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ABSTRACT

RAG (Retrieval-Augmented Generation) systems and web agents are increasingly
evaluated on multi-hop deep search tasks, yet current practice suffers from two
major limitations. First, most benchmarks leak the reasoning path in the question
text, allowing models to follow surface cues rather than discover reasoning chains
autonomously. Second, evaluation is typically reduced to a single pass rate, which
collapses diverse behaviors into one score and obscures whether failures stem
from inadequate search, poor knowledge use, or inappropriate refusal. To ad-
dress these issues, we present WebDetective, a benchmark of hint-free multi-hop
questions paired with a controlled Wikipedia sandbox that ensures full traceability
of model actions, and a holistic evaluation framework that separates search suf-
ficiency, knowledge utilization, and refusal behavior. Our evaluation of 25 state-
of-the-art models reveals systematic weaknesses across all architectures: models
struggle with knowledge utilization despite having sufficient evidence and demon-
strate near-absent appropriate refusal when evidence is lacking. These patterns
expose a fundamental gap—today’s systems excel at executing given reasoning
paths but fail when required to discover them. We develop an agentic workflow
EvidenceLoop that explicitly targets the challenges our benchmark identifies, in-
corporating verification loops and systematic evidence tracking that improve both
search and synthesis capabilities. This baseline demonstrates that WebDetective’s
diagnostic framework can guide concrete architectural improvements, establishing
our benchmark as a critical tool for developing genuinely autonomous reasoning
systems rather than pattern-following agents.

1 INTRODUCTION

Web agents—systems that autonomously navigate and extract information from the internet—have
emerged as critical tools for extending language models beyond their parametric knowledge. These
agents must solve complex information-seeking tasks by strategically combining external search
with internal knowledge, searching across multiple sources, and synthesising dispersed informa-
tion Nakano et al. (2021) Yao et al. (2023). Among the evaluation scenarios for these systems,
deep search tasks stand out as particularly challenging and important. Deep search requires find-
ing specific, hidden facts or entities through deep reasoning, multi-step inference, and noise filter-
ing—addressing the ”I can’t find it” problem that challenges even skilled human searchers Wong
et al. (2025). Unlike shallow retrieval where information is directly stated, deep search demands
sophisticated exploration strategies to uncover information that is not immediately accessible, with
outputs typically being single facts or small entity sets that must exactly match ground truth, making
evaluation unambiguous while maintaining high difficulty.

However, we identify a critical but overlooked dimension in current deep search evaluation: the
presence of various forms of hinting embedded in question formulation that fundamentally alters
the nature of the search problem. As illustrated in fig. 1, classical multi-hop QA datasets like
Hotpot QA Yang et al. (2018a) exhibit what we term Path-Hinting (PH), where questions lin-
guistically narrate the reasoning chain: “Who is the husband of the stepmother of the brother of
Kane Cornes?” explicitly instructs the agent to first find Kane’s brother, then the brother’s step-
mother, then her husband—effectively converting reasoning into execution. Recent benchmarks
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Figure 1: Comparison of different question formulations in multi-hop deep search. Left: Path-
Hinting (PH) benchmarks such as HotpotQA embed the reasoning path directly in the question text,
effectively reducing reasoning to execution. Middle: Specification-Hinting (SH) benchmarks such
as BrowseComp obscure the target entity behind multiple attributes, testing filtering rather than
autonomous exploration. Right: Our Hint-Free (HF) formulation in WebDetective removes both
path and specification hints, requiring agents to autonomously discover reasoning chains within a
controlled Wikipedia sandbox.

such as BrowseComp Wei et al. (2025) and WebShaper Tao et al. (2025) attempt to address this
limitation through Specification-Hinting (SH), where questions obscure the target entity behind
multiple indirect attributes rather than naming it directly. For instance, instead of directly asking
about ‘Graham Cornes’, the question specifies “Which radio presenter at 5AA, former footballer, at
least 20 years senior to his wife who was a 2007 Labor candidate?”—creating enough constraints
to uniquely identify the target through sophisticated filtering rather than exploratory reasoning. The
widespread presence of these hints in existing benchmarks remains understudied and unaddressed,
yet it fundamentally shapes what capabilities are actually being evaluated.

While Path-Hinting (PH) benchmarks are largely solved by modern systems, Specification-Hinting
(SH) benchmarks remain challenging due to their demands for sustained exploration over long tra-
jectories and filtering through deliberately obfuscated information. These benchmarks effectively
test an agent’s ability to maintain context, handle noise, and perform complex constraint satisfac-
tion—important capabilities for robust web agents. However, they leave a different but equally
critical aspect untested: the ability to autonomously discover which connections matter, generate
hypotheses about potential paths, and adaptively explore the information space without guidance.
When agents receive either an explicit path (PH) or a unique signature (SH), they operate with
substantial scaffolding that may not be available in real-world scenarios. Furthermore, existing eval-
uations suffer from a critical limitation: they typically report only aggregate pass rates, collapsing
diverse failure modes into a single metric. This obscures crucial distinctions—an agent that searches
exhaustively but fails to connect evidence exhibits fundamentally different limitations than one that
gives up prematurely or misuses its parametric knowledge. Without understanding these failure
modes, it becomes hard to diagnose system weaknesses or guide improvements.

In this work, we introduce WebDetective, a benchmark that fundamentally rethinks hint-free deep
search evaluation through the co-design of questions and their evaluation environment. First, we
design Hint-Free (HF) Multi-Hop questions that provide neither path narration nor attribute fin-
gerprints—straightforward questions like “Who is the father of Kane Cornes?” require agents to
autonomously discover relevant contexts and reasoning chains. Second, and critically, we develop a
controlled Wikipedia sandbox that prevents shortcuts by selectively revealing information only when
agents follow the correct reasoning path. For instance, if answering a question requires connecting
information through multiple intermediate facts, our sandbox ensures these connections cannot be
bypassed—the agent must discover each link in the chain sequentially. This co-designed system
creates an evaluation environment where we can guarantee what knowledge an agent must have
discovered to succeed.
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This co-design—where the sandbox enforces that agents must discover each step of the reasoning
chain—uniquely enables a comprehensive two-level evaluation framework that provides precise at-
tribution of failure modes in multi-hop reasoning. Because our sandbox guarantees that successful
task completion requires finding and connecting all necessary intermediate facts, we can definitively
separate knowledge sufficiency (from both search and parametric sources) from generation quality.
When an agent succeeds, we know it must have discovered the complete reasoning chain; when it
fails, we can pinpoint whether it stopped searching too early, found the right information but failed to
connect it, or appropriately refused to answer when evidence was insufficient. Such fine-grained di-
agnostics are only possible because our benchmark’s architecture ensures that there is only one path
to the correct answer, and we can observe exactly how far along that path each agent progresses.

Additionaly, we further design an agentic workflow baseline that explicitly incorporates context
retention, memory management, and verification steps, offering a first attempt at addressing the
unique challenges posed by hint-free deep search. Through our diagnostic evaluation framework, we
uncover fundamental brittleness in current systems when reasoning paths must be discovered rather
than given, exposing critical gaps between existing capabilities and the requirements of genuine
autonomous deep search.

2 THE WEBDETECTIVE BENCHMARK

2.1 HINT-FREE MULTI-HOP QUESTION ANSWERING

Existing multi-hop QA benchmarks Yang et al. (2018b); Chen et al. (2019) systematically embed
hints h into their question formulations that fundamentally alter the search problem. We identify
two prevalent types of hint embedding:

Path-Hinting (PH): The question linguistically encodes the reasoning chain, where hPH =
Encode(R) directly reveals the reasoning structure. For example, in “Who is the husband of the
stepmother of the brother of Kane Cornes?”, the hint hPH explicitly decomposes the reasoning into
sequential steps: find brother → find stepmother → find husband. The agent’s task reduces from
discovering the reasoning path to merely executing the already-specified hPH .

Specification-Hinting (SH): The question obscures the target entity behind excessive con-
straints, where hSH = {s1, s2, ..., sk} progressively narrows the search space to a unique
answer. For instance, “Which radio presenter at 5AA, former footballer, at least 20
years senior to his wife who was a 2007 Labor candidate?” provides constraints hSH =
{radio presenter at 5AA, former footballer, 20+ years senior to wife,wife was 2007 Labor candidate}
that collectively fingerprint Graham Cornes. While this creates search challenges through constraint
matching and noise filtering, the fundamental task becomes constraint satisfaction—locate any
entity matching all specifications in hSH—rather than discovering which connections matter for
reasoning.

In contrast, we propose Hint-Free (HF) Multi-Hop question answering where h = ∅. Formally,
given a question q and a knowledge corpus C, an agent must find an answer a∗ by discovering and
composing a sequence of evidence pieces E = {e1, e2, ..., en} from C. Each evidence piece ei
represents an atomic fact extracted from entity vi’s web page that contains related information to
vi+1, forming a reasoning chain v0 → v1 → ... → vn where v0 is the starting entity (mentioned in
q) and vn yields the answer a∗. The reasoning function R : E → a∗ defines how these evidence
pieces must be composed—through logical inference, relationship transitivity, or domain-specific
reasoning—to derive the final answer from the collected facts.

The key distinction is that HF Multi-Hop questions provide neither reasoning scaffolding nor ex-
cessive specifications. Questions like “Who is the father of Kane Cornes?” contain only the essen-
tial information needed to identify what is being asked, without revealing how to find it. For this
example, answering requires discovering e1 (Kane Cornes has brother Chad Cornes), e2 (Chad’s
stepmother is Nicole Cornes), e3 (Nicole’s husband is Graham Cornes), and composing them via
familial reasoning to derive a∗ = Graham Cornes. Critically, the agent must independently discover
both the evidence chain E and the reasoning function R : E → a∗ without guidance from hints.
This formulation captures a fundamental capability: given a straightforward information need, can
an agent autonomously discover the reasoning structure required to find the answer?
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2.2 THE CO-DESIGN PRINCIPLE

While hint-free questions eliminate linguistic scaffolding, we observe that question design alone is
insufficient to ensure genuine multi-hop reasoning. In open corpora or live web environments, even
well-designed hint-free questions permit shortcuts that bypass the intended reasoning chain. Con-
sider our example “Who is the father of Kane?”—in Wikipedia or web search, direct co-occurrences
of “Kane” and “Graham Cornes” may exist in unrelated contexts, or intermediate entities like “Chad
Cornes” could be found through direct search, allowing agents to bypass the intended reasoning
path.

This shortcut problem is fundamental: in any open corpus, both answers and intermediate entities
are typically accessible through multiple paths. This accessibility makes it impossible to determine
whether an agent genuinely discovered the reasoning chain or simply leveraged shortcuts, prior
knowledge, or lucky searches.

To address this, we introduce a co-designed evaluation system where questions and their en-
vironment are jointly constructed to enforce reasoning path discovery. Our key insight is to
create a controlled sandbox with selective entity masking. For a reasoning chain with entities
v0 → v1 → ... → vn (where v0 appears in the question and vn yields the answer), we mask each
intermediate entity vi everywhere in the corpus except on the Wikipedia page of vi−1. Formally:

Entity vi is discoverable ⇐⇒ agent visits page(vi−1)

This creates a strict sequential dependency where each step in the reasoning chain can only be
accessed through the previous step.

Returning to our example: “Chad Cornes” is masked throughout the entire corpus except on Kane’s
Wikipedia page. An agent cannot find Chad through search or cross-references—it must visit Kane’s
page to discover that Kane has a brother Chad (e1). Similarly, “Nicole Cornes” only appears on
Chad’s page, revealing she is Chad’s stepmother (e2). Finally, the connection to “Graham Cornes”
exists only on Nicole’s page, identifying him as her husband (e3). The sandbox enforces that reach-
ing the answer requires following the exact chain: Kane → Chad → Nicole → Graham.

This masking mechanism eliminates shortcuts and provides strong evaluation guarantees. When an
agent succeeds, we know definitively that it discovered the complete reasoning chain by visiting
each required page in sequence. When it fails, we can precisely diagnose where the breakdown
occurred—did it never visit Kane’s page (insufficient exploration)? Did it find Chad but fail to visit
his page (failed to recognize relevance)? Or did it reach Nicole but couldn’t extract the answer
(synthesis failure)? This fine-grained attribution is only possible because our controlled environ-
ment ensures a unique, traceable path to each answer, transforming multi-hop QA evaluation from
probabilistic assessment to deterministic verification.

2.3 BEYOND PASS RATES: A DIAGNOSTIC EVALUATION FRAMEWORK

Traditional multi-hop QA evaluation reduces agent performance to a single pass rate, obscuring the
diverse failure modes that occur in complex reasoning tasks. An agent that searches exhaustively but
fails to synthesize evidence exhibits fundamentally different limitations than one that refuses pre-
maturely or hallucinates from parametric knowledge. Our co-designed sandbox, with its guaranteed
unique reasoning paths, enables unprecedented diagnostic precision in distinguishing these failure
modes.

We introduce a two-level evaluation framework that separates knowledge sufficiency from generation
quality. First, we assess whether an agent possesses the requisite knowledge—either through suc-
cessful search or parametric memory—to answer the question. Second, conditioned on knowledge
sufficiency, we evaluate the agent’s ability to either correctly synthesize an answer or appropriately
refuse when evidence is insufficient. This decomposition reveals that seemingly similar pass rates
can mask vastly different underlying capabilities.

Knowledge Discovery Metrics. We assess whether agents acquire necessary information through
two complementary metrics. Knowledge Sufficiency determines if an agent possesses all required
evidence E = {e1, ..., en} for answering. We track which evidence the agent discovered through
search by monitoring visited pages in our sandbox. For any missing evidence ei /∈ Efound, we probe
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the model’s parametric knowledge with targeted queries (e.g., “Kane Cornes has brother ?”).
An instance is knowledge-sufficient when the agent has all evidence either from search or parametric
memory. The Search Score extends this by crediting models that efficiently combine partial search
with parametric knowledge—recognizing that if an entity discovered through search has a meaning-
ful relationship to the answer stored in parametric memory, this represents legitimate reasoning that
demonstrates efficient knowledge utilization.

Generation Quality Metrics. Given knowledge sufficiency assessment, we partition instances
along two dimensions: knowledge-sufficient (S) vs. insufficient (I), and attempted answer (A)
vs. refusal (R). This creates critical regions revealing different capabilities. Good Refusal
(GR) measures appropriate abstention when lacking evidence through an F1 score (F1GR) that bal-
ances precision and recall—high recall indicates the agent avoids hallucination by refusing most
knowledge-insufficient cases, while high precision ensures refusals are justified rather than over-
cautious. Knowledge Utilization (KU) assesses synthesis of correct answers when evidence is
available, also measured via F1 score (F1KU)—high recall means the agent leverages available ev-
idence effectively, while high precision indicates that answer attempts are grounded in sufficient
knowledge rather than speculation. These F1 formulations capture the complementary nature of
both capabilities: an ideal agent achieves high scores in both metrics rather than trading one for the
other.

We combine these into a unified Generation Score: GenScore = F1GR+F1KU
2 · KnowledgeScore.

The knowledge sufficiency weighting is crucial—without it, models could game the evaluation by
performing minimal search and refusing all questions, achieving high Good Refusal scores while
providing no value. This design ensures models must demonstrate both effective evidence discovery
and appropriate handling of that evidence.

Knowledge Degradation Analysis. For instances where models achieve knowledge sufficiency yet
fail to generate correct answers, we conduct diagnostic tests to understand why evidence posses-
sion doesn’t translate to correct synthesis. The Knowledge Forget test reveals when models cannot
leverage parametric knowledge to fill gaps in the full question context, despite correctly answer-
ing individual knowledge probes. The Lead-astray test identifies when accumulated search con-
text—failed attempts, irrelevant pages, exploration noise—disrupts the model’s ability to synthesize
answers it could produce from clean evidence alone.

Unlike simple pass rates that collapse diverse behaviors into a single number, our metrics provide
actionable diagnostics: low Knowledge Scores reveal inadequate search strategies, poor Good Re-
fusal indicates over-confident hallucination, weak Knowledge Utilization exposes synthesis fail-
ures, and high Knowledge Degradation rates pinpoint where models struggle to maintain coherence
across extended reasoning chains. This diagnostic precision, enabled by our co-designed evalua-
tion environment, illuminates the specific capabilities required for robust multi-hop reasoning. See
Appendix A.1 for complete mathematical formulations.

2.4 DATASET CONSTRUCTION

To instantiate our hint-free multi-hop QA benchmark, we develop a systematic pipeline that trans-
forms single-hop Wikipedia QA pairs into verified multi-hop reasoning chains while ensuring each
hop is necessary for answering.

Source Data and Chain Discovery. We begin with a corpus of Wikipedia-based QA pairs where
each question targets a specific paragraph on a Wikipedia page (the starting entity v0) and has an
answer that is another Wikipedia entity (vn). These seed questions are designed to be unambiguous
and simple, avoiding any linguistic hints about reasoning paths. To construct multi-hop chains, we
first block the direct connection between v0 and vn, then perform breadth-first search (BFS) to find
the shortest alternative path v0 → v1 → ... → vn through Wikipedia’s hyperlink graph. For each
edge (vi, vi+1) in the discovered path, we extract the sentence ei from vi’s Wikipedia page that
contains the hyperlink to vi+1, forming the evidence chain E = {e1, e2, ..., en}.

Verification of Reasoning Necessity. Not all discovered paths constitute valid answers to the
question—most arbitrary paths from v0 to vn through Wikipedia’s link graph are completely un-
related to what the question asks. For instance, a path connecting two people through their uni-
versities and shared colleagues is irrelevant for a question asking about family relationships. We
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implement a three-stage verification process using a strong language model (Qwen-3-235B in our
implementation), denoted as LM(·) which takes text input and generates an answer:

1. Parametric Inaccessibility: We verify that LM(q) ̸= vn, ensuring the answer cannot be
directly retrieved from the model’s parametric memory without evidence.

2. Evidence Sufficiency: We confirm that LM(q, E) = vn, validating that the complete evi-
dence chain enables correct answer generation.

3. Evidence Necessity: For each evidence piece ei, we verify that LM(q, E \ {ei}) ̸= vn,
ensuring every hop in the chain is required for reasoning. This ablation test eliminates
questions where evidence pieces are redundant or where shortcuts exist.

Human Validation and Dataset Statistics. Questions passing automated verification undergo hu-
man annotation to ensure the question genuinely requires all evidence pieces, the evidence chain
logically derives the answer without external knowledge, and no implicit hints about the reasoning
structure exist. Our final WebDetective benchmark comprises 200 verified questions with diverse
hop counts and question types. We provide detailed dataset statistics and additional validation details
in Appendix C and D.

3 EXPERIMENTS

To address the unique challenges posed by hint-free multi-hop reasoning, we develop Evi-
denceLoop, an agentic workflow baseline that explicitly incorporates context retention, memory
management, and verification steps to maintain reasoning coherence across extended search trajec-
tories. Unlike standard ReAct implementations that can lose track of evidence across many search
iterations, our workflow introduces structured mechanisms for tracking discovered entities, main-
taining evidence chains, and verifying reasoning paths before answer generation. We provide a de-
tailed description of the EvidenceLoop architecture, including its controller configuration, memory
modules, and verification procedures in Appendix E.

We evaluate 25 state-of-the-art models with ReAct-style tool use capabilities, including those de-
veloped by OpenAI, Anthropic, Google, xAI, Alibaba, ByteDance, Zhipu AI, Moonshot AI, and
High-Flyer. All models follow the ReAct paradigm Yao et al. (2023), interleaving reasoning, search
actions, and observations within a controlled Wikipedia sandbox. Using WebDetective with 200
hint-free multi-hop questions (2–4 reasoning hops), models operate under limits of 40 tool calls and
a 32K-token context window. Unless otherwise specified, we adopt a unified decoding configuration
with temperature set to 0.6 and top p set to 0.95. Performance is measured with six metrics:
(1) Knowledge Score, sufficiency of knowledge acquisition; (2) Search Score, effectiveness of re-
trieval; (3) Generation Score, weighted F1 of Good Refusal and Knowledge Utilization; (4) Good
Refusal F1, appropriateness of refusals without evidence; (5) Knowledge Utilization F1, synthesis
accuracy given evidence; and (6) Pass@1, standard accuracy. In addition, we further analyse For-
get and Lead-astray behaviours to probe knowledge degradation of LLMs for synthesising the final
answer in section 3.2.2. For our proposed EvidenceLoop, we further configure the controller with
breadth=3 and iteration=3. table 1 presents comprehensive results across six key metrics
for all ReAct baselines and our EvidenceLoop.

3.1 MAIN RESULTS

Frontier models are far from saturating the task. Even the strongest systems reach only ∼50%
Pass@1 on our benchmark: O3-Pro tops out at 56.0%, while GPT-5 and Grok-4 both achieve 50.5%;
Claude-Opus-4.1 is at 44.5%, and many others fall well below 40%. This illustrates the challenging
nature of our benchmark, WebDetective.

Search, generation, and final accuracy are decoupled. High retrieval does not translate pro-
portionally into better synthesis or Pass@1. For example, GPT-5 attains an 80.0% Search Score but
only 23.21% Generation Score and 50.5% Pass@1; O3-Pro similarly has 78.0 Search but 20.86 Gen-
eration (56.0% Pass@1). Conversely, Grok-4 achieves the highest Generation Score (34.71) with
77.5 Search and 50.5% Pass@1, while Qwen3-235B-Thinking posts 72.0% Search yet just 11.15%
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Table 1: Comparison of 25 state-of-the-art models with ReAct-style tool use capabilities. Metrics
cover Knowledge Discovery (Knowledge Sufficiency, Search Score), Generation Quality (Genera-
tion Score, Good Refusal F1, Knowledge Utilisation F1), Knowledge Degradation (Forget, Lead-
astray), and Pass@1. Bold values denote best results: higher is better for Knowledge Discovery,
Generation Quality, and Pass@1, while lower indicates greater robustness for Knowledge Degrada-
tion.

Provider Model
Knowledge Discovery Generation Quality Knowledge Degradation

Pass@1Knowledge Search Generation Good Refusal Knowledge Util. Forget Lead-astray
Suff. (%) Score (%) Score (%) F1 (%) F1 (%) (%) (%) (%)

OpenAI

GPT-5 OpenAI (2025a) 79.00 80.00 23.21 8.89 49.58 17.72 32.91 50.50
GPT-5-Chat OpenAI (2025a) 58.00 59.50 15.74 26.23 28.05 47.41 31.90 29.50
O3-Pro OpenAI (2025c) 71.00 78.00 20.86 9.37 49.40 21.83 25.35 56.00
O3 OpenAI (2025c) 70.00 76.00 18.29 3.29 48.97 24.29 24.29 53.50
O3-Mini OpenAI (2025c) 48.50 57.00 9.10 21.05 16.48 46.39 42.27 21.50
O4-Mini OpenAI (2025d) 68.00 72.00 12.69 19.75 17.56 27.94 59.56 21.00
GPT-OSS-120B OpenAI (2025b) 16.00 23.50 2.75 23.59 10.73 100.00 0.00 24.00

Anthropic
Claude-Opus-4.1 Anthropic (2025) 74.00 76.50 28.53 28.57 48.54 27.03 31.08 44.50
Claude-Opus-4-Think Anthropic (2025) 68.00 73.50 21.00 30.53 31.23 43.38 32.35 29.00
Claude-Sonnet-4-Think Anthropic (2025) 66.50 73.50 26.19 34.59 44.19 45.11 21.80 38.50

Google Gemini-2.5-Pro Google DeepMind (2025) 65.50 73.00 11.64 10.87 24.68 44.27 35.11 28.50
Gemini-2.5-Flash-Think Google DeepMind (2025) 59.00 64.50 16.79 40.56 16.35 57.63 35.59 17.50

xAI Grok-4 xAI (2025) 74.00 77.50 34.71 37.63 56.19 23.65 27.70 50.50

Alibaba
Qwen3-235B-Think Yang et al. (2025) 72.50 72.00 11.15 6.56 24.19 63.45 19.31 21.50
Qwen3-30B-Think Yang et al. (2025) 56.50 59.00 7.25 12.51 13.16 79.65 16.81 12.50
Tongyi-DeepResearch Tongyi DeepResearch Team (2025) 53.50 57.50 4.20 0.00 15.69 43.93 41.12 18.50

ByteDance Doubao-1.6-Think ByteDance Seed Team (2025) 64.00 68.50 19.24 42.03 18.11 49.22 39.84 16.00
Doubao-1.6-Flash ByteDance Seed Team (2025) 54.50 57.50 20.00 53.95 19.46 68.81 21.10 13.50

Zhipu AI GLM-4.5-Inner Zhipu AI Team (2025) 63.50 67.50 22.19 34.79 35.09 25.98 40.16 33.50
GLM-4.5-Air-Inner Zhipu AI Team (2025) 55.50 60.50 12.31 26.39 17.97 44.14 40.54 19.00

Moonshot AI Kimi-K2-0711 Moonshot AI (2025) 54.50 59.00 9.72 16.36 19.31 43.12 36.70 23.50
Kimi-K2-0905 Moonshot AI (2025) 53.00 55.00 13.17 28.79 20.89 49.06 33.96 24.00

DeepSeek
DeepSeek-R1 DeepSeek-AI et al. (2025) 61.50 65.50 10.57 18.81 15.55 37.40 51.22 20.00
DeepSeek-V3.1-Think DeepSeek-AI et al. (2024) 61.50 56.50 13.62 27.97 16.34 44.72 44.72 17.00
DeepSeek-V3.1 DeepSeek-AI et al. (2024) 55.50 58.50 16.31 36.49 22.23 28.83 50.45 24.50

Our Team EvidenceLoop 61.50 62.50 12.61 17.98 23.79 41.46 41.46 25.00

Table 2: Emergent model profiles from metric interplay analysis.
Profile Metric Pattern Pass@1 Example Models Failure Mode

Knowledge Refusal Utilization

Powerful but Overconfident High Low High 50-56% GPT-5, O3-Pro, O3 Hallucination from overconfidence
Well-Calibrated Elite High Med High 44-51% Grok-4, Claude-Opus-4.1 Minor: unnecessary caution
Synthesis Bottleneck High Low Low 18-22% Qwen3-235B, Tongyi-DR Cannot compose multi-hop reasoning
Conservative Middle Med Med Med 29-39% Claude-Sonnet-4, GLM-4.5 Under-utilizes capabilities
Weak and Confused Med Low Low 20-22% O4-Mini, DeepSeek-R1 Poor synthesis + poor calibration
Self-Aware of Weakness Low High Low 13-18% Doubao variants, Gemini-Flash Comprehensive inability (appropriate)

Ideal (Unachieved) High High High – None None - optimal behavior

Generation and 21.5% Pass@1. These gaps indicate that information synthesis, not just retrieval, is
a key bottleneck.

Refusal ability is underdeveloped. Good-refusal performance is generally low: the best we ob-
serve is 53.95% F1 (Doubao-1.6-Flash). Many frontier models underperform markedly—e.g., GPT-
5 (8.89%), O3-Pro (9.37%), and O4-Mini (19.75%)—and even strong generalists like Claude-Opus-
4.1 remain modest (28.57%). This highlights weak calibrated abstention when evidence is insuffi-
cient.

3.2 ANALYSIS

3.2.1 UNDERSTANDING MODEL FAILURE MODES THROUGH METRIC PATTERNS

To better understand the diverse failure modes in multi-hop reasoning, we analyze the interplay
between our three core metrics: Knowledge Sufficiency (ability to gather evidence), Good Refusal
F1 (calibration of uncertainty), and Knowledge Utilization F1 (synthesis capability). Rather than
examining metrics in isolation, we investigate how their combinations reveal distinct behavioral
profiles.

We categorize performance using empirically-derived thresholds: Knowledge Sufficiency (High:
> 70%, Medium: 60-70%, Low: < 60%), Good Refusal F1 (High: > 40%, Medium: 25-40%,
Low: < 25%), and Knowledge Utilization F1 (High: > 45%, Medium: 25-45%, Low: < 25%).
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Analyzing all 23 models, we observe that they cluster into six distinct profiles based on these metric
combinations, with certain theoretically plausible patterns notably absent from the empirical data.

table 2 presents our taxonomy. The Powerful but Overconfident profile (GPT-5, O3-Pro, O3)
achieves the highest pass rates (50-56%) through strong evidence gathering and synthesis, but ex-
hibits dangerous overconfidence with refusal rates below 10% despite 21-30% knowledge insuf-
ficiency. These models prefer hallucination over admission of uncertainty. In contrast, the Well-
Calibrated Elite (Grok-4, Claude-Opus-4.1) achieve similar knowledge sufficiency and utilization
but maintain moderate refusal rates (29-38%), demonstrating that strong capabilities need not pre-
clude epistemic awareness—though this calibration costs approximately 5-6% in pass rate.

The Synthesis Bottleneck profile reveals a critical failure mode: models like Qwen3-235B-
Thinking achieve high knowledge sufficiency (72.5%) but catastrophically fail at synthesis (< 25%
utilization). Despite possessing evidence, they cannot compose multi-hop reasoning chains, yet
their low refusal rates indicate unawareness of this limitation. The Conservative Middle models
(Claude-Sonnet-4-Think, GLM-4.5-Inner) exhibit consistent mediocrity across all metrics, suggest-
ing excessive caution—their moderate utilization (31-44%) despite reasonable knowledge gathering
(63-68%) indicates they refuse even when capable of answering.

At the lower performance tiers, we observe a striking divergence in self-awareness. Self-Aware
of Weakness models (Doubao variants, Gemini-2.5-Flash-Think) appropriately refuse in 40-54%
of cases, correctly recognizing their limitations in both search and synthesis. Conversely, Weak
and Confused models (O4-Mini, DeepSeek-R1) exhibit similar capability limitations but fail to
recognize them, attempting answers despite 16-18% utilization rates.

Our analysis reveals three distinct failure modes in the multi-hop reasoning pipeline. Search failure
affects 21-46% of attempts even in top models, indicating that evidence discovery remains chal-
lenging. Synthesis failure is more severe—even with sufficient knowledge, utilization rates peak at
56%, suggesting that composing multi-hop reasoning chains remains a fundamental bottleneck. Cal-
ibration failure manifests bidirectionally: top-performing models are systematically overconfident
(refusing < 10% despite significant insufficiency), while weaker models may over-refuse or, worse,
lack any calibration signal. Notably, no model in our evaluation achieves both high utilization and
high refusal—a perfectly calibrated model would excel at synthesis while maintaining appropriate
uncertainty, but current architectures appear to force a tradeoff where strong synthesis capability
invariably leads to overconfidence. This suggests a fundamental tension between competence and
epistemic humility in existing architectures.

The emergence of these distinct profiles suggests that improving multi-hop reasoning requires tar-
geted interventions. Models in the Synthesis Bottleneck category need architectural improvements
to reasoning composition, not better search. Overconfident models need calibration mechanisms
that don’t sacrifice performance. Most importantly, the absence of any model achieving high perfor-
mance across all three metrics—even Grok-4 and Claude-Opus-4.1, the best-balanced models, only
reaches 50.5% and 44.5% pass rate—demonstrates that robust multi-hop reasoning remains an open
challenge, with synthesis capability being the universal limiting factor.

3.2.2 KNOWLEDGE DEGRADATION IN SYNTHESIS

Even when models achieve knowledge sufficiency (KS(d) = 1), they often fail to generate the
correct answer. We call this knowledge degradation: evidence is present in context, yet models
forget, ignore, or misuse it during synthesis. To analyse this effect, we focus on two diagnostics,
Forget and Lead-astray, which reveal two distinct synthesis failures: models either fail to recall
known knowledge (Forget) or become disrupted by noisy search contexts (Lead-astray).

Knowledge degradation patterns. From table 1, models with lower Forget and Lead-astray gen-
erally exhibit higher Knowledge Utilization, which in turn coincides with higher Generation Score
and Pass@1. For instance, Grok-4 (Forget 23.65%, Lead-astray 27.70%) attains the highest Knowl-
edge Utilization F1 (56.19%), the highest Generation Score (34.71%), and 50.5% Pass@1. Simi-
larly, O3-Pro (Forget 21.83%, Lead-astray 25.35%) reaches 49.40% Knowledge Utilization, 20.86%
Generation Score, and the best Pass@1 (56.0%). GPT-5 shows a comparable pattern with very low
Forget (17.72%) and strong Knowledge Utilization (49.58%), alongside 23.21% Generation Score
and 50.5% Pass@1. In contrast, when Forget is high, Knowledge Utilization collapses and down-
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stream metrics follow suit: GPT-OSS-120B records the lowest Knowledge Utilization (10.73%)
with Forget at 100.00% (Lead-astray 0.00%), yielding only 2.75% Generation Score and 24.0%
Pass@1; Qwen3-30B-Thinking has Forget 79.65% (Lead-astray 16.81%), with 13.16% Knowledge
Utilization, 7.25% Generation Score, and 12.5% Pass@1. Similar degradations appear for Gemini-
2.5-Flash-Think (Forget 57.63%, Knowledge Utilization 16.35%) and Tongyi-DeepResearch-30B
(Forget 43.93%, Knowledge Utilization 15.69%).

Forgetting dominates misdirection. Averaging across all models, the mean difference Forget−
Lead-astray is +10.35% points. This gap indicates that, on WebDetective, failures after achieving
knowledge sufficiency are more often due to not using already-available evidence (forgetting during
synthesis) than to being led astray by spurious context. In other words, the principal bottleneck lies
in evidence integration at answer time rather than in resisting distractors.

3.2.3 ROBUSTNESS TO TEST-TIME SCALING

Figure 2: Scaling under test-time scaling (TTS).

To assess the robustness of our benchmark, we examine test-time scaling (TTS) along two axes.
First, we scale context length for a strong ReAct model (Claude-Opus-4.1) to test whether larger
budgets improve performance. Second, we vary breadth and iteration counts in EvidenceLoop
to probe whether extensive exploration can exploit WebDetective. These analyses test whether
WebDetective can be artificially boosted by TTS or instead faithfully reflect underlying system
capabilities.

In fig. 2, we observe two main trends. For Claude-Opus-4.1, enlarging the context window from 8K
to 32K tokens brings negligible gains: Generation Score plateaus at about 34%, Pass@1 at about
50%, and Search Score increases by less than 1%. For EvidenceLoop, expanding the controller
from breadth=1, iteration=2 to breadth=3, iteration=2 raises Search Score slightly (45% → 46%,
+1%), leaves Generation Score unchanged at 21%, and improves Pass@1 from 49% to 56% (+7%).
These results indicate that our benchmark is robust to naı̈ve test-time scaling. Neither larger context
budgets nor shallow exploration suffice to “hack” WebDetective; achieving further gains requires
genuine advances in model reasoning and knowledge utilisation.

4 CONCLUSION

We introduced WEBDETECTIVE, a benchmark for evaluating web agents on hint-free multi-hop
deep search within a controlled Wikipedia sandbox. Unlike prior datasets that embed reasoning
paths (PH) or entity fingerprints (SH), our design enforces autonomous discovery of reasoning
chains while enabling fine-grained attribution of failure modes. Evaluation of 25 state-of-the-art
models reveals consistent weaknesses: systems often retrieve sufficient evidence but fail to utilise
it effectively, and appropriate refusals remain nearly absent. Our proposed agentic workflow Ev-
idenceLoop demonstrates that explicit verification and systematic evidence tracking can partially
close this gap, underscoring that performance cannot be trivially improved by test-time scaling
alone.
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ETHICS STATEMENT

We have read and will adhere to the ICLR Code of Ethics and the ICLR Code of Conduct. Our
research introduces WebDetective, a framework for hint-free multi-hop questions answering and
evidenceLoop, an agentic-workflow baseline. The methods used in our study are well-established
for academic research. These environments do not contain any personally identifiable information
(PII) or sensitive real-world data. Our work did not involve human subjects, crowd-sourcing, or the
scraping of private data; therefore, Institutional Review Board (IRB) approval was not required.

We acknowledge that research on autonomous agents carries potential dual-use risks. To mitigate
these, our experiments are intentionally confined to benign, closed-world tasks such as online shop-
ping and household activities within simulated settings. We followed good scholarly practice by
reporting our methods and results transparently and citing prior work accurately. The authors de-
clare no competing interests or external sponsorships that could have influenced the outcomes of
this research.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. All essential details for reproduc-
ing our results are provided within this paper. The WebDetective benchmark design, including the
hint-free question formulation principles, co-designed evaluation system with selective entity mask-
ing, and the two-level diagnostic evaluation framework, are thoroughly detailed in the methodology
sections. The complete WebDetective dataset statistics, question-environment co-design method-
ology, and human validation procedures are comprehensively described in the dataset construction
sections. Our experimental setup, including the specific language models evaluated (GPT-5, O3-
Pro, Claude-Opus-4.1, Gemini-2.5-Pro, Grok-4, Qwen3-235B-Thinking, and others), the controlled
Wikipedia sandbox configuration, knowledge sufficiency probing methodology, and evaluation pro-
tocols, is fully documented in the experimental sections. The diagnostic metrics formalization in-
cluding Knowledge Score, Generation Score, Good Refusal (GR), Knowledge Utilization (KU),
and knowledge degradation tests (Forget and Lead-astray) are rigorously defined in the evaluation
framework sections. To facilitate full replication of our benchmark construction pipeline and agent
evaluation experiments, we will release our complete codebase, the controlled Wikipedia sandbox
environment, hint-free question dataset with evidence chains, and evaluation scripts as supplemen-
tary material.
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A APPENDIX

A.1 FORMAL METRICS DEFINITION

Traditional multi-hop QA evaluation reduces agent performance to a single pass rate, obscuring the
diverse failure modes that occur in complex reasoning tasks. An agent that searches exhaustively but
fails to synthesize evidence exhibits fundamentally different limitations than one that refuses pre-
maturely or hallucinates from parametric knowledge. Our co-designed sandbox, with its guaranteed
unique reasoning paths, enables unprecedented diagnostic precision in distinguishing these failure
modes.

We introduce a two-level evaluation framework that separates knowledge sufficiency from generation
quality. First, we assess whether an agent possesses the requisite knowledge—either through suc-
cessful search or parametric memory—to answer the question. Second, conditioned on knowledge
sufficiency, we evaluate the agent’s ability to either correctly synthesize an answer or appropriately
refuse when evidence is insufficient.

Knowledge Sufficiency Assessment: We assess whether an agent possesses—either through search
or parametric knowledge—all information necessary to answer the question. Given the required
evidence chain E = {e1, ..., en}, we first identify which evidence the agent discovered through
search by tracking visited pages in our sandbox. For any missing evidence ei /∈ Efound, we then test
whether the agent can access this information parametrically.

Specifically, for each missing piece of evidence ei, we construct a focused probe query pi that tests
for that specific knowledge. For instance, if the agent never visited Kane’s page and thus missed
discovering that “Kane Cornes has brother Chad Cornes,” we probe with: “Kane Cornes has brother

”. We define Probe(pi) as a function that submits probe pi to the base model and returns
whether the model’s response matches the expected answer for evidence ei.

For instance d with evidence chain of length nd, we define:

kdi =


1 if ei ∈ Efound (found via search)
1 if ei /∈ Efound ∧ Probe(pi) = correct
0 otherwise

The instance is knowledge sufficient if: KS(d) =
∏nd

i=1 k
d
i = 1

We define the overall Knowledge Score as the fraction of instances where the agent achieves knowl-
edge sufficiency:

KnowledgeScore =
|S|
N

(1)

This metric directly measures search effectiveness—a low KnowledgeScore indicates the agent fails
to discover necessary evidence through exploration, regardless of its ability to synthesize answers.

Search Score: While our masking mechanism enforces the canonical reasoning path v0 → v1 →
... → vn, we observe that models may leverage alternative valid reasoning strategies. Specifically,
if an entity vx (reachable through search from v0) has a meaningful relationship to the answer vn
stored in the model’s parametric knowledge, the model can combine partial search with memory to
reach the correct answer. This represents a legitimate form of reasoning that demonstrates efficient
use of both search and parametric knowledge.

To capture this capability, we define SearchScore that credits models for finding correct answers
through any valid combination of search and parametric knowledge, provided their search efficiency
meets or exceeds the ground truth path:

SearchScore = KnowledgeScore +
|C|
N

(2)

where C = {d ∈ D : correct(d) ∧ hops(d) ≤ hopsGT(d) ∧ KS(d) = 0} represents instances where
the model:
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• Produces the correct answer despite not having complete knowledge sufficiency through
the canonical path

• Uses no more search hops than the ground truth path length
• Effectively combines discovered entities with parametric knowledge

This metric recognizes that effective multi-hop reasoning isn’t solely about following predetermined
paths, but about efficiently discovering and leveraging available information—whether through com-
plete evidence chains or intelligent combination of partial search with existing knowledge. The hop
constraint ensures models aren’t simply performing exhaustive search, but are discovering meaning-
ful connections that enable efficient reasoning.

Search Score: While our masking mechanism enforces the canonical reasoning path v0 → v1 →
... → vn, we observe that models may leverage alternative valid reasoning strategies. Specifically,
if an entity vx (reachable through search from v0) has a meaningful relationship to the answer vn
stored in the model’s parametric knowledge, the model can combine partial search with memory to
reach the correct answer. This represents a legitimate form of reasoning that demonstrates efficient
use of both search and parametric knowledge.

To capture this capability, we define SearchScore that credits models for finding correct answers
through any valid combination of search and parametric knowledge, provided their search efficiency
meets or exceeds the ground truth path:

SearchScore = KnowledgeScore +
|C|
N

(3)

where C = {d ∈ D : correct(d) ∧ searched(d) ∧ hops(d) ≤ hopsGT(d) ∧ KS(d) = 0} represents
instances where the model:

• Produces the correct answer despite not having complete knowledge sufficiency through
the canonical path

• Actually performs web search (not relying solely on parametric knowledge)
• Uses no more search hops than the ground truth path length
• Effectively combines discovered entities with parametric knowledge

The requirement that searched(d) = true ensures we only reward genuine search-memory combina-
tion strategies, not pure parametric recall. This metric recognizes that effective multi-hop reasoning
isn’t solely about following predetermined paths, but about efficiently discovering and leveraging
available information through intelligent combination of partial search with existing knowledge.
The hop constraint ensures models aren’t simply performing exhaustive search, but are discovering
meaningful connections that enable efficient reasoning.

Generation Quality Assesement: Given the knowledge sufficiency assessment, we evaluate gen-
eration quality through a conditional framework that captures the fundamental tension in multi-hop
QA: agents must synthesize answers when they have sufficient evidence while appropriately refusing
when they don’t.

Let D = {d1, ..., dN} denote the evaluation dataset with N instances. We partition D along two
dimensions:

Knowledge dimension:
S = {d ∈ D : KS(d) = 1} (knowledge sufficient instances) (4)
I = D \ S (knowledge insufficient instances) (5)

Response dimension:
A = {d ∈ D : agent attempts answer} (6)
R = {d ∈ D : agent refuses} (7)

where attempts are further partitioned into A = Ac∪Aw, with Ac denoting correct answers (match-
ing ground truth) and Aw denoting wrong answers. Note that A ∪R = D.
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The intersection of these dimensions creates critical regions that reveal different agent capabilities
and failure modes:

• Knowledge sufficient, answers correctly (S∩Ac): The ideal scenario—the agent possesses
all evidence and successfully synthesizes the correct answer. This demonstrates knowledge
utilization, the ability to compose multi-hop reasoning without forgetting intermediate steps
or being disrupted by irrelevant information.

• Knowledge sufficient, answers wrongly (S ∩ Aw): A synthesis failure—despite having all
necessary evidence, the agent produces an incorrect answer. This reveals breakdowns in
reasoning composition, where evidence possession doesn’t translate to correct synthesis.

• Knowledge sufficient, refuses (S∩R): Over-caution—the agent has sufficient evidence but
refuses to answer. This represents failure to recognize that the evidence chain is complete,
missing opportunities to provide helpful answers.

• Knowledge insufficient, refuses (I ∩ R): The second ideal scenario—good refusal. The
agent lacks critical evidence and appropriately declines to answer, demonstrating epistemic
awareness and avoiding hallucination.

• Knowledge insufficient, attempts answer (I ∩ A): The most problematic behavior—the
agent lacks evidence but attempts an answer anyway (whether correct by luck or wrong),
typically through hallucination, guessing, or over-reliance on partial information.

This visualization reveals that generation quality isn’t monolithic—an agent might excel at refusing
when uncertain but fail to synthesize known information, or vice versa. For instance, an overly con-
servative agent might achieve perfect good refusal by refusing everything (large R region), while an
overly confident agent might attempt every question (large A region) leading to frequent hallucina-
tions in the I zone.

To capture these complementary capabilities, we define two core metrics:

Good Refusal (GR) measures the agent’s ability to appropriately abstain when lacking evidence. It
evaluates R’s overlap with I—high recall indicates the agent successfully avoids hallucination by
refusing most knowledge-insufficient cases, while high precision ensures refusals are justified (not
bleeding unnecessarily into S).

RecallGR =
|R ∩ I|
|I|

, PrecisionGR =
|R ∩ I|
|R|

, F1GR = 2 · RecallGR · PrecisionGR

RecallGR + PrecisionGR
(8)

Knowledge Utilization (KU) assesses the agent’s ability to synthesize correct answers when evi-
dence is available. It examines Ac within S—high recall means the agent leverages available ev-
idence effectively, while high precision indicates that attempts are typically grounded in sufficient
knowledge.

RecallKU =
|Ac ∩ S|

|S|
, PrecisionKU =

|Ac ∩ S|
|A|

, F1KU = 2 · RecallKU · PrecisionKU

RecallKU + PrecisionKU
(9)

Importantly, these metrics are non-competing—improving one shouldn’t decrease the other in a
well-designed system. An ideal agent achieves high F1GR (refusing when and only when knowledge
is insufficient) while maintaining high F1KU (correctly answering when evidence is available). To
capture both capabilities while preventing gaming, we define a unified Generation Score:

GenScore =
F1GR + F1KU

2
· |S|
N

(10)

The |S|/N weighting (KnowledgeScore) is crucial for preventing metric exploitation: without it,
models could game the evaluation by adopting a degenerate strategy—performing minimal search
and refusing nearly all questions. Such a model would achieve high F1GR (correctly refusing the
many knowledge-insufficient cases) while contributing nothing useful, yet still obtain a substantial
GenScore. This creates a perverse incentive where models might optimize for conservative refusal
rather than improving search capabilities. The weighting ensures that models cannot exploit the
evaluation structure—they must demonstrate effective evidence discovery to achieve competitive
scores, aligning the metric incentives with the actual goal of multi-hop reasoning systems.
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Unlike simple pass rates, our metrics provide actionable insights: low KnowledgeScore indicates
inadequate search strategies, low GR scores reveal over-confident hallucination, and low KU scores
expose synthesis failures despite having evidence. This diagnostic precision, enabled by our co-
designed evaluation environment, illuminates the specific capabilities required for robust multi-hop
reasoning.

Knowledge Forget Test. We test LM(q, Efound) where Efound = Evisited ∩ EGT represents evidence
from ground-truth URLs that the model actually visited. When this fails despite KS(d) = 1, it
reveals knowledge forget: the model cannot leverage its parametric knowledge to fill missing pieces
when answering the full question, even though it correctly answers individual probes Probe(pi) for
each missing evidence ei ∈ EGT \ Efound.

Lead-astray Test. When LM(q, Efound) succeeds but the model fails in its actual search trajectory,
we identify lead-astray: the model can synthesize the answer from clean evidence but is disrupted
by the accumulated search context (failed attempts, irrelevant pages, exploration noise).

Formally, for the set of knowledge-sufficient instances S∗ = {d ∈ D : KS(d) = 1 ∧ incorrect(d)}
where the model fails despite having all necessary knowledge:

ForgetRate =
|{d ∈ S∗ : LM(qd, Ed

found) ̸= a∗d}|
|S∗|

LeadAstrayRate =
|{d ∈ S∗ : LM(qd, Ed

found) = a∗d ∧ actual output(d) ̸= a∗d}|
|S∗|

These metrics decompose knowledge-sufficient failures: ForgetRate identifies when models can-
not integrate parametric knowledge with partial search results, while LeadAstrayRate reveals when
noisy search trajectories corrupt otherwise successful reasoning.

B FAILURE CASE STUDIES

We identify four recurring failure patterns through qualitative analysis:

1. Instruction Drift in Long Trajectories: After 15+ tool calls, models lose track of the original
question, pursuing tangentially related information. Example: When asking “Who is the father of
Kane?”, models explore Kane’s entire family tree rather than following the specific chain to the
answer.

2. Premature Satisfaction: Models often stop searching after finding partial information that seems
plausible. They attempt answers based on incomplete evidence rather than verifying they have the
complete reasoning chain.

3. Entity Confusion: With similar entity names, models conflate different entities or miss crucial
disambiguating information, especially problematic in dense domains with many related entities.

4. Context Window Pollution: Failed searches and irrelevant exploration consume context space,
creating noise that interferes with synthesis even when correct evidence is eventually found.

C DATASET HUMAN VALIDATION

Human Validation. Questions passing automated verification undergo human annotation by 2 re-
searchers with NLP expertise. Each question is independently reviewed following a structured pro-
tocol:

1. Annotation Protocol: For each question, annotators receive the question q, evidence chain
E = {e1, ..., en}, and answer vn. They verify three criteria:

• Necessity: Whether the question can be answered without the evidence chain using
only general knowledge

• Sufficiency: Whether the evidence chain logically derives the answer without requiring
external information
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• No hints: Whether the question avoids linguistic cues that reveal intermediate reason-
ing steps

2. Validation Process: Each question requires 2-3 minutes of review. Annotators trace
through the reasoning chain step-by-step, attempting to answer the question both with and
without the evidence to ensure all pieces are necessary. Questions where intermediate en-
tities could be guessed from the question phrasing or where the evidence chain has logical
gaps are rejected.

3. Dataset Filtering: Of approximately 450 machine-verified questions reviewed, 200 ques-
tions (∼44%) pass human validation. Common rejection reasons include: evidence chains
not targeting the questions, evidence chains with missing logical connections, and questions
containing subtle hints about the reasoning path (e.g., mentioning attributes that implicitly
identify intermediate entities).

This manual verification process, totaling approximately 20 hours of annotation effort, ensures our
final dataset contains only questions that genuinely require discovering and composing the complete
multi-hop reasoning chain.

D DATASET STATISTICS

Figure 3: Dataset statistics for WebDetective benchmark. The figure shows: (a) Distribution of
question types, (b) Number of entities per question, (c) Evidence count distribution, (d) Question
and answer length in characters, (e) Hop length distribution by analysis setting, and (f) Search query
usage patterns. The dataset exhibits controlled complexity with predominantly 2-3 hop questions
while maintaining challenging longer chains.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Our final WebDetective benchmark comprises 200 hint-free multi-hop questions, carefully curated
through our verification pipeline. Figure 3 presents a comprehensive analysis of the dataset charac-
teristics.

Question Complexity. The dataset exhibits controlled complexity suitable for diagnostic evalua-
tion. Questions require 2 to 6 hops of reasoning (mean: 2.85 hops), with the distribution heavily
weighted toward 2-hop (55%) and 3-hop (31%) questions, while maintaining a challenging subset of
4+ hop questions (14%). This distribution balances tractability with sufficient complexity to stress-
test multi-hop reasoning capabilities. Each question involves 3 to 8 Wikipedia entities (mean: 3.73),
with the modal question requiring exactly 3 entities to form the complete reasoning chain.

Question Types and Domains. The dataset spans diverse question types, with “What” questions
comprising 34% of the dataset, “Who” questions 27%, and “Which” questions 13.5%, ensuring
broad coverage of information-seeking patterns. Questions are concise (mean: 71.4 characters)
with typically short answers (mean: 28.6 characters), reflecting natural information needs without
verbose specifications that might hint at reasoning paths.

Evidence Requirements. The evidence distribution aligns with hop counts, with most questions re-
quiring 2-3 pieces of evidence (52.5% and 31% respectively). This controlled evidence requirement
enables precise diagnosis of where reasoning fails—whether at initial discovery, intermediate steps,
or final synthesis.

The dataset’s careful balance of complexity, diversity, and diagnostic precision makes it suitable
for evaluating the full spectrum of multi-hop reasoning capabilities, from basic 2-hop familial re-
lationships to complex 5-hop chains requiring sustained context retention across multiple search
iterations.

E THE EVIDENCELOOP FRAMEWORK

The hint-free nature of our benchmark exposes fundamental limitations in current multi-hop reason-
ing approaches. Without linguistic scaffolding, agents must autonomously discover which connec-
tions matter among thousands of facts—a challenge that, as our results show, causes even state-of-
the-art models to achieve only 50% accuracy. To better understand these challenges and establish a
baseline for future work, we design an agentic workflow that explicitly targets the unique difficulties
our benchmark reveals: the need for broad exploration without context explosion, evidence retention
across long trajectories, and synthesis from accumulated but noisy search contexts.

E.1 CORE ARCHITECTURE: ITERATIVE REFINEMENT WITH FALLBACK

Our framework attempts to balance exploration breadth with computational feasibility through Rmax

iterations. Each iteration r launches N parallel solver agents {Ar
1, ..., A

r
N} that explore different

reasoning paths simultaneously. Each agent Ar
i receives the question q, an aggregated context Cr

from previous iterations (with C0 = ∅ initially), and executes up to B actions.

After each iteration, we employ a two-stage refinement process:

1. An extraction agent processes the reasoning contexts from all N parallel agents to identify
key findings, evidence references, and promising paths

2. An aggregation agent synthesizes these extracted insights into a refined context Cr+1 for
the next round, preserving valuable discoveries while discarding exploration noise

This iterative refinement addresses a core challenge our benchmark exposes: early rounds might
explore many directions—sports connections, geographic locations, family relations—but the
extraction-aggregation pipeline identifies which paths warrant deeper exploration, preventing the
context explosion that causes single-pass approaches to fail while avoiding premature path com-
mitment. If no conclusive answer emerges after Rmax iterations, a final aggregation agent consol-
idates all discovered evidence into a comprehensive context Cfinal. This context is then passed to
a synthesis-only solver that attempts to derive the answer purely from the accumulated evidence
without additional search actions—effectively testing whether the failure stems from insufficient
exploration or poor evidence composition.
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E.2 EVIDENCE MEMORY SYSTEM

Enabling this iterative refinement is our Evidence Memory System M. When any agent performs
a search or visits a page, the system: 1) Stores complete results in persistent memory; 2) Assigns
unique Evidence IDs (EIDs) for reference; and 3) Returns both full content and EID to the agent.

The EID system serves multiple critical functions in our framework. First, during extraction and ag-
gregation between iterations, the extraction and aggregation agent produces summaries that preserve
EID references alongside extracted facts—for example, “Kane has brother Chad [EID-042], Chad’s
stepmother is Nicole [EID-089]”. This allows subsequent solver agents to receive concise, action-
able summaries while retaining the ability to retrieve full evidence on demand through the retrieve
action as an external tool, which takes an EID and returns the complete original content from mem-
ory. Second, these EIDs enable systematic verification (detailed in Section E.3), where verification
agents can trace claims back to their original sources and validate reasoning chains against the actual
evidence.

The memory system transforms how evidence flows through iterations. Rather than forcing agents to
work with either overwhelming full documents or lossy compressions, agents can work with focused
summaries while maintaining access to complete evidence through EID-based retrieval. This design
ensures that even as contexts become more refined across iterations, agents never lose access to
the complete evidence trail that supports their reasoning, allowing them to dive deep into specific
evidence when needed for detailed analysis or verification.

E.3 VERIFICATION: ENSURING EVIDENCE-GROUNDED REASONING

The verification mechanism prevents premature or hallucinated answers from propagating through
our system. When any solver agent Ar

i proposes an answer, it must decompose the answer into
atomic claims {c1, c2, ..., cm}, where each claim cj is explicitly linked to an EID from the memory
system—e.g., “Kane has brother Chad [EID-042]”. No unsupported claims are permitted.

The verification agent V evaluates each proposal:

V (q, answer, {cj ,EIDj}mj=1) → {YES,NO(feedback)}

For each claim-evidence pair, the verifier retrieves the full content from M via the EID and validates:
(1) whether the source genuinely entails the claimed fact, (2) whether the claims collectively derive
the answer, and (3) whether the answer correctly addresses the original question.

Verification occurs during solver execution. Rejections provide specific feedback back to the solver,
allowing immediate gap-filling within the remaining action budget B, while acceptance imme-
diately terminates all iterations. This ensures both evidence grounding and computational effi-
ciency—solvers can correct incomplete reasoning in real-time while avoiding unnecessary explo-
ration once the answer is verified.

F RELATED WORK

F.1 MULTI-HOP QUESTION ANSWERING BENCHMARKS

Multi-hop QA benchmarks evaluate models’ ability to compose information across multiple rea-
soning steps. Early datasets like HotpotQA Yang et al. (2018b) and WikiHop Welbl et al. (2018)
established foundational evaluation frameworks but suffer from systematic biases. Recent bench-
marks have expanded coverage: FanOutQA Zhu et al. (2024) addresses multi-document reasoning,
MINTQA He et al. (2024) targets long-tail knowledge with 28K+ questions, and MEQA Anony-
mous (2024a) focuses on event-centric reasoning chains. However, these benchmarks embed hints
that fundamentally alter the reasoning task.

We identify two categories of hints prevalent in existing benchmarks. Path-hinting occurs when
questions linguistically encode reasoning chains (e.g., “What dance academy did the starring actress
from The Glory of Tang Dynasty graduate from?”), reducing the task to executing pre-specified
steps. Specification-hinting provides excessive constraints that make answers discoverable through
constraint satisfaction rather than reasoning (e.g., combining “East German team,” “founded 1966,”
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“player born in 90s”). Unlike MuSiQue Trivedi et al. (2022) or 2WikiMultiHopQA Ho et al. (2020),
which contain implicit structural hints, WebDetective introduces genuinely hint-free questions re-
quiring autonomous reasoning path discovery.

F.2 RETRIEVAL-AUGMENTED GENERATION AND AGENTS

The evolution from static RAG pipelines to agentic architectures represents a fundamental shift in
how LLMs interact with external knowledge Singh et al. (2025); Ehtesham et al. (2025). While
traditional RAG systems like TRACE Fang et al. (2024) achieve improvements through knowledge-
grounded reasoning chains, they operate within predetermined patterns. Agentic RAG systems em-
ploy adaptive strategies: Adaptive-RAG Jeong et al. (2024) adjusts retrieval depth based on question
complexity, while graph-based approaches like GNN-Ret Li et al. (2024b) and HopRAG Liu et al.
(2025) leverage graph neural networks for multi-hop reasoning, achieving 10% accuracy improve-
ments on benchmarks like 2WikiMQA.

Recent advances in 2025 emphasize diverse reasoning paths. DP-CoT Li et al. (2024a) addresses
single-path limitations through passage-level and sentence-level evidence generation. However, our
evaluation reveals these advances fail to overcome hint-free challenges: median Generation Scores
of 20% across tested models indicate current architectures cannot effectively discover reasoning
chains without linguistic scaffolding.

F.3 EVALUATION FRAMEWORKS

Traditional metrics like exact match and F1 scores collapse diverse failure modes into single values,
obscuring why models fail Kwiatkowski et al. (2019); Petroni et al. (2021). Recent frameworks at-
tempt more nuanced evaluation: RAGAS Shahul et al. (2024) provides reference-free RAG metrics,
while RAGTruth Niu et al. (2024) enables hallucination analysis. For agents, AgentBench Liu et al.
(2023) evaluates across eight environments, tau-bench AI (2024) addresses multi-turn interactions,
and TheAgentCompany Anonymous (2024b) introduces workplace tasks with simulated colleagues.

Web-based benchmarks have evolved significantly. WebArena Zhou et al. (2023) provides realistic
web environments requiring long-horizon planning but lacks controlled evaluation for precise failure
attribution. SWE-bench Jimenez et al. (2024) evaluates code generation on GitHub issues, with
SWE-bench Verified OpenAI (2024) addressing underspecified problems. While these benchmarks
test complex capabilities, they don’t address the specific challenge of verifying multi-hop reasoning
paths.

Our diagnostic framework decomposes evaluation into knowledge sufficiency (whether agents pos-
sess required evidence) and conditional generation quality (synthesis given sufficient knowledge).
This separation reveals that models achieve 79% knowledge sufficiency but only 23% generation
scores, indicating synthesis and relevance determination—not search—as primary bottlenecks.

G LLMS USAGE

LLMs were used to polish the writing.
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