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Abstract—Data visualization via dimensionality reduction is an
important tool in exploratory data analysis. However, when the
data are noisy, many existing methods fail to capture the underly-
ing structure of the data. Furthermore, existing methods that can
theoretically eliminate all noise are difficult to implement in high
dimensions. Here we propose a new data visualization method
called Functional Information Geometry (FIG) for dynamical
processes that denoises the data by leveraging time information
and mitigates the curse of dimensionality using approaches from
functional data analysis. We experimentally demonstrate that
FIG outperforms other methods in terms of capturing the true
structure, hyperparameter robustness, and computational speed.
We then use our method to visualize EEG brain measurements
of sleep activity.

Index Terms—Functional Data Analysis, dynamical processes,
data denoising, dimensionality reduction, data visualization

I. INTRODUCTION AND PROBLEM SETTING

High-dimensional datasets often contain redundant infor-
mation, inflating their extrinsic dimension, while their true
structure often lies on a low-dimensional manifold with added
noise. Manifold learning methods aim to recover this structure
while preserving essential information. These techniques have
been applied across various fields, including image classifi-
cation [1]–[3], image synthesis [4], [5], video analysis [6],
[7], and single-cell RNA-sequencing [8]. Classical nonlin-
ear dimensionality reduction methods include Isomap [9],
MDS [10], LLE [11], and Laplacian Eigenmaps [12], while
modern approaches such as t-SNE [13] and UMAP [14] have
become widely used. However, these methods struggle in
high-noise settings. Diffusion maps (DM) [15] address this
by leveraging a Markov diffusion process to emphasize data
connectivity and preserve intrinsic geometry, but they are
not ideal for visualization due to encoding information in
higher dimensions [16], [17]. PHATE [17] builds upon DM
to improve visualization by learning manifold structure while
denoising.

For dynamical systems and time series data, additional
structure can be leveraged for more effective denoising. If
the data-generating process satisfies certain assumptions, noise
effects translate into linear transformations in probability
space [18], [19]. The Mahalanobis distance, invariant to
such transformations, can be leveraged to define a noise-
resilient distance metric. The Empirical Intrinsic Geometry
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(EIG) framework achieves this by computing the Mahalanobis
distance between local histograms [18], [19], but histogram
estimation suffers from the curse of dimensionality. Dynamical
Information Geometry (DIG) [20] extends EIG for visualiza-
tion using a diffusion framework [15], [17], yet retains the
limitations of histograms. To overcome this, we introduce
Functional Information Geometry (FIG), which constructs
Mahalanobis distances in the probability space without direct
density estimation [21], [22]. FIG embeds these distances
using diffusion and information geometry, improving robust-
ness, efficiency, and visualization quality. We demonstrate its
advantages over DIG and EIG on simulated time series and
real-world EEG data, showing enhanced structural fidelity,
stability, and computational efficiency.

We use the same state-space formalism given in EIG [18],
[19] and DIG [20] for time series data:

xt = yt(θt) + ξt (1)

dθit = ai(θit) + dwi
t, i = 1, ..., d. (2)

Let xt be a noisy observation of the clean multivariate time
series yt, driven by hidden states θt, with noise ξt independent
of yt. The conditional density is p(y|θ), where θt evolves
under independent drift functions ai, ensuring local indepen-
dence between θit and θjt for j ̸= i. The driving noise wi

t

follows a Brownian motion.
To approximate pairwise distances between θt, we use the

fact that p(x|θ) is a linear transformation of p(y|θ) [18], [19].
Since the densities are unknown, [18]–[20] approximate them
using histograms ht = (h1t , ..., h

Nb
t ) over a time window L1.

The expectation E[hjt ] is also a linear transformation of p(x|θ),
allowing the noise-resilient Mahalanobis distance:

d2(xt,xs) =
(
E[ht]− E[hs]

)T (
Ĉt + Ĉs

)−1(E[ht]− E[hs]
)
,

(3)

where Ĉt and Ĉs are local covariance matrices. Under certain
conditions, this approximates the true state distances, i.e.,
∥θt − θs∥2 ≃ d2(xt,xs) [19].

We propose an alternative Mahalanobis distance that elimi-
nates histogram construction while preserving these properties.
The resulting distances serve as input to PHATE [17], which
converts distances into local affinities using an adaptive α-
decay kernel, builds a diffusion process to capture global
structure, and embeds potential distances via metric MDS [10],
yielding robust visualizations. PHATE has been adapted pre-
viously for supervised learning [23], multi-scale analysis [24],
and neural network geometry [25].



II. FUNCTIONAL INFORMATION GEOMETRY

Constructing histograms and covariance matrices for Eq. 3
in high-dimensional spaces is challenging due to the curse
of dimensionality. Since the noise in Eqs. 1 and 2 induces
a linear transformation in probability space, we propose a
noise-resilient distance that avoids density estimation using
functional data analysis. To achieve this, we define the Ma-
halanobis distance between functions, leveraging concepts
from [21], [22]. However, direct application of the FDA
framework is unsuitable due to: 1) We treat probability den-
sities centered at data points as functions, whereas standard
FDA learns functions from data. 2) The densities may have
multivariate inputs. 3) We need a Mahalanobis distance for
functions (or densities) from different distributions.

A. Vector Mahalanobis Distance.

We will first define the vector Mahalanobis distance in terms
of principal components (PCs) as the functional Mahalanobis
distance will similarly use functional principal components.

Assume u and v have different distributions. Let the
covariance matrices and means be Cu, Cv , mu, and mv ,
respectively. In [18], [20], the joint covariance between two
observations was defined as (Cu + Cv). Thus the squared
Mahalanobis distance is given by:

d2M (u,v) = (u− v)T (Cu + Cv)
−1(u− v). (4)

In [26], a Taylor expansion around the observable variables
u and v are given, which yields the second-order approxima-
tion of the Euclidean distance between unobservable hidden
processes θu and θv:

∥θu − θv∥2 =
1

2
(u− v)T (C−1

u + C−1
v )(u− v)

+O(∥u− v∥4). (5)

We can thus instead define the squared squared vector Maha-
lanobis distance as:

d2M (u,v) = (u− v)T (C−1
u + C−1

v )(u− v). (6)

In [22], a method for computing the Mahalanobis distance
using principal components was proposed. Let Cu = VuΛuV

T
u

and Cv = VvΛvV
T
v . The PC scores are suu = V T

u (u−mu),
svv = V T

v (v−mv), suv = V T
u (v−mu), svu = V T

v (u−mv).
Then the squared Mahalanobis distance is:

d2M (u,v) = ||Λ−1/2
u (suu − suv)||2 + ||Λ−1/2

v (svu − svv)||2.
(7)

B. Functional Mahalanobis Distance Between Densities.

We extend the previous distances to the functional setting,
where functions are probability densities. Let f be a functional
random variable that is also a probability density in L2(T ),
where T ⊆ Rd. Define the density mean µf (t) = E[f(t)] and
the covariance operator Γf as

Γf (η) = E[(f − µf )⊗ (f − µf )(η)], (8)

where for any η ∈ L2(T ),

(f − µf )⊗ (f − µf )(η) = ⟨f − µf , η⟩(f − µf ), (9)

with the L2 inner product:

⟨f − µf , η⟩ =
∫
T

(f(x)− µf (x))η(x)dx.

In [21], an expression of f is given when Γf exists

f = µf +

∞∑
k=1

skψk, (10)

where sk = ⟨f − µf , ψk⟩ are the functional PC scores of f ,
ψk is the eigenfunction associated with eigenvalue λk with∑∞

k=1 λk <∞ and Γf (ψk) = λkψk for all k.
In [27], a regularized inverse operator that approximates

Γ−1
f while preserving key properties was introduced. If Γ−1

f

exists, it is given by:

Γ−1
f (ξ) =

∞∑
k=1

1

λk
(ψk ⊗ ψk)(ξ).

The regularized inverse operator, denoted Γ−1
K , is defined as:

Γ−1
K (ξ) =

K∑
k=1

1

λk
(ψk ⊗ ψk)(ξ), (11)

where K is a threshold, and ξ lies in the range of Γ [21],
[22]. In practice, K should be tuned with the window size for
convergence, while considering computational constraints. A
relatively small K yields good results in our experiments.

We now adopt these quantities to densities and derive
the corresponding Mahalanobis distance. Consider data points
x1, . . . ,xn with corresponding probability densities f1, . . . , fn
with identical covariance operators. The functional Maha-
lanobis distance between functions fi and fj is denoted by
dFM (fi, fj), and the squared distance is given by:

d2FM (fi, fj) =
〈
Γ
−1/2
K (fi − fj),Γ

−1/2
K (fi − fj)

〉
. (12)

Now let fi and fj be different distributions with mean
functions µi and µj , and covariance operators Γi and Γj . Their
regularized inverses are defined as before with eigenvalues λik
and λjk. Following Eqs. 6 and 12, we define our squared
functional Mahalanobis distance between functions fi and fj :

d2FM (fi, fj) =
〈
Γ
−1/2
i (fi − fj),Γ

−1/2
i (fi − fj)

〉
+
〈
Γ
−1/2
j (fi − fj),Γ

−1/2
j (fi − fj)

〉
. (13)

In [21], a derivation of (12) in terms of PCs was provided.
Following a similar approach, we derive the PC version of
(13):

d2FM (fi, fj) =

K∑
k=1

(ωiik − ωijk)
2 +

K∑
k=1

(ωjik − ωjjk)
2, (14)

where ωijk = sijk/λ
1/2
ik , and sijk are functional PCs with

sijk = ⟨fj − µi, ψik⟩. Under certain assumptions, we have:

∥θi − θj∥ = d2FM (fi, fj) +O(∥(fi − fj)∥4).



C. Learning the Principal Component Scores

The final step is to derive the functional PC scores sijk.
Unlike standard FPCA, which fits basis functions to data, we
leverage probability density properties to compute empirical
averages, avoiding direct density estimation.

We define “neighbors” for the densities f1, . . . , fn, where
each data point xi is drawn from fi, as the densities with
corresponding points within a fixed time window centered at
xi. Alternatively, neighbors can be determined by Euclidean
distance or other criteria, allowing our proposed distance to
be computed as long as a neighborhood structure is defined.

Assuming the densities f1, . . . , fn are known (a condition
we will later relax), the mean function of fi is estimated as
µfi(x) ≈ 1

|Ni|
∑

j∈Ni
fj(x), where Ni is the set of indices

such that fj is a neighbor of fi with window size L1. In
practice, different window sizes may be used for tasks like
averaging basis functions or computing covariance matrices,
as shown in Fig. 1. For simplicity, we use the same set of
neighbors (and window size) for all tasks.

Now let’s assume two data points x and z are drawn from fi
and fj respectively. An estimate of the the covariance function
associated with fi is then

vi(x, z) =
1

|Ni|
∑
l∈Ni

(fl(x)fl(z)− µfi(x)µfi(z)). (15)

The eigenequation of vi is∫
vi(x, z)ψi(z)dz = λiψi(x). (16)

We assume a basis expansion for the eigenfunction ψi(x) =
ϕ(x)Tbi where ϕ : Rd → RM is a set of basis functions
such as the Fourier basis or splines. Using 15 and 16 and the
definition of ψi(x), we have the transformation:

λiϕ(x)
Tbi =

∫
vi(x, z)ψ(z)dz

=

[
1

|Ni|
∑
l∈Ni

fl(x)a
T
l − µfi(x)

1

|Ni|
∑
l∈Ni

aTl

]
bi, (17)

where ai =
∫
fi(z)ϕ(z)dz. The vector ai is the expected value

of the basis function ϕ with respect to the density fi and can
be approximated using a sample mean âi =

1
|Ni|

∑
l∈Ni

ϕ(xl).
Define W =

∫
ϕ(x)ϕ(x)T dx. If ϕ is an orthonormal basis

(such as the Fourier basis), then W is the identity matrix. Now
multiply both sides of Eq. 17 by ϕ(x) and then integrate to
obtain:

λi

∫
ϕ(x)ϕ(x)T dxbi = λiWbi

=

∫
ϕ(x)

1

|Ni|

[∑
l∈Ni

fl(x)a
T
l − µfi(x)

∑
l∈Ni

aTl

]
bidx

=

[
1

|Ni|
∑
l∈Ni

ala
T
l − µai

µT
ai

]
bi = Ãibi, (18)

where µai = 1
|Ni|

∑
l∈Ni

al and Ãi = 1
|Ni|

∑
l∈Ni

ala
T
l −

µaiµ
T
ai

. The matrix Ãi can be viewed as the sample covariance

Fig. 1. Overview of the FIG algorithm. Ni has window size L1. Wi,Wj

are windows of points centered at xi and xj respectively with size L2.

matrix of the vector ai. By letting ui = W 1/2bi, we get the
following eigenequation:

W−1/2ÃiW
−1/2ui = λiui. (19)

Now let µ̂i = 1
|Ni|

∑
l∈Ni

âl and approximate Ãi ≈
1

|Ni|
∑

l∈Ni
âlâ

T
l − µ̂lµ̂

T
l . If we find the first K eigenvalues

and eigenvectors of Eq. 19, which we denote individually as
λik and uik for k = 1, . . . ,K, we then obtain the projections

sijk = (âj − µ̂i)
TW−1/2uik. (20)

We then get ωijk = sijk/λ
1/2
ik , which is used in Eq. 14 to

obtain the final distance. This distance will then accurately
approximate the distance between the parameters θt as long
as the approximations of ai and Ãi are accurate. To embed
the final distances into low dimensions, we input the distances
into the PHATE algorithm to obtain the final FIG embedding.

FIG has the advantage of avoiding density estimation and
basis fitting (unlike EIG and DIG). Instead, it requires esti-
mating ai vectors via empirical averaging of basis functions,
which extends easily to higher dimensions.

Our final consideration is the numerical stability of the
eigenvalues λik. Some informative eigenvectors uik have low
eigenvalues, and division by

√
λik amplifies numerical errors.

Exponentiation offers a similar function shape but is more
stable, so we use the following normalized PC scores:

ωijk = sijk/e
λik . (21)

See Figure. 1 for a summary of all of the steps in FIG.

III. EXPERIMENTS

We conducted simulations inspired by [18] to model the
movement of a radiating object across a 3D sphere, governed
by horizontal (azimuth) angle θ1t and vertical (elevation) angle
θ2t . We represent the movement with the vector θ = [θ1t , θ

2
t ]. In

our experiments, we simulated 1000 random steps with added
noise ξt as in Equation 1. Using the algorithm in Fig. 1 and 7
Fourier basis functions per dimension, we derived the distance
matrix and obtained a 2D FIG embedding.



Fig. 2. Mantel coefficient between different embedding distances and the
ground truth parameters θ of the simulated random walk. FIG outperforms
all methods in the high noise setting and is competitive in the low noise
setting.

We added random Gaussian noise with mean zero and
varying standard deviation σ. To assess noise robustness, we
compared FIG with baseline methods: DIG, PHATE, UMAP,
and t-SNE, increasing the noise until the Mantel coefficient
between the noisy data and θ dropped below 0.5. All embed-
dings were 2D. We used the Python APIs for PHATE, UMAP,
and t-SNE: phate, umap, t-sne. For DIG and FIG, we tested
window sizes from 10 to 30 for both L1 and L2, varying bins
(DIG) from 10 to 30 and basis (FIG) from 5 to 11.

To assess global disparities among embeddings, we used
the Mantel [28] test, which computes correlation coefficients
(0 to 1) between two distance sets, accounting for the interde-
pendence of distances. We first calculate pairwise Euclidean
distances for the embeddings and the dynamical process θ,
then compute their Mantel correlations. For reproducibility,
we used five random seeds per noise level. Figure 2 shows the
mean Mantel correlations (solid lines) with standard deviations
(error bars). A dotted purple line represents the correlations
computed with noisy data. Shaded regions indicate sensitivity
to window sizes, histogram bins (DIG), and basis functions
(FIG). We observe that as noise increases, the Mantel co-
efficient between the data and θ drops significantly. In the
noiseless setting, no method outperforms the original data,
though FIG performs best among embeddings. As noise rises,
all methods degrade, but FIG remains superior, is less sensitive
to hyperparameters, and is more noise-resilient. At noise level
0.15, FIG surpasses the original data, with a notably large gap
over DIG, highlighting its superior structure capture.

We apply FIG to EEG data from [29], [30], with results in
Figures 3 and 4. The dataset is an 18-dimensional multivariate
time series, sampled at 512Hz, classified into six sleep stages
per R&K rules (REM, Awake, S-1, S-2, S-3, S-4), each
spanning 30 seconds. To address data sparsity, we merge S-1
with S-2 and S-3 with S-4. The data is band-filtered (8-40 Hz)
and down-sampled to 128Hz.

Given the dataset’s large size (3M samples), we preprocess
it using Fourier basis functions, averaging ϕ(xt) over seg-
ments. Following Fig. 1, we use seven Fourier basis functions
per dimension. Using the same DIG [20] settings, we set
L1 = 3840, matching the number of observations in a 30-

Fig. 3. A visual comparison of FIG and DIG on EEG brain measurements
during different sleep stages. FIG is more robust to different window sizes
than DIG.

Fig. 4. A comparison of DIG (left) and FIG (right) Mantel scores on EEG
brain measurements. FIG is more robust to different window sizes than DIG.

second interval. The final embeddings are 2-D.
For histogram estimation, DIG uses Nb = 20 bins per

dimension, while FIG and DIG embeddings are computed
across window sizes L2 = 10, 20, . . . , 200. Figure 3 compares
2-D embeddings of FIG and DIG across L2, while Figure 4
shows mean Mantel correlations across 20 window sizes,
computed over five random seeds.

From Figure 3, we observe qualitatively that as the window
size increases, the 2-dimensional embeddings of DIG tend to
lose important structural information such as the connections
between different sleep stages. In contrast, the embeddings
of FIG remain stable while providing similar branching and
trajectory structures as DIG with smaller window sizes. This
suggests that FIG is more resilient to the choice of window
size than DIG. Figure 4 corroborates this numerically. Here
we observe that the FIG embeddings with different window
sizes have higher Mantel correlation coefficients with each
other than DIG. On the other hand, we observe a high Mantel
correlation for FIG among different window sizes, which
corresponds to the visualization results.

IV. CONCLUSION

We developed FIG, a novel visualization method using
functional data analysis to compute a noise-resilient distance
in probability space. Unlike EIG and DIG, FIG avoids density
estimation, making it ideal for high-dimensional data. Ex-
periments show FIG’s robustness, with stable visualizations
across different window lengths for Mahalanobis distances. A
limitation is that we have only applied FIG to time series data
due to the need for a ”time window.” However, as discussed
in Section II, FIG can be extended to non-time series data by
defining appropriate neighborhoods, which we plan to explore
in future work.

https://phate.readthedocs.io/en/stable/
https://umap-learn.readthedocs.io/en/latest/
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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