
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COULD STUDENT SELECTION BE THE MISSING PIECE
FOR EFFICIENT DISTILLATION?

Anonymous authors
Paper under double-blind review

ABSTRACT

Selecting the optimal student architecture remains an overlooked challenge in
knowledge distillation (KD). Current approaches typically rely on model size con-
straints or random selection, ignoring how student architecture and inductive biases
impact distillation effectiveness. We formulate this as an unsupervised model
selection problem, where the goal is to select the best student for a given teacher
without requiring ground-truth labels or expensive training cycles. We propose a
transferability metric based on the Neural Tangent Kernel (NTK) that quantifies
function space alignment between teacher and student models. Specifically, our
cross-model NTK measures the directional similarity between teacher and stu-
dent gradient vectors on unlabeled data, capturing how effectively the student can
mimic the teacher’s function through gradient-based optimization. Unlike existing
transferability metrics that require ground-truth labels and focus on model-dataset
relationships, our approach directly models the model-model relationship central
to KD. To ensure practical applicability with modern networks, we implement an
efficient approximation using Johnson-Lindenstrauss random projections that pre-
serves gradient inner products without computing full NTK matrices. Experiments
demonstrate that our metric is robust, and reliably predicts the post-distillation
performance, outperforming existing transferability scores adapted for KD and
baseline selection strategies, even in low-data scenarios. Our approach enables effi-
cient identification of compatible student architectures before training, eliminating
the need for resource-intensive trial-and-error in model compression pipelines. Our
code can be found in https://anonymous.4open.science/r/C-MoNA-7CE5.

1 INTRODUCTION

Knowledge distillation (KD) (Hinton et al., 2015) enables transferring knowledge from a high-
capacity teacher model to a smaller student model, typically by training the student to match the
teacher’s predicted class probabilities. While the KD procedure itself is well-established, student
model selection, the task of choosing an optimal student for a given teacher model, remains largely
ad hoc, often based solely on size constraints or random choice. This approach is suboptimal since
the student’s architecture and inductive biases significantly impact its ability to learn from a given
teacher (Mirzadeh et al., 2020; Cho & Hariharan, 2019). Different architectures encode information
differently, causing substantial variation in the student’s capacity to distill the teacher’s knowledge.
This motivates the need for a principled method to predict, before training, how well a candidate
student will perform under distillation from a specific teacher, especially in the case of downstream
task adaptation using KD-based fine-tuning.

Recent theoretical advances in distillation scaling laws (Busbridge et al., 2025) reveal that student
performance depends not only on the student’s own capacity, but crucially on the capacity gap between
teacher and student - a relationship entirely absent in supervised learning. This demonstrates that
rankings derived from model size constraints cannot reliably predict distillation performance, since
the teacher-dependent optimization landscape fundamentally alters the performance dynamics. The
selection of optimal student architecture becomes even more critical in paradigms like mutual learning
(Zhang et al., 2018; Yao & Sun, 2020) and online collaborative learning (Guo et al., 2020), where
distillation occurs bidirectionally and teacher-student mismatches can compound across multiple
learning iterations.
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Table 1: Comparison of transferability estimation approaches. Traditional methods focus on model-
data alignment and require labels, while our model-model alignment metric directly measures
teacher-student gradient alignment in a label-free manner. “✓” indicates full support, “∼✓” partial
support, and “×” no support.

Label-Free KD-Compatible Low-Data Robustness Model–Data

Transferability Estimation ∼✓ × × ✓
Student Model Selection ✓ ✓ ✓ ×

While traditional transferability estimation approaches (Ding et al., 2022; Nguyen et al., 2020; Wang
et al., 2023; Gholami et al., 2023; You et al., 2021) provide promising solutions for model selection
given particular datasets, they focus on model-data relationships and ignore the crucial teacher-student
(model-model) compatibility needed for KD-based fine-tuning, potentially preventing full utilization
of teacher knowledge either through logit-based or feature-based distillation. Unlike supervised fine-
tuning where optimization dynamics are determined by hard labels, knowledge distillation creates
an optimization landscape fundamentally dependent on the teacher’s dynamics and soft targets,
necessitating assessment of student-teacher learning alignment rather than conventional model-data
relationships. In KD, we operate in a label-free scenario where the only supervision comes from the
teacher’s outputs on unlabeled data, creating a gap in the literature for unsupervised transferability
estimation specifically tailored to student-teacher compatibility.

To address this gap, we propose an unsupervised transferability metric based on Neural Tangent
Kernel (NTK) (Jacot et al., 2018) theory. We introduce a cross-model NTK that quantifies teacher-
student function space alignment by directly comparing the teacher’s and student’s gradient vectors for
the same inputs. This measures directional similarity between the models: if the student’s parameter
updates point in similar directions to the teacher’s gradients, the student is inherently well-aligned to
mimic the teacher’s function. Our cross-model NTK approach differs fundamentally from existing
methods that compare individual NTKs (Harutyunyan et al., 2023). Rather than evaluating models
independently, our approach directly measures the compatibility between student and teacher gradient
structures, bypassing the need for pseudo-label generation or explicit label access. This provides a
critical advantage in privacy-constrained scenarios that other estimation metrics fail to offer.

To ensure practical applicability with modern networks, we implement an efficient algorithm using
Johnson-Lindenstrauss random projections (Rahimi & Recht, 2007) that preserves gradient inner
products while avoiding computationally-expensive full Jacobian calculations, enabling scalable
evaluation of multiple candidate students. Our contributions are four-fold:

• We formalize the problem of unsupervised student model selection for knowledge distilla-
tion, establishing the theoretical foundation for why model-model compatibility cannot be
predicted from model-data relationships and demonstrating the limitations of supervised-
learning-derived rankings for distillation scenarios.

• We propose C-MoNA, a transferability estimation metric based on cross-model NTK align-
ment. This is the first approach to employ neural tangent kernels across two models to
quantify their distillation compatibility. Our scalable implementation using random pro-
jections makes the method feasible for modern large-scale networks while maintaining
complete privacy preservation.

• Through extensive experiments across image classification and object detection tasks using
multiple distillation strategies, we demonstrate that our method consistently outperforms
existing transferability estimation metrics adapted for KD and baseline selection strategies.

• We demonstrate the robustness of our method in privacy-constrained, low-data scenarios
where the number of samples is significantly smaller than the number of classes, showing
strong performance with minimal degradation while existing transferability metrics fail to
produce reliable results.
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2 PROBLEM MOTIVATION

Like existing transferability estimation methods, our work addresses the practical need to predict
model performance without expensive training cycles, reducing computational costs and time-to-
deployment. The ability to identify compatible teacher-student pairs (both pre-trained on respective
datasets) before fine-tuning becomes critical when one must select students from large candidate pools
under computational budgets and privacy constraints that prohibit extensive empirical evaluation.

2.1 THEORETICAL FOUNDATION: WHY MODEL-DATA METRICS FAIL FOR KD

The Model-Data Paradigm of Existing Metrics. Existing transferability metrics like LogME (You
et al., 2021), LEEP (Nguyen et al., 2020), and PACTran (Ding et al., 2022) follow a common paradigm
where transferability is measured as f(ϕ(X), Y )—assessing how well a pre-trained model’s feature
representations ϕ(X) align with target labels Y through mutual information, correlation, or Bayesian
evidence. This model-data alignment assumption works for traditional transfer learning but fails to
capture the model-model compatibility essential for knowledge distillation.

The Model-Model Paradigm Required for Knowledge Distillation. Knowledge distillation
operates under a fundamentally different paradigm where success depends on how effectively a
student model can mimic a teacher’s function, not on model-data alignment. The distillation scaling
law (Busbridge et al., 2025) formalizes this distinction:

LS(NS , DS , LT ) = LT︸︷︷︸
Teacher cross-entropy

+
1

Lc0
T

(
1 +

LT

LS
e d1

)−c1f1
(

A

Nα′
S

+
B

Dβ′

S

)γ′

︸ ︷︷ ︸
Student ability to mimic teacher

(1)

where LS is student distillation loss, NS and DS are student model size and data size, LT is teacher
loss, Le

S is student supervised loss, and c0, c1, f1, d1, A
′, B′, α′, β′, γ′ are empirically fitted scaling

constants. The equation decomposes into three components: teacher performance baseline (LT ),
teacher-dependent distillation improvement (middle term), and student compute scaling (final term).
This reveals three components absent from model-data metrics: (1) Teacher Performance Depen-
dency (LT ) where student performance is directly conditioned on teacher capability, (2) Capacity
Gap Interactions (LT /L

e
S) where the teacher-student performance ratio creates multiplicative effects

that alter student rankings, and (3) Non-linear Coupling where the capacity gap term modulates
student scaling through complex non-linear functions, meaning student capability alone cannot
predict distillation success.

Mathematical Proof of Ranking Divergence. Consider two students S1 and S2 with supervised
performances Le

S1
< Le

S2
(i.e., S1 outranks S2 under supervision). Their distillation performances

are LSi = LT + g
(

LT

Le
Si

)
· h(NSi , DSi) for i ∈ {1, 2}, where g(·) denotes capacity gap function .

Ranking reversal occurs when LS1
> LS2

despite Le
S1

< Le
S2

, requiring:

g

(
LT

Le
S1

)
· h(NS1

, DS1
) > g

(
LT

Le
S2

)
· h(NS2

, DS2
) (2)

Since Le
S1

< Le
S2

implies LT

Le
S1

> LT

Le
S2

, ranking reversals occur when the capacity gap function g(·)
is non-monotonic or when coupling with student scaling terms creates unfavorable interactions for
stronger supervised students.

Empirical Evidence from Supervision Complexity Theory. The supervision complexity frame-
work (Harutyunyan et al., 2023) provides additional theoretical evidence for why model-data align-
ment fails to predict distillation success. Their analysis shows that distillation effectiveness depends
on the alignment between teacher-provided supervision and the student’s Neural Tangent Kernel:

Distillation Success ∝ Alignment(Teacher Supervision,Θstudent(x, x
′)) (3)

This alignment is fundamentally a model-model property that cannot be inferred from how either
model individually relates to ground-truth labels.
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The Inadequacy of Size-Based Heuristics and Implications for Student Selection. Current
practice relies on model size as a compatibility proxy, but scaling laws reveal that capacity gaps depend
on loss values LT /L

e
S , not parameter counts. Models with identical architectures can exhibit vastly

different Le
S values due to pretraining data quality, training procedures, and architectural inductive

biases, making size-based selection systematically unreliable. Effective student selection therefore
requires metrics that (a) capture model-model relationships rather than model-data alignments, (b)
account for teacher-specific compatibility rather than general transferability, and (c) base decisions
on learned representations rather than model size. These requirements motivate our cross-model
NTK approach, which directly measures gradient-space alignment between teacher and student
models—precisely the model-model relationship that determines distillation success.

3 PROPOSED APPROACH

3.1 PROBLEM FORMULATION

Given a large pre-trained teacher model ft(x; θt) trained on a target distillation dataset D = {xn}Nn=1
(N : number of samples), the objective is to select the ideal student model/rank student models from a
set of candidate student models {Φm}Mm=1 based on their distillation ability. The setup considers that
no pre-training data of the teacher or the student model is known or provided. We assume a fixed
teacher model fine-tuned on the target dataset, with both teacher and student pre-trained on their
respective datasets, positioning our work within the knowledge distillation fine-tuning paradigm. We
focus on efficient fine-tuning regimes (50-100 epochs) for practical deployment, contrasting with
extensive protocols using 200-700 epochs (Beyer et al., 2022). While our formulation selects optimal
students for a given teacher, the methodology can extend to joint teacher-student optimization with
increased computational complexity.

3.2 PRELIMINARIES

The Neural Tangent Kernel (NTK) (Jacot et al., 2018) establishes a connection between neural
networks and kernel methods, showing that infinitely wide networks trained with gradient descent
behave like kernel machines with a specific kernel determined by the architecture at initialization.
This framework enables predicting the final function learned by the network and its generalization
properties by analyzing the NTK properties, explaining why very large networks can be trained
successfully despite highly non-convex optimization landscapes—in the infinite-width limit, the
dynamics become effectively linear in function space.

Formally, for a deep neural network f(x; θ) with parameters θ, the NTK is defined as:

Θ(x, x′) = ∇θf(x; θ)
⊤ · ∇θf(x

′; θ) (4)

where∇θf(x; θ) denotes the gradient of the network’s output with respect to its parameters, evaluated
at input x. Applying the chain rule layer-wise, we get the very early empirical NTK defined as:

Θ(x, x′) =

L∑
l=1

(
∂f(x; θ)

∂f (l)(x; θ)

(
f (l−1)(x; θ)

)⊤)⊤

·
(

∂f(x′; θ)

∂f (l)(x′; θ)

(
f (l−1)(x′; θ)

)⊤)
(5)

where L is the total number of layers used in the computation. Crucially, the NTK’s ability to predict
network behavior based on initialization properties aligns directly with our predictive setting for
student selection. Since the NTK encapsulates the inductive biases inherent in network architectures
and captures per-example similarities without requiring training, it provides a natural foundation for
assessing model compatibility in an unsupervised manner before any knowledge distillation occurs.
This initialization-based predictive capability makes NTK theory particularly well-suited for our goal
of identifying compatible teacher-student pairs prior to expensive training cycles.

3.3 C-MONA: CROSS-MODEL NTK ALIGNMENT

Given a fixed neural network for teachers ft(x; θt), we consider the parameters of the teacher network
θt as the frozen reference and for a given candidate student model fs(x; θs0), we consider θs0 as the
parameters of the student models at random initialization. NTK comparison between two models

4
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examines and contrasts the fixed (or nearly fixed) gradient-propagation geometry of two architectures,
revealing how well they would learn in the "lazy" or linearized regime.

The naive way to do this is to compare the individual NTKs ft and fs obtained by using Eq. (5) using
Centered Kernel Alignment (CKA) as defined in Eq. (6):

CKA(Θt,t,Θs,s) =
⟨Θt,t,Θs,s⟩F

∥Θt,t∥F · ∥Θs,s∥F
(6)

But, this leads to suboptimal performance for the goal of picking the best student model. The
downside of naively considering CKA as a student model selection metric is that it acts as a generic
similarity measure of the matrices representing the initial dynamics. This is a step removed from
comparing the raw activations or the raw gradient vectors directly, therefore offering suboptimal
model selection performance. Since the teacher and student models are pre-trained on substantially
different datasets, their resulting weights differ significantly. Consequently, directly comparing their
kernel matrices introduces a considerable amount of random noise, diminishing the reliability of such
comparisons. Table 7 empirically shows the suboptimal performance of CKA when compared to the
proposed metric. We argue that our proposed metric Cross-Model NTK Alignment (C-MoNA) is
substantially a better way to map the model-model relationship.

Mathematically, cross-model NTK is defined as:

Θt,s(x, x
′) = ∇θtft(x; θt)

⊤ · ∇θsfs(x
′; θs) (7)

Applying chain-rule layer-wise, the very early empirical cross-model NTK is defined as:

Θt,s(x, x
′) =

L∑
l=1

(
∂ft(x; θt)

∂f
(l)
t (x; θt)

(
f
(l−1)
t (x; θt)

)⊤)⊤

·

(
∂fs(x

′; θs)

∂f
(l)
s (x′; θs)

(
f (l−1)
s (x′; θs)

)⊤)
(8)

The cross-model NTK matrix is a N ×N gram matrix full of cross-gradients, which allows us to
inspect the structure (spectra, eigenvectors) to see which modes of the candidate student model are
most aligned with the reference teacher model. Intuitively, it provides us a cross-sensitivity, i.e, entry
(i, j) in Θt,s(x, x

′) tells us how a tiny step on t@xi moves s’s output @xj . It can be thought of as a
full cross-covariance of the two Jacobian maps, not per-input equality test.

Since we need a scalar metric to estimate the transferability score, we have to reduce the large
N × N matrix to a scalar in an interpretable manner. The choice of matrix reduction strategy
is theoretically motivated by the nature of knowledge distillation itself. Knowledge distillation
requires global function compatibility rather than point-wise correspondence—students must learn
the teacher’s overall response pattern across the input space, which is captured by cross-sample
gradient correlations in the off-diagonal terms of the NTK matrix. From NTK theory, the complete
kernel matrix encodes the model’s inductive bias and learning dynamics, where trace-based norms
measure only self-alignment energy while the Frobenius norm captures total cross-alignment energy
between teacher and student learning manifolds. Supporting empirical results are provided in the
appendix.

Therefore, we do a global alignment based on Frobenius-norm. The idea being very simple and
straight-forward, we treat Θt,s(x, x

′) as a big matrix and compare its Frobenius norm to those of
the self-NTKs: ∥Θt,s∥F vs.

√
∥Θt,t∥F · ∥Θs,s∥F . Therefore, our transferability estimation metric

C-MoNA is defined as:

α =
∥Θt,s∥F√

∥Θt,t∥F · ∥Θs,s∥F
∈ [0, 1] (9)

α ≈ 1 implies that the two learning geometries are almost indistinguishable in aggregate, while
α ≈ 0 means that they are nearly orthogonal. As seen in Eq. (9), C-MoNA adopts a formulation
similar to Eq. (6), but applies it directly on the Jacobians to provide a more granular view of gradient
alignment. Taking the Frobenius norm of Θt,s focuses on point-wise gradient similarity across the
teacher and student models rather than the "self-influence" structure within each model that their
self-NTKs Θt,t and Θs,s capture.

Therefore, Θt,s is very different from CKA(Θt,t,Θs,s) as it directly compares the gradient directions
in the teacher’s parameter space to the gradient directions in the student’s parameter space making it
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directly compatible for student model selection for KD as it measures if the student "wants to change"
in a similar direction as the teacher for a given input. Concisely, the cross-Jacobian matrix in Eq. (9)
captures the overall strength of alignment or the shared energy between all pairs of teacher gradients
and student gradients across all data points. Even though we use the basic NTK formulation to prove
our hypothesis, advanced variants (Zhou & Zhu, 2024; Xu et al., 2021) that improve kernel regression
fidelity could further enhance transferability estimation accuracy.
Scalable Implementation via Johnson-Lindenstrauss Lemma. Modern teacher models like
ViT (Dosovitskiy et al., 2020), ConvNext-Large (Liu et al., 2022), and Wide-ResNet (Zagoruyko &
Komodakis, 2016) have hundreds of millions of parameters, making full Jacobian matrix calculation
for Eq. (9) computationally prohibitive. We adopt random projection approximation (Engel et al.,
2023; Park et al., 2023) using the Fast Johnson-Lindenstrauss transform (FJLT) (Rahimi & Recht,
2007) to efficiently reduce dimensionality while preserving gradient inner products essential for NTK
computation.

Formally, we project gradients ∇θtft(x; θt) and ∇θsfs(x
′; θs) from high-dimensional spaces Rd to

low-dimensional space Rk with k ≪ d. The Johnson-Lindenstrauss projection uses structured
random projection matrices R : Rd 7→ Rk with k = O

(
logn
ε2

)
, where n is the number of data

samples, such that for any vectors u, v:

(1− ε)∥u− v∥2 ≤ ∥Ru−Rv∥2 ≤ (1 + ε)∥u− v∥2 (10)

with high probability. This distance preservation directly translates to preserving gradient inner
products, the fundamental building blocks of NTK computation.

Handling Heterogeneous Architectures: For teacher and student models with different parameter
dimensions, we employ Rademacher projection matrices Rt and Rs drawn from the same underlying
distribution using a fixed random seed, ensuring consistent statistical properties for meaningful
comparison in the projected space Rk.

Using Johnson-Lindenstrauss projection, we modify Eq. (7) to use projected gradients:

∇θtft(x; θt)
⊤∇θsfs(x

′; θs) ≈ (Rt∇θtft(x; θt))
⊤
(Rs∇θsfs(x

′; θs)) (11)

The proposed metric inherently depends only on the the per-example similarity constituted by
the geometries of the models in question making it label space agnostic and thereby an effective
unsupervised and scalable transferability estimation metric for mapping model-model relationship.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Image Classification: The study evaluates 4 teachers and 12 students spanning diverse architectures
and pretraining corpora; teachers are pretrained on different datasets and finetuned on the target
dataset. To be precise, the teacher models comprise of CLIP-ViTB/32 (Radford et al., 2021; Ilharco
et al., 2021) image encoder, MaxViT-S (Tu et al., 2022), Wide-ResNet101 (Zagoruyko & Komodakis,
2016), and ConvNext-Large (Liu et al., 2022) spanning CNN-only, CNN-Transformer hybrid, and
Transformer-only architecture types with different pre-training data and learning objectives. As
for the student models, for the ease of experimentation, all the models were pretrained on the
ImageNet dataset. The student models include ResNet34 (He et al., 2016), ResNet18 (He et al.,
2016), ShuffleNetV2 (Ma et al., 2018), EfficientNet-B0 (Tan & Le, 2019), MobileNet-V2 (Sandler
et al., 2018), DeiT-T/16 (Touvron et al., 2021), DeiT-T/16-distilled (Touvron et al., 2021), DeiT-S/16
(Touvron et al., 2021), DeiT-S/16-distilled (Touvron et al., 2021), SwinT-Tiny (Liu et al., 2021),
GoogleNet (Szegedy et al., 2015), and MnasNet (Tan et al., 2019), spanning different model capacity,
architecture families and therefore the inductive biases. We conduct experiments on three image
classification benchmarking datasets, like the CIFAR100 (Krizhevsky et al., 2009), Caltech101 (Fei-
Fei et al., 2004) and the SUN397 (Xiao et al., 2010) datasets. Ground-truth accuracies are obtained
using logit-based KD with KL divergence as the objective function.
Object Detection. For the object detection task, we primarily vary the pre-training datasets for the
teachers and student models. Inspired by ETran (Gholami et al., 2023), VOC2012 (Everingham et al.,
2011) is split into a 12-class source cluster and an 8-class target cluster. From the source cluster,
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3 classes are randomly selected and repeated 12 times to form 12 source datasets; a YOLOv11s
(Khanam & Hussain, 2024) student is trained on each, yielding 12 diverse pretrained students.
Teachers are YOLOv11l and YOLOv11m pretrained on COCO (Lin et al., 2014), HomeObjects3k
(Jocher & Rizwan, 2025), and AfricanWildlife (Jocher & Rizwan, 2025), producing 4 diverse
teacher models. Ground-truth accuracies are obtained via SimKD’s (Chen et al., 2022) approach
using feature-based L2 distillation. These settings span diverse architectures and pretraining data,
rigorously validating the metric across datasets, tasks, and distillation strategies. Additional details
can be found in the appendix.

4.2 EVALUATION CRITERIA

Given that we have the ground-truth ranking scores of all the student candidate models in the
model hub with respect to each teacher model, we use the Kendall’s tau (Kendall, 1938), τ as our
main criteria to evaluate C-MoNA, similar to the previous works in the transferability estimation
community(Shao et al., 2022; Ding et al., 2022; You et al., 2021). Kendall’s tau(Kendall, 1938) is a
rank-based correlation metric that quantifies the degree of agreement between two ordered lists. It
is computed by taking the difference between the number of concordant and discordant pairs and
normalizing by the total number of possible pairs, M(M − 1)/2. Formally, the Kendall’s τ is:

τ =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

sgn(Gi −Gj) · sgn(Ti − Tj) (12)

where G and T denote the two ranked sequences (G being the ground truth rankings obtained via
KD-based fine-tuning and T being the estimated rankings based on different metrics in question), and
sgn(·)the sign function indicating the direction of difference. Following (Gholami et al., 2023), we
employ the weighted version of the Kendall’s tau(Shieh, 1998), τw which assigns greater importance
to disagreements among higher-ranked items, thereby emphasizing alignment at the top of the ranked
list, which is crucial in practice such as in model selection for recommendation systems.

4.3 EXPERIMENTAL RESULTS AND BENCHMARKS

Since most of the existing transferability metrics require the ground truth labels to compute their
transferability score, we generate pseudo labels from the teacher model as ground truth labels for
these methods. Our proposed metric is not dependent on the labels and therefore does not require us
to store any of the teacher model’s features making it unsupervised and effective when there exists
privacy concerns. To the best of the author’s knowledge, the only other unsupervised metric available
is ETran’s Energy score(Gholami et al., 2023), which is label agnostic.

Full-data regime. In this model selection phase, we consider that we have access to the images of
the entire train-set of the distillation dataset. We benchmark C-MoNA with the other state-of-the-art
transferability methods and the results are shown in Tables 2, 3, and 4. From the empirical results it
is clearly evident that none of the previous methods work well across diverse teachers as they simply
model the model-data relationship and ignore the model-model relationship that is key in knowledge
distillation based fine-tuning. The proposed C-MoNA outperforms all the SOTA estimation methods
by a significant margin across all the image classification datasets. Across all the datasets, the only
other truly unsupervised metric ETran Energy (Gholami et al., 2023) shows negative correlation. This
highlights the importance of considering the shared energies between teacher and student models in
knowledge distillation. Relying solely on the student’s energy is insufficient, as the shared energy
better reflects how effectively the student model can distill the teacher’s outputs.

Low-data regime. To showcase the reliability and robustness of our metric, we benchmark C-MoNA
with other estimation metrics in a low data regime using only a handful of images ranging from
10 images to 100 images in total picked randomly from the target dataset. This regime is not very
uncommon and is very much practically applicable when there are privacy concerns regarding the
dataset. Most importantly, this setting does not guarantee that there is at least one image sample per
class making most of the previous work highly unreliable. This setting truly reflects the effectiveness
of C-MoNA over the existing ones as most of the prior methods are based on discriminant analysis.
Table 6 clearly shows that the proposed C-MoNA is least sensitive to the number of samples provided
and outperforms the existing works by a very large margin on varied random image subsets of 10
images, 25 images, and 50 images. Since VOC2012 dataset only has 8 target classes in our setup, we
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have benchmarked C-MoNA with other estimation metrics only in the low-data regime mostly on the
random 100 images subset. Table 5 demonstrates C-MoNA’s effectiveness on object detection tasks,
which involves the added complexity of regression alongside classification. Despite requiring no
supervision, C-MoNA achieves 1.3× improvement over the best-performing transferability estimation
metric. Ablation studies, additional experimental results along with all the per teacher scores for all of
the settings are provided in the appendix. The ground truth accuracies are provided in the appendix.

Training Setup Differences. For classification distillation, the final layer was trainable and C-MoNA
applied to the entire model worked effectively. For object detection using SimKD, the teacher’s
detection head was frozen and reused in the student model, with only backbone features being trained.
In this case, applying C-MoNA to the entire model hurt performance, but applying it only to trainable
layers was effective.This suggests that C-MoNA’s flexibility to target specific layers makes it effective
across different training configurations where only parts of the model are being updated, which other
estimation metrics lack as they mostly measure feature clustering in the penultimate layer.

Table 2: Kendall’s tau (τw) of different transferability estimation methods on the SUN397 dataset
assessing the estimation fidelity in KD based fine-tuning paradigm across diverse teacher models.

Wide-ResNet101 ConvNext-Large MaxViT-Small OpenCLIP-ViT-B/32 Avg.

NLEEP 0.105 -0.295 0.333 0.037 0.045
LogME -0.183 0.096 -0.090 -0.207 -0.096
SFDA 0.257 0.163 -0.208 0.346 0.139
ETran Energy -0.397 -0.444 -0.471 -0.359 -0.417
PACTran -0.074 0.219 0.174 -0.044 0.068
NCTI -0.574 -0.268 -0.228 -0.366 -0.359
C-MoNA (ours) 0.348 0.353 0.378 0.367 0.361

Table 3: Kendall’s tau (τw) of different transferability estimation methods on the CIFAR100 dataset
assessing the estimation fidelity in KD based fine-tuning paradigm across diverse teacher models.

Wide-ResNet101 ConvNext-Large MaxViT-Small OpenCLIP-ViT-B/32 Avg.

NLEEP 0.286 0.279 0.555 -0.031 0.272
LogME -0.436 -0.564 -0.650 -0.152 -0.450
SFDA 0.175 -0.165 -0.308 -0.078 -0.094
ETran Energy -0.177 -0.139 -0.144 -0.236 -0.174
PACTran 0.027 -0.186 -0.234 0.105 -0.072
NCTI -0.153 0.081 -0.002 0.136 0.015
C-MoNA (ours) 0.536 0.569 0.456 0.371 0.483

Table 4: Kendall’s tau (τw) for the Caltech101 dataset using full trainset.

MaxViT-Small Wide-ResNet101 ConvNext-Large OpenCLIP-ViT-B/32 Avg.

ETran Energy -0.306 -0.221 -0.459 -0.329 -0.328
SFDA -0.081 0.017 0.338 -0.184 0.022
LogME -0.204 0.231 0.281 -0.231 0.019
PAC -0.065 -0.022 0.047 -0.261 -0.075
NCTI -0.184 -0.001 -0.757 -0.398 -0.335
NLEEP 0.103 -0.147 -0.410 0.062 -0.098
C-MoNA (ours) 0.261 0.079 0.114 0.210 0.166

5 RELIABILITY OF TRANSFERABILITY ESTIMATION METRICS

In the low-data regime, when the number of samples are significantly less compared to the number
of classes, methods based on discriminant analysis often encounter numerical stability issues. Prior
works based on Linear Discriminant Analysis (LDA), in particular, is highly dependent on the label
space, as it collapses within-class variability and focuses solely on maximizing class separation. When
labeled examples are sparse, the directions learned by LDA can become noisy or even misaligned.
This makes LDA sensitive not only to the quantity of available data but also to the quality of the
teacher model, which provides pseudo-labels used as ground truth. If the number of labeled samples is
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Table 5: Kendall’s tau (τw) for the object detection task evaluated on VOC2012 images.

Yolo11l-Coco Yolo11l-HomeObj Yolo11m-HomeObj Yolo11m-Wild Avg.

ETran Energy -0.200 -0.242 -0.558 -0.454 -0.363
LogME -0.278 0.250 -0.218 -0.197 -0.11
SFDA 0.370 0.391 0.072 0.028 0.215
PAC 0.169 0.026 0.253 0.521 0.242
NCTI 0.078 0.209 0.315 0.290 0.223
NLEEP 0.380 -0.236 0.210 0.458 0.203
CKA 0.037 -0.152 -0.428 -0.391 -0.233
C-MoNA (ours) 0.509 0.236 0.421 0.122 0.322

Table 6: Kendall’s tau (τw) for model selection with minimal data (<< 1% of dataset) averaged
across 4 teachers.

SUN397 CIFAR100 Caltech101

Method 10 25 50 Avg. 10 25 50 Avg. 10 25 50 Avg.

ETran Energy -0.301 -0.294 -0.269 -0.288 -0.107 -0.168 -0.146 -0.140 -0.325 -0.309 -0.159 -0.264
SFDA - - 0.191 - - 0.348 0.321 - - 0.030 -0.011 -
LogME -0.156 -0.198 -0.161 -0.172 -0.188 -0.306 -0.282 -0.259 -0.049 -0.041 -0.030 -0.040
PACTran -0.062 0.051 -0.213 -0.075 -0.259 -0.144 -0.218 -0.207 -0.109 0.013 0.006 -0.030
NCTI - - - - - -0.214 -0.134 - - -0.214 0.170 -
C-MoNA 0.059 0.366 0.290 0.238 0.414 0.452 0.465 0.444 0.159 0.332 0.313 0.268

limited and the teacher’s pseudo labels are unreliable, LDA’s covariance estimation becomes ill-posed,
since it requires a sufficient number of samples per class to compute a stable and meaningful matrix.
This explains the occurrence of NaNs in certain settings for methods based on discriminant analysis,
raising concerns about the reliability of these metrics in real-world scenarios where data privacy is
a critical constraint. Another example of a data-hungry metric is NLEEP (Li et al., 2021), which
depends on computing class-wise statistics, particularly class-conditional covariance matrices. When
the number of samples is significantly smaller than the number of classes, these covariance matrices
become singular (non-invertible), making eigenvalue computation unstable or undefined. As a result,
the metric could not be reliably computed in the low-data regime, and thus have been excluded
from the corresponding experimental results. For methods not based on LDA, PACTran (Ding et al.,
2022) includes hyperparameters—most notably λ in the PAC-Bayes bound—that make its estimates
sensitive to the specific choice of samples. While C-MoNA also benefits from diverse subsets, it
remains simple and reliable in practice, avoiding invalid scores when sample diversity is limited.
Accordingly, for object detection, results are reported on a randomly sampled 100-image subset; with
only 50 images, most competing metrics fail to produce valid scores. On the other hand, NTK gives us
a full kernel perspective that captures the rich structure in image space (smoothness, invariance,etc.)
without the requirement of the label space. It does not depend on knowing the number of classes as
well for the kernel computation making it a good choice for privacy-constrained settings. Therefore,
the NTK similarities reflect intrinsic data geometry that can be well aligned across models. Moreover,
the NTK based alignment is more inherent to the architecture and width, than the dataset size. This
makes NTK-based alignment methods like C-MoNA a reliable and robust choice for assessing model
compatibility, which is essential for student model selection in knowledge distillation-based fine-
tuning in privacy-constrained, low-data scenarios. As shown in Tables 3 and 6, the C-MoNA metric
exhibits an average performance drop of less than 9% in the low-data regime (using significantly
less than 1% of the training set) compared to the full-data setting on the CIFAR100 dataset. In
contrast, several other metrics suffer substantial performance degradation, while those based on
discriminant analysis often fail to produce reliable results, frequently resulting in NaNs. Remarkably,
in the low-data regime, the C-MoNA metric outperforms previous state-of-the-art methods—designed
to capture only the model-data relationship—even when those methods are evaluated on their full
datasets, achieving gains of 1.8× improvement on SUN397, 1.6× on CIFAR100, and over 11×
improvement on the Caltech101 image classification datasets. This highlights both the robustness
of the proposed metric and the critical importance of capturing model-to-model relationships for
effective knowledge distillation-based fine-tuning.
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A APPENDIX

A.1 RELATED WORK

A.1.1 KERNEL-BASED KNOWLEDGE DISTILLATION METHODS

A growing body of work has explored kernel and correlation matrix-based approaches during knowl-
edge distillation training to improve the distillation process itself. Correlation Congruence (CC) Peng
et al. (2019) transfers instance-wise correlation matrices between teacher and student, measuring
pairwise similarity across mini-batches to align correlation structures. Class Attention Transfer (CAT)
Guo et al. (2023) uses spatial attention maps as kernel-like structures to guide knowledge transfer
from intermediate teacher layers to student layers. Similarity-Preserving Knowledge Distillation
(SP) Tung & Mori (2019) employs activation-based similarity matrices to preserve pairwise instance
relationships during distillation training.
Recent advances include methods that transfer full kernel matrices effectively Qian et al. (2022),
local correlation consistency frameworks Li et al. (2020), and kernel-alignment based approaches
Saha et al. (2022); Zhou et al. (2024). While Centered Kernel Alignment (CKA) based approaches
have proven to be effective for comparing representations during distillation training, we demon-
strate in Section 4.3 that direct application of CKA between individual teacher and student NTKs
performs poorly as a predictive metric for student model selection. These kernel-based methods
differ fundamentally from our approach in several key aspects: (1) Temporal usage: Prior methods
use kernel/correlation matrices during KD training as loss functions to improve the distillation
process, while we use kernel matrices before KD training for compatibility assessment; (2) Captured
knowledge: Existing methods focus on feature/output similarities through activation correlations,
whereas our approach measures gradient space alignment via cross-model projected gradient inner
products; (3) Computational phase: Traditional kernel-based KD operates within the training loop,
while our method enables pre-selection before expensive training begins. Our approach is orthogonal
and complementary to existing kernel-based KD losses, serving a fundamentally different purpose of
student selection rather than distillation enhancement.

A.1.2 TRANSFERABILITY ESTIMATION

Numerous transferability estimation metrics have been proposed to predict downstream performance
without full fine-tuning. Methods like LEEP Nguyen et al. (2020), LogME You et al. (2021), and
PACTran Ding et al. (2022) require ground-truth labels to assess model-data alignment, measuring
how well pre-trained features align with target decision boundaries or estimating fine-tuning risk
through PAC-Bayesian bounds. While SFDA Shao et al. (2022) attempts an unsupervised approach
by approximating Fisher Discriminant, it simulates class separability and fails with limited samples
per class. Recent approaches like energy-based ETran Gholami et al. (2023), Neural Collapse
Transferability Index (NCTI) Wang et al. (2023), OTCE Tan et al. (2021), and WDJE Zhan & Zeng
(2023) broaden applicability beyond classification through energy scores, neural collapse analysis,
optimal transport, and Wasserstein distances respectively, but fundamentally still assess model-dataset
relationships rather than model-model compatibility essential for knowledge distillation.
As shown in Table 1, they assess model–data alignment, ranking pre-trained networks by how well
their features or predictions fit the target labels. They do not consider model–model compatibility and
typically degrade when label information is scarce or absent. In contrast, our work addresses student
model selection for knowledge distillation, where one must choose among multiple pre-trained
student architectures given a fixed fine-tuned teacher and unlabeled data. We propose a cross-model
NTK metric that directly measures gradient-space alignment between teacher and student on the
same inputs, addressing the model-model relationship central to KD. Our cross-model NTK differs
fundamentally from simply comparing individual NTKs as done in Harutyunyan et al. (2023) to
verify online distillation effectiveness, instead capturing how readily a student can learn this specific
teacher’s outputs.

A.2 CONCLUSION AND FUTURE WORK

In this work, we first formalize the problem of unsupervised student model selection for KD, and
then introduce a novel transferability estimation metric, C-MoNA, based on cross-model Neural
Tangent Kernel (NTK) alignment to capture the model-to-model relationship. We demonstrate the
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scalability of our approach across large-scale networks, highlighting its practical relevance. Through
comprehensive experiments, our results clearly underscore the importance of modeling inter-model
compatibility for effective student model selection in KD-based fine-tuning.

While the proposed NTK-based metric outperforms existing methods, there is still considerable room
for improvement. Based on the assumption of linear training dynamics, linear interpolation can be
used to approximate the teacher’s near-pretrained weights. Leveraging the teacher model’s pre-fine-
tuned weights for alignment may yield a more reliable and informative estimation metric. However,
since teacher and student models are often pre-trained on different datasets, their weights may lie in
incompatible regions of the parameter space. Additionally, extending this approach to multi-modal
LLMs presents an intriguing direction, though it may require careful handling of modality-dependent
contributions that vary based on input queries. Exploring these different perspectives may open up
promising directions for future research work.

A.3 ADDITIONAL EXPERIMENTAL DETAILS

A.3.1 KNOWLEDGE DISTILLATION BASED FINE-TUNING RESULTS

We conduct experiments on CIFAR100 (Krizhevsky et al., 2009), Caltech101 (Fei-Fei et al., 2004),
and SUN397 (Xiao et al., 2010) datasets. Following prior works (Shao et al., 2022; Gholami et al.,
2023), we use SGD optimizer with cosine decay scheduling and extensive hyperparameter sweeps.
The projection dimension k is fixed at 10240, temperature at 2, using logit-based KD with KL
divergence on Nvidia L40 GPU.
Knowledge distillation based fine-tuning details. The ground truth for selecting or ranking
pre-trained student models from a pool of candidates for a given teacher model is established by
performing knowledge distillation-based fine-tuning for each teacher-student pair, using a hyper-
parameter sweep on the target distillation dataset. Given a teacher model and a target distillation
dataset, we perform a comprehensive hyperparameter sweep over the two most critical parameters for
fine-tuning: learning rate and weight decay. To constrain the search space, the temperature parameter
in the KD setup is fixed at 2 across all experiments. The ground truth fine-tuning accuracy for each
teacher-student pair is defined as the best performance achieved across the explored hyperparameter
configurations. All the experiments are done using a fixed seed value on a Nvidia L40 48GB vRAM
GPU card with a batch size of 64. All the images were resized to 224x224 and other data augmenta-
tion strategies follow the previous transferability estimation works(Shao et al., 2022; Gholami et al.,
2023). We fine-tune the models for 100 epochs for CIFAR100 and Caltech101 datasets and 50 epochs
for the SUN397 image classification dataset. For reference, all the ground truth accuracies for all the
3 datasets are provided in Tables 21, 22, and 23. As for the data splits are concerned, we again follow
(Shao et al., 2022) staying consistent with the previous works for fair comparisons. To be precise, for
the SUN397 and the CIFAR100 image classification datasets, we use the official splits and for the
Caltech101 dataset, we use random 30 images per class as trainset and the rest as test set.
As for the object detection task, we use the PASCAL VOC2012 dataset with the YOLO-v11s model as
the student model (not COCO pretrained). As explained in Section 5.1, we get 12 diverse pre-trained
student models. We use the official training configuration as in the Ultralytics YOLO documentation.
Teacher models training. We use diverse teachers with varied architectures and pre-trained on
different datasets. For the classification task, we use ImageNetV1 pre-trained ConvNext-Large and
MaxViT-Small architectures as teachers alongwith ImageNetV2 pretrained Wide-ResNet101 and
OpenCLIP based ViT-B/32 pretrained on the LAION-2B dataset(Schuhmann et al., 2022). These
models are fine-tuned on the downstream target distillation dataset for 50 epochs and the corre-
sponding accuracies are as shown in Table 20. For the ConvNext-Large, Wide-ResNet101, and
MaxViT-Small teacher models, all layers were fine-tuned during training, whereas for the OpenCLIP
ViT-B/32 model, only the final classification layer was fine-tuned. As for the object detection task,
we use the YOLOv11L and the YOLOv11m as techer models. All of them are COCO-pretrained
while some of them are additionally trained on HomeObjects-3k, and the African-Wildlife datasets to
ensure diversity. These models are fine-tuned on the downstream target distillation set for 100 epochs
using the official configuration settings.

C-MoNA implementation details. C-MoNA requires a forward pass and a backward pass to obtain
the kernel matrix. Therefore, we use the Nvidia L40 48 GB vRAM GPU with batch size being 16.
We keep the random projection dimension to be 10240. Our choice of k is conservatively large
relative to the JL bound, ensuring high-quality gradient inner product approximation while providing
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an excellent accuracy-computational cost tradeoff across all evaluated datasets. We adopted a unified
k = 10240 across datasets to ensure consistent approximation quality, maintain computational
efficiency, and avoid dataset-specific tuning requirements. If required, k can be further tuned based
on specific error tolerance requirements if computational constraints permit. To ensure that there is
computationally low-overhead costs, we calculate the projected gradients for the fixed teacher once
and store it. We use these stored projected gradients to calculate the cross-model NTK with each of
the candidate student models.

A.4 C-MONA ALGORITHM

Algorithm 1: C-MoNA: Cross-Model NTK Alignment for Student Selection

Input: Teacher ft(·; θt); Students {fsm(·; θsm)}Mm=1; Unlabeled set D = {xn}Nn=1;
Projection dim. k; Param. dims. dt, dsm

Output: Students ranked by C-MoNA scores {αm}Mm=1
Initialize Gt ∈ Rk×N and each Gsm ∈ Rk×N // storage for projected
gradients

Draw Rt ∈ Rk×dt , Rs ∈ Rk×dsm from same underlying Rademacher distribution with fixed
seed // same distribution, separate matrices

for n← 1 to N do
gt ← ∇θtft(xn; θt) // teacher gradient in Rdt

g̃t ← Rt gt // projected to Rk using Rt

set column n of Gt ← g̃t
for m← 1 to M do

gsm ← ∇θsm
fsm(xn; θsm) // student gradient in Rdsm

g̃sm ← Rs gsm // projected gradient using Rs

set column n of Gsm ← g̃sm
end

end
for m← 1 to M do

Kt,sm ← Gt G
⊤
sm // cross-NTK Gram matrix

Kt,t ← Gt G
⊤
t , Ksm,sm ← Gsm G⊤

sm // self-NTKs

αm ← ∥Kt,sm∥F /
√
∥Kt,t∥F ∥Ksm,sm∥F // compatibility score

end
return Students sorted by descending αm // best student first

Implementation Considerations. In practice, drawing the entire Rt ∈ Rk×dt , Rs ∈ Rk×ds can
lead to memory overflow when the model parameters is large. We therefore implement a chunked
processing strategy where gradients are computed and projected in batches, with matrices grown
dynamically through concatenation. The FastJL library provides computational acceleration for the
random projections and crucially ensures that both Rt and Rs are drawn from identical Rademacher
distributions using the same random seed. This guarantees that the cross-model NTK comparisons
remain theoretically sound, as the projection preserves relative inner product structures between
teacher and student gradient spaces under the Johnson-Lindenstrauss lemma.

This approach balances computational efficiency with theoretical rigor while making the algorithm
scalable to large model architectures.

A.5 C-MONA’S CONSISTENT PERFORMANCE ACROSS DIVERSE TEACHER MODELS

Fig. 1a clearly shows that C-MoNA demonstrates exceptional robustness across diverse exper-
imental conditions, achieving remarkably low standard deviations (0.044 average) compared to
competing methods (0.122–0.216 range) in full trainset settings. The method maintains superior
consistency across three datasets (SUN397, CIFAR100, Caltech101). Notably, C-MoNA exhibits
minimal performance variation across heterogeneous teacher models spanning CNN-only (WideRes-
Net101), CNN-Transformer hybrid (MaxViTSmall), and Transformer-only (ViT-B/32) architectures,
demonstrating architectural agnosticism that traditional methods lack. This cross-teacher consistency

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Full trainset classification (b) Low-data regime (50 images) (c) Object detection (VOC2012)

Figure 1: Standard deviation of Kendall’s τ across four diverse teacher models in different experimen-
tal settings. C-MoNA consistently demonstrates the lowest variability across (a) full trainset image
classification, (b) low-data regime classification with 50 random images, and (c) object detection
tasks on VOC2012 with 100 random images.

validates that C-MoNA’s gradient-space alignment captures fundamental compatibility patterns inde-
pendent of specific architectural choices or pre-training objectives. Critically, as shown in Fig. 1b,
C-MoNA’s advantages amplify in low-data regimes (50 random images), where traditional transfer-
ability metrics suffer numerical instabilities or complete failures, while C-MoNA continues providing
reliable estimations. This cross-model NTK alignment approach proves fundamentally more robust
than model-data relationship methods, enabling confident student selection across varying data avail-
ability constraints. The comprehensive analysis establishes C-MoNA as the most reliable solution
for practical knowledge distillation pipelines in both data-rich and privacy-constrained scenarios. A
similar inference can be drawn from the object detection sensitivity plot Fig. 1c as well. C-MoNA
demonstrates superior performance in the object detection domain, achieving both the highest average
Kendall’s tau and one of the modest standard deviation across four diverse YOLO teacher models.
C-MoNA, being an unsupervised metric, maintains stable positive correlations across all teacher
variants. This dual advantage of accuracy and consistency validates that cross-model NTK alignment
successfully generalizes beyond image classification to object detection tasks, providing reliable
student selection capabilities across heterogeneous detection architectures trained on diverse datasets.

A.5.1 EVALUATING CKA AND ALTERNATIVE C-MONA MATRIX REDUCTION APPROACHES

Table 7 clearly shows that C-MoNA gains 3.3x over CKA across 4 diverse teachers averaged across 3
image classification datasets empirically supporting the theoretical reasoning in Section 4.3. Tables
8 and 9 present the performance of different C-MoNA matrix reduction strategies on the object
detection task. The results demonstrate that our proposed approach of utilizing all cross-covariance
values provides both theoretical rigor and empirical robustness. Alternative reduction methods,
such as trace-based reduction or selecting only the top-10% energies (spectral), show suboptimal
performance when evaluated across multiple teachers and experimental configurations.

While trace-based reduction may offer some utility in constrained scenarios—particularly when
diverse samples are unavailable or when working with very limited similar samples that result in unfa-
vorable signal-to-noise ratios from cross-covariance values—it is not suitable for general applications.
For most practical use cases, we advocate for our theoretically-grounded and empirically-validated
reduction strategy, which incorporates all cross-covariance values in the estimation computation,
thereby providing more comprehensive and reliable performance.

Table 7: Comparison of the transferability estimation performance (Kendall’s tau,τw) of naive
implementation of kernel alignment compared to C-MoNA averaged across 4 teachers for a random
50 images subset for the classification task.

CIFAR100 SUN397 Caltech101 Avg

CKA -0.009 -0.171 -0.283 -0.154
C-MoNA (ours) 0.465 0.29 0.313 0.356
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Table 8: Kendall’s tau (τw) for the different C-MoNA matrix reduction strategies shown for the object
detection task on the VOC2012 dataset random 100 images subset."frob" is frobenius norm proposed.

Yolo11l-Coco Yolo11l-Home Yolo11m-Home Yolo11m-Wild Avg.

CKA 0.037 -0.152 -0.428 -0.391 -0.233
Spectral -0.171 0.033 0.262 -0.112 0.003
Trace -0.435 0.146 0.581 0.410 0.170
C-MoNA(frob) 0.509 0.236 0.421 0.122 0.322

Table 9: Kendall’s tau (τw) for the different C-MoNA matrix reduction strategies shown for the object
detection task on the VOC2012 dataset random 25 images subset. "frob" is frobenius norm proposed.

Yolo11l-Coco Yolo11l-Home Yolo11m-Home Yolo11m-Wild Avg.

CKA -0.066 -0.014 -0.427 -0.245 -0.188
Spectral -0.228 -0.185 0.147 0.429 0.04
Trace -0.435 0.028 0.470 0.263 0.081
C-MoNA(frob) 0.257 0.297 0.293 0.272 0.279

A.6 ADDITIONAL EXPERIMENTAL RESULTS

Table 6 report the average performance across all the teacher models in low-data regimes. Tables
10, 11, and 12 gives the detailed per teacher results for each of the low data setting including the
CKA performance evaluation on these settings for the Caltech-101 dataset. Tables 13, 14, 15, and 16
gives the detailed per teacher results for each of the low data setting including the CKA performance
evaluation on these settings for the SUN397 dataset. Tables 17, 18, and 19 gives the detailed per
teacher results for each of the low data setting including the CKA performance evaluation on these
settings for the CIFAR-100 dataset. Tables 20, 21, 22, and 23 present the performance of teacher
models and the post-distillation accuracies respectively, which serve as ground-truth values for
computing the Weighted Kendall’s tau (τw) metric. This metric is used to evaluate the predictive
estimation capabilities of all benchmarked metrics in the image classification task. What sets C-
MoNA apart from most existing transferability estimation methods is its ability to enable model
selection in low-data regimes. Notably, C-MoNA demonstrates strong performance even when using
just a small number of randomly sampled images. Given that even 25 randomly selected images
already deliver impressive results compared to existing benchmarks, we argue that a carefully curated
set of 25 representative images could lead to even more reliable performance with C-MoNA—further
underscoring its practicality and robustness in low-data settings. All the experimental results clearly
showcase the robustness, consistent superior performance of the C-MoNA metric across all datasets,
experimental configurations, and diverse pre-trained teachers. Along with the strong performance
and reliability of C-MoNA, it is simple to implement and easy to scale to larger architectures making
it an easy-to-deploy metric that would positively benefit the distillation performance.

Table 10: Kendall’s tau (τw) for the Caltech101 dataset using 50 random images.

MaxViT-Small Wide-ResNet101 ConvNext-Large OpenCLIP-ViT-B/32 Avg.

ETran Energy -0.208 -0.261 -0.512 -0.133 -0.159
SFDA 0.046 -0.066 -0.185 0.158 -0.011
LogME 0.000 0.102 -0.034 -0.188 -0.030
PAC -0.035 0.442 -0.142 -0.241 0.006
NCTI 0.276 0.314 0.264 -0.172 0.170
CKA -0.241 -0.432 -0.276 -0.184 -0.283
C-MoNA (ours) 0.682 0.136 0.297 0.139 0.313
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Table 11: Kendall’s tau (τw) for the Caltech101 image classification dataset using 25 random images.
“-” denotes values that are NaN or unavailable due to numerical instability or insufficient samples
required for computation.

MaxViT-Small Wide-ResNet101 ConvNext-Large OpenCLIP-ViT-B/32 Avg.

ETran Energy -0.156 -0.261 -0.519 -0.301 -0.309
SFDA 0.023 -0.060 -0.164 0.324 0.030
LogME -0.015 0.067 -0.056 -0.161 -0.041
PAC -0.061 0.031 0.187 -0.103 0.013
NCTI -0.081 -0.236 0.201 - -
CKA -0.208 -0.271 -0.290 0.104 -0.166
C-MoNA (ours) 0.490 0.119 0.469 0.253 0.332

Table 12: Kendall’s tau (τw) for the Caltech101 dataset using 10 random images.

MaxViT-Small Wide-ResNet101 ConvNext-Large OpenCLIP-ViT-B/32 Avg.

ETran Energy -0.272 -0.261 -0.499 -0.271 -0.325
LogME -0.015 -0.004 -0.056 -0.122 -0.049
PAC -0.005 -0.020 -0.221 -0.193 -0.109
CKA -0.088 -0.470 -0.470 -0.249 -0.319
C-MoNA (ours) 0.138 0.058 0.232 0.210 0.159

Table 13: Kendall’s tau (τw) using 100 random samples per teacher model on SUN397 dataset.

OpenCLIP ViT-B/32 ConvNeXt-Large MaxViT-Small Wide-ResNet101 Avg.

ETran Energy -0.225 -0.325 -0.339 -0.249 -0.284
SFDA 0.268 0.128 -0.039 0.353 0.177
LogME -0.192 -0.175 -0.181 -0.214 -0.190
PAC -0.409 -0.245 -0.049 -0.354 -0.264
NCTI 0.072 0.041 -0.369 0.406 0.037
CKA 0.195 0.190 0.141 0.102 0.157
C-MoNA (ours) 0.266 0.278 0.391 0.250 0.296

Table 14: Kendall’s tau (τw) using 50 random samples per teacher model on SUN397 image classifi-
cation dataset. "-" denotes values that are NaN due to numerical instability.

OpenCLIP ViT-B/32 ConvNeXt-Large MaxViT-Small Wide-ResNet101 Avg.

ETran Energy -0.182 -0.399 -0.353 -0.234 -0.292
SFDA 0.297 0.105 0.072 0.292 0.191
LogME -0.192 -0.156 -0.196 -0.101 -0.161
PAC -0.363 -0.131 -0.090 -0.268 -0.213
NCTI 0.016 -0.293 -0.028 - -
CKA -0.303 -0.128 -0.129 -0.124 -0.171
C-MoNA (ours) 0.239 0.386 0.253 0.282 0.290

Table 15: Kendall’s tau (τw) using 25 random samples per teacher model on SUN397 image classifi-
cation dataset. "–" denotes values that are NaN due to numerical instability.

OpenCLIP ViT-B/32 ConvNeXt-Large MaxViT-Small Wide-ResNet101 Avg.

ETran Energy -0.201 -0.347 -0.393 -0.236 -0.294
SFDA – – – – –
LogME -0.186 -0.156 -0.238 -0.214 -0.198
PAC -0.008 0.118 0.097 -0.002 0.051
NCTI – – – – –
CKA -0.352 -0.195 -0.184 -0.289 -0.255
C-MoNA (ours) 0.325 0.499 0.435 0.205 0.366
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Table 16: Kendall’s tau (τw) using 10 random samples per teacher model on SUN397 dataset.

OpenCLIP ViT-B/32 ConvNeXt-Large MaxViT-Small Wide-ResNet101 Avg.

ETran Energy -0.227 -0.298 -0.451 -0.230 -0.301
LogME -0.192 -0.033 -0.216 -0.183 -0.156
PAC 0.168 -0.208 -0.272 0.064 -0.062
CKA -0.196 -0.465 -0.533 -0.341 -0.383
C-MoNA (ours) 0.150 -0.074 -0.010 0.170 0.059

Table 17: Kendall’s tau (τw) for the CIFAR-100 dataset using 50 random images.

Wide-ResNet101 ConvNexT-Large MaxViT-Small OpenCLIP-ViT-B/32 Avg.

ETran Energy -0.168 -0.208 -0.055 -0.156 -0.146
SFDA 0.144 0.502 0.386 0.252 0.321
LogME -0.269 -0.375 -0.322 -0.164 -0.282
PAC -0.160 -0.504 -0.317 0.109 -0.218
NCTI -0.564 0.369 0.093 -0.436 -0.134
CKA -0.068 0.254 -0.024 -0.201 -0.009
C-MoNA (ours) 0.612 0.516 0.495 0.239 0.465

Table 18: Kendall’s tau (τw) for CIFAR-100 image classification dataset using 25 random images.

Metric Wide-ResNet101 ConvNeXT-Large MaxViT-Small OpenCLIP-ViT-B/32 Avg.

ETran Energy -0.257 -0.159 -0.020 -0.239 -0.168
SFDA 0.250 0.580 0.402 0.161 0.348
LogME -0.248 -0.439 -0.305 -0.234 -0.306
PAC -0.006 -0.234 -0.243 -0.093 -0.144
NCTI -0.192 0.143 -0.391 -0.418 -0.214
CKA -0.114 0.186 0.245 0.002 0.079
C-MoNA (ours) 0.312 0.682 0.628 0.186 0.452

Table 19: Kendall’s tau (τw) for the CIFAR-100 image classification dataset using 10 random images.
“–” denotes values that are NaN or unavailable due to numerical instability or insufficient samples
required for computation.

Metric Wide-ResNet101 ConvNeXT-Large MaxViT-Small OpenCLIP-ViT-B/32 Avg.

ETran Energy -0.154 -0.094 -0.021 -0.161 -0.107
SFDA – 0.454 – – –
LogME -0.113 -0.391 -0.222 -0.027 -0.188
PAC -0.117 -0.256 -0.379 -0.287 -0.259
NCTI – -0.284 – – –
CKA -0.232 -0.120 -0.140 -0.028 -0.13
C-MoNA (ours) 0.513 0.502 0.345 0.299 0.414

Table 20: Accuracy of various teacher models across 3 different image classification datasets.

SUN397 CIFAR100 Caltech101

Wide-ResNet101 66.12 87.57 93.36
ConvNeXT-Large 70.45 90.01 94.94
MaxViT-Small 69.65 90.82 94.55
OpenCLIP-ViT-B/32 75.11 84.50 93.12
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Table 21: Knowledge distillation based fine-tuning accuracy of all teacher–student pairs for the
SUN397 image classification dataset.

Students ↓ \ Teachers → Wide-ResNet101 ConvNext-Large MaxViT-Small OpenCLIP ViT-B/32

ResNet34 62.27 64.23 64.29 62.52
MobileNetV2 60.74 62.65 62.39 60.24
ShuffleNetV2x1.5 60.93 63.15 63.12 60.20
EfficientNet-B0 63.24 66.25 66.05 63.38
ResNet18 60.18 62.58 61.74 59.75
DeiT-T/16 62.01 63.30 63.15 62.19
DeiT-T/16 (Distilled) 62.53 63.58 63.45 63.15
GoogleNet 60.02 63.09 62.49 58.83
SwinT-Tiny 66.74 68.47 68.30 67.24
MnasNet 61.55 64.76 63.72 61.41
DeiT-S/16 65.50 67.47 67.78 66.54
DeiT-S/16 (Distilled) 65.89 67.98 68.27 67.06

Table 22: Knowledge distillation based fine-tuning accuracy of all teacher–student pairs for the
CIFAR100 image classification dataset.

Students ↓ \ Teachers → Wide-ResNet101 ConvNext-Large MaxViT-Small OpenCLIP ViT-B/32

ResNet34 83.59 85.31 85.93 82.15
MobileNetV2 81.41 82.60 83.13 79.85
ShuffleNetV2x1.5 82.60 84.51 82.88 80.75
EfficientNet-B0 86.17 87.22 86.36 83.55
ResNet18 82.47 83.74 83.54 80.53
DeiT-T/16 82.88 85.35 84.72 81.56
DeiT-T/16 (Distilled) 84.27 85.77 85.29 82.04
GoogleNet 82.14 84.51 83.52 80.73
SwinT-Tiny 87.82 88.17 88.37 84.25
MnasNet 83.69 85.17 84.43 82.24
DeiT-S/16 87.16 88.28 88.28 83.75
DeiT-S/16 (Distilled) 86.90 88.38 88.49 84.07

Table 23: KD-based fine-tuning accuracy of all teacher–student pairs for Caltech101.

Students ↓ \ Teachers → Wide-ResNet101 ConvNext-Large MaxViT-Small OpenCLIP ViT-B/32

ResNet34 92.40 92.34 92.45 91.36
MobileNetV2 90.25 90.25 90.06 89.54
ShuffleNetV2x1.5 89.77 91.27 87.03 88.81
EfficientNet-B0 92.86 92.67 92.87 91.60
ResNet18 88.27 90.21 86.92 89.91
DeiT-T/16 89.67 90.25 90.31 89.17
DeiT-T/16 (Distilled) 89.70 90.02 90.71 89.49
GoogleNet 90.30 91.34 91.96 90.08
SwinT-Tiny 93.04 92.85 93.17 91.97
MnasNet 89.31 90.74 89.28 89.26
DeiT-S/16 92.63 92.60 92.50 91.63
DeiT-S/16 (Distilled) 92.75 92.77 92.72 92.08
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