
From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on
LoRA with Parallel Control

Chi Zhang 1 Lianhai Ren 1 Jingpu Cheng 1 Qianxiao Li 1 2

{czhang24, qianxiao}@nus.edu.sg; {lianhairen, chengjingpu}@u.nus.edu

Abstract
The LoRA method has achieved notable success
in reducing GPU memory usage by applying low-
rank updates to weight matrices. Yet, one simple
question remains: can we push this reduction even
further? Furthermore, is it possible to achieve this
while reducing computation time and preserving
performance? Answering these questions requires
moving beyond the conventional weight-centric
approach. In this paper, we present a state-based
fine-tuning framework that shifts the focus from
weight adaptation to optimizing forward states,
with LoRA acting as a special example. Specif-
ically, state-based tuning introduces parameter-
ized perturbations to the states within the com-
putational graph, allowing us to control states
across an entire residual block. A key advantage
of this approach is the potential to avoid storing
large intermediate states in models like transform-
ers. Empirical results across multiple architec-
tures—including ViT, RoBERTa, LLaMA2-7B,
and LLaMA3-8B—show that our method further
reduces memory consumption and computation
time while preserving performance. As a result of
memory reduction, we explore the feasibility to
train 7B/8B models on consumer-level GPUs like
Nvidia 3090, without model quantization. The
code is available here.

1. Introduction
Low-Rank Adaptation (LoRA) (Hu et al., 2021) has
emerged as an effective algorithm for fine-tuning pre-trained
models, demonstrating notable success across domains such

1Department of Mathematics, National University of Singa-
pore 2Institute for Functional Intelligent Materials, National Uni-
versity of Singapore. Correspondence to: Qianxiao Li <qianx-
iao@nus.edu.sg>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

as natural language processing and computer vision. At its
core, LoRA leverages low-rank decomposition ∆W “ AB
to approximate weight updates with some low-rank matrices
A and B, allowing only a small subset of parameters to be
trained. Such a design not only maximally preserves the
performance of full-tuning but also makes training feasible
on hardware with limited resources.

Yet, such a core explanation is challenged by recent fine-
tuning approaches (Chen et al., 2022; Zhang et al., 2024b),
in which the update rule often takes the form x1 “

f pW,xq ` gp∆W,xq. Here, f represents the pretrained
dynamics while g introduces a nonlinear perturbation based
on the fine-tuned parameters. The presence of the nonlin-
ear function g precludes a straightforward interpretation of
∆W as a simple low-rank modification to the weight matrix
W . As a result, this departure from linearity challenges the
foundational view of LoRA as merely performing low-rank
weight updates. This raises a natural question: if low-rank
decomposition no longer fully captures the nature of these
adaptations, what alternative frameworks might offer a more
comprehensive understanding?

Another significant challenge lies in further reducing the
GPU memory consumption of LoRA. While approaches like
VeRA (Kopiczko et al., 2023), BinaryLoRA (Zhang et al.,
2024a), and DoRA (Liu et al., 2024) have made strides by
using vector-based, binary LoRAs or halving rank, memory
reduction often remains limited. For example, halving the
rank in DoRA reduces parameters by nearly 50%, but re-
sults in only a limited decrease of 0.256 GB GPU memory
on an 8B model. A closer analysis reveals that the primary
bottleneck is no longer the storage of parameters, but rather
the memory of maintaining forward states. This limitation
becomes particularly critical as 7B/8B models become in-
creasingly common, yet training them remains infeasible
on consumer-level GPUs like Nvidia 3090/4090. This shift
underscores the need for strategies to address the memory
demands associated with activations during the forward pass,
enabling more memory-efficient fine-tuning techniques.

Addressing these challenges requires moving beyond the
traditional weight-centric paradigm. While LoRA and its

1

https://github.com/czhang024/ParallelControl


From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on LoRA with Parallel Control

variants focus on adjusting specific layer weights within this
framework, achieving further memory reductions calls for
new theoretical insights and the development of alternative
fine-tuning frameworks. One promising direction emerges
from recent work (Zhang et al., 2024b), which draws con-
nections between fine-tuning and control theory. In control
theory, directly modifying the core parameters of a system is
often impractical. For example, directly adjusting the motor
settings of a robot can be difficult; instead, it is typically
more effective to regulate system states—such as position or
velocity—through feedback control mechanisms (Franklin
et al., 2002; Kirk, 2004).

The goal of this paper is to introduce a generalized state-
based fine-tuning framework that facilitates direct adjust-
ment of network states. By representing the neural network
as a directed acyclic graph (DAG), this framework enables
manipulation of states connected by arbitrary edges, rather
than being limited to weight parameters alone. Further-
more, the state-based approach supports the adjustment of
states that are not necessarily immediate neighbors and can
account for hierarchical dependencies within the network.
This flexibility allows for more sophisticated control strate-
gies over the network’s behavior, extending beyond the
conventional reliance on low-rank matrix updates.

Thanks to this new framework, we can design more efficient
algorithms by treating entire components, such as MLP or
attention blocks, as single units. A key advantage of this
design is the reduction in memory usage, as it circumvents
the need of storing large intermediate states associated with
individual layers or operations. Moreover, by leveraging
low-rank matrices, we can reduce both the parameters and
the states that need to be stored, resulting in highly memory-
efficient algorithms.

The proposed algorithm outperforms traditional methods
across a range of tasks, while using less GPU mem-
ory and reducing computation time. These advantages
are demonstrated across several model architectures, in-
cluding ViT (Dosovitskiy et al., 2020), RoBERTa (Liu,
2019), LLaMA2-7B (Touvron et al., 2023), and LLaMA3-
8B (Dubey et al., 2024). Additionally, by further reducing
memory usage, we demonstrate the feasibility of training
7B/8B models on a Nvidia 3090 GPU with 24GB mem-
ory, without resorting to model quantization. Our results
reveal that, even with lower-memory GPUs, the proposed
approach achieves performance comparable to setups with
higher memory capacity. This makes the approach acces-
sible to a wide range of researchers and practitioners with
only consumer-level GPUs.

In summary, our contributions are four-fold: (1) We in-
troduce a state-based fine-tuning approach that shifts the
focus from weight-centric adaptation to optimizing the
model’s forward states, providing a more general frame-

work and greater flexibility in designing parameter-efficient
algorithms. (2) Building on this framework, we demon-
strate that memory usage can be further reduced by applying
low-rank perturbations to entire components, such as MLP
and attention blocks, thus avoiding the need to store large
intermediate states. (3) Empirical results show that our ap-
proach achieves superior performance while simultaneously
reducing GPU memory usage and computation time. (4) We
explore the possibility of training large models on consumer-
level GPUs, allowing more researchers/practitioners to ben-
efit from PEFT studies.

2. Related Works
Parameter-Efficient Fine-Tuning Owing to the large pa-
rameter size of modern transformer-based models (Vaswani
et al., 2017; Dosovitskiy et al., 2020), fully tuning these
models becomes challenging. Early works (Oquab et al.,
2014; Alain, 2016) in transfer learning focused on linear
probing, where only the final layer is fine-tuned. These
approaches have been extended to selectively tuning the
middle or bottom layers in (Lee et al., 2022; Lodha et al.,
2023; Kaplun et al., 2023; Nagae et al., 2022). Recent
parameter-efficient fine-tuning (PEFT) methods propose
to inject new trainable parameters, while keeping the pre-
trained model fixed. In particular, Adapter methods and
their variants (Houlsby et al., 2019; Rebuffi et al., 2017;
Karimi Mahabadi et al., 2021) employ bottleneck structures
inserted after self-attention and feed-forward network lay-
ers to achieve parameter efficiency. Prompt-based methods
such as Prompt Tuning (Lester et al., 2021), P-Tuning (Liu
et al., 2021), and Prefix-Tuning (Li & Liang, 2021) opti-
mize trainable prompts rather than tuning the weights of the
model. LoRA (Hu et al., 2021) is among the most popular
PEFT methods. It leverages the idea of low-rank decom-
position for the updated weights, significantly reducing the
number of trainable parameters. Variants of LoRA (Zhang
et al., 2023a; Kopiczko et al., 2023; Zhang et al., 2023b)
further optimize efficiency by freezing or sharing the LoRA
matrices, reducing memory requirements through quantiza-
tion techniques (Dettmers et al., 2023), or using an adaptive
strategy. A recent extension, Dora (Liu et al., 2024), decom-
poses the magnitude and direction of the low-rank weight
matrices, offering improved performance. However, LoRA
and these variants remain weight-centric, in comparison to
the state-based tuning proposed in this paper.

Control in Machine Learning Control theory (Kirk,
2004) focuses on managing dynamical systems by devel-
oping models or algorithms that govern system inputs to
drive the system toward desired states. From a dynamical
perspective, residual neural networks can be viewed as dy-
namical systems, with the model representing the system
and the layer inputs/outputs serving as the states (E, 2017;

2



From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on LoRA with Parallel Control

Li et al., 2017). This connection between deep learning
and control theory has inspired numerous advancements in
various domains, including approximation theory (Tabuada
& Gharesifard, 2020; Li et al., 2022; Cheng et al., 2023),
network structure design (Haber & Ruthotto, 2017; Lu et al.,
2017; Nguyen et al., 2024), and optimizer development (Li
& Hao, 2018; Benning et al., 2019). The parameter-efficient
fine-tuning task can naturally be formulated as a controlled
dynamical system (Zhang et al., 2024b), where the original
model represents the system, and controllers are designed to
adapt the system to downstream tasks. Our work provides
a more general state-based tuning framework, where this
work can be considered as a special case of choosing the
control function g.

3. A State-Based Fine-Tuning Framework
3.1. Weight-Based Fine-Tuning (Weight-FT)

We begin by introducing the Low-Rank Adaptation (LoRA)
method (Hu et al., 2021), which facilitates parameter-
efficient fine-tuning through low-rank decomposition. For
a pretrained weight-matrix W0 P Rdˆk, LoRA models the
weight update ∆W P Rdˆk with a low-rank decomposition
∆W “ AB, where A P Rdˆr and B P Rrˆk represent two
low-rank matrices with rank r ! minpd, kq. Consequently,
the fine-tuned weight W 1 becomes:

W 1 “ W0 ` ∆W “ W0 ` AB, (1)

where W0 remains fixed during the fine-tuning process, and
only the low rank matrices A,B are updated.

Following LoRA, many PEFT algorithms further explore
and extend such a weight decomposition mechanism, in-
cluding VeRA (Kopiczko et al., 2023) and DoRA (Liu et al.,
2024) to utilize alternative low-rank structures, EVA (Pais-
cher et al., 2024) to introduce data-driven initialization, and
rsLoRA (Kalajdzievski, 2023) to stabilize LoRA.

In broader terms, these approaches can be categorized as
weight-based fine-tuning (Weight-FT) algorithms, as they
work on modifying the model’s weight matrices to approxi-
mate the low-rank changes during the fine-tuning process.
The fundamental hypothesis behind these weight-FT algo-
rithms is that fine-tuning updates tend to have a low “intrin-
sic rank” (Aghajanyan et al., 2020; Hu et al., 2021). Conse-
quently, low-rank matrices can be employed to efficiently
adjust the pretrained weights.

But modern fine-tuning strategies (Chen et al., 2022; Zhang
et al., 2024b) have introduced alternative methods, many of
which go beyond this weight-FT paradigm. For instance, a
pretrained layer can be fine-tuned using either of the follow-
ing formulations:

xt`1 “ xt ` ft ppWt ` ∆Wtqxtq , (2)

xt`1 “ xt ` ft pWtxtq ` ∆Wtxt, (3)

where ft represents nonlinear functions, such as ReLU or
GeLU. Notably, the latter formulation cannot be interpreted
as weight adjustment like LoRA, as the presence of a nonlin-
ear function makes it difficult to explain through the lens of
weight decomposition. This limitation highlights the need
for a more general fine-tuning framework that can accommo-
date a broader range of strategies, including those involving
nonlinear transformations.

3.2. Inspirations from Control Theory

To proceed, we need to move beyond these classical
weight-centric methodologies. In particular, the pioneer-
ing work (Zhang et al., 2024b) has demonstrated that Eq (3)
align closely with the classical control problem. Consider
the continuous-time ordinary differential equation (ODE)
with affine control (Franklin et al., 2002):

9xt “ ft pW ptqxptqq ` Gptquptq. (4)

In state-feedback control systems, the control signal uptq
is typically defined as a function of the state xptq through
a feedback gain matrix Kptq, such that uptq “ Kptqxptq.
Substituting uptq into the original system gives:

9xt “ ft pW ptqxptqq ` GptqKptqxptq. (5)

The central connection lies in the role of the additive terms:
the control term GptqKptqxptq in the continuous system (5)
modifies the state trajectory by applying a control matrix
Gptq and a feedback gain Kptq. Analogously, Eq (3) can
be interpreted as a discretized extension of Eq (5), where
∆Wtxt functions as a control-inspired mechanism that in-
fluences state updates.

3.3. State-Based Fine-Tuning (State-FT)

The key insight from the above connection is that these up-
dates primarily target the system’s states txtu, rather than
the parameters governing them. Therefore, in this part, we
propose a state-based fine-tuning (State-FT) framework that
shifts the focus from parameter updates to directly influenc-
ing the system’s states.

Formally, consider a neural network as a directed acyclic
graph G “ pV,Eq, where each node v P V represents
a computational state, and each directed edge pu, vq P E
represents a transformation applied to the state at node u,
producing the state at node v.

In particular, the computation on the edge pu, vq P E is
defined as:

xu
v “ fu

v pxu;WuÑvq,

where WuÑv represents the weight matrix for the transfor-
mation along edge pu, vq, and fu

v is the function applied,
such as a linear transformation or nonlinear activation.

3



From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on LoRA with Parallel Control

State-based tuning involves directly modifying the inter-
mediate states xv in the graph. For example, if an edge
pu, vq P E is selected for fine-tuning, then the updated state
is defined as:

x1
v “

ÿ

ũPApvq

xũ
v ` ∆xu

v ,

where Apvq “ tũ | ũ is an ancestor of vu denotes the an-
cestors of node v and ∆xu

v represents the adjustment from
the a state xu. This adjustment can be parameterized as:

∆xu
v “ guv pMuÑv, xuq,

where guv is the control function, and MuÑv is a learnable
control matrix to modify the states.

The full update for xv then becomes:

x1
v “

ÿ

ũPApvq

f ũ
v pxũ;WũÑvq ` guv pMuÑv, xuq. (6)

For simplicity, we will use fu
v in place of f ũ

v whenever no
confusion arises in the following parts.

The above state-based fine-tuning strategy fundamentally
differs from weight-based approaches by focusing on the di-
rect manipulation of intermediate states rather than adjusting
the model’s weight matrices. While LoRA uses low-rank
matrices to update weights, state-based fine-tuning involves
modifying a state pair pxu, xvq. This shift allows for more
flexible and granular control over the model’s behavior, as
the state dynamics are influenced by control functions on
the system’s states. Additionally, state-based fine-tuning
can incorporate more complex, non-linear transformations,
unlike LoRA, which is limited to linear perturbations of
the weight matrices. As a result, the state-based framework
provides a broader range of adaptation strategies.

Revisiting LoRA as a Special Case We demonstrate that
LoRA can be viewed as a special case of the proposed frame-
work by choosing specific forms for fu

v and guv . Specifically,
LoRA chooses specific edges pu, vq P E with a linear layer,

fu
v pWuÑv, xuq “ WuÑvxu,

such as the query (Q), key (K), and value (V) blocks. The
control function guv is defined as a low-rank update on the
weight matrix:

guv pBuÑv, xuq :“ AuÑvBuÑvxu, (7)

where AuÑv and BuÑv are learnable low-rank matrices,
used to update the pre-existing weight matrix WuÑv. As
such, from the perspective of State-FT, the LoRA algorithm
can be seen as a special case in which the selected edges
pu, vq are restricted to direct neighbors associated with lin-
ear layers.

More General Choice of fu
v and guv More generally, the

function fu
v can involve more complex transformations,

such as those defined by multiple layers or non-linear map-
pings that go beyond simple weight matrices. Similarly, the
control function guv can also be more intricate, potentially
incorporating more layers, non-linearities, or even dynamic
control mechanisms. For example, assume fu

v consists of
two linear layers followed by a non-linearity:

fu
v pWuÑv, xuq “ σ2 pW2 pσ1pW1xu ` b1qq ` b2q ,

and keep the control function guv as low-rank matrices in
Eq (7). As such, we are able to control multiple layers
with a parameter-efficient control strategy. This general-
ization allows for more flexibility in the state-based tuning
process, enabling it to model more complex, hierarchical
transformations of states during fine-tuning.

4. Further Memory Reduction on LoRA with
State-FT

The flexibility of choosing arbitrary pu, vq P E within the
state-FT framework allows for more general and versatile
approaches to model adaptation. For example, we may allow
the state xv to receive multiple updates ∆xu

v , to use weight
differences xv ´xu, akin to classical PID control (Åström &
Hägglund, 2006). In this section, we present an example to
design new parameter-efficient tuning algorithms, primarily
aligned with the PEFT framework, to further reduce LoRA’s
memory requirements.

4.1. State-FT on a Complete Residual Block

Modern neural networks are commonly composed of multi-
ple blocks, each structured with a residual connection (He
et al., 2016). To align with this paradigm, we consider a
specific case of the State-FT where layers connected by a
shortcut (or residual connection) are grouped into one com-
putational block fu

v . By doing so, we are able to leverage
the inherent structure of these networks and preserve the
integrity of the residual connections.

Formally, for a block of layers connected by a shortcut, let
the input to the block be xu, and the output be xv. The
computation for the block can be expressed as:

xv “ fu
v pxu; tWuÑvuq ` xu,

where tWuÑvu represents the collection of weight matri-
ces for all layers within the block and fu

v aggregates the
transformations applied within the block.

In the State-FT framework, the updated state for the block
incorporates both the transformations and a state adjustment
term, defined as:

x1
v “ xu ` Fvpxu; tWuÑv,MuÑvuq,

4



From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on LoRA with Parallel Control

N ⨉LoRA

(a)

x0

x1

xQ xK xV

x2

x3

xM

x4

N ⨉Control

(b)

x0

x1

xQ xK xV

x2

x3

xM

x4

N ⨉DoubleControl

(c)

x1

xM

x4

x3
x2

xQ xK xV

x0

FFN

ATTN

FFN

ATTN

FFN

ATTN

Figure 1: Figure (a) illustrates the computational graph in
LoRA, where specific edges (Q, K, V) with linear trans-
formations are selected for tuning. Figure (b) introduces
the control approach, where a new edge (in green color)
across the FFN block is introduced. Figure (c) extends this
control to both the attention and FFN blocks, resulting in
the double-control method.

where Fvp¨q is a composite functions defined as:

Fvpxu; tWuÑv,MuÑvuq “ fu
v pxu;WuÑvq ` guv pMuÑv;xuq.

Here guv pMuÑv;xuq is the control function that modifies
the state using the control matrix MuÑv. The choice of guv
can significantly influence the behavior and adaptability of
the model. For instance, guv can incorporate more complex
architectures, such as multi-layer perceptrons (MLPs) or
non-linear layers, to act as universal function approxima-
tors. Alternatively, guv can be designed as a simple low-rank
matrix transformation to reduce trainable parameters and
memory footprint.

Consider the transformer architecture. We are now free
to pick the starting and ending state of the residual block
as an edge to tune. One option is to choose the starting
and ending nodes of the feed-forward network (FFN) block,
which typically includes a LayerNorm (LN) (Ba, 2016)
and multiple linear layers. We refer to this method as the
“Parallel Control” approach in Figure 1(b). Alternatively, we
can extend this strategy to fine-tune both the attention block
and the FFN block within the residual structure, leading
to what we term the “Double Control” approach. Note
that this differs from classical LoRA, which selects specific
edges with linear transformations to adjust (e.g., Q, K, V in
Figure 1(a)).

4.2. Reducing Memory by Releasing Intermediate States

A fundamental question is why we aim to compress the
residual block into a single computational unit. To answer
this, Figure 2 presents a simple example involving two MLP
layers to illustrate GPU memory consumption during fine-

FFN2

FFN1
A1

𝑥𝑡
0

𝑥𝑡
1

𝑥𝑡
2

B1

A2
[𝑥𝑡

2]M

B2

[𝑥𝑡
1]M

𝑥𝑡
0

FFN2

FFN1
A1

𝑥𝑡
2

B1
[𝑥𝑡

1]M

FFN2FFN1
𝑥𝑡
0

𝑥𝑡
1

B2

A2
B1

∇A1

LoRA

[𝑥𝑡
2]M[𝑥𝑡

1]M

A1
∇A2

∇B1 ∇B2

Control

[𝑥𝑡
1]M

A1 B1
∇A1 ∇B1

FFN1 FFN2
𝑥𝑡
0

Figure 2: Memory consumption analysis for LoRA (top)
and Parallel Control (bottom) on two MLP layers. In LoRA,
the dominant memory usage comes from the intermediate
state x1

t . By treating the MLP layers as a single unit and
bypassing the intermediate states, the Parallel Control sig-
nificantly reduces memory requirements.

tuning. Consider a typical fine-tuning scenario with a batch
size of 16, a token length of 1024, and a feature dimension
of 4096. Thanks to the foundational LoRA framework, the
trainable parameters A, B, and their gradients require only
5 MB and 15 MB of GPU memory, respectively. The dom-
inant memory consumption now comes from the forward
states xt and the model weights Wt. Specifically, the inter-
mediate state x1

t contributes the largest portion of memory
usage (65.24%), due to the large feature size (16,384 per
token).

Storing this intermediate state is essential in the LoRA algo-
rithm, as it is needed for the later gradient computation of
A2

t w.r.t. the final loss ℓ:

Bℓ

BA2
t

“
Bℓ

Bx2
t

Bx2
t

Brx2
t sM

Brx2
t sM

BA2
t

, (8)

where Brx2
t sM

BA2
t

“ x1
t . As such, computing Bℓ

BA2
t

would require
the system to store x1

t in the forward pass. Similarly, the
state x0

t needs to be stored, although its size is much smaller.

In contrast, when multiple MLP layers are treated as a sin-
gle unit, this large intermediate state x1

t can be released in
memory. This is achieved by using the parallel scheme in
Figure 2 (bottom left), which bypasses this intermediate
state. Consequently, only the comparatively smaller state
x0
t needs to be stored, resulting in a substantial reduction in

GPU memory consumption.

The above example demonstrates why compressing multiple

5



From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on LoRA with Parallel Control

layers into one unit fv
u could potentially save GPU memory.

Note the reduction becomes more significant as the batch
size increases, the feature length expands, or multiple lin-
ear layers are stacked together. In such cases, the memory
savings provided by the proposed approach are more pro-
nounced, enabling the system to handle larger workloads
while keeping memory consumption in check.

4.3. Reducing Additional Parameter Numbers

In addition to reducing the memory, we show the proposed
control mechanism can also reduce the overall parameters
or adopt a larger rank with the same parameter budget.

Injecting new low-rank matrices would nevertheless intro-
duce new parameters, as well as additional intermediate
states. For a given state xt P Rmˆd, the standard FFN block
of a transformer architecture first expands the feature to 4d
and then reduces back to d. Applying the LoRA algorithm
to these layers involves introducing low-rank matrices A
and B with dimensions d ˆ r and r ˆ 4d. Consequently,
tuning the FFN block requires a total of 10rd parameters.

In contrast, within the state-FT framework, multiple MLP
layers and the corresponding LayerNorm can be viewed as
a single unit fu

v , enabling the application of a unified update
across the entire block. By applying the low-rank design
to the control function guv pMuÑv, xuq, the update requires
only two matrices of dimensions dˆr and rˆd, resulting in
a total of only 2rd parameters. This approach significantly
reduces parameter requirements by bypassing the feature
expansion stage in the FFN block. Alternatively, it allows
for the adoption of a higher rank within the same parameter
budget, thereby enhancing the effectiveness of fine-tuning.

4.4. Performance Analysis

Yet, we have to ensure that the reduction in memory and
parameters does not compromise overall performance. To
validate this, we present an analysis of the expressive power
of the proposed parallel control method in this part.

For the simplest case of deep linear networks, we have the
following result:
Theorem 4.1. Consider a deep linear network defined as:

f : x0 Ñ xT , xt`1 “ Wtxt, t “ 0, . . . , T, (9)

and its low-rank adaptation:

f̄ : x0 Ñ xT , xt`1 “ pWt `Rtqxt, t “ 0, . . . , T ´1,
(10)

where xt P Rdt represents the hidden state, Wt P Rdt`1ˆdt

is the weight matrix at layer t, and Rt P Rdt`1ˆdt is a
low-rank matrix with rank rt.

Then, there exists a weight matrix M satisfying

rankpMq ď r0 ` ¨ ¨ ¨ ` rT´1, (11)

such that for all x0 P Rd0 ,

f̄px0q “ fpx0q ` Mx0. (12)

This result implies that in the case of deep linear networks,
the parallel control method can always achieve the same
expressive power as LoRA, provided they share the same
total rank. Consequently, for linear models, it is always safe
to use parallel control without loss of expressive capability.

For non-linear blocks, the following result offers insights
into the potential advantages of parallel control over a single
state.

Theorem 4.2. Let Fxt
and Gxt

be the mappings ∆Wt ÞÑ

xt`1 P Rd, as defined in equations (2) and (3), respectively.
If ∇fpxtq is singular, then the pushforward of the tangent
space at 0 under Fxt

forms a proper subspace of Rd. In
contrast, the pushforward of the tangent space at 0 under
Gxt always spans the entire space Rd, as long as xt is
non-zero.

This theorem suggests that when ∇fpxtq is singular, local
perturbations in xt under LoRA are restricted to a subspace,
limiting control over the state. In contrast, parallel control
remains unaffected. This insight highlights that parallel
control can potentially provide greater adaptability in the
presence of degeneracies in the original model.

4.5. Rethinking Parallel Control: Affine vs Non-Affine
Control Structures

In fact, the difference between equations (2) and (3) extends
beyond a superficial rearrangement of terms or a simple
modification of the computational graph. Instead, these
formulations correspond to fundamentally distinct system
structures when viewed through the lens of control theory.

Equation (2), which represents the classical LoRA formula-
tion, can be seen as a non-affine control system,

9xptq “ fpxptq, uptqq,

where the control input uptq, or the trainable matrix ∆Wt

in LoRA, is embedded inside a nonlinear transformation.
This makes the system nonlinear in both the state xt and the
control ∆Wt. Analyzing such a non-affine control system
often tends to be complicated.

In contrast, the “Parallel Control” proposed in this work
follows a control-affine structure of the form:

9xptq “ fpxptqq ` xptquptq,

where the control component is decoupled from the function
f . This decomposition separates the dynamics into a nomi-
nal term and an additive control perturbation. From a learn-
ing perspective, this distinction has important implications.

6



From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on LoRA with Parallel Control

Affine and non-affine controls represent fundamentally dif-
ferent classes of control design, each with unique stability
and efficiency properties. Affine-control systems, in particu-
lar, are well-studied in classical and modern control theory,
particularly in feedback and optimal control (Franklin et al.,
2002; Skaf & Boyd, 2010; Goswami & Paley, 2021; Li
et al., 2023). This structure also aligns naturally with modu-
lar fine-tuning strategies, allowing adaptation mechanisms
to operate independently of the nonlinear core dynamics
fp¨q. In contrast, general nonlinear (non-affine) control
systems like LoRA and its variants embed the control in-
put within nonlinear transformations, making analysis and
design significantly more complex and often intractable.

In summary, the proposed formulation not only introduces
a new edge in the computational graph, but also fundamen-
tally redefines the system structure in a way that enhances
control interpretability and potential theoretical analysis. By
adopting a control-affine perspective, it opens the door to
simpler and interpretable analysis, paving the way for future
developments in fine-tuning theory and practice.

5. Experiments
In this section, we evaluate the effectiveness of the proposed
State-FT parallel control methods, compared to traditional
weight-FT approaches such as LoRA (Hu et al., 2021) and
DoRA (Liu et al., 2024). Our experiments cover a diverse
range of model architectures, including ViT, RoBERTa,
LLaMA2-7B and LLaMA3-8B.

5.1. A Toy Example on Vision Transformer (ViT)

We begin our evaluation with a toy example using the
CIFAR-100 dataset (Krizhevsky et al., 2009) on the ViT
model (Dosovitskiy et al., 2020). The objective of this ex-
periment is to demonstrate the feasibility of treating multiple
components as a single unit within the State-FT framework.
Specifically, we extend the FFN block by adding two addi-
tional MLP layers after the activation function. The State-FT
framework enables us to treat the LayerNorm and all MLP
layers as a unified function fu

v , in contrast to classical LoRA
algorithms, which apply low-rank decomposition separately
to each layer’s weights. To ensure a fair comparison, both
methods are configured to use an equal number of trainable
parameters, and fine-tuned for 50 epochs.

Table 1: Comparison of algorithms on the extended ViT-B
model. [†] Training time is tested on a single Nvidia-3090.

Algorithm # of Params GPU MemoryÓ Training TimeÓ† AccuracyÒ

LoRA 1.27 M 18.010 GB 4h 42m 91.84˘0.11

Control 1.27 M 12.280 GB 3h 24m 91.96˘0.05

Tuning each layer individually, as in the classical LoRA ap-

proach, requires the storage of multiple intermediate states
during the forward pass, resulting in significantly higher
GPU memory usage. Specifically, LoRA’s memory con-
sumption is approximately 46.66% greater than that of the
parallel control method, which also results in a 38.24%
increase in training time. Despite these gains in memory
efficiency and reduced training time, the parallel control
approach obtains similar accuracy performance as LoRA.
Therefore, the parallel control approach proves to be an
effective fine-tuning method, offering lower memory con-
sumption and reduced training time while maintaining com-
petitive performance.

5.2. GLUE Benchmark with RoBERTa Models

We further apply the parallel control approach to the GLUE
benchmark (Wang, 2018), where the experiment settings
follow the original LoRA paper (Hu et al., 2021). The
experimental parameters, including the choice of pretrained
model, learning rate, and ranks for the LoRA weights, are
consistent with those used in the LoRA paper. Details of
these settings are available in Appendix B.1. But we also
make a few changes. (1) Unlike the original LoRA paper,
which first trains models on MNLI and selects the best
checkpoint, we omit this step to reduce complexity and
improve reproducibility, especially for datasets with limited
samples like MRPC, RTE, and STS-B, as suggested by (Wu
et al., 2024). (2) We fine-tune the entire RoBERTa head,
which includes multiple MLP layers, instead of just the
last layer. While this increases the number of parameters
(Table 3), it generally results in more stable performance.

The results, summarized in Table 2, highlight the perfor-
mance of the proposed Control method compared to LoRA
and DoRA across eight GLUE benchmark tasks. Across
these tasks, the Control approach demonstrates superior per-
formance on seven out of eight. For tasks with sufficient
samples (e.g., MNLI), the improvement is marginal. How-
ever, on other tasks, such as CoLA, the Control method
outperforms LoRA by 2.05% and DoRA by 1.68%. This
improvement demonstrates the method’s ability to handle
more complex linguistic patterns effectively. The only ex-
ception is the STS-B dataset, where the Control method is
marginally outperformed by DoRA on RoBERTa-base by
0.19%.

The more important parts are the reduced memory and com-
putation time. Table 3 reports the number of parameters,
GPU memory usage, and training time for RoBERTa-base
on the CoLA dataset (Warstadt, 2019). The control approach
demonstrates the lowest GPU memory usage, requiring only
12.634 GB, which is 1.396 GB less than LoRA and 3.652
GB less than DoRA. Furthermore, the control approach
achieves the shortest training time, completing in 4 minutes
and 59 seconds, making it approximately 10.2% faster than

7



From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on LoRA with Parallel Control

Table 2: Comparison of algorithm performance on the GLUE benchmark. We report the overall (matched and mismatched)
accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks.

Model & Method MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg

Robbase (LoRA) 87.53˘0.08 95.11˘0.23 88.64˘0.23 63.27˘0.81 93.06˘0.15 90.79˘0.04 75.79˘1.57 90.74˘0.09 85.62
Robbase (DoRA) 86.28˘0.13 94.84˘0.09 88.40˘0.11 63.64˘0.33 92.96˘0.07 90.11˘0.05 76.05˘1.67 90.78˘0.08 85.38
Robbase (Control) 87.57˘0.16 95.26˘0.06 89.30˘0.31 65.32˘0.44 93.12˘0.04 91.04˘0.02 76.89˘0.78 90.59˘0.15 86.14

Roblarge (LoRA) 90.89˘0.12 96.56˘0.19 90.52˘0.30 68.13˘0.12 95.13˘0.08 91.79˘0.06 84.48˘0.29 92.00˘0.16 88.69
Roblarge (DoRA) 90.03˘0.33 96.63˘0.19 90.85˘0.24 68.82˘0.03 95.15˘0.07 90.25˘0.05 84.72˘0.85 92.45˘0.13 88.61
Roblarge (Control) 90.91˘0.11 96.67˘0.25 90.94˘1.23 69.85˘0.31 95.21˘0.10 91.94˘0.04 86.28˘0.36 92.45˘0.10 89.28

Table 3: Number of parameters, GPU memory and the
training time (on a single Nvidia-3090) for RoBERTa base
on the RTE dataset. Batch size is 256, and epoch is 80.

Algorithm # of Params GPU MemoryÓ Training TimeÓ

LoRA 0.88 M 14.030 GB 5m 33s
DoRA 0.91 M 16.286 GB 7m 10m
Control 0.88 M 12.634 GB 4m 59s

LoRA and 30.4% faster than DoRA.

Finally, the control approach primarily focuses on tuning
the MLP layers using a parallel scheme, whereas LoRA
and DoRA are designed to tune the Q and V blocks, con-
sistent with their original configurations. Furthermore, in
Appendix B.2, we provide results demonstrating that the par-
allel control approach also outperforms a modified version
of LoRA adapted to tune the MLP layers.

5.3. Scaling Up to Llama-2 and Llama-3

We extend our experiments to larger backbones, specifi-
cally LLaMA2-7B (Touvron et al., 2023) and LLaMA3-
8B (Dubey et al., 2024), on the “Commonsense Benchmark”.
These experiments were first considered in DoRA (Liu et al.,
2024), and we follow this pioneering work with an identical
setup. Note that DoRA fine-tunes five components—Q, K,
V, U, and D—for optimal performance, and we adopt this
design. Specifically, we extend the control approach with
two proposed solutions: the first combines control-based
tuning for U and D with LoRA-based tuning for Q, K, and V,
while the second adopts a unified double-control approach,
tuning all five components using the control mechanism.

The results, as reported in Table 4, illustrate the perfor-
mance of four fine-tuning methods on the LLaMA2-7B and
LLaMA3-8B models. For the 7B model, the hybrid ap-
proach of Control(UD)+LoRA(QKV) outperforms DoRA
in both accuracy and efficiency. With an average score of
80.0, it surpasses DoRA while significantly reducing 21G
less memory and requiring almost half training time, demon-
strating the advantages of strategically combining control
mechanisms and LoRA for selective edge updates. On the

other hand, the double control approach achieves the lowest
GPU memory usage and training time, consuming only 59%
of the memory and 47% of the time required by DoRA,
while delivering nearly identical performance (79.6 for dou-
ble control versus 79.7 for DoRA). For the 8B model, the
trends are consistent. The double control method achieves
competitive performance (average score 85.3) while requir-
ing only 67% of DoRA’s memory and 51% of its training
time.

It is important to highlight that the reduction in memory is
not primarily due to the decrease in the number of parame-
ters. For instance, halving the rank results in approximately
a 50% reduction in parameters; however, the memory us-
age of DoRA only sees a marginal decrease of 0.256 GB.
This indicates that the primary factor influencing memory
consumption is not the parameter count but rather the in-
termediate states that need to be stored during the training
process. By skipping these intermediate states, the con-
trol approaches maximally reduce the memory cost, while
preserving or improving the overall performance.

5.4. Training 7B/8B Models on Nvidia-3090

Tuning 7B/8B models typically demands high-end GPUs,
such as the Nvidia A100 with 80GB of memory. With the
memory reduction provided by our approach, we investigate
training these models on consumer-level hardware, specif-
ically the Nvidia 3090 with 24GB memory. In contrast to
the prior method (Zhao et al., 2024) on the 7B model, we
refrain from using quantization in our approach: the pre-
trained 7B/8B models are loaded in FP16, while the control
weights remain in FP32.

By reducing the batch size to 4 and applying gradient ac-
cumulation with a single step, the proposed control-based
approach exhibits only a minor performance degradation
on the 7B model. For example, the double-control variant
experiences a drop of just 0.7 points in accuracy. Despite
this slight decrease, the model remains trainable on a single
NVIDIA 3090 GPU, with a memory of only 20.656 GB.
Notably, the performance degradation is even smaller on the
8B model, highlighting the scalability and practicality of
the method on resource-constrained hardware.

8



From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on LoRA with Parallel Control

Table 4: Comparison of algorithm performance on the Commonsense benchmark. Results show that the Control+LoRA and
DoubleControl approaches obtain similar performance to DoRA with significant less GPU memories and computation time.
Rank is set to 32 for all algorithms. † indicates numbers published in the original DoRA work.

Model Method # of
Params

GPU
Memory

Training
Time BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg

ChatGPT † - - - - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

LLaMA2-7B

LoRA (QKVUD) † 56.10 M 44.204 GB 8h37m 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
DoRA (QKVUD) † 56.98 M 59.568 GB 14h50m 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
Control(UD)+LoRA(QKV) 41.94 M 38.556 GB 7h36m 73.0 83.5 79.5 89.7 82.6 82.9 68.6 80.4 80.0
DoubleControl (QKVUD) 33.55 M 35.214 GB 6h58m 72.3 82.5 79.2 89.1 83.1 83.0 68.5 79.0 79.6

LLaMA3-8B

LoRA (QKVUD) † 56.62 M 55.040 GB 9h33m 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
DoRA (QKVUD) † 57.41 M 67.284 GB 15h15m 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
Control(UD)+LoRA(QKV) 35.65 M 48.550 GB 8h11m 75.7 87.9 80.4 95.5 86.3 90.6 79.8 86.2 85.3
DoubleControl (QKVUD) 33.55 M 45.316 GB 7h44m 74.1 87.8 80.7 95.5 86.0 90.8 80.0 87.8 85.3

Table 5: Training of 7B/8B models on Nvidia-3090. The batch size is set to 4 for the 7B model and 3 for the 8B model, with
gradient accumulation set to 2. We omit comparison to LoRA and DoRA, as they are out-of-memory in this setting.

Model Method # of
Params

GPU
Memory

Training
Time BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg

LLaMA2-7B Control(UD)+LoRA(QKV) 41.94 M 21.874 GB 21h21m 71.4 81.1 75.7 86.7 82.9 82.3 67.2 80.4 78.4
DoubleControl (QKVUD) 33.55 M 20.656 GB 20h09m 70.8 83.0 79.2 84.6 81.5 82.8 68.3 81.2 78.9

LLaMA3-8B Control(UD)+LoRA(QKV) 35.65 M 22.920 GB 21h51m 75.1 87.8 79.9 95.3 85.0 90.0 79.0 85.0 84.6
DoubleControl (QKVUD) 33.55 M 22.176 GB 20h33m 74.4 86.9 80.4 95.3 85.4 90.1 79.4 85.6 84.7

5.5. Ablation Studies on the Choice of Controlled Blocks

In this paper, we propose tuning an entire residual block
by introducing an additional parallel edge in the computa-
tional graph. To motivate this design choice, we conduct
an ablation study comparing different tuning granularities,
including individual MLP layers, attention modules, and
full residual blocks.

Table 6: Comparison of performance and GPU memory
usage across different fine-tuning targets in ViT.

MLP Attn Full Block

Performance 91.96˘0.05 91.93˘0.03 91.53˘0.11

GPU Memory 12.280 GB 12.480 GB 12.196 GB

These results indicate that controlling either the MLP or at-
tention layer individually leads to similar performance, with
attention control slightly reducing accuracy and increasing
GPU memory usage. In contrast, controlling the entire resid-
ual block results in a more notable 0.43% performance drop.
This is likely because each ViT layer consists of two distinct
residual blocks, and treating the entire block as a single unit
reduces its effectiveness.

6. Conclusion and Future Works
In conclusion, this paper presents a shift from the traditional
weight-centric fine-tuning approach to a state-based frame-
work. Instead of focusing on weight adaptation, our method
prioritizes adjusting forward states, with LoRA serving as
a special case. By introducing parameterized perturbations
to the computational graph, we can control entire residual

blocks, significantly improving memory efficiency by reduc-
ing the need to store large intermediate states. Empirical
results across multiple model architectures demonstrate that
our approach further reduces memory usage and computa-
tion time, and also enhances performance.

While this paper focuses exclusively on edges associated
with residual connections, this design choice represents
just one possible solution of the broader state-based fine-
tuning framework. Whether these edges are indeed the most
effective or efficient targets for adaptation remains an open
question. Future work may explore tuning edges beyond
the original computational graph, including connections
pu, vq R E, potentially unlocking new forms of interaction
and control within the network. Additionally, we show that
repositioning trainable matrices gives rise to a control-affine
structure, though a comprehensive theoretical analysis of
the resulting control system is left for future work.

Acknowledgements
This research is supported by the National Research Foun-
dation, Singapore, under the NRF fellowship (project No.
NRF-NRFF13-2021-0005).

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning, in particular the parameter-efficient
fine-tuning. There are limited potential societal conse-
quences of our work, none of which we feel must be specifi-
cally highlighted here.

9



From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on LoRA with Parallel Control

References
Aghajanyan, A., Zettlemoyer, L., and Gupta, S. Intrin-

sic dimensionality explains the effectiveness of language
model fine-tuning. arXiv preprint arXiv:2012.13255,
2020.

Alain, G. Understanding intermediate layers using linear
classifier probes. arXiv preprint arXiv:1610.01644, 2016.

Åström, K. J. and Hägglund, T. Pid control. IEEE Control
Systems Magazine, 1066, 2006.

Ba, J. L. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Benning, M., Celledoni, E., Ehrhardt, M. J., Owren, B.,
and Schönlieb, C.-B. Deep learning as optimal control
problems: Models and numerical methods. arXiv preprint
arXiv:1904.05657, 2019.

Chen, S., Ge, C., Tong, Z., Wang, J., Song, Y., Wang, J.,
and Luo, P. Adaptformer: Adapting vision transform-
ers for scalable visual recognition. Advances in Neural
Information Processing Systems, 35:16664–16678, 2022.

Cheng, J., Li, Q., Lin, T., and Shen, Z. Interpolation, ap-
proximation and controllability of deep neural networks.
arXiv preprint arXiv:2309.06015, 2023.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. Qlora: Efficient finetuning of quantized llms. arXiv
preprint arXiv:2305.14314, 2023.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

E, W. A proposal on machine learning via dynamical sys-
tems. Communications in Mathematics and Statistics, 1
(5):1–11, 2017.

Franklin, G. F., Powell, J. D., Emami-Naeini, A., and Powell,
J. D. Feedback control of dynamic systems, volume 4.
Prentice hall Upper Saddle River, 2002.

Goswami, D. and Paley, D. A. Bilinearization, reachability,
and optimal control of control-affine nonlinear systems:
A koopman spectral approach. IEEE Transactions on
Automatic Control, 67(6):2715–2728, 2021.

Haber, E. and Ruthotto, L. Stable architectures for deep
neural networks. Inverse problems, 34(1):014004, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp.
2790–2799. PMLR, 2019.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Kalajdzievski, D. A rank stabilization scaling factor for
fine-tuning with lora. arXiv preprint arXiv:2312.03732,
2023.

Kaplun, G., Gurevich, A., Swisa, T., David, M., Shalev-
Shwartz, S., and Malach, E. Less is more: Selec-
tive layer finetuning with subtuning. arXiv preprint
arXiv:2302.06354, 2023.

Karimi Mahabadi, R., Henderson, J., and Ruder, S. Com-
pacter: Efficient low-rank hypercomplex adapter layers.
Advances in Neural Information Processing Systems, 34:
1022–1035, 2021.

Kirk, D. E. Optimal control theory: an introduction. Courier
Corporation, 2004.

Kopiczko, D. J., Blankevoort, T., and Asano, Y. M. Vera:
Vector-based random matrix adaptation. International
Conference on Learning Representations, 2023. doi: 10.
48550/arXiv.2310.11454.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lee, Y., Chen, A. S., Tajwar, F., Kumar, A., Yao, H., Liang,
P., and Finn, C. Surgical fine-tuning improves adaptation
to distribution shifts. arXiv preprint arXiv:2210.11466,
2022.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

Li, B., Wen, S., Yan, Z., Wen, G., and Huang, T. A survey on
the control lyapunov function and control barrier function
for nonlinear-affine control systems. IEEE/CAA Journal
of Automatica Sinica, 10(3):584–602, 2023.

Li, Q. and Hao, S. An optimal control approach to deep
learning and applications to discrete-weight neural net-
works. In International Conference on Machine Learning,
pp. 2985–2994. PMLR, 2018.

10



From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on LoRA with Parallel Control

Li, Q., Chen, L., Tai, C., et al. Maximum principle
based algorithms for deep learning. arXiv preprint
arXiv:1710.09513, 2017.

Li, Q., Lin, T., and Shen, Z. Deep learning via dynamical
systems: An approximation perspective. Journal of the
European Mathematical Society, 25(5):1671–1709, 2022.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous
prompts for generation. arXiv preprint arXiv:2101.00190,
2021.

Liu, S.-Y., Wang, C.-Y., Yin, H., Molchanov, P., Wang,
Y.-C. F., Cheng, K.-T., and Chen, M.-H. Dora: Weight-
decomposed low-rank adaptation. International Confer-
ence on Machine Learning, 2024. doi: 10.48550/arXiv.
2402.09353.

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z.,
and Tang, J. Gpt understands, too. AI Open, 2021. doi:
10.1016/j.aiopen.2023.08.012.

Liu, Y. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 364, 2019.

Lodha, A., Belapurkar, G., Chalkapurkar, S., Tao, Y., Ghosh,
R., Basu, S., Petrov, D., and Srinivasan, S. On surgi-
cal fine-tuning for language encoders. arXiv preprint
arXiv:2310.17041, 2023.

Lu, Y., Zhong, A., Li, Q., and Dong, B. Beyond finite layer
neural networks: Bridging deep architectures and numer-
ical differential equations. International Conference on
Machine Learning, 2017.

Nagae, S., Kanda, D., Kawai, S., and Nobuhara, H. Auto-
matic layer selection for transfer learning and quantitative
evaluation of layer effectiveness. Neurocomputing, 469:
151–162, 2022.

Nguyen, T., Uribe, C. A., Nguyen, T. M., and Baraniuk,
R. G. Pidformer: Transformer meets control theory. arXiv
preprint arXiv: 2402.15989, 2024.

Oquab, M., Bottou, L., Laptev, I., and Sivic, J. Learning and
transferring mid-level image representations using con-
volutional neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 1717–1724, 2014.

Paischer, F., Hauzenberger, L., Schmied, T., Alkin, B.,
Deisenroth, M. P., and Hochreiter, S. One initializa-
tion to rule them all: Fine-tuning via explained variance
adaptation. arXiv preprint arXiv:2410.07170, 2024.

Rebuffi, S.-A., Bilen, H., and Vedaldi, A. Learning multiple
visual domains with residual adapters. Advances in neural
information processing systems, 30, 2017.

Skaf, J. and Boyd, S. P. Design of affine controllers via
convex optimization. IEEE Transactions on Automatic
Control, 55(11):2476–2487, 2010.

Tabuada, P. and Gharesifard, B. Universal approximation
power of deep residual neural networks via nonlinear
control theory. arXiv preprint arXiv: 2007.06007, 2020.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, A. Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Warstadt, A. Neural network acceptability judgments. arXiv
preprint arXiv:1805.12471, 2019.

Wu, M., Liu, W., Wang, X., Li, T., Lv, C., Ling, Z., Zhu, J.,
Zhang, C., Zheng, X., and Huang, X. Advancing param-
eter efficiency in fine-tuning via representation editing.
arXiv preprint arXiv:2402.15179, 2024.

Zhang, C., Cheng, J., and Li, Q. An optimal control view
of lora and binary controller design for vision transform-
ers. In Computer Vision – ECCV 2024: 18th European
Conference, Milan, Italy, September 29–October 4, 2024,
Proceedings, Part LIII, pp. 144–160, Berlin, Heidelberg,
2024a. Springer-Verlag. ISBN 978-3-031-73667-4. doi:
10.1007/978-3-031-73668-1 9. URL https://doi.
org/10.1007/978-3-031-73668-1_9.

Zhang, C., Jingpu, C., Xu, Y., and Li, Q. Parameter-efficient
fine-tuning with controls. In Forty-first International
Conference on Machine Learning, 2024b. URL https:
//openreview.net/forum?id=C4nalr0DoE.

Zhang, L., Zhang, L., Shi, S., Chu, X., and Li, B. Lora-fa:
Memory-efficient low-rank adaptation for large language
models fine-tuning. arXiv preprint arXiv: 2308.03303,
2023a.

Zhang, Q., Chen, M., Bukharin, A., Karampatziakis, N.,
He, P., Cheng, Y., Chen, W., and Zhao, T. Adalora:
Adaptive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512, 2023b.

Zhao, J., Zhang, Z., Chen, B., Wang, Z., Anandkumar,
A., and Tian, Y. Galore: Memory-efficient llm train-
ing by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

11

https://doi.org/10.1007/978-3-031-73668-1_9
https://doi.org/10.1007/978-3-031-73668-1_9
https://openreview.net/forum?id=C4nalr0DoE
https://openreview.net/forum?id=C4nalr0DoE


From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on LoRA with Parallel Control

A. Proof for Theorems
A.1. Proof of Theorem 4.1

Proof. f̄ : x0 Ñ xT is given by
f̄px0q “ pWT ` RT q ¨ ¨ ¨ pW0 ` R0qxt. (13)

Notice that

∆W :“pWT ` RT q ¨ ¨ ¨ pW0 ` R0q ´ WT ¨ ¨ ¨W0 (14)

“

T
ÿ

t“1

˜

T
ź

i“t

pWi ` Riq

t´1
ź

i“1

Wi ´

T
ź

i“t`1

pWi ` Riq

t
ź

i“1

Wi

¸

(15)

“

T
ÿ

t“1

«˜

T
ź

i“t`1

pWi ` Riq

¸

Rt

˜

t´1
ź

i“1

Wi

¸ff

(16)

(17)

Here,
śt

i“1 Wt :“ WtWt´1 ¨ ¨ ¨W1 denotes the left product of a sequence of matrices. Since

rank

˜˜

T
ź

i“t`1

pWi ` Riq

¸

Rt

˜

t´1
ź

i“1

Wi

¸¸

ď rankpRtq ď rt, (18)

we have rankp∆W q ď r0 ` ¨ ¨ ¨ ` rT´1. Therefore, take M “ ∆W gives the result.

A.2. Proof of Theorem 4.2

Proof. Consider ∆W to be small, Taylor expansion of Fxt at zero gives:

Fxt
p∆W q “ xt ` ftppWt ` ∆Wtqxtq “ xt ` ftpWtxtq ` ∇fpxtq∆Wxt ` Op}∆W }22q (19)

Therefore, ∇fpxtq∆Wxt can only take values in the image space of ∇fpxtq, which is a proper subspace of Rd when
∇fpxtq is singular.

Moreover, recall that
Gxtp∆Wtq “ xt ` ftppWtxtq ` ∆Wtxt, (20)

it is obvious that ∆Wtxt can take arbitrary value in Rd as long as xt is non-zero.

B. Experiment Details
We present the details of our experimental setups in this section to provide the configurations and methodologies employed.
This includes the specifications of the datasets, model architectures, and hyperparameter configurations, as well as the
training strategies and evaluation protocols used in our experiments.

B.1. Glue Benchmark with RoBERTa Models

The GLUE (General Language Understanding Evaluation) benchmark (Wang, 2018) is a widely used suite of natural
language understanding tasks designed to evaluate the performance of machine learning models across a diverse range
of linguistic challenges. It includes tasks such as sentence similarity (STS-B), natural language inference (MNLI, RTE,
QNLI), sentiment analysis (SST-2), textual entailment (WNLI), question answering (QQP), and linguistic acceptability
(CoLA). This dataset is widely utilized as a benchmark in prior studies on LoRA (Hu et al., 2021), serving as an evaluation
framework for assessing the effectiveness of low-rank adaptation techniques.

For datasets with limited samples, such as MRPC, RTE, and STS-B, the initial LoRA paper employs a strategy of first
pre-training models on the MNLI dataset, leveraging its larger size to improve performance, and subsequently selecting
the best-performing checkpoint as the initialization for fine-tuning. While this approach can enhance downstream task
performance, it introduces additional complexity to the experimental workflow and may pose challenges for reproducibility.

12



From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on LoRA with Parallel Control

Following the simplified methodology proposed by (Wu et al., 2024), we omit this pre-training step, prioritizing a more
straightforward and accessible experimental design.

We utilize the RoBERTa-base and RoBERTa-large models as the backbone architectures, incorporating LoRA, DoRA, or
control modules, and directly fine-tuning these enhanced models on each dataset. This straightforward approach eliminates
any need for additional pre-training steps. Generally, for datasets with a large number of samples, such as MNLI, the
performance remains consistent (e.g., 87.5% in the original paper, 87.57% in Table 2). However, for smaller-scale datasets,
such as MRPC or STS-B, we observe a slight decline in performance compared to previously reported results, likely due to
the absence of specialized pre-training on MNLI, or the shrink for sequence length to 128 in our experiment. Despite this,
the simplified workflow improves reproducibility while still maintaining similar performance across tasks.

We report the average performance over three random seeds (40, 41, and 42). For each run, the result is determined based on
the best-performing epoch, selected according to the validation set performance. The rank of LoRA and DoRA is set as 8,
and its alpha is set as 16. Since these methods need to tune both Q and V matrices, while Control only needs to tune one
block, we set the rank of control to 16. This allows all algorithms to have similar parameters. Details of hyperparameter
configurations are listed as follows.

Model Dataset MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
WarmUp 0.06
Scheduler Linear
Seq Length 128

Robbase

Batch Size 128 128 128 64 256 128 128 128
Epochs 30 50 30 80 25 25 80 40
Learning Rate 5e-4 5e-4 4e-4 3e-4 4e-4 5e-4 4e-4 4e-4

Roblarge

Batch Size 32 64 32 32 32 32 64 32
Epochs 10 20 30 20 10 20 20 10
Learning Rate 3e-4 4e-4 3e-4 5e-4 3e-4 3e-4 4e-4 3e-4

Table 7: Hyperparameters on GLUE benchmark datasets.

B.2. Additional Experiments on GLUE Benchmark

The control method primarily targets tuning the FFN block, whereas LoRA focuses on updating the Q and V matrices within
the attention block. Our experiments reveal that the control method outperforms LoRA, particularly on datasets such as
CoLA. To further investigate, we conduct an additional experiment where we apply LoRA to tune both layers of the FFN
block.

Method Seed 40 Seed 41 Seed 42 Average

LoRA 61.92 63.93 60.59 62.15˘1.37

Control 65.36 64.84 65.77 65.32˘0.44

Table 8: Performance of LoRA and Control on tuning U and D matrices.

Specifically, we repeat this experiment on the CoLA dataset using random seeds ranging from 40 to 42 to ensure the
consistency of the results.. The table 3 presents the results of two methods, LoRA and Control, evaluated across these three
random seeds with their respective average performances. The results suggest that it is possible to control both MLP layers
simultaneously, similar to the parallel control approach, rather than tuning each MLP layer individually.

B.3. LLaMA-2 and LLaMA-3

The LLaMA2-7B (Touvron et al., 2023) and LLaMA3-8B (Dubey et al., 2024) models are part of the LLaMA (Large
Language Model Meta AI) family, designed for efficient scaling in natural language understanding and generation tasks.

13



From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on LoRA with Parallel Control

On the other hand, the commonsense reasoning tasks consist of 8 distinct sub-tasks, each with its own designated training
and testing sets. In line with DoRA, we combine the training datasets from all 8 sub-tasks to form a unified training set.
The pretrained models are first tuned on this combined training set, and then evaluations are carried out separately on the
individual testing sets for each sub-task.

This experiment was first explored in DoRA (Liu et al., 2024), and we replicate the experimental setup as outlined in the
original paper. In prior work with the RoBERTa model, tuning strategies were restricted to specific components: LoRA and
DoRA primarily focus on adjusting the Q and V matrices, while the control mechanism targets the U and D matrices within
the FFN block. However, for more complex architectures like LLaMA, it is generally advised (Liu et al., 2024) to tune all
five components—Q, K, V, U, and D—for optimal model performance. To address this, we propose two extensions to the
control approach: the first combines LoRA for tuning the Q, K, and V matrices with control-based tuning for the U and D
matrices, while the second utilizes a unified double-control strategy, which tunes all five components through the control
mechanism to enhance model flexibility and accuracy.

For the hyperparameter configuration, we use the AdamW optimizer, and the maximum sequence length is set to 256.
Following DoRA, the training is conducted over a total of 3 epochs, with a batch size of 16 to balance computation and
memory usage. On Nvidia-3090, the batch size shrinks to 4 for LLaMA2-7B and 3 for LLaMA3-8B model, with another
round of gradient accumulation. For LoRA and DoRA, the rank is set to 32, and the alpha value is set to 64. In contrast, the
rank for the Control approach is set to 64, since it tunes both U and D with one simple control unit.

B.4. Sensitivity on the Ranks

We conduct a sensitivity analysis on the RTE dataset by varying the control rank r to assess its effect on GPU memory
consumption, training time, and model accuracy.

Table 9: Effect of rank r on GPU memory, training time, and accuracy.

Rank (r) GPU Memory Training Time Accuracy

1 12.620 GB 4m 58s 73.05˘0.34

4 12.622 GB 4m 59s 73.41˘1.48

8 12.626 GB 4m 59s 74.37˘0.59

16 12.634 GB 4m 59s 76.89˘0.78

32 12.674 GB 5m 00s 77.17˘0.34

64 12.724 GB 5m 02s 77.01˘0.68

As the rank of the control parameters increases, GPU memory usage remains relatively stable, exhibiting only a slight
increase. This stability stems from the use of low-rank matrices, which efficiently limit the memory overhead associated
with storing backward gradients. In terms of accuracy, we observe consistent improvements up to a rank of 32, suggesting
that increased rank enhances the expressiveness of the adaptation. However, at rank 64, the performance slightly declines
compared to rank 32, indicating diminishing returns and potential overfitting beyond a certain threshold.

Next, we compare the performance of Control, LoRA, and DoRA across different ranks: At lower ranks (r=8), LoRA and

Table 10: Comparison of Control, LoRA, and DoRA across different ranks r.

Method Control LoRA DoRA

Accuracy (r “ 8) 74.37˘0.59 74.84˘1.48 74.97˘1.45

Accuracy (r “ 16) 76.89˘0.78 75.79˘1.57 76.05˘1.67

Accuracy (r “ 32) 77.17˘0.34 75.97˘2.07 76.65˘1.19

Accuracy (r “ 64) 77.01˘0.68 75.93˘1.78 76.78˘2.01

DoRA achieve slightly higher accuracy than the control method, indicating that traditional weight-centric approaches may
have an edge with limited parameter capacity. However, as the rank increases to 16 and beyond, the control method begins
to outperform both LoRA and DoRA, demonstrating its ability to better leverage the increased expressiveness. Since raising

14



From Weight-Based to State-Based Fine-Tuning: Further Memory Reduction on LoRA with Parallel Control

the rank to 16 or 32 results in only minimal increases in GPU memory usage and training time, we recommend adopting
relatively higher ranks to maximize performance gains. Notably, this trend is consistent across other datasets such as CoLA
and SST-2, highlighting the general effectiveness of the control-based fine-tuning approach.

15


