
Under review as a conference paper at ICLR 2022

DSEE: DUALLY SPARSITY-EMBEDDED EFFICIENT
TUNING OF PRE-TRAINED LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Gigantic pre-trained models have become central to natural language processing
(NLP), serving as the starting point for fine-tuning towards a range of downstream
tasks. However, two pain points persist for this paradigm: (a) as the pre-trained
models grow bigger (e.g., 175B parameters for GPT-3), even the fine-tuning pro-
cess can be time-consuming and computationally expensive; (b) the fine-tuned
model has the same size as its starting point by default, which is neither sen-
sible due to its more specialized functionality, nor practical since many fine-
tuned models will be deployed in resource-constrained environments. To address
these pain points, we propose a framework for resource- and parameter-efficient
fine-tuning by leveraging the sparsity prior in both weight updates and the final
model weights. Our proposed framework, dubbed Dually Sparsity-Embedded
Efficient Tuning (DSEE), aims to achieve two key objectives: (i) parameter ef-
ficient fine-tuning - by enforcing sparsity-aware weight updates on top of the pre-
trained weights; and (ii) resource-efficient inference - by encouraging a sparse
weight structure towards the final fine-tuned model. We leverage sparsity in these
two directions by exploiting both unstructured and structural sparse patterns in
pre-trained language models via magnitude-based pruning and `1 sparse regu-
larization. Extensive experiments and in-depth investigations, with diverse net-
work backbones (i.e., BERT, GPT-2, and DeBERTa) on dozens of datasets, con-
sistently demonstrate highly impressive parameter-/training-/inference-efficiency,
while maintaining competitive downstream transfer performance. For instance,
our DSEE-BERT obtains about 35% inference FLOPs savings with < 1% train-
able parameters and comparable performance to conventional fine-tuning. 1

1 INTRODUCTION

Most recent NLP applications have been following the pre-train then fine-tune paradigm, where we
start from a gigantic pre-trained model and fine-tune it towards downstream tasks. Conventional
fine-tuning works by updating all of the parameters of the pre-trained model. As the size of pre-
trained models grows, updating all parameters becomes less feasible in most practical scenarios,
due to the expensive memory and computational requirements. For example, BERTBASE (Devlin
et al., 2019) has 110M trainable parameters, while GPT-2 (Radford et al., 2019) has up to 1.5B and
the largest version of GPT-3 (Radford et al., 2019) has an astonishing 175B trainable parameters. As
such, conventional fine-tuning of the larger models could require hundreds of GPU hours. Another
downside of this paradigm is that it requires storing as many parameters, as in the large-scale pre-
trained models, for each downstream task. That poses impediments to the deployment in real-world
resource-constrained environments.

One solution to address the extensive resource requirement of conventional fine-tuning is model
pruning (LeCun et al., 1990; Han et al., 2015a; Ren et al., 2018; He et al., 2017; Liu et al., 2017),
where unnecessary weights are eliminated to shrink the model size. For example, Chen et al.
(2021b) leverages `1 regularization to remove insignificant attention heads and gains 35% ∼ 45%
training time with comparable performance. Guo et al. (2020) learns sparse task-specific “diff”
vectors for various downstream fine-tuning tasks, leading to great memory savings. All these stud-
ies indicate the rise of sparsity naturally during fine-tuning a general-purpose pre-trained model,

1All codes are provided in the supplement.

1

Under review as a conference paper at ICLR 2022

to some specialized downstream functionality. One potential interpretation, of why sparsity arises,
is that different subsets of the parameters may be responsible for different downstream tasks and
data domains (Sanh et al., 2020). However, identifying appropriate sparse pruning masks requires
burdensome training of models with full weights, which can still be unaffordable for many practi-
tioners. For example, fine-tuning a large pre-trained language model like GPT-3 for just one step
consumes at least 1.2TB of VRAM and requires 96 pieces of NVIDIA Tesla (Hu et al., 2021).

One parallel alternative is designing parameter-efficient fine-tuning algorithms, which aims to only
optimize a small portion of weights while fixing most of the pre-trained weights during the down-
stream task training step. Pioneering works along this line, which utilize adapters (Houlsby et al.,
2019) or low-rank decomposition (Hu et al., 2021), can significantly reduce the number of trainable
parameters while preserving good fine-tuning performance. Introducing only a small number of
task-specific parameters for each new downstream task can substantially improve the memory and
deployment efficiency of models as it allows us to reuse the remaining unchanged/shared parame-
ters. However, there are two major hurdles of current parameter-efficient fine-tuning: (i) it does not
yield any inference efficiency gains since the full pre-trained weights are still required to calculate
outputs; and (ii) current methods assume the weight update to be either sparse (Guo et al., 2020)
or low-rank (Hu et al., 2021), yet those assumptions might be oversimplified and overly restricted
to allow for effective updates. For example, the low-rank assumptions on weight matrices might be
overly strong since some weights cannot be fitted in the low-rank space (Yu et al., 2017). Recently
Chen et al. (2021a) also find that using both sparse and low-rank components performs better than
either of them. These observations have inspired us to explore better parameter-efficiency methods.

To tackle both resource- and parameter-efficiency issues of large model fine-tuning, we explicitly
draw on the prior of sparsity for both weight updates and the final weights, and establish a du-
ally sparsity-embedding efficient tuning (DSEE) framework. From a pre-trained model, DSEE first
adopts a sparsity-aware low-rank weight update to achieve parameter efficiency of the fine-tuning
process; and then enforces a sparse weight structure by masking to achieve resource efficiency of the
fine-tuned model at inference time. Our contributions can be summarized as follows:

• We propose the dually sparsity-embedding efficient tuning (DSEE), which unifies sparsity-
aware weight update and sparse pretrained weight in fine-tuning gigantic pre-trained mod-
els. It is the first attempt towards jointly optimizing both parameter efficiency of the fine-
tuning process, and the resource efficiency of the fine-tuned model.

• We exploit both unstructured and structured sparse patterns in the DSEE framework. For
weight updates, we find the injected sparsity prior to greatly enhance existing parameter-
efficient update schemes, and to further trim down the needed amount of trainable param-
eters. For the final weights, we learn well-performed sparse masks from the pre-trained
weights, leading to substantial computation and memory reductions at inference.

• Extensive experiments demonstrate the effectiveness of our proposal across various rep-
resentative pre-trained languages models, such as BERT, GPT-2, and DeBERTa; and on
diverse evaluation benchmarks, such as E2E, DART, WebNLG, and GLUE. Specifically,
on (E2E, Dart, WebNLG), our methods can achieve a BLUE score of (69.75, 55.40, 46.66)
with less than 1% of total trainable parameters. On BERT, our method can save about 35%
FLOPs, compared to traditional downstream fine-tuning.

2 RELATED WORK

Pre-trained language models. Transformer (Vaswani et al., 2017) is a sequence-to-sequence
model that heavily uses the concept of self-attention. Later on, numerous transformer-based models
have been proposed and show overwhelming performance on natural language processing (NLP)
and on computer vision (CV) tasks. Devlin et al. (2019) designed BERT that pre-train deep bidi-
rectional representations from unlabeled text and reached powerful performance. Liu et al. (2019)
found that BERT were terribly undertrained and proposed RoBERTa, an enhanced training recipe
for BERT which can greatly boost the performance. He et al. (2020) proposed decoding-enhanced
BERT with disentangled attention (DeBERTa) that incorporates the disentangled attention mecha-
nism and an improved mask encoder to enhance BERT and RoBERTa. More variants like XL-Net,
Albert, and Electra have also been proposed in recent years (Yang et al., 2019; Lan et al., 2019; Clark
et al., 2019). The series of GPT models (Radford et al., 2019; Brown et al., 2020) are later devel-
oped based on transformers decoder blocks rather than encoder blocks like BERT, which again have

2

Under review as a conference paper at ICLR 2022

shown superior performance on different tasks. These large models pretrained on a large amount of
unlabelled texts would need to be further fine-tuned on downstream tasks for better performance.
One of the accompanying disadvantages of these pre-training models with tremendous parameter
counts (e.g., 175B in GPT-3) is the unaffordable computational cost for further fine-tuning.

Pruning and Low-rank decomposition. Pruning is a widely-used model compression technique.
It can reduce the number of parameters inside models, which possibly brings training and infer-
ence efficiency. Along with weight pruning method (Han et al., 2015b) being one of the most
effective methods (Gordon et al., 2020), various criterion have been proposed to select insignifi-
cant weights for pruning, such as Taylor approximation (Molchanov et al., 2019), Hessian score
approximation (Hassibi & Stork, 1993), and other saliency scores such as SNIP (Lee et al., 2018),
GraSP (Wang et al., 2019) and SynFlow (Tanaka et al., 2020). Several pruning methods have been
commonly adapted to compress language models (McCarley et al., 2019; Gordon et al., 2020; Sanh
et al., 2020; Wang et al., 2020; Chen et al., 2021b). Specifically, McCarley et al. (2019) proposed
to prune attention heads that had less contribution to the model. Wang et al. (2020) pruned BERT
models by involving low-rank factorization and `0 regularization. Sanh et al. (2020) invented an
improved version of magnitude pruning (i.e., pruning based on the weight change) that can better
suit the transfer learning. Chen et al. (2021b) performed structured pruning on BERT via `1 sparse
regularization, which reduced a large portion of parameters and decreased the training cost.

Low-rank approximation (Ye, 2005) is also vastly studied. One classical scenario is robust principle
component analysis (Candès et al., 2011), which decomposes a matrix into a low-rank plus a sparse
component. Existing literature shows that in deep learning, the learned over-parameterized models
often naturally bear approximate low-rank weight structures (Oymak et al., 2019; Yu et al., 2017).
Some (Jaderberg et al., 2014; Povey et al., 2018; Sainath et al., 2013; Zhang et al., 2014; Zhao
et al., 2016) have explicitly imposed the low-rank constraint during training. Wang et al. (2020); Hu
et al. (2021) utilized low-rank decomposition to shrink the model size and trim down the trainable
parameters during fine-tuning. However, to our best knowledge, integrating sparsity and low-rank
structures has never been studied before for efficient fine-tuning of pre-trained language models.

Parameter-efficient adaptation. Parameter-efficient adaptation aims at reducing the number of
trainable parameters when fine-tuning the models across different downstream domains. Unlike
pruning, it generates updates that can be represented by fewer parameters instead of building sparse
models. Various approaches are invented to achieve the goal. Rebuffi et al. (2017); Houlsby et al.
(2019) inserted and only trained adapters between existing layers, whose parameters are much less
compared to the pretrained models. Guo et al. (2020) leveraged `0 regularization to limit the number
of non-zero elements in the update vectors. Lester et al. (2021); Li & Liang (2021) introduced effi-
cient prompt tuning which optimizes only a small continuous task-specific vector. Hu et al. (2021)
proposed a low-rank decomposition-based method that can also significantly reduce the number of
trainable parameters. However, fine-tuned models yielded by these methods work have the same
amount of weights as the pre-trained starting point; hence they contribute no resource efficiency of
the final model.

3 METHODOLOGY

In this section, we begin by describing our notations and definitions of sparsity generation and
parameter-efficient fine-tuning in Section 3.1. Then, we introduce the (dually) sparsity-embedded
efficient fine-tuning algorithms in Sections 3.2 and 3.3.

3.1 PRELIMINARIES

Sparsity generation and resource-efficient fine-tuning. We adopt both unstructured and struc-
tured pruning methods to produce sparsity. They can lead to resource-efficiency including memory
and computation savings.

Let W ∈ Rm×n denote a weight matrix. The goal of pruning is to find a binary mask S ∈
{0, 1}‖W‖0 , where ‖W‖0 is the number of parameters in W . The mask S is applied to W and
results in a sparse weight W � S. For unstructured pruning, only memory cost is saved; but for
structured pruning, it helps save computational cost since the sparse weights can be smaller in size
by wiping out all-zero columns or rows. However, the performance of networks after structured
pruning is often shown to be inferior compared with the unstructured pruning counterpart.

3

Under review as a conference paper at ICLR 2022

Sparse-Embedded Decomposition

Input
Embeddings

Output

Point-wise Product

Point-wise Addition

Trainable Weights

Pruned Weights

Sparse-Embedded Pre-trained Weights

Pre-trained Weights

...
...

Sparse Matrix

Figure 1: The overview of our proposals. The sparse masks can have unstructured or structured patterns,
which leads to training and inference efficiency. During the fine-tuning, we only train decomposed matrices U ,
V and non-zero elements in S2.

Parameter-efficient fine-tuning. To leverage the knowledge in pre-trained weights W , down-
stream models learn task-specific weight update ∆W via fine-tuning and generate predictions with
weights W + ∆W . The output of models is therefore calculated as (W + ∆W)x where x is the
input. Since ∆W has the same size of W , learning the update matrices usually requires massive
resources as the size of the pre-trained model increases. Parameter-efficient fine-tuning try to solve
this problem by using as few trainable parameters as possible to represent ∆W , while maintaining
competitive downstream fine-tuning performance. Previous literature reaches the goal via either
sparsifying weight update matrices ∆W (Guo et al., 2020) or leveraging low-rank decomposed ma-
trices to compute ∆W (Hu et al., 2021), while in our work we combine both of them.

Algorithm 1: Sparsity-Embedded Low-
Rank Decomposition
Input: Pretrained weightsW , number of

non-zero elements N
Output: Sparse matrices S2

1 Initialize S2 to be an empty set.
2 for each self-attention projection weights
wi inW do
/* Decomposition */

3 Perform matrix decomposition:
wi ≈ UV + S ′ by solving the
optimization problem in Eqn.1.
/* Identify important

elements to form S2 */
4 Perform thresholding on S ′: Keep N

elements in S ′ with top magnitudes,
and set the rest 0.

5 Append S ′ into S2.
6 end

Algorithm 2: DSEE
Input: Pretrained weightsW , number of

non-zero elements N , desired sparsity
s, loss function L

Output: Sparse mask S1, matrices U ,V,S2

1 DecomposeW into U ,V and S2

2 (Re-)Initialization:
U = 0,V ∼ N (0, 0.02),Ω =
indexes of non-zero elements in S2,S = 0
/* I: train before pruning */

3 Train U ,V,S with respect to L under the
constraint of PΩC (S) = 0.
/* II: pruning the model */

4 Prune (1-s%) parameters inW globally by
sorting the magnitude ofW + UV + S,
deriving the sparsity mask S1

/* III: tuning after pruning */
5 Tune U ,V,S2 for E epochs for recovering

the performance.

3.2 SPARSITY-EMBEDDED PARAMETER-EFFICIENT FINE-TUNING

A recent study (Hu et al., 2021) enforces low-rank constraint to weight update tensors ∆W , and
obtains a satisfactory trade-off between parameter-efficiency and model quality. However, as re-
vealed experimentally by (Yu et al., 2017), a part of the important information in the trained weights
will also scatter outside the low-rank subspace, creating sparse “residuals”. Inspired by these ob-
servations, we investigate a new sparsity-aware low-rank subspace of ∆W , and introduce the first
component of our proposal in Figure 1, i.e., sparsity-embedded parameter-efficient fine-tuning.

4

Under review as a conference paper at ICLR 2022

Specifically, we identify a sparse subspace Ω, that we can project our update matrices ∆W to. The
update matrix is then decomposed into two components: a low-rank part which is represented by
the multiplication of two low-rank matrices U ∈ Rm×r and V ∈ Rr×n, and a sparse residual

S2 = PΩ(∆W), where PΩ(∆W) =

{
si,j , (i, j) ∈ Ω

0, (i, j) ∈ ΩC
, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

As illustrated in Figure 1, the update matrix ∆W can be approximated by UV + S2, in which the
U , V , and the non-zero element of S2 are learnable parameters while Ω is fixed once determined.
Compared to the full fine-tuning schemes has m × n individual trainable parameters, our method
only has (m+n)×r+card(Ω). If r is smaller than m×n−card(Ω)

m+n / 0.5 min{m,n}, which is a loose
bound, our method is capable of substantially reducing trainable parameters for downstream fine-
tuning. In practice, the value of r is very small compared tom and n so the savings are considerable.

The next question is how to find appropriate Ω. Motivated by (Candès et al., 2011), we formulate
our sparsity-aware decomposition as the following optimization problem:

min
U,V,S2

1

2
‖W − UV − S2‖2F

s.t. rank(U) ≤ r, rank(V) ≤ r, card(S2) ≤ c,
(1)

where rank(·) indicates the rank and card(·) indicates the cardinality of a matrix. Here we derive
Ω from pre-trained weights W , which is different from previous low-rank techniques for model
compression since we perform prior-training decomposition and can not access ∆W before fine-
tuning. In this way, we actually assume that ∆W shares a similar crucial subspace Ω with W
(Sun et al., 2018). We use the GreBsmo algorithm (Zhou & Tao, 2013) to solve this optimization
problem. This method adopts a similar idea as random projection and can solve the optimization
problem rapidly. The details of the algorithm are in Appendix.

Algorithm 1 summarizes the detailed procedure of our proposal. We first decompose the pretrained
weightsW into three matrices: U , V and S2. U and V are matrices of low-rank and S2 is a sparse
matrix. After the decomposition, we re-initialize U and V to be of shape Rm×r and Rr×n. The
initial values for U are set to 0, and the initial values for V will follow a normal distribution as Hu
et al. (2021) did. We do not use the decomposed value inside S2, but only the index of non-zero
elements. We collect the indexes of non-zero elements into Ω, and reset the values of S2 back to 0.
During the training, we only update the elements of S2 whose indexes are in Ω, as well as U and V .

3.3 DUALLY SPARSITY-EMBEDDED EFFICIENT TUNING (DSEE)

Besides parameter-efficiency, resource-efficiency is another major goal of our proposed framework.
Sparsity-embedded low-rank weight updates alone do not necessarily lead to computational cost
reductions since it works together with the dense pre-trained weights and the massive computation
during forwarding processes is inevitable. To achieve both resource- and parameter-efficiency, we
also promote a sparse weight structure to the final fine-tuned model, as demonstrated by the sparse
mask S1 in Figure 1. Our DSEE explores both unstructured/structured sparsity patterns as follows.

B Pruning with unstructured sparse masks. The unstructured sparse mask is the most widely
used mask since it usually produces almost undamaged performance compared to its dense counter-
part (Han et al., 2015a). It applies fine-grained manipulation on each individual model weight, while
the generated irregular sparse masks bring limited hardware speedup (Wen et al., 2016). Specifically,
based on the weight matrixW , a sparse mask S1 can be calculated with various approaches, either
heuristic or optimization-based. We adopt the one-shot magnitude pruning (Han et al., 2015a) in
DSEE, due to its simplicity and competitive performance.

In our context, we create the sparse pattern S1 from W + UV: First, it sorts the magnitude (i.e.,
absolute value) of individual weights and removes parameters with bottom 1 − k% magnitude.
Second, we further tune the value of the low-rank update matrices for a few epochs, which is
important to keep the performance as stated in Han et al. (2015b). Third, the sparse mask S1

that we derive will be applied on the pretrained weights only and do not affect the output from
the update matrices, as W � S1 + UV . For an input sample x, the output is calculated by
(W � S1 + UV + S2)x = W � S1x + (UV + S2)x, where the first term W � S1x brings sig-
nificant resource-efficiency, and the second term brings parameter-efficiency.

5

Under review as a conference paper at ICLR 2022

B Pruning with structured sparse masks. The second method exploits structured sparse masks,
whose regular patterns are more hardware friendly yet have worse performance than unstructured
masks. Our DSEE considers `1 sparse regularization (Liu et al., 2017; Chen et al., 2021b) to craft
high-quality structurally pruned subnetworks. More precisely, motivated by Chen et al. (2021b), we
introduce learnable coefficients ξ before each attention head module, and append a `1 sparse penalty
on ξ to the original loss. Detailed formulations are depicted as below:

We add trainable coefficients c before attention heads. The parameters c are optimized together with
the decomposed matrices, i.e., U ,V and S2. An extra term λ‖c‖1 will be added to the training loss for
sparse regularization. The value of λ is set to 1e-4. After training, we prune the attention heads that
have the lowest contribution to the model (i.e., lowest c). We use a layer-wise pruning scheme that
prunes the same proportion of heads in each attention layer. After pruning, several epochs of tuning
are run to recover the performance of the pruned model. The size of update matrices will change after
structured pruning, so we also need to change the dimension of U and V . Specifically, we change
the size of V from Rr×n to Rr×[n×s] where s is the pruning ratio of the corresponding self-attention
layer and [x] is the biggest integer not greater than x. The size of S2 is shrunk accordingly.

4 EXPERIMENT RESULTS

Datasets and models. We use three classical pre-trained language models in our experiments:
BERTBASE (Devlin et al., 2019), GPT-2 (Radford et al., 2019), and DeBERTa-large (He et al.,
2020), which have 12/24/24 layers with hidden size of 768/1024/1024 and 110/354/380M train-
able parameters, respectively. For BERT and DeBERTa, we evaluate our method on the GLUE
benchmarks (Wang et al., 2018). For GPT-2, we use E2E (Novikova et al., 2017), WebNLG (Gar-
dent et al., 2017), and DART (Nan et al., 2021) for evaluations.

Training and evaluation details. For BERT and DeBERTa, we follow the default settings in Wolf
et al. (2019); Devlin et al. (2019). We use the AdamW (Loshchilov & Hutter, 2017) optimizer for
downstream training. The batch size for BERT and DeBERTa is 32, 8 per GPU. We train three
epochs to search the sparse mask S1, and continue to tune the model for three epochs to converge.
The initial learning rates are reported in A1, and we linearly decay them. For GPT-2, we follow the
same hyperparameters as in Hu et al. (2021). We train the model for five epochs to search for the
mask, and further tune the pruned model for two epochs.

Evaluation Metrics. For tasks on BERT and DeBERTa, we use the accuracy, Matthew’s Corre-
lation, and Pearson’s r in the evaluation by default, which is also the conventional setting in the
NLP community. On GPT-2, we use BLEU (Papineni et al., 2002), METEOR (Denkowski & Lavie,
2014), TER (Snover et al., 2006) and NIST (Doddington, 2002) as our evaluation metrics. To eval-
uate the efficiency of models, we use the number of trainable parameters to measure the parameter
efficiency, use Sparsity in Pretrained Weights to measure the resource efficiency, and FLOPs to eval-
uate the computational efficiency. We add a star sign (∗) to indicate the structured sparsity (i.e.,
structurally prune the pretrained weights).

Baselines. On BERT and DeBERTa, we conduct comparisons with the following baseline meth-
ods: ¶ Fine-tune: directly fine-tunes the full model; · EarlyBERT (Chen et al., 2021b); ¸ BERT
Tickets (Chen et al., 2020); ¹ OMP: prunes the fine-tuned weights by magnitude, and fine-tune
afterwards; and º LoRA (Hu et al., 2021). We also report the Huggingface’s fine-tuning results.

On GPT-2, we conduct comprehensive comparisons with multiple baseline methods: ¶
Adapters (Houlsby et al., 2019): insert adapters after linear layers; · FT-Top2: fine-tune the top
2 layers only; ¸: Prefix: prefix tuning introduced by Li & Liang (2021); and ¹ LoRA: low-rank
decomposition, which assumes ∆W = UV; most results are directly cited from Hu et al. (2021).

4.1 EFFICIENT TUNING WITH DSEE

Parameter-efficiency with sparse masks. To verify that using simple low-rank adap-
tation (i.e., LoRA) has limitations, we compare its performance with the performance
of our sparsity-embedded efficient fine-tuning. Table 1 proves that on MNLI, SST-2,
CoLA, and STS-B, the simple decomposition form shows unsatisfactory results compared
to sparsity-embedded decomposition. Adding a small proportion of parameters (only 3072
trainable parameters) can bring a performance boost to the model. Specifically, under

6

Under review as a conference paper at ICLR 2022

rank 8, the metrics increase (0.69/0.13/0.008/0.003) on SST-2/MNLI/CoLA/STS-B, respec-
tively. Moreover, using only approximately half of the number of trainable parameters, our
method can achieve comparable parameters compared to the state-of-the-art method LoRA.

Table 1: Performance comparison with BERTBASE on
SST-2, MNLI, CoLA, and STS-B.

Dataset # Trainable SST-2 MNLI CoLA STS-BParameters

Fine-tune 109.9M 92.32 82.12 0.570 0.890

∆W = UV 589.8K 92.09 80.79 0.575 0.891
∆W = UV 294.9K 92.09 80.49 0.580 0.892
∆W = UV + S2 298.0K 92.78 80.64 0.588 0.895

Table 2 shows the performance on GPT-2.
For all three tasks, our method can achieve
comparable results with only about half of
the trainable parameters with LoRA with
rank four and make substantial performance
gain compared to LoRA with rank two. On
WebNLG, our method even achieves a higher
BLEU score, 55.56 versus 55.29, with half of the trainable parameters. Such a phenomenon indi-
cates that adding a sparse matrix to the low-rank decomposition can make substantial improvement.

Table 2: comparison of different decomposition on GPT-2. The formulas of decomposition are reported.
Results of fine-tuning and the results of # Trainable Parameters = 0.39M are cited from Hu et al. (2021).

Dataset # Trainable E2E WebNLG DARTParameters

Metric - BLEU MET NIST BLEU MET TER BLEU MET TER

Fine-tune 354.92M 68.2 46.2 8.62 47.60 0.39 0.50 46.0 0.39 0.46

∆W = UV 0.39M 70.4 46.9 8.84 55.29 0.4143 0.3938 48.23 0.392 0.469
∆W = UV 0.20M 69.2 45.9 8.74 55.23 0.4134 0.3957 46.49 0.387 0.477
∆W = UV + S2 0.20M 69.8 46.5 8.79 55.56 0.4132 0.3916 47.08 0.390 0.472

Resource- and parameter-efficiency with sparse masks. We report the performance of DSEE,
including both the number of trainable parameters and the sparsity in pretrained weights. We use
an unstructured sparsity of 50%, and structured sparsity of 25% and 33%, which is equal to pruning
1/4 and 1/3 heads from each attention layer. For BERTBASE and DeBERTa-large, we set the r (the
low-rank dimension) to be 16, and N (the number of non-zero elements in S2) to be 64. We also
prune each of the intermediate layers using a structured sparsity of 40% as in (Chen et al., 2021b).
For GPT-2, we set r to be 2 in DSEE and 4 in LoRA. The choice of N remains 64.

Table 3 summarizes the performance on BERTBASE. On BERTBASE, our DSEE method can: ¶
achieve parameter-efficiency at high level and retain the performance on various downstream tasks.
On BERTBASE, with only about 600K trainable parameters (110/0.5929 ≈ 200× smaller than the
full model), DSEE can achieve comparable performance on all GLUE tasks. · DSEE can achieve
resource-efficiency in the final models. Using either unstructured or structured sparse masks can
reach our goal of reducing the number of parameters in the pretrained weights without sacrificing
much performance. At the sparsity level of 50%, unstructured DSEE can achieve an accuracy of
90.46% on QNLI, surpassing the baseline of fine-tuning, whose result is 90.15%. At the sparsity
level of 25%, the structured DSEE can have performance gains ranging from 0.46% to 2.22%,
except for QQP and QNLI. At the sparsity level of 33%, the performance gains range from 0.11%
to 2.04%, except for QQP and QNLI. ¸ Compared to other baselines, e.g., EarlyBERT and BERT
Tickets, our method benefits from parameter efficiency, which updates the weights more efficiently.
These observations validate the effectiveness of our DSEE method.

We also calculate the inference FLOPs of BERTBASE on STS-B dataset. The original BERTBASE

on STS-B takes FLOPs of 3.7835 × 1014, while LoRA takes FLOPs of 3.8096 × 1014, which is
0.69% higher. Conversely, the structured version of DSEE takes a FLOPs of 2.4921 × 1014 at the
sparsity of 25%, and 2.3867× 1014 at the sparsity of 33%, which is 34.61% and 37.38% lower than
LoRA. This indicates that a large proportion of computational cost can be saved at inference phase.

Table 3: Performance comparison of different methods on BERTBASE on GLUE benchmarks. The star sign
(*) in the sparsity column indicates that it represents structured sparsity.

Methods # Trainable Sparsity in Dataset
Parameters Pretrained Weights CoLA STS-B MNLI QQP QNLI MRPC RTE SST-2

Fine-tune 110M 0% 57.02 88.97 82.12 91.01 90.15 85.29 70.40 92.32
EarlyBERT 110M 33% 41.00 - 79.97 89.44 89.86 80.39 61.01 90.94
BERT Tickets 110M {50%, 50%, 70%, 90%, 70%, 50%, 60%, 60%} 54.5 88.4 82.4 90.2 89.1 85.2 66.2 92.1

OMP ∼ 55M 50% 56.17 88.66 81.97 90.72 89.80 82.84 70.04 92.18
LoRA 589.8K 0% 58.58 89.10 80.79 86.43 88.16 86.27 71.48 92.09
DSEE 592.9K 50% 56.74 88.77 81.41 87.21 90.46 85.05 70.04 90.83
DSEE 592.9K 25%∗ 59.01 89.90 84.34 90.99 90.94 86.76 71.84 92.78
DSEE 592.9K 33%∗ 57.79 89.93 84.16 90.78 91.09 87.25 71.48 92.43

7

Under review as a conference paper at ICLR 2022

Table 4 summarizes the performance on GPT-2, which shares a similar trend. Unstructured DSEE
can achieve 2000× reduction in trainable parameters and 2× reduction in the final fine-tuned model
size with almost no loss in downstream task performance compared to conventional finetuning.
When compared to LoRA, the unstructured DSEE can retain the same level of the number of train-
able parameters and downstream task performance, while showing a 2× reduction in the final fine-
tuned model size. The structured DSEE on GPT-2 seems to be less competitive than on BERT, but it
can still hold performance on E2E and WebNLG after pruning 25% of heads in attention modules.

Table 4: Performance comparison of different methods on GPT-2 on E2E, WebNLG and DART. LoRA†:
reproduced results. The star sign (*) in the sparsity column indicates that it represents structured sparsity.

Methods # Trainable Sparsity in E2E WebNLG DARTParameters Pretrained Weights

Fine-tune2 354.92M 0% 68.2 0.462 8.62 47.6 0.39 0.50 46.0 0.39 0.46
Adapters 11.48M 0% 68.9 0.461 8.71 55.2 0.41 0.39 45.4 0.38 0.46
FT-Top2 25.19M 0% 68.1 0.460 8.59 33.5 0.26 0.75 38.1 0.34 0.56
Prefix 0.35M 0% 69.7 0.461 8.81 54.4 0.41 0.41 45.7 0.38 0.46
LoRA 0.39M 0% 70.4 0.468 8.85 55.3 0.41 0.39 47.5 0.39 0.45

LoRA† 0.39M 0% 70.06 0.467 8.84 55.29 0.4143 0.3938 48.23 0.392 0.469
DSEE 0.20M 30% 69.33 0.465 8.73 55.78 0.4163 0.3921 47.21 0.390 0.471
DSEE 0.20M 50% 69.75 0.469 8.78 55.40 0.4124 0.3935 46.66 0.389 0.471
DSEE 0.20M 25%∗ 69.48 0.464 8.75 54.64 0.4105 0.4030 26.94 0.247 0.727

Table 5: Performance comparison of different methods
on DeBERTa-large on CoLA, MNLI, MRPC and RTE.

Methods # Trainable Sparsity in Dataset
Parameters Pretrained Weights CoLA MNLI MRPC RTE

LoRA 786.4K 0% 63.36 88.90 90.44 75.09
DSEE 789.5K 30% 67.35 90.58 90.20 77.98
DSEE 789.5K 50% 63.82 90.03 89.71 74.73
DSEE 789.5K 25%∗ 63.62 89.93 89.96 75.24

Finally, we validate our method on De-
BERTa. The results are displayed in Ta-
ble 5. We use four datasets, CoLA, MNLI,
MRPC, and RTE. They have greatly varied
sizes, which are representatives of the GLUE
benchmark. DeBERTa is a larger model, so
applying low-rank decomposition with our
hyperparameters cannot match the performance of fine-tuning. Compared to LoRA, our method
reaches higher performance on downstream tasks, albeit it needs slightly more training epochs.
However, such a slight extra cost for searching the sparse mask S1 can be amortized by the effi-
ciency gained in the future inference, since the burden on resources such as storing the pretrained
weights is relieved.

4.2 UNDERSTANDING DSEE

Table 6: Performance comparison on BERTBASE with
different masks embedded.

Methods # Trainable Sparsity in Dataset
Parameters Pretrained Weights SST-2 MNLI CoLA STS-B

Fine-tune 110M 0% 92.32 82.12 57.02 88.97

W �S1 55M 50% 91.28 81.97 0.562 0.887
W �S1 + UV 589.8K 50% 90.66 81.13 0.566 0.884
W + UV + S2 592.9K 0% 91.97 80.86 0.580 0.893
W �S1 + UV + S2 592.9K 50% 90.83 81.41 0.567 0.888

The position of embedded sparsity masks plays
a crucial role in our proposed DSEE. For in-
stance, applying sparse masks to the pre-trained
weights or weight updates produces resource-
and parameter-efficiency. Precisely, we com-
pare four different methods on BERTBASE:
one-shot magnitude weight pruning (W � S1), two DSEE’s variants (W � S1 + UV) and
W + UV + S2), DSEE (W � S1 + UV + S2). The results are collected in Table 6. We can
see that: ¶ NO embedded sparsity in the pretrained weights yields the overall best performance.
This is intuitive since the valuable knowledge learned from massive pretraining data is intact and
not removed. · Embedding sparsity into the pretrained weights harms only little to no performance.
A similar conclusion is drawn by Chen et al. (2020) which validated that a pruned model can have
a similar performance as the dense model. ¸ Using sparsity-embed efficient fine-tuning with the
sparse pre-trained weights can also preserve performance, as well as achieve parameter efficiency.

4.3 ABLATION AND VISUALIZATION

Different methods to generate sparse matrix S2 In this section, we compare the performance of
BERTBASE using different methods to generate the sparse matrix S2 and the corresponding space Ω.
Except for the aforementioned matrix decomposition method, we try to (1) randomly sample indexes
into Ω; and (2) directly select the indexes of elements of highest magnitude ofW into Ω. In Figure 2
we can see that using the matrix decomposition method has the highest metric overall. It is also
noteworthy that sparse matrices generated by other methods will sometimes harm the performance.

Another factor is the number of non-zero elements inside S2. More non-zero elements in S2 reduce
the parameter efficiency, while less non-zero elements increase the efficiency but may not be much
beneficial to the accuracy or other metrics. Figure 2 also shows the relationship between number

8

Under review as a conference paper at ICLR 2022

of non-zero elements in S2 and the performance on fine-tuned model on SST-2. From the graph,
we can see that using an N of 64 seems to have the most stable results compared to other choices.
Another important piece of information we can derive from the figure is that a higher number of
non-zero elements in the S2 does not guarantee better performance.

91.0

91.5

92.0

92.5

4.5 5.0 5.5 6.0
log10(#Trainable Parameters)

A
cc
ur
ac
y

Method
Empty

Decompose

Magnitude

Random
90

91

92

0 1 2 3 4
log2(rank)

A
cc
ur
ac
y

Method
N=16

N=32

N=64

N=128

Figure 2: Left: Different method for generating S2 in
BERTBase. Right: Different number of non-zero elements in
S2. Empty: no non-zero element in S2. Decompose: matrix
decomposition method aforementioned. Magnitude: picking
elements with highest magnitude. Random: random matrix.

Ablation of # ranks. The rank of low-
rank decomposition r is crucial to the
transfer learning performance. A small
r will result in lower representation abil-
ity, and a large r will bring more parame-
ters and reduce the parameter efficiency.
To find the best value, we conduct ex-
periments with different ranks r on four
datasets, SST-2, MNLI, CoLA, and STS-
B. The results are displayed in Figure 3.
We add quadratic trend lines in the graph
along with the discrete points to smooth
the results. We can draw two conclusions from the graphs: ¶ Overall, the final performance is pos-
itively correlated with the number of trainable parameters; however, on some tasks (MNLI, CoLA)
higher number of parameters (namely, the r for U and V) will lead to lower performance. · With
a sparse matrix embedded, the performance of the trained models can be improved within a range
of trainable parameters. On SST-2 and CoLA, the applicable range seems to be 104.5 ∼ 106. On
STS-B, our method can consistently outperform the performance of using low-rank decomposition
only. For MNLI, the two methods behave similarly while our method is slightly better.

91.00

91.50

92.00

92.50

5 6 7 8
log10(#Trainable Parameters)

A
cc

ur
ac

y

Methods
Fine-tune
ΔW=UV
ΔW=UV+S2 78.00

79.00

80.00

81.00

82.00

5 6 7 8
log10(#Trainable Parameters)

A
cc

ur
ac

y

Methods
Fine-tune
ΔW=UV
ΔW=UV+S2 0.525

0.550

0.575

0.600

5 6 7 8
log10(#Trainable Parameters)

C
or

re
la

tio
n

Methods
Fine-tune
ΔW=UV
ΔW=UV+S2

CoLA, N=64

0.885

0.888

0.890

0.893

0.895

5 6 7 8
log10(#Trainable Parameters)

Pe
ar

so
n'

s r

Methods
Fine-tune
ΔW=UV
ΔW=UV+S2

STS-B, N=64MNLI, N=64SST-2, N=64

Figure 3: Performance comparison of two decomposition methods under different ranks. We add quadratic
trend lines for better visualization quality.

0

5

10

15

−0.2 −0.1 0.0 0.1 0.2
Weight Change

D
en

si
ty

Layer 2

Layer 10

Layer 18

Layer 24

Figure 4: Weight change distributions.

Ablation of sparsity. Although creating sparsity in pre-
trained weights W does not change the number of trainable
parameters of models, the different levels of sparsity control
the number of non-zero elements and thereby influence the
representation ability. Therefore, we conduct experiments on
BERT with different sparsity, ranging from 10% to 60%. The
results are in Figure A5. From the figures, we can draw con-
clusions: ¶ DSEE out-performs magnitude pruning at low
sparsity (< 50%) with respect to the performance on down-
stream tasks. · DSEE surpasses vanilla magnitude pruning with respect to the number of param-
eters. For each self-attention layer, using vanilla magnitude pruning needs to train all the weights,
while DSEE only needs to update the three low-rank matrices.

Visualizations. Figure 4 shows the distribution of weight change. From the graph, we can see that
most weights are located around 0. Such a phenomenon indicates that a natural sparsity exists within
the update matrices, motivating us to explore sparse structures along with matrix decomposition.

5 CONCLUSION

This paper draws on the prior of sparsity and establishes the DSEE framework. It is the first attempt
towards jointly optimizing both parameter efficiency of the fine-tuning process, and the resource ef-
ficiency of the fine-tuned model. On state-of-the-art large-scale language models (e.g., BERT, GPT,
and DeBERTa) and across several of datasets, DSEE consistently demonstrates highly impressive
parameter, training, and inference efficiency, in addition to preserving a competitive downstream
transfer performance. Our future work targets extending DSEE to the finetuning of large-scale com-
puter vision and/or multi-modal pre-trained models.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component analysis?
Journal of the ACM (JACM), 58(3):1–37, 2011.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Uni-
fying sparse and low-rank attention approximation, 2021a.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. arXiv preprint
arXiv:2007.12223, 2020.

Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Zhangyang Wang, and Jingjing Liu. Earlybert:
Efficient bert training via early-bird lottery tickets. In Proceedings of the Joint Conference of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, 2021b.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training
text encoders as discriminators rather than generators. In International Conference on Learning
Representations, 2019.

Michael Denkowski and Alon Lavie. Meteor universal: Language specific translation evaluation for
any target language. In Proceedings of the ninth workshop on statistical machine translation, pp.
376–380, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

George Doddington. Automatic evaluation of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the second international conference on Human Language
Technology Research, pp. 138–145, 2002.

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. The webnlg
challenge: Generating text from rdf data. In Proceedings of the 10th International Conference on
Natural Language Generation, pp. 124–133, 2017.

Mitchell Gordon, Kevin Duh, and Nicholas Andrews. Compressing bert: Studying the effects of
weight pruning on transfer learning. In Proceedings of the 5th Workshop on Representation
Learning for NLP, pp. 143–155, 2020.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463, 2020.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in Neural Information Processing Systems, 28, 2015b.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. Morgan Kaufmann, 1993.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp.
1389–1397, 2017.

10

Under review as a conference paper at ICLR 2022

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. In Proceedings of the British Machine Vision Conference. BMVA Press,
2014.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. Snip: Single-shot network pruning based
on connection sensitivity. In International Conference on Learning Representations, 2018.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736–2744, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

JS McCarley, Rishav Chakravarti, and Avirup Sil. Structured pruning of a bert-based question
answering model. arXiv preprint arXiv:1910.06360, 2019.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 11264–11272, 2019.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh,
Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, Yangxiaokang Liu, Nadia Irwanto,
Jessica Pan, Faiaz Rahman, Ahmad Zaidi, Mutethia Mutuma, Yasin Tarabar, Ankit Gupta, Tao
Yu, Yi Chern Tan, Xi Victoria Lin, Caiming Xiong, Richard Socher, and Nazneen Fatema Rajani.
Dart: Open-domain structured data record to text generation, 2021.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for end-to-
end generation. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue,
pp. 201–206, 2017.

Samet Oymak, Zalan Fabian, Mingchen Li, and Mahdi Soltanolkotabi. Generalization guaran-
tees for neural networks via harnessing the low-rank structure of the jacobian. arXiv preprint
arXiv:1906.05392, 2019.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association
for Computational Linguistics, pp. 311–318, 2002.

11

Under review as a conference paper at ICLR 2022

Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li, Hainan Xu, Mahsa Yarmohammadi, and San-
jeev Khudanpur. Semi-orthogonal low-rank matrix factorization for deep neural networks. In
Interspeech, pp. 3743–3747, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pp. 506–516, 2017.

Ao Ren, Tianyun Zhang, Shaokai Ye, Jiayu Li, Wenyao Xu, Xuehai Qian, Xue Lin, and Yanzhi
Wang. Admm-nn: An algorithm-hardware co-design framework of dnns using alternating direc-
tion method of multipliers, 2018.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets.
In 2013 IEEE international conference on acoustics, speech and signal processing, pp. 6655–
6659. IEEE, 2013.

Victor Sanh, Thomas Wolf, and Alexander M Rush. Movement pruning: Adaptive sparsity by fine-
tuning. In NeurIPS, 2020.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A study of
translation edit rate with targeted human annotation. In Proceedings of the 7th Conference of the
Association for Machine Translation in the Americas: Technical Papers, pp. 223–231, 2006.

Mengying Sun, Inci M Baytas, Liang Zhan, Zhangyang Wang, and Jiayu Zhou. Subspace network:
deep multi-task censored regression for modeling neurodegenerative diseases. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
2259–2268, 2018.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information Pro-
cessing Systems, 33, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
International Conference on Learning Representations, 2018.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2019.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6151–6162, 2020.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity
in deep neural networks. In Advances in neural information processing systems (NeurIPS), pp.
2074–2082, 2016.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

12

Under review as a conference paper at ICLR 2022

Jieping Ye. Generalized low rank approximations of matrices. Machine Learning, 61(1-3):167–191,
2005.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7370–7379, 2017.

Yu Zhang, Ekapol Chuangsuwanich, and James Glass. Extracting deep neural network bottleneck
features using low-rank matrix factorization. In 2014 IEEE international conference on acoustics,
speech and signal processing (ICASSP), pp. 185–189. IEEE, 2014.

Yong Zhao, Jinyu Li, and Yifan Gong. Low-rank plus diagonal adaptation for deep neural networks.
In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 5005–5009. IEEE, 2016.

Tianyi Zhou and Dacheng Tao. Greedy bilateral sketch, completion & smoothing. In Artificial
Intelligence and Statistics, pp. 650–658. PMLR, 2013.

13

Under review as a conference paper at ICLR 2022

All sections of newly added results and discussions are highlighted.

A1 MORE IMPLEMENTATION DETAILS

We report the setting of other hyperparameters of our experiments, such as learning rate, in Table A7.
The device we used for experiments are various, including NVIDIA GeForce GTX 1080 Ti, GeForce
RTX 2080 Ti, Titan RTX, and A6000.

Architecture Method Parameters Dataset
MNLI QNLI QQP SST-2 CoLA MRPC RTE STS-B

BERTBASE Fine-tune Learning Rate 5e-5
BERTBASE DSEE (before pruning) Learning Rate 5e-5 5e-5 5e-5 2e-4 1e-3 8e-4 1e-3 8e-4
BERTBASE DSEE (after pruning) Learning Rate 5e-5 5e-5 5e-5 5e-5 1e-3 5e-4 5e-4 5e-4

DeBERTa-large LoRA & DSEE (before pruning) Learning Rate 1e-5 - - - 1e-3 8e-4 8e-5 -
DeBERTa-large DSEE (after pruning) Learning Rate 1e-5 - - - 5e-5 8e-4 6e-5 -

Table A7: Hyper-parameters we used on different datasets.

GreBsmo Algorithm GreBsmo (Zhou & Tao, 2013) is an algorithm for solving the Robust PCA-
like methods. The optimization of U , V , and S follows the following iterative rules:

 Uk = Q,QR
(
(X − Sk−1)V Tk−1

)
= QR

Vk = QT (X − Sk−1)
Sk = Sλ (X − UkVk)

, (2)

where X is the original dense matrix, QR(·) means the QR decomposition, Sλ(·) indicates the
soft-threshold operation, and the subscripts k indicates the optimization step.

A2 MORE EXPERIMENT RESULTS

Ablation of Sparsity To study the relationship between sparsity of unstructured pruning and the
behavior of our DSEE, we conduct an ablation study on various datasets in GLUE benchmarks. The
results are shown in Figure A5

0.880

0.885

0.890

5.5 6.0 6.5 7.0 7.5 8.0
log10(#Trainable Parameters)

Pe
ar

so
n'

s r

Methods
Magnitude Pruning
DSEE0.880

0.885

0.890

20 40 60
Sparsity

Pe
ar

so
n'

s r

Methods
Magnitude Pruning
DSEE

ST
S-
B

89.5

90.0

90.5

91.0

91.5

5.5 6.0 6.5 7.0 7.5 8.0
log10(#Trainable Parameters)

A
cc

ur
ac

y

Methods
Magnitude Pruning
DSEE

89.5

90.0

90.5

91.0

91.5

20 40 60
Sparsity

A
cc

ur
ac

y

Methods
Magnitude Pruning
DSEE

SS
T-
2

83

84

85

86

5.5 6.0 6.5 7.0 7.5 8.0
log10(#Trainable Parameters)

A
cc

ur
ac

y

Methods
Magnitude Pruning
DSEE

83

84

85

86

20 40 60
Sparsity

A
cc

ur
ac

y

Methods
Magnitude Pruning
DSEE

M
R
PC

67
68
69
70
71
72
73

5.5 6.0 6.5 7.0 7.5 8.0
log10(#Trainable Parameters)

A
cc

ur
ac

y

Methods
Magnitude Pruning
DSEE

67

68

69

70

71

72

73

20 40 60
Sparsity

A
cc

ur
ac

y

Methods
Magnitude Pruning
DSEE

R
T
E

80

81

82

5.5 6.0 6.5 7.0 7.5 8.0
log10(#Trainable Parameters)

A
cc

ur
ac

y

Methods
Magnitude Pruning
DSEE

80

81

82

20 40 60
Sparsity

A
cc

ur
ac

y

Methods
Magnitude Pruning
DSEE

M
N
L
I

0.52

0.56

0.60

5.5 6.0 6.5 7.0 7.5 8.0
log10(#Trainable Parameters)

C
or

re
la

tio
n

Methods
Magnitude Pruning
DSEE0.52

0.56

0.60

20 40 60
Sparsity

C
or

re
la

tio
n

Methods
Magnitude Pruning
DSEE

C
oL
A

Figure A5: DSEE performance compared to vanilla magnitude pruning at different sparsity. Magnitude
Pruning: vanilla magnitude pruning which tunes W directly.

Results with more runs. We conduct experiments with three runs. The mean and standard
deviation of accuracy of LoRA and DSEE (without pruning) are shown in Table A8. We have also
included the p-value of t-tests to show the significance of the performance gaps. On half of the

A14

Under review as a conference paper at ICLR 2022

datasets, the p-value is around 0.1; and on three datasets the p-value is between 0.2 and 0.4. The
reason why p-value is large on some datasets is probably because the number of experiments still
has room to increase.

Table A8: Performance comparison of different methods on BERTBASE on GLUE benchmarks. The first row
of each method indicates the mean accuracy, and the second row indicates the standard deviation.

Methods # Trainable Sparsity in Dataset
Parameters Pretrained Weights CoLA STS-B MNLI QQP QNLI MRPC RTE SST-2

LoRA 589.8K 0% 57.38 88.81 80.88 86.45 88.49 86.03 71.00 92.17
1.43 0.23 0.41 0.14 0.10 1.49 1.10 0.27

DSEE 592.9K 0%
58.73 89.16 81.03 86.53 88.58 85.78 71.12 92.55
0.95 0.03 0.62 0.06 0.17 1.07 0.62 0.12

P-value of matched pair t-tests 0.086 0.054 0.383 0.121 0.276 0.572 0.277 0.031

DSEE 592.9K 50%
55.60 88.39 81.16 87.23 88.88 84.88 70.09 91.00
0.81 0.21 0.23 0.03 0.30 0.93 1.37 0.13

Inference time on BERTBASE We have recorded the inference time of BERTBASE on various
GLUE benchmarks, QQP, STS-B, CoLA and RTE. The number of samples in their evaluation set
range from 277 to 40430, so they can be considered representative. The results are shown in Ta-
ble A9. From the table we can see that, the inference time are greatly saved after using the structured
version of DSEE.

Table A9: Inference time of different methods on BERTBASE on GLUE benchmarks. The sparsity with star
signs indicates that it is a structured sparsity.

Dataset # eval samples Methods
LoRA DSEE (25%∗) DSEE (33%∗)

QQP 40,430 50.773 36.391 34.946
STS-B 1,500 2.033 1.506 1.337
CoLA 1,043 1.316 0.931 0.877
RTE 277 0.464 0.420 0.376

Convergence Speed We have compared the convergence speed (i.e., how the test accuracy
changes) of LoRA and DSEE. From Figure A6 we can see that the convergence speeds of the
two methods are not significantly different. This means introducing a sparse component into the
decomposition form does not affect the convergence dynamics.

0.75

0.80

0.85

0.90

0 50 100
Evaluation Step

Te
st

 A
cc

ur
ac

y

Method

DSEE

LoRA

Figure A6: Convergence speed of two methods (LoRA and DSEE). The x-axis represents evaluation
steps and y-axis represents the test accuracy.

A15

	Introduction
	Related Work
	Methodology
	Preliminaries
	Sparsity-Embedded Parameter-Efficient Fine-tuning
	Dually Sparsity-Embedded Efficient Tuning (DSEE)

	Experiment Results
	Efficient Tuning with DSEE
	Understanding DSEE
	Ablation and Visualization

	Conclusion
	More Implementation Details
	More Experiment Results

