourier measurements. Specifically, we show that stable recovery of the model
order requires a sample size of n = Ω

(
1

w2
min∆

4K−4

)
, while stable estimation of the means requires

n = Ω
(

1
w2

min∆
4K−2

)
, respectively. This result quantifies the distinct sample complexities for these

two tasks. We also provide multiple comparison tests with other model order estimation methods
and illustrate a phase transition in the estimation accuracy.

1.3 PAPER ORGANIZATION AND NOTATIONS

The rest of the paper is organized as follows. In Section 2, we propose Algorithm 1 for model order
and mixing distribution estimation of GMMs and establish the sample size guarantee for stable esti-
mation. In Section 3, we use PCA to reduce the time complexity of Algorithm 1 in high-dimensional
mixtures. We performed several numerical experiments to illustrate the accuracy, resolution, and ef-
ficiency of the algorithms in Section 2.

Throughout the paper, we write f(n) = O(g(n)) if there exists some constant c1 > 0 such that
f(n) < c1g(n), and f(n) = Ω(g(n)) if there exists some constant c2 > 0 such that f(n) > c2g(n).
We denote f(n) ≍ g(n) if f(n) = Ω(g(n)) and f(n) = O(g(n)). For a k-dimensional subspaceW
of Rn, the projection of vector v ∈ Rn on toW is defined as ProjW (v) = argminu∈W ∥u− v∥2.
ID denotes the identity matrix of rank D.
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2 OUR PROPOSAL: MODEL ORDER AND MIXING DISTRIBUTION
ESTIMATION VIA FOURIER APPROACH

2.1 ALGORITHM

In this section, we present our algorithm for model order and mixing distribution estimation of high-
dimensional GMMs. Our approach leverages the Fourier transform of the mixture distribution and
highlights a natural connection with line spectral estimation (LSE) and super-resolution (SR). We
assume that the means µi ∈ [−R,R)D for some R > 0. The probability density function of the
distribution (6) can be expressed in a convolutional form:

p(x) = g(x;Σ) ∗
K∑
i=1

wiδµi(x) (7)

where g(x;Σ) is the density function of the Gaussian distribution N (0,Σ). We now consider the
Fourier transform of (7):

ϕ(t) = F [p(x)] = e−tTΣt
K∑
i=1

wie
ι⟨µi,t⟩, (8)

where F [·] denotes the Fourier transform. The function ϕ(t) is also known as the characteristic
function (CF) of the mixture model in the context of the statistics. It can be estimated from the
samples by the empirical characteristic function (ECF):

ψn(t) =
1

n

n∑
j=1

eι⟨xj ,t⟩. (9)

According to the central limit theorem, the ECF follows asymptotic normality:
√
n (ψn(t)− ϕ(t))

d−→ N (0, 1− |ϕ(t)|2), n→ +∞.

By modulating (9) with the term et
TΣt, we obtain:

et
TΣtψn(t) =

K∑
i=1

wie
ι⟨µi,t⟩ + ϵn(t), (10)

where the right-hand side consists of a linear combination of exponential signals and a noise term
ϵn(t) that is due to the finite sample size n. The estimation of µi’s from the measurement (10)
is known as the Line Spectral Estimation (LSE), see Stoica et al. (2005). Due to the exponential
decay of the Fourier data ϕ(t), the available measurement in (10) is band-limited in the sense that
there exist positive numbers f1, f2, · · · , fD, called cutoff frequencies, such that only measurement
at t = (t1, · · · , tD) with |ti| ≤ fi for 1 ≤ i ≤ D can be used for estimation. Estimating µi’s when
they are closely separated from the band-limited Fourier data is a super-resolution problem, see
Donoho (1992). The success of LSE depends crucially on the noise level and the cutoff frequencies.
In our problem, the noise level ∥ϵn(t)∥∞ can be estimated quantitatively in a probabilistic manner
by the following proposition:
Proposition 1. For any fixed ϵ > 0, we have

P

(∣∣∣∣∣etTΣtψn(t)−
K∑
i=1

wie
ι⟨µi,t⟩

∣∣∣∣∣ ≥ ϵ

)
≤ 4 exp

{
− nϵ2

4e2tTΣt

}
≤ 4 exp

{
− nϵ2

4e2∥t∥
2
2σmax(Σ)

}
where σmax(Σ) denotes the maximal singular value of Σ. Then for any δ ∈ (0, 1), if the sample

size n ≥ 4 log
(
4
δ

)
e2∥t∥

2
2σmax(Σ)

ϵ2 , with probability 1− δ, we have that

ϵn(t) < ϵ.

Given measurement (10) at a uniform grid of domain [−f1, f1] × · · · [−fD, fD], we employ a
MUSIC-type algorithm to estimate both the model order K (i.e., the number of Gaussian compo-
nents) and mixing distribution ν(x) =

∑K
i=1 wiδµi

(x). Introduced by Schmidt (1986), the MUlti-
ple SIgnal Classification (MUSIC) algorithm is a widely utilized technique in frequency estimation,
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spectral analysis, and radar signal processing, renowned for its high-resolution parameter estimation
capabilities. Essentially, the MUSIC algorithm exploits the exponential form of the signals (similar
to Prony’s method introduced in Prony (1795)), as defined in Equation (10), to construct a Hankel
matrix that admits a Vandermonde decomposition. The algorithm proceeds by performing Singular
Value Decomposition (SVD) on the Hankel matrix to identify the noise subspace. Subsequently,
it formulates an imaging function (denoted as J (µ) in the algorithm) by computing a noise-space
correlation function. In the noiseless scenario, the imaging function exhibits peaks precisely at the
set of Gaussian means {µj}1≤j≤K . In the presence of noise, the algorithm determines the number
of Gaussian means by identifying the number of local maxima in the imaging function and esti-
mates the set of means based on the locations of these maxima. The details of the MUSIC algorithm
can be found in Appendix B. In Section 2.2 and 2.3, we discuss how to select the cutoff frequen-
cies f1, · · · , fD and the number of sampling points to balance the computational tractability and
estimation accuracy. The mixing weights are estimated using the quadratic programming, as de-
tailed in Appendix F. We summarize the model order selection and mixing distribution estimation
in Algorithm 1.

Algorithm 1: Model Order Selection and Mixing Distribution Estimation
input : samplesX1, · · · ,Xn, covariance matrix Σ, cutoff frequencies (f1, · · · , fD), a prior

upper bound for the number of Gaussian components L, sample size of the Fourier
measurement in each direction N with N > L+K.

1 Compute yn(t) = et
TΣtψn(t) on the uniform grid of [−f1, f1]× · · · × [−fD, fD] with

(N + 1) sample points along each direction;
2 Apply Algorithm 3 with input yn(t), N, L and plot the imaging function J (µ) in [−R,R)D;
3 Return the model order K̂ as the number of local maxima of J (µ) and the means as the local

maxima {µ̂i}1≤i≤K̂ ;
4 Return the weights {ŵi}1≤i≤K̂ by solving the quadratic programming problem (35);

output: estimated mixing distribution ν̂(x) =
∑K̂

i=1 ŵiδµ̂i
(x).

We remark that this algorithm is also applicable when the model order K is known. In that case, the
means are determined by selecting the largest K local maxima of the imaging function J (µ).

2.2 PARAMETER SETUP OF ALGORITHM 1

In this section, we discuss how to set the parameters in Algorithm 1. Recall the Gaussian means
µj’s are located within [−R,R)D. By the the Nyquist–Shannon sampling theorem, the sampling
step size h for each direction in the Fourier domain should satisfy 0 < h ≤ π

R , resulting in the
following condition on the sample size N in each direction:

N ≥ 2fdR

π
, d = 1, · · · , D.

We assume that we have a prior upper bound L of the number of Gaussian components K with
L = O(K). To recover L components by the MUSIC algorithm, a sufficient condition on N (see
Appendix B) is:

N ≥ 2L+ 1.

Therefore

N = max

(
2L+ 1,

⌈
2fmaxR

π

⌉)
, (11)

where fmax = max{fd : d = 1, · · · , D} and ⌈x⌉ is the smallest integer greater or equal to x. The
choice of cutoff frequencies will be discussed in Section 2.3.

2.3 TIME AND SAMPLING COMPLEXITY OF ALGORITHM 1

In this section, we analyze the time and sampling complexity of Algorithm 1 with parameters set
as (11). We also propose a method for determining the cutoff frequencies. The time complexity of
computing the Fourier measurement yn(t) is given by:

O
(
n(N + 1)D

)
.
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For multidimensional MUSIC, the primary computational cost arises from the singular value de-
composition and the evaluation of the imaging function J (µ). Suppose the number of grid points
for evaluating J (µ) is M along each dimension. The time complexity of Algorithm 3 is:

O
(
min

{
(L+ 1)2D(N − L+ 1)D, (L+ 1)D(N − L+ 1)2D

}
+ (2M)D

)
.

Using the inputs from (11), the overall time complexity of Algorithm 1 becomes

O(n2DKD +K3D + 2DMD) (12)

which is linear in sample size n, but exponential in dimensionality D. This complexity can be
reduced using the dimension reduction method introduced in Section 3.

Next, we examine the sampling complexity in relation to the separation distance ∆ and the min-
imal mixing weight wmin. The reliability of the estimation provided by Algorithm 1 depends on
these two parameters, as well as the noise level |ϵn(t)| which is determined by the sample size n.
This relationship is closely connected to the computational resolution limits established in Liu &
Zhang (2021b) for one-dimensional and Liu & Zhang (2021a) for multi-dimensional LSE. Before
presenting the main theorem, we introduce the concept of the computational resolution limit for
multi-dimensional LSE. Consider the multi-dimensional Fourier measurement defined as

y(t) =

K∑
i=1

wie
ι⟨µi,t⟩ + ϵ(t), t ∈ RD, ∥t∥2 ≤ f. (13)

Assume that ∥ϵ(t)∥∞ < σ.

Definition 1. Given the Fourier measurement y(t) in (13), we say that the ν̂(x) =
∑K̂

i=1 ŵiδµ̂i
(x)

is a σ-admissible discrete measure of y(t) if

∥F ν̂(t)− y(t)∥∞ < σ, ∀ ∥t∥2 ≤ f.

The set of σ-admissible measures characterizes all the possible solutions of the inverse problem from
Fourier measurements y(t). If there exists an admissible measure ν̂ with less than K components,
one may miss out one or more sources and therefore cannot estimate the model order correctly. This
leads to the definition of the computational resolution limit for number detection.
Definition 2. The computational resolution limit for number detection in D-dimensional space
is defined as the smallest nonnegative number RD,K such that for all K-component measure∑K

i=1 wiδµi
,µi ∈ BD

(K−1)π
2f

(0) and the associated Fourier measurement y(t) in (13), if

∆ = min
1≤i<j≤K

∥µi − µj∥ ≥ RD,K

then there exists no σ-admissible measure consisting less thanK components with Fourier measure-
ments y(t).

A quantitative characterization of RD,K is provided in Appendix D. It can be shown that, up to two
constants depending only on D,K, the limit takes the form

RD,K ≍ π

f

(
σ

wmin

) 1
2K−2

. (14)

This computational limit indicates that to accurately estimate the model order from the Fourier
measurements (10) of the samples. The noise level ∥ϵn(t)∥ must be small enough such that RD,K ≤
∆. The following theorem establishes a non-asymptotic lower bound for the sample size required to
accurately recover the model order.

Theorem 1. Consider theD-dimensional mixture model
∑K

i=1 wiN (µi,Σ) withµi ∈ BD
(K−1)π

2f

(0).

For any δ ∈ (0, 1), if the sample size n satisfies that

n ≥ CK,D log

(
4

δ

)
e2f

2σmax(Σ)

w2
min(f∆)4K−4

. (15)

Then with probability 1− δ, ∆ ≥ RD,K holds. Here CK,D is a constant only relying on K and D.

6
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Remark 1. For exact estimation of the model order K using the Fourier measurements (10), the
sample size should satisfy that

n = Ω

(
1

w2
min∆

4K−4

)
. (16)

This reveals the relation of the sample size n with the mixture model itself explicitly.
Remark 2. The computational resolution limit for support recovery has also been established in
Liu & Zhang (2021a). Following this theory, the sample complexity for estimating the means of a
K-component GMMs with an error threshold less than ∆/2, where ∆ is the separation distance of
the means, should satisfy

n = Ω

(
1

w2
min∆

4K−2

)
.

The computational resolution limit also sheds light on setting the cutoff frequencies in Algorithm 1.
From Proposition 1, the noise level in (10) is amplified by a factor of et

TΣt. For a one-dimensional
mixture with variance σ2, the noise level is amplified by ef

2σ2

. To minimize the computational
resolution limit, a straightforward calculation leads to the optimal cutoff frequency set as f optimal =√

2K−2
σ2 . Therefore, we can set the cutoff frequencies as

fd =

√
2L− 2

eTdΣed
, d = 1, · · · , D, (17)

ifK is unknown. Along with (11), these parameters are tested in detail in the numerical experiments
shown in Section 4.

3 PCA-BASED DIMENSION REDUCTION

The time complexity of Algorithm 1 is exponential in the data dimension D (see (12)). For a
K-component mixture model, the means S lies on a subspace at most dimension K. If we can
identify this subspace and project the samples onto it, the computational complexity of the model
order estimation can be significantly reduced. In this section, we introduce a PCA-based method
for dimension reduction. The idea is to first project the data onto a low-dimensional linear manifold
using Principle Component Analysis (PCA) before running Algorithm 1. We demonstrate that this
projection-based technique can also be used to estimate the mixing distribution. The PCA is based
on the Singular Value Decomposition(SVD) of the data matrix:

X = [x1 · · · xn]
T ∈ Rn×D.

Assume that n > D and denote its singular value decomposition as

X =

D∑
d=1

λdudv
T
d

where λ1 ≥ λ2 ≥ · · · ≥ λD ≥ 0. Denote Vk = [v1 · · · vk] ∈ RD×k. The PCA projects
the samples onto the column space of Vk. We summarize the PCA-based model order and mixing
distribution estimation algorithm below.

Algorithm 2: PCA-based Model Order Selection and Mixture Distribution Estimation
input : samples x1, · · · ,xn, Σ, (f1, · · · , fk), k,N, L

1 Compute the SVD of data matrix X =
∑D

d=1 λdudv
T
d ;

2 Project the samples to the subspace spanned by v1, · · · ,vk;
3 Run Algorithm 1 with inputs as projected samples, V TΣV , (f1, · · · , fk), N, L ;
4 Transfer the projected means into their original space;

output: the model order K̂ and the mixing distribution.

If the model order K is known, set k = K. If k < K, the projection may miss components lying
orthogonal to the space spanned by the principle components. This issue and possible solutions are

7
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discussed in Section C.2. In the next subsection, we provide a theoretical analysis of the dimension
reduction using PCA. This method reduces the time complexity from (12) to

O
(
nD2 + n2kKk +K3k + 2kMk

)
. (18)

This reduces the exponential dependency on D to k. If K = O(1) relative to the sample size n and
dimensionality D, then the time complexity of Algorithm 2 becomes O(nD2), which is quadratic
in the dimensionality. This complexity can be further reduced by random projection techniques. For
instance, one can first apply the Johnson-Lindestrauss embedding to project the data onto a sub-
space of dimension Ω

(
logK
ϵ2

)
. The estimation accuracy remains promising if the shrunk separation

distance (1− ϵ)∆ remains above the resolution limit.

3.1 ANALYSIS ON THE GAUSSIAN LOCATION MIXTURE

In this section, we consider the Gaussian mixture with covariance matrix as σ2I , also known as the
Gaussian location mixture. We demonstrate that when n > D, the expected subspace spanned by
the first K right singular vectors {v1, · · ·vK} in PCA either includes or coincides with the subspace
spanned by the means {µ1, · · ·µK}.

Firstly, recall that
span{v1, · · · ,vK} = argmax

{V :dimV =K}
∥ProjVX∥2 . (19)

We have the following theorem, where part of the proof is adapted from Vempala & Wang (2002):

Theorem 2. Given any k-dimensional (k ≤ D) subspace spanned by orthonormal vectors
{w1, · · ·wk}. DenoteWk = span{w1, · · · ,wk} and UK = span{µ1, · · · ,µK}, then we have

E
∥∥ProjUK

X
∥∥
2
≥ E

∥∥ProjWk
X
∥∥
2
.

Furthermore, if k < K, we have argmaxWk
E
∥∥ProjWk

X
∥∥
2
⊂ UK and if k ≥ K, we have

UK ⊂ argmaxWk
E
∥∥ProjWk

X
∥∥
2
.

This theorem implies that, with a sufficiently large sample size, the subspace obtained via SVD
closely approximates the subspace spanned by the centers. Therefore, estimating the mixing distri-
bution in the projected subspace is reasonable.

4 NUMERICAL RESULTS

4.1 COMPARISON WITH EM ALGORITHM

In this experiment, we compare the performance of Algorithm 2 with the EM algorithm for esti-
mating the mixing distribution. We also include tests using PCA as a preprocessing step before
applying the EM algorithm. All tests are conducted on a mixture model with dimension D = 100
and components K = 2, 3 with Σ = I .

The tests are designed as follows. For K = 2, samples are generated from the model
1
2N (−µ, I100) + 1

2N (µ, I100), and the mixture distribution is 1
3N (−µ, I100) + 1

3N (0, I100) +
1
3N (µ, I100) for K = 3. In each test, the model order K and the ∥µ∥2 are fixed. The sam-
ple size n ranges from 10, 000 to 200, 000 with increments of 10, 000. With fixed ∥µ∥2, For
each sample size, 96 independent trials are conducted, and the estimation error is averaged across
trials. In each independent trial, the mean µ is generated by first selecting a vector uniformly
from the unit sphere SD−1, then scaling it by ∥µ∥2. The inputs for Algorithm 2 are set as
f =

√
2K − 2, k = K,L = K,N = 2K in accordance with (11) and (17). For the EM algo-

rithm, the initial means are randomly set as K samples, and the algorithm terminates after 5, 000
iterations or when the log-likelihood increases less than 1 × 10−6. During the iterations of the EM
algorithm, the covariance matrix is fixed as I100. The estimation error for the mixing distribution is
defined using the Wasserstein distance:

W1(ν, ν̂) = inf E ∥X − Y ∥2 ,

8
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Figure 1: Comparison with the EM algorithm. The uppers are the W1 errors of each method and
the lowers are the average running time(seconds) of each trial. The samples of each trial comes
from: (a) 1

2N (−µ, I100) + 1
2N (µ, I100), ∥µ∥2 = 1; (b) 12N (−µ, I100) + 1

2N (µ, I100), ∥µ∥2 = 2;
(c) 13N (−µ, I100) + 1

2N (0, I100) +
1
3N (µ, I100), ∥µ∥2 = 1; (d) 13N (−µ, I100) + 1

2N (0, I100) +
1
3N (µ, I100), ∥µ∥2 = 2.

where the infimum is taken for all joint distributions of random vectors (X,Y ) with marginals ν, ν̂
and this Wasserstein distance can be numerically computed through optimal transport 1. The results
are presented in Figure 1.

The results demonstrate that Algorithm 2 achieves comparable accuracy to the EM algorithm while
requiring significantly less time, especially for the large sample sizes. This efficiency arises because
the running time of Algorithm 2 scales linearly with the sample size n. In contrast, the EM algorithm
is highly sensitive to the initialization of the means and the landscape of the likelihood function,
which may result in slow convergence if the initialization or landscape is unfavorable. Additionally,
the time complexity of the EM algorithm in each iteration is O(nKD2), which is approximately the
total complexity order (18). The dependence of the convergence speed of the EM algorithm on the
likelihood function’s landscape is evident when comparing panels (a) with (b) and (c) with (d) in
Figure 1. A larger separation distance results in a better landscape, leading to faster convergence for
the EM algorithm.

4.2 RESOLUTION LIMIT AND PHASE TRANSITION OF MODEL ORDER ESTIMATION

In this experiment, we explore the resolution limit of Algorithm 1 and compare it with other com-
monly used model order estimation methods. Specifically, we test the resolution limit for equally
weighted two-component and four-component mixture model in R2. The covariance matrices are I
for all Gaussian components. The geometry of the component means is illustrated in Figure 2.

The tests are designed as follows. We uniformly take 2,800 (log10(n),∆) points in the domain
[2.5, 6.0]× [0.2, 6.0]. For each (log10(n),∆) pair, we construct the equally weighted mixture model
with the means illustrated in Figure 2. We draw n independent samples from the model and apply
Algorithm 1, AIC, and BIC for model order estimation. For theK-component mixture, the inputs of
Algorithm 1 are f =

√
K + 1, L = K +1, N = 2K +2, which allows for the model order ranging

from 1 to K + 1. For AIC and BIC, the model is estimated by the EM algorithm with model order
ranging from 1 to K + 1. The EM algorithm terminates after 5, 000 iterations or the log likelihood
increases less than 1× 10−5.The results are shown in Figure 2.

1In our experiments, we use wasserstein distance nd in the Python package scipy.
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The results reveal phase transitions for all three methods. The proposed method demonstrates a
more favorable phase transition region compared to the other two criteria. However, the transition
may not be as pronounced as that of the information criteria. Further refinement of these criteria
could enhance the performance of the proposed method.
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(d) Phase transition of 4 components

Figure 2: Geometry of the means and the phase transition of different model order estimation meth-
ods. The black dots stand for the mean locations and ∆ stands for the separation distance. The blue
triangle means the model order is underestimated and the green triangle means the model order is
overestimated.

5 CONCLUSIONS AND DISCUSSIONS

Learning Gaussian mixture models is a challenging task, particularly in high dimensions or when the
number of components is large or unknown. The performance of the learning algorithms depends
on the separation distance and minimal weight of the components. In this paper, we proposed an
efficient algorithm for estimating the model order and mixing distribution of the high-dimensional
GMMs. Our algorithm leverages the Fourier measurement of the samples, drawing a natural connec-
tion to line spectral estimation and super-resolution techniques. We have established the sampling
complexities for estimating the model order and mixing distributions in relation to the separation
distance and minimal weight. Additionally, we demonstrated that the computational complexity for
learning high-dimensional mixtures can be further reduced using dimension reduction techniques
such as PCA. Empirical results confirmed that our algorithm achieves efficiency and accuracy com-
parable to, or better than, the EM algorithm.

We also acknowledge some aspects of our approach that present opportunities for future improve-
ment. While our algorithm assumes that the unified covariance matrix Σ is known a priori, there are
scenarios where this may not be the case. To enhance the versatility of our method, estimating the
covariance matrix using Fourier measurements, as explored in the 1-D algorithm in Liu & Zhang
(2024), could be a promising direction. Additionally, while the time complexity remains quadratic
with respect to dimensionality, this opens avenues for further research. Employing random pro-
jections that preserve pairwise distances between components, such as the Johnson–Lindenstrauss
embedding (see Sanjeev & Kannan (2001)), could be an effective way to address this challenge. We
will exploring these possibilities in future work.
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A NOTATIONS

We shall use the following notations in the appendix. We use R (·) and I (·) to denote the real and
imaginary part of a complex number, vector or matrix. For a matrix A ∈ Rm×n(or Cm×n), we use

Aj to denote the j-th column ofA and the induced 2-norm ∥A∥2 =
√∑n

j=1 ∥Aj∥22.

B REVIEWS ON MUSIC ALGORITHM

In this section, we review the multidimensional MUltiple SIgnal Classification(MUSIC) algo-
rithm. The MUSIC algorithm (see Schmidt (1986)) was initially proposed for the direction of ar-
rival(DOA) detection and line spectral estimation(LSE). The multidimensional MUSIC is applied in
D-dimensional single-snapshot spectral estimation. Consider a signal y(t) which is a linear combi-
nation of K time-harmonic components and additive noise ϵ(t):

y(t) =

K∑
i=1

wie
ι⟨µi,t⟩ + ϵ(t). (20)

The goal is to recover the frequency set S = {µi : 1 ≤ i ≤ K} and the corresponding amplitude
wi, from uniform samples of y(t) in the domain [−f, f ]D. Suppose we have a total (N + 1)D

uniformly spaced sampling points with a grid size h = 2f
N . Consequently, the frequencies can only

be determined on the torus
[
−Nπ

2f ,
Nπ
2f

)D
.

We first review the multidimensional MUSIC algorithm when D = 2. The extension to higher
dimensions can be found in Liao (2015). For simplicity, we define the sampling coordinates along
each direction as tq = −f + q 2f

N for q = 0, · · · , N , and µi = (µi
1, µ

i
2) for i = 1, · · · ,K. We also

introduce the following notation:

ϕl(µ) =
[
1 eιµh · · · eιµlh

]T ∈ Cl+1.

Denote the noiseless uniform samples on the grid as:

yn1,n2
=

K∑
i=1

wie
ι⟨µi,tn1,n2 ⟩, 0 ≤ n1, n2 ≤ N.

where tn1,n2
= (tn1

, tn2
) is the sample point.

Given a fixed integer L < N , we form the Hankel matrix

An1 =


yn1,0 yn1,1 · · · yn1,N−L

yn1,1 yn2,2 · · · yn1,N−L+1

...
...

. . .
...

yn1,L yn1,L+1 · · · yn1,N

 ∈ C(L+1)×(N−L+1), 0 ≤ n1 ≤ N. (21)

It is well known thatAn1 has the Vandermonde decomposition:

An1
= ΦL,2ΠΛn1,1Φ

T
N−L,2, (22)

where

ΦL,2 =
[
ϕL(µ

1
2) ϕL(µ

2
2) · · · ϕL(µ

K
2 )
]
∈ C(L+1)×K ,

Π = diag (w1, w2 · · · , wK) ,

Λn1,1 = diag
(
eιµ

1
1tn1 , eιµ

2
1tn1 , · · · , eιµK

1 tn1

)
.

Next, we construct the 2-fold Hankel block matrix:

H =


A0 A1 · · · AN−L

A1 A2 · · · AN−L+1

...
...

. . .
...

AL AL+1 · · · AN

 ∈ C(L+1)2×(N−L+1)2 . (23)
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For higher dimensions D > 2, the D-fold Hankel block matrix can be formed recursively as:

H =


A0 A1 · · · AN1−L1

A1 A2 · · · AN1−L1+1

...
...

. . .
...

AL1
AL1+1 · · · AN1

 ,
where Al is the (D − 1)-fold Hankel block matrix formed from the samples
{yl,n2,··· ,nD

: 0 ≤ n2, · · · , nD ≤ N} .
For the 2-fold Hankel block matrixH , it can be verified that

H =


ΦL,2Λ0,1

ΦL,2Λ1,1

...
ΦL,2ΛL,1

Π
[
Λ0,1Φ

T
N−L,2 Λ1,1Φ

T
N−L,2 · · · ΛN−L,1Φ

T
N−L,2

]
. (24)

Defining:
ψL(µ) = vect

({
eι⟨µ,tn1,n2

⟩ : 0 ≤ n1, n2 ≤ L
})

∈ C(L+1)2 ,

the Vandermonde decomposition (24) can be written as:

H = [ψL(µ1) · · · ψL(µK)]︸ ︷︷ ︸
ΨL

Π [ψN−L(µ1) · · · ψN−L(µK)]
T
. (25)

In the noiseless case, we have the following result for recovering the frequencies (see Liao (2015)):
Theorem 3. Suppose µi ̸= µj for all 1 ≤ i ̸= j ≤ K and

L+ 1 ≥ K, N − L+ 1 ≥ K. (26)

Then we have rank (ΦL,2) = rank (ΦN−L,2) = rank (H) = K. Furthermore, for any µ ∈[
−Nw

2f ,
Nw
2f

)2
, if (26) holds, we have

µ ∈ S ⇐⇒ ψL(µ) ∈ Im(ΨL), (27)

where Im(ΨL) is the column space of ΨL.

This theorem provides a criterion (27) for detecting the frequencies in the noiseless case. When the
measurement is contaminated with noise ϵ(t), we can apply the MUSIC algorithm by performing
Singular Value Decomposition(SVD) onHϵ:

Hϵ = [U ϵ
1 U ϵ

2 ]diag (σϵ
1, · · · , σϵ

K , · · · ) [V ϵ
1 V ϵ

2 ]
∗
, (28)

where U ϵ
1 ∈ C(L+1)2×K ,U2 ∈ C(L+1)2×min{(L+1)2,(N−L+1)2}−K and Im(U ϵ

1), Im(U ϵ
2) are

called signal space and noise space, respectively. The algorithm is realized by projecting ψL(µ)
onto the noise space and drawing the MUSIC imaging function defined as:

J (µ) =
∥ψL(µ)∥2

∥U ϵ∗
2 ψL(µ)∥2

. (29)

In the noiseless case, we have the relation that

µ ∈ S ⇐⇒ J (µ) = ∞.

In the noisy case, the frequency set S is determined by locating the local maxima of the imaging
function J (µ). The algorithm is summarized in Algorithm 3.

When the K = |S| is unknown, the MUSIC can also be applied by setting K to some integer larger
than |S| in Algorithm 3. In such cases, the frequency set is determined by identifying the local
maxima of J (µ) using appropriate criteria to avoid numerical instabilities. In our experiments, we
simply use the criterion that the amplitude of the local maxima µ̂ is larger than a preset threshold
w > 0.
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Algorithm 3: multidimensional MUSIC

input : yϵ(t) sampled on [−f, f ]D with (N + 1)D sample points, K,L
1 Form the Hankel block matrixHϵ ∈ C(L+1)D×(N−L+1)D ;
2 Perform the SVD:Hϵ = [U ϵ

1 U ϵ
2 ]diag (σϵ

1, · · · , σϵ
K , · · · ) [V ϵ

1 V ϵ
2 ]

∗ where
U1 ∈ C(L+1)D×K ;

3 Compute the MUSIC imaging function J (µ) on the
[
−Nπ

2f ,
Nπ
2f

]D
;

output: S = {K largest local maxima of J (µ)}

C COMPLEMENTS TO NUMERICAL RESULTS

C.1 CAPACITY OF LEARNING MODELS WITH LARGE MODEL ORDER

In this experiment, we perform two numerical tests to illustrate the capacity of learning mixture
model with a large model order in Algorithm 1 and 2. We first examine a 2-dimensional example of
a 12-component mixture model with a unified covariance matrix 0.3I . Using 1, 000 samples from
this distribution, we compare the performance of Algorithm 1 and the EM algorithm in estimating
the component means. The EM algorithm is initialiezed with samples uniformly drawn from the
data and terminates when the log-likelihood increases less than 1× 10−6. The inputs of Algorithm
1 are set as f1 = f2 = 3, L = 12, N = 25. The results are shown in Figure 3. In the figure, the
true Gaussian components are illustrated as the red circles centered at the component mean with a
radius 1.5 times standard deviation, while the estimated ones are illustrated with the green dashed
circle. We observe that with the specific initialization used, the EM converges in 292 iterations but
gets trapped in a local maxima. Algorithm 1 does not suffer from initialization issues and provides
a more accurate estimate of the mixture means.

Next, we consider a similar 12-component model but in a 100-dimensional space. The mixture
means from Figure 3 are embedded into the R100 and each mean is perturbed by a Gaussian vector
drawn from N (0, 0.1I100). We apply Algorithm 2 and the EM algorithm to estimate the mix-
ture means in this high-dimensional setting. The results are shown in Figure 4. For visualization
purposes, the estimates are projected onto the first two dimensions. It can also be seen from the es-
timation error that the Algorithm 2 outperforms the EM algorithm under this setting. Furthermore,
when considering only the 1-Wasserstein error in the first two dimensions, the Algorithm 2 shows
significantly better performance, with an error of 0.180 compared to the EM algorithm’s error of
0.439.

C.2 PROJECTION: ISSUES AND POTENTIAL SOLUTIONS

So far, we have focused on the numerical examples where the component means lie on or near a
2-dimensional subspace. However, a 2-dimensional projection may yield inaccurate estimations if
the component means are distributed across a higher-dimensional space. The following experiment
illustrates this issue. In this experiment, we consider a 6-component mixture model in R3. The
mixture means are {±Re1,±Re2,±Re3} where R = 4 and the covariance matrix is I3. We
draw 2, 000 samples from this mixture model and use Algorithm 2 with k = 2 to estimate the
mixing distribution. The estimation results seem reasonable when examining the estimated means
projected onto the first two principal components. However, the accuracy degrades when considering
the estimated means in the original R3 space. This discrepancy arises because, in this model, the
first two principal components span a subspace close to span{e1, e2}, making it challenging to
accurately estimate components whose means lie along the z-axis. As a result, projecting only onto
the subspace span{v1,v2} makes it impossible to accurately estimate the third component.

To address this issue, one potential solution is to project the samples onto a higher-dimensional
subspace and estimate the projected means. makes it impossible to accurately estimate the third
component. As shown in (12), the time complexity of the D-dimensional MUSIC algorithm is ex-
ponential with respect to the data dimension D. Alternative multidimensional line spectral methods
(e.g. Sarkar & Pereira (1995); Tang et al. (2014); Fei & Zhang (2023)) could also be applied, but
they may encounter similar challenges. Another approach is to project the samples onto alternative
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(a) Illustration of the EM algorithm with random initialization. Left: 1, 000 samples(blue cross) drawn from
a 12-component mixture model and the initialization means(black star) of the EM algorithm (converges in 292
iterations); Middle: the estimated components by the EM algorithm; Right: the estimated components by the
EM algorithm (without samples illustrated).
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(b) Illustration of the Algorithm 1. Left: imaging function values of the MUSIC algorithm and the 12 largest
local maximal; Middle: the estimated components by the Algorithm 1; Right: the estimated components by the
Algorithm 1 (without samples illustrated).

Figure 3: Comparison of the EM algorithm and Algorithm 1 on the 12-component mixture model.
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(a) Illustration of the EM algorithm with random initialization. Left: 1, 000 samples(blue cross) drawn from
a 12-component mixture model and the initialization means(black star) of the EM algorithm (converges in 80
iterations); Middle: the estimated components by the EM algorithm; Right: the estimated components by the
EM algorithm (without samples illustrated).
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(b) Illustration of the Algorithm 2. Left: imaging function values of the MUSIC algorithm and the 12 largest
local maximal; Middle: the estimated components by the Algorithm 1; Right: the estimated components by the
Algorithm 1 (without samples illustrated).

Figure 4: Comparison of the EM algorithm and Algorithm 2 on the 12-component mixture model in
R100.
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Figure 5: Geometry of the means. The black dots stand for the mean locations and ∆ stands for the
minimum distance.

2-dimensional subspaces that include the omitted principal directions. For example, in this case, we
can project onto span{v2,v3}, and the results are shown in (c). A pairing process is necessary to
reconstruct the estimated means under the basis {v1,v2,v2}. In this example, we simply pair the
means whose v2 coordinates are closest and the estimation results are shown in (d). A more general
pairing process might involve selecting the candidate with the highest likelihood. With this second
projection procedure, we are able to accurately reconstruct along the z-axis, leading to improved
estimation. This procedure can be generalized into the following algorithm.

Algorithm 4: Multiple Projections
input : samples x1, · · · ,xn, Σ, number of projections T , (f1, · · · , fk), N, L

1 Compute the SVD of data matrixX =
∑D

d=1 λdudv
T
d ;

2 for i = 1, · · · , T do
3 Project the samples on the the subspace spanned by vi,vi+1;
4 Run Algorithm 1 with inputs as projected samples,

[vi vi+1]
T
Σ [vi vi+1] , (fi, fi+1), N, L;

5 end
6 Pair the projected estimations from each iteration above;
7 Report the model order K̂ and the mixing distribution.

D DETAILS ON SAMPLING COMPLEXITY

D.1 COMPUTATIONAL RESOLUTION LIMIT

Consider the Fourier measurements of the high-dimensional line spectral signal as (13) and assume
that ∥ϵ(t)∥∞ < σ. The following theorem gives an upper bound for the computational resolution
limit for the number detection:

Theorem 4. (Liu & Zhang (2021a), Theorem 2.3) Let the Fourier measurement (13) be generated
by an n-sparse measure ν =

∑K
i=1 wiδµi

,µi ∈ BD
(K−1)w

2f

(0). Let K ≥ 2 and assume the following

separation condition is satisfied

∆ = min
1≤i<j≤K

∥µi − µj∥ ≥ C2(K,D)

f

(
σ

wmin

) 1
2K−2

(30)

where C2(K,D) = 4.4we(w/2)s−1(K(K − 1)/w)ξ(s−1) with

ξ(k) =

{ ∑k
i=1

1
i , k ≥ 1

0, k = 0,

and s being the the dimension of the smallest subspace in RD which contains the set {µ1, · · · ,µK}.
Then there do not exist any σ-admissible measures of y(t) with less than n components.
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This theorem provides an upper bound of RK,D. The lower bound has also been characterized by
the following proposition:

Proposition 2. (Liu & Zhang (2021a), Proposition 2.4) For given 0 < σ < wmin and K ≥ 2, there
exist an K-sparse measure in RD, ν =

∑K
i=1 wiδµi

and an (n − 1)-sparse measure in RD, ν̂ =∑K−1
i=1 ŵiδµ̂i

, such that ∥F ν̂(t)−Fν(t)∥∞ < σ, ∥t∥2 ≤ f . Moreover

min
1≤i≤K

|wi| = wmin, min
1≤i<j≤K

∥µi − µj∥2 =
C1(K,D)

f

(
σ

wmin

) 1
2K−2

,

where C1(K,D) = 0.81e−
3
2 .

The above results indicate that

C1(K,D)

f

(
σ

wmin

) 1
2K−2

< RK,D ≤ C2(K,D)

f

(
σ

wmin

) 1
2K−2

. (31)

The computational resolution limit for the support recovery of (13) has also been established in Liu
& Zhang (2021a). Denote the computational resolution limit for support recovery as R̃K,D and the
results indicate that

C̃1(K,D)

f

(
σ

wmin

) 1
2K−1

< R̃K,D ≤ C̃2(K,D)

f

(
σ

wmin

) 1
2K−1

, (32)

where C̃1(K,D) = 0.49e−
3
2 and C̃2(K,D) = 5.88πe4D−1 ((K + 2)(K − 1)/2)

ξ(D−1). From
(31) and (32), it reveals the difference between these two tasks quantitatively by the 1

2K−2 and
1

2K−1 powered on the signal noise ratio term σ/wmin.

D.2 PROOF OF THEOREM 1

Proof. By setting ϵ = wmin

(
∆f

C2(K,D)

)2K−2

in Proposition 1, we see that for

n ≥ CK,D log

(
4

δ

)
e2f

2σmax(Σ)

w2
min(f∆)4K−4

,

where CK,D = 4 (C2(K,D))
4K−4, we have

∥ϵn(t)∥∞ ≤ wmin

(
∆f

C2(K,D)

)2K−2

, ∥t∥2 ≤ f

with probability at least 1− δ. The rest follows from Theorem (4).

Similar to Theorem 1, the sample size requirement for estimating the means is given by

Theorem 5. Consider the D-dimensional mixture model
∑K

i=1 wiN (µi,Σ) with µi ∈
BD

(K−1)w
2f

(0). For any δ ∈ (0, 1), if the sample size n satisfies that

n ≥ C̃K,D log

(
4

δ

)
e2f

2σmax(Σ)

w2
min(f∆)4K−2

. (33)

Then with probability 1− δ, ∆ ≥ R̃D,K holds. Here CK,D is a constant only relying on K and D.

The proof of the theorem is the same as that of Theorem 1.
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E PROOF OF PROPOSITION 1

Proof. Note that

et
TΣtψn(t) =

1

n

n∑
j=1

et
TΣt cos⟨xj , t⟩+ ι

1

n

n∑
j=1

et
TΣt sin⟨xj , t⟩.

Applying the Hoeffding’s inequality to the real and imaginary parts, we have

P

∣∣∣∣∣∣ 1n
n∑

j=1

et
TΣt cos⟨xj , t⟩ − et

TΣtR (ϕ(t))

∣∣∣∣∣∣ > ϵ

 ≤ 2 exp

(
− nϵ2

2e2tTΣt

)
,

P

∣∣∣∣∣∣ 1n
n∑

j=1

et
TΣt sin⟨xj , t⟩ − et

TΣtI (ϕ(t))

∣∣∣∣∣∣ > ϵ

 ≤ 2 exp

(
− nϵ2

2e2tTΣt

)
.

Hence,

P

(∣∣∣∣∣etTΣtψn(t)−
K∑
i=1

wi exp (ι⟨µi, t⟩)
∣∣∣∣∣ > ϵ

)
= P

(∣∣∣etTΣt[ψn(t)− ϕ(t)]
∣∣∣ > ϵ

)
≤ P

(∣∣∣R(etTΣt[ψn(t)− ϕ(t)]
)∣∣∣ > ϵ√

2

)
+ P

(∣∣∣I(etTΣt[ψn(t)− ϕ(t)]
)∣∣∣ > ϵ√

2

)

= P

∣∣∣∣∣∣ 1n
n∑

j=1

et
TΣt cos⟨xj , t⟩ − et

TΣtR (ϕ(t))

∣∣∣∣∣∣ > ϵ√
2

+ P

∣∣∣∣∣∣ 1n
n∑

j=1

et
TΣt sin⟨xj , t⟩ − et

TΣtI (ϕ(t))

∣∣∣∣∣∣ > ϵ√
2


≤ 4 exp

(
− nϵ2

4e2tTΣt

)
≤ 4 exp

(
− nϵ2

4e2∥t∥
2
2σmax(Σ)

)
< δ.

where we used n > 4 log
(
4
δ

)
e2∥t∥

2
2σmax(Σ)

ϵ2 in the last inequality.

E.1 PROOF OF THEOREM 2

Proof. Notice that ∥∥ProjWk
X
∥∥2
2
=

n∑
j=1

∥∥ProjWk
xj

∥∥2
2
=

n∑
j=1

k∑
l=1

|⟨xj ,wl⟩|2.

Taking the expectation, we get

E
∥∥ProjWk

X
∥∥2
2
=

n∑
j=1

k∑
l=1

E|⟨xj ,wl⟩|2

=

n∑
j=1

k∑
l=1

K∑
i=1

E
[
|⟨xj ,wl⟩|2|zj = i

]
P(zj = i)

=

n∑
j=1

k∑
l=1

K∑
i=1

wi

(
σ2 + E [⟨xj ,wl⟩|zj = i]

2
)

=

n∑
j=1

k∑
l=1

K∑
i=1

wi

(
σ2 + ⟨µi,wl⟩2

)
=

n∑
j=1

(
kσ2 +

K∑
i=1

wi

k∑
l=1

⟨µi,wl⟩2
)

= n

(
kσ2 +

K∑
i=1

wi

∥∥ProjWk
µi

∥∥2
2

)
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Case 1: k = K. We have

E
∥∥ProjWK

X
∥∥2
2
≤ n

(
kσ2 +

K∑
i=1

wi ∥µi∥22

)
= E

∥∥ProjUK
X
∥∥2
2
,

where UK = span{µ1, · · ·µK}.

Case 2: k < K. We show that the k-dimensional subspace Wk maximizing the E
∥∥ProjWk

X
∥∥
2

is
the subspace of UK . Notice that

K∑
i=1

wi

∥∥ProjWk
µi

∥∥2
2
=

K∑
i=1

∥∥ProjWk

√
wiµi

∥∥2
2

=
∥∥ProjWk

[
√
w1µ1 · · · √

wKµK ]
∥∥2
2
.

Therefore, the k-dimensional subspace maximizing the projection above is the subspace spanned by
the first k right eigenvectors of the SVD of [

√
w1µ1 · · · √

wKµK ]. This subspaceWk satisfies

Wk ⊆ Im([
√
w1µ1 · · · √

wKµK ]) = UK .

Case 3: k > K. We prove that the k-dimensional subspace Wk maximizing E
∥∥ProjWk

X
∥∥
2

must
contain UK . Indeed, for anyWk such that UK ⊂Wk, we have

E
∥∥ProjWk

X
∥∥
2
= n

(
kσ2 +

K∑
i=1

wi ∥µi∥22

)
.

F QUADRATIC PROGRAMMING OPTIMIZATION

In this section, we introduce the quadratic programming(QP) optimization applied in Algorithm 1
for recovering the component weights. The general formulation of the QP can be expressed as

minimize
1

2
xTPx+ qTx+ r

subject toGx ⪯ h, Ax = b (34)

where P ∈ Rn×n,G ∈ Rm×n,A ∈ Rp×n and P is positive-definite. This optimization program
can be viewed as minimizing a convex quadratic function over a polyhedron. For a more compre-
hensive introduction of the QP optimization, we refer to Boyd & Vandenberghe (2004).

F.1 MIXING WEIGHTS ESTIMATION

After achieving the model order K̂ and mean set {µ̂i : 1 ≤ i ≤ K̂}, the corresponding weights are
estimated by solving

minimize

∥∥∥∥∥∥e−tTΣt
K̂∑
i=1

wie
ι⟨µ̂i,t⟩ − ψn(t)

∥∥∥∥∥∥
2

subject to wi ≥ w,

K̂∑
i=1

wi = 1 (35)

The program (35) can be reformulated as a quadratic programming(QP) optimization and can be
efficiently solved by well-established convex optimization toolboxes2. Next, we show how to fit the
optimization problem (35) into the framework of (34). To simplify the notation, we replace K̂, µ̂i’s
with the unhatted ones. Notice that we can write∥∥∥∥∥

K∑
i=1

wie
ι⟨µi,t⟩ − et

TΣtψn(t)

∥∥∥∥∥
2

2

= ∥Aπ − b∥22 ,

2In the numerical experiments, we use the python package cvxpy to implement the quadratic programming.
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whereA ∈ C(N+1)2×K and b ∈ C(N+1)2 such that

Aj,i = eι⟨µi,tj⟩, bj = et
T
j Σtjψn(tj).

Here tj is the j-th component of the vectorized sample points. Then the objective function can be
further written as∥∥∥∥∥

K∑
i=1

wie
ι⟨µi,t⟩ − et

TΣtψn(t)

∥∥∥∥∥
2

2

= ∥R (Aπ − b)∥22 + ∥I (Aπ − b)∥22

= ∥R (A)π −R (b)∥22 + ∥I (A)π − I (b)∥22
= (R (A)π −R (b))T(R (A)π −R (b)) + (I (A)π − I (b))T(I (A)π − I (b))

= πT[R (A)
T
R (A) + I (A)

T
I (A)]π − 2[R (b)

T
R (A) + I (b)

T
I (A)]π +R (b)

T
R (b) + I (b)

T
I (b) .

Therefore, we can fit (35) into the QP framework by setting

P = R (A)
T
R (A)+I (A)

T
I (A) , q = R (A)

T
R (b)+I (A)

T
I (b) , r =

1

2
R (b)

T
R (b)+

1

2
I (b)

T
I (b)

in the objective function and setting

G = −IK , h = −w1K×1, A = 11×K , b = 1.

G THE EM ALGORITHM

In this section, we describe the EM algorithm used in the numerical experiments for comparison
with our algorithms.

Algorithm 5: The EM algorithm (Fixed Covariance Matrix)
input : samples x1, · · ·xn, model order k, covariance matrix Σ, initial guess ŵi’s, µ̂i’s

1 Expectation Step: For i = 1, · · · , k, compute

γji =
wig(xi; µ̂i,Σ)∑k
i=1 g(xi; µ̂i,Σ)

, j = 1, · · · , n.

2 Maximization Step: Compute the weights and weighted means:

ŵi =
1

n

n∑
j=1

γji , µ̂i =

∑n
j=1 γ

j
ixj∑n

j=1 γ
j
i

, i = 1, · · · , k.

3 Iterate steps 1 and 2 until convergence.

In the numerical tests, we assume that the covariance matrix Σ is known as prior information. If the
covariance matrix is unknown, it is updated in the maximization step by

Σ̂ =

∑k
i=1

∑n
j=1 γ

j
i (xj − µ̂i)(xj − µ̂i)

T

n

for the unified covariance matrix case and

Σ̂i =

∑n
j=1 γ

j
i (xj − µ̂i)(xj − µ̂i)

T∑n
j=1 γ

j
i

for the general Gaussian mixture model.
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