Under review as submission to TMLR

Revisiting CroPA: A Reproducibility Study and Enhance-
ments for Cross-Prompt Adversarial Transferability in Vision-
Language Models

Anonymous authors
Paper under double-blind review

Abstract

In this paper, we conduct a comprehensive reproducibility study of An Image is Worth
1000 Lies: Adversarial Transferability Across Prompts on Vision-Language Models. Beyond
replicating the original Cross-Prompt Attack (CroPA) method, we identify key limitations
and propose enhancements to improve its effectiveness. Our key contributions include: (1)
Two novel initialization strategies that significantly improve Attack Success Rate (ASR)
and transferability (2) a refined loss function that manipulates the vision encoder’s atten-
tion mechanisms to improve generalization and (3) a broader evaluation by benchmarking
CroPA against multiple robust attack baselines. We evaluate our approach across a range
of prevalent VLMs, including Flamingo, BLIP-2; and InstructBLIP, validate the original
results while demonstrating consistent improvements. Our work reinforces the importance
of studying adversarial vulnerabilities in VLMs and provides a more robust and versatile
framework for generating transferable adversarial examples, with significant implications for
understanding and improving the security of VLMs in real-world applications.

1 Introduction

The advent of large Vision-Language Models (VLMs) has significantly transformed the field of computer
vision by enabling a wide range of tasks, including image classification, captioning, and visual question
answering. This versatility has fostered deeper exploration into visual-linguistic interactions. However,
recent studies|Zhao et al.| (2023)); Qi et al.| (2023));Zhang et al.| (2022);|Carlini et al.[(2024) have demonstrated
that VLMs remain highly vulnerable to adversarial attacks. These attacks involve subtle perturbations to
input images, leading VLMSs to produce incorrect or even harmful outputs. Furthermore, the inclusion of
textual modalities introduces additional attack vectors, expanding the range of threats beyond those faced
by traditional vision models.

Several studies have investigated the adversarial robustness of VLMs. For example, Zhao et al. |[Zhao
et al.| (2023) conducted a comprehensive analysis of the adversarial robustness of VLMs such as BLIP and
BLIP-2, exploring both query-based and transfer-based adversarial attack methods in black-box settings.
Additionally, Schlarmann et al. |Schlarmann & Hein| (2023) examined targeted and untargeted adversarial
attacks in white-box settings. While these works primarily focused on adversarial image attacks, subsequent
research has also explored adversarial perturbations in textual inputs. Qi et al. |Qi et al.| (2023) demonstrated
that adversarial images could manipulate VLMs into executing harmful instructions, while Tu et al. [Tu et al.
(2023) systematically evaluated both visual and textual adversarial attacks.

Traditionally, the generalization of adversarial examples in VLMs has been classified into two primary cate-
gories:

e Cross-Model Transferability: The ability of adversarial examples to maintain their adversarial
nature across different VLM architectures, commonly referred to as transferability.
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e Cross-Image Transferability: The ability of adversarial perturbations to generate adversarial
examples that generalize across multiple images, often known as Universal Adversarial Perturbations

(UAPs).

Luo et al.| (2024)) introduced the novel concept of Cross-Prompt Transferability, which describes the
ability of adversarial images to remain effective across varying textual prompts. Unlike prior work that
treated visual and textual adversarial perturbations independently, Luo et al. proposed the Cross-Prompt
Attack (CroPA), which employs learnable prompts to ensure adversarial images retain their effectiveness
regardless of textual input. Their work demonstrated CroPA’s efficacy across multiple vision-language tasks,
including image classification, captioning, and visual question answering.

Our work aims to address the following goals:

» [Reproducibility Study] Reproducing the results from the original paper: Through our
experiments we were able to reproduce and verify the main claim of the paper by showing that
CroPA achieves cross-prompt transferability across various target texts.

o [Extended Work] Better Initialization: We propose two new initialization strategies that sub-
stantially increase the Attack Success Rate (ASR) as well as Transferability.

o [Extended Work] Loss Function: We propose a novel loss function building on the idea that
specific components within the vision encoder’s attention mechanism control and determine the level
of interaction between patches, manipulating the value vectors of the vision encoder in a targeted
manner leads to greater generalization as well as ASR.

o [Extended Work] Additional Baselines: We expanded the scope of our research and experiments
by comparing CroPA against multiple robust Attack Methods to provide a stronger baseline for
comparison.

Furthermore, we conduct in-depth analyses to elucidate the mechanisms behind our improvements, offering
insights into the nature of adversarial vulnerabilities in VLMs. Our work not only reinforces the importance
of studying these vulnerabilities but also provides a more robust and versatile framework for generating
transferable adversarial examples.

2 Scope of reproducibility

This study aims to examine and validate the results demonstrated by [Luo et al. (2024)). Our primary
objective is to confirm that CroPA significantly enhances the transferability of adversarial examples across
various prompts by meticulously reproducing their experimental procedures.

Beyond replication, we intend to extend the scope of CroPA by investigating its efficacy in cross-model
and cross-image contexts. Specifically, we will assess whether adversarial images generated through CroPA
can consistently deceive diverse Vision-Language Models (VLMs), regardless of the input prompt or specific
model parameters. Addressing these points will enable us to faithfully reproduce your experiments and build
upon your work to explore the broader applicability of CroPA in enhancing the robustness and versatility of
adversarial attacks on VLMs.

3 Methodology

Our reproduction efforts were based on the code provided in the authors’ public repository. While the
overall implementation was well-documented, we encountered several challenges that required modifications
for successful reproduction. Notably, the code for BLIP-2 and InstructBLIP models triggered multiple
runtime errors, necessitating significant debugging and adjustments to achieve functional execution.
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Figure 1: Framework overview of CroPA as presented in . The architecture employs learnable
perturbations for both image (d,) and prompt (J;) inputs. These perturbations operate antagonistically
- while d, is optimized to minimize the language modeling loss, d; works to maximize it. The model’s
forward pass (solid arrows) processes the perturbed inputs through the vision encoder and language model,
with backpropagation (dashed arrows) updating the perturbations at configurable frequencies. The model
parameters (marked with *) remain fixed during the attack. @ denotes element-wise addition.

3.1 Problem Formulation

The vulnerability of neural networks to adversarial attacks has been well-documented since the seminal
work of |Goodfellow et al|(2014). Building on this foundation, we examine the authors’ novel formulation
that extends these concepts to cross-prompt scenarios in Vision-Language Models (VLMs). Their work
introduces a critical perspective on how adversarial perturbations can maintain effectiveness across varying

textual inputs (2024).

The authors develop their formulation around a VLM function f that processes both visual and textual
inputs, denoted as x, and z; respectively.To ensure real-world applicability, the authors constrain the ad-
versarial perturbation d, within human-imperceptible bounds, enforcing ||d,||, < €,. This constraint mirrors
established practices in adversarial machine learning while adapting them to the multi-modal context of
VLMs |Carlini et al.| (2024).

The authors establish two distinct attack scenarios that we reproduced in our study:

The targeted attack scenario aims to manipulate the VLM into generating a specific predetermined text
T, regardless of the input prompt. This objective manifests mathematically as minimizing the language
modeling loss L across multiple prompt instances:

k
r%inZL(f(mv—i-(Sv,xi),T) (1)
i=1

In contrast, the non-targeted scenario focuses on maximizing the discrepancy between outputs from clean
and adversarial inputs:

k
rr(lsavaZL(f(xv + 60, 2}), f (20, 2})) (2)
i=1
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The effectiveness of these attacks is quantified through the Attack Success Rate (ASR). For targeted attacks,
success requires generating the exact target text, while non-targeted attacks succeed by producing any output
that differs from the clean image’s prediction.

3.2 Cross Prompt Attack

The Cross-Prompt Attack (CroPA) method introduced by |Luo et al.[(2024]) employs learnable prompts during
optimization to enhance cross-prompt transferability. The key innovation lies in using prompt perturbations
that compete with image perturbations during the optimization process rather than collaborating to deceive
the model.

The algorithm optimizes both visual perturbation J,, and prompt perturbation §; but with opposing objec-
tives. While §,, aims to minimize the language modeling loss for generating the target text, J; maximizes this
loss. This adversarial relationship between the perturbations forces 4, to develop stronger transferability
across different prompts.

The optimization process can be formally expressed as a min-max problem:

min max L(f (2, + 0y, 2t + 0¢), T) (3)

v t

where f represents the VLM, T is the target text for targeted attacks, and L denotes the language modeling
loss.

The implementation follows an iterative approach using Projected Gradient Descent (PGD) Madry et al.
(2017). The visual perturbation updates use gradient descent to minimize the loss, while prompt perturbation
updates employ gradient ascent to maximize it. The update frequency can be controlled via a parameter N,
where image perturbation updates occur N times for each prompt perturbation update. The framework can
be visualized formally in Figure

We reproduce the algorithm as follows:

Algorithm 1 Cross Prompt Attack (CroPA)
Require: Model f, Target Text T, input image z,, prompt set Xy, perturbation size €, step sizes a1, as,
iterations K, update interval N
Ensure: Adversarial example 2/,
Initialize 2!, = a,
for step = 1 to K do
Sample prompt xi from X
if z} not initialized then
Initialize x}! = x!
end if
9o =V, L(f (2}, x%)’ T)
x, = @, — a1 - sign(gy)
if mod(step, N) = 0 then
g0 = Vo, L{f (&, ), T)
ayt = xy + o - sign(ge)
end if
Project ), to e-ball around z,
end for
return )

During evaluation, only the optimized image perturbation is applied, while prompt perturbations are dis-
carded. This ensures that the attack’s effectiveness stems from the image perturbation’s inherent transfer-
ability rather than prompt modifications.
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3.3 Models Used

In reproducing the work of [Luo et al.| (2024), we evaluated three state-of-the-art Vision-Language Models
(VLMs): Flamingo, BLIP-2, and InstructBLIP. For Flamingo, we utilized the open-source OpenFlamingo-9B
implementation |[Awadalla et al.| (2023)), which provides comparable performance to the original model while
being publicly accessible.

BLIP-2 introduces a two-stage approach that first extracts visual features using a frozen CLIP image encoder,
then processes these features through a Querying Transformer |Li et al.| (2023). This architecture enables
efficient adaptation to diverse vision-language tasks. The model employs OPT-2.7b as its language model
component, facilitating flexible text generation capabilities.

InstructBLIP builds upon BLIP-2’s architecture while incorporating instruction tuning [Dai et al.| (2023).
A key distinction is its use of the Vicuna-7b language model, which enhances the model’s ability to follow
task-specific instructions. This modification enables more precise control over the model’s outputs through
carefully crafted prompts.

Each model offers distinct advantages in handling vision-language tasks. Flamingo excels at few-shot learning
through visual examples, BLIP-2 demonstrates strong zero-shot generalization capabilities, and Instruct BLIP
shows improved performance on instruction-guided tasks. Our reproduction efforts maintained the original
configurations of these models to ensure faithful comparison with the baseline results.

3.4 Datasets

Following the original work, our evaluation utilized images from the MS-COCO validation dataset |[Lin
et al|(2014). This dataset provides a diverse collection of natural images suitable for testing cross-prompt
transferability across various visual scenarios.

For the textual component, we employed two categories of Visual Question Answering (VQA) prompts. The
first category, VQAgeneral, consists of general questions applicable to any image, focusing on common visual
attributes and objects. The second category, VQAgpecific, derives from the VQA-v2 dataset |Goyal et al.
(2017) and contains questions specifically tailored to individual image content.

This combination of a standard vision dataset with both general and specific VQA prompts enables compre-
hensive evaluation of cross-prompt transferability across different types of queries and visual contexts. The
prompts were designed to test both broad visual understanding and specific detail recognition capabilities
of the models.

3.5 Experimental Setup and Code

The experimental setup followed specific parameters for attack configuration and evaluation.For the attack
implementation, we maintained consistency with the original setup by utilizing the same seeds. By default,
the experiments were conducted as targeted attacks, with "unknown" chosen as the target text to avoid
high-frequency responses typical in vision-language tasks. The perturbation size was fixed at 16/255, and
all adversarial examples were optimized and tested under zero-shot settings.

For multi-prompt experiments, both Multi-P and CroPA implementations used ten prompts. We maintained
three evaluation runs for each experiment, averaging the Attack Success Rate (ASR) scores to ensure reliable
results. The prompts spanned multiple task types including general visual questions, image-specific queries,
classification tasks, and image captioning, with varying lengths and semantic structures.

For model implementations, we used the public OpenFlamingo-9B |Awadalla et al.| (2023)) as our Flamingo
variant, along with BLIP-2 and InstructBLIP models. Our reproduction maintained these core experimental
parameters to ensure comparable results with the original work.
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3.6 Computational Requirements

The computational demands of reproducing the CroPA experiments were substantial, reflecting the resource-
intensive nature of modern Vision-Language Models. Our primary experiments were conducted on a PyTorch
Lightning platform using an L40S GPU with 48GB VRAM and a 4-core CPU with 16GB RAM, matching
the original paper’s minimum requirement of 45GB VRAM for stable execution.

Working within the constraints of the free-tier platform credits posed significant challenges. Our experiments
were limited by a pooled allocation of 120 credits shared across four accounts. This necessitated careful
resource management, particularly given the computational intensity of large-scale VLMs. To overcome
these limitations, we implemented several memory optimization strategies to enable partial execution on
local machines with 16GB VRAM, though this required significant code modifications.

The total computational cost of our reproduction study amounted to approximately 140 GPU hours and 90
CPU hours. This includes time spent on model training, attack generation, and evaluation across multiple
experimental configurations. The substantial computational requirements underscore the importance of
efficient resource allocation in modern machine learning reproducibility studies.

4 Results

As stated in Section [3| a core objective of our research is to reproduce the cross-prompt transferability
results presented by |Luo et al.[(2024) for the CroPA attack. This section details our efforts to replicate those
findings and provides a comparative analysis of our reproduced results against the original paper.

4.1 Claim : CroPA achieves cross-prompt transferability across various target texts. [Verified]

To validate the central claim of [Luo et al.| (2024)), which posits that CroPA can achieve cross-prompt trans-
ferability, we meticulously replicated their experimental setup. This involved training adversarial examples
using the CroPA method and evaluating their transferability across a diverse set of target prompts on the
Flamingo VLM. Our evaluation focused on measuring the Targeted Attack Success Rate (ASR) across the
following tasks: VQA (both general and specific), image classification, and image captioning.

4.1.1 Experimental Details

Following the experimental protocol outlined in |Luo et al.| (2024), we generated adversarial examples using
CroPA and assessed their effectiveness against a range of target prompts distinct from those used during
training. The specific target prompts used in our evaluation are listed in Table [f.1.2] These prompts were
selected to represent a broad spectrum of semantic meanings, ensuring a rigorous evaluation of cross-prompt
transferability.

4.1.2 Comparative Analysis

Table [1.1.2] presents the Targeted ASRs achieved by the CroPA method on the Flamingo VLM for different
target texts. Overall, our results strongly support the claim that CroPA can achieve cross-prompt trans-
ferability. We consistently observed non-zero ASRs across all evaluated tasks, indicating that adversarial
examples generated using CroPA were effective in misleading the VLM, even when presented with diverse
target prompts.

Our experiments successfully reproduce the core finding that CroPA exhibits robust cross-prompt transfer-
ability, thereby validating the adversarial vulnerability of VLMs to such attacks.

4.2 Results Beyond the Original Paper

The following subsections detail our extended experiments building upon CroPA’s framework and incorpo-
rating novel enhancements.



Under review as submission to TMLR

Target Prompt  VQAgenerat VQAgpecine  Classification  Captioning  Overall

unknown 0.9680 0.9880 0.5940 0.4200 0.7425
I am sorry 0.8620 0.9180 0.6630 0.6400 0.7708
not sure 0.8540 0.8940 0.2420 0.0010 0.4978
very good 0.9620 0.9860 0.6020 0.2020 0.6880
too late 0.9300 0.9580 0.7010 0.1530 0.6855
metaphor 0.9840 0.9940 0.9100 0.5840 0.8680

Table 1: Targeted ASRs tested on Flamingo with different target texts using CroPA.

4.3 ScMix

For the purpose of universal adversarial perturbations resulting in cross-image transferability, we adapt a
component of the ETU method proposed in [Zhang et al.| (2024)). In this work, the ETU attack is inspired
by adding two variations to a normal VLM adversarial attack, viz. a local utility reinforcement and an
augmentation by the name of ScMix. In particular, we only adopt the ScMix augmentation, which increases
input diversity using cross and self-mixing strategies between the input images. This is useful in learning
adversarial perturbations which are universal across images. The ScMix strategy for data augmentation is
described below:

Given two images, say I; and I, the self-mixing aspect involves extracting two random crops (patches),
say x1 and xo from I; and resizing them to the size of the original image, X; and X5, respectively. Then,
a weighted summation of these gives us the self-mixed image from I, I} = nX; + (1 — n) X2 where 7 is a
random variable such that n ~ Beta(a, o) for some a > 0.

Thereafter, cross-mixing is applied by adding I to I] in a weighted manner, where I is given a higher weigh-
tage to preserve the visual semantics from I3, to obtain the augmented image as I3 = 8111 + 521> where 51 >
B2 and 1, B2 € [0, 1). Formulaically, for X; = Resize(RandomCrop(/;)) and X2 = Resize(RandomCrop(17)),

Iz = Bi(nX1 + (1 —n)Xa) + Pala (4)

where n ~ Beta(a, a) for a > 0 and 81 > S5 for 81,82 € [0,1)

Here, the choice o, 81 and p3 acts as a hyperparemeter, for which we have chosen the values o =4, 87 = 0.9
and P2 = 0.1, which are close to the values given in |Zhang et al.| (2024).

4.4 Noise Initialization via Vision Encoding Optimization

Recent advances in adversarial attacks on vision-language models (VLMs) have underscored vulnerabilities
arising from cross-prompt transferability. In this work, we propose a novel strategy for adversarial pertur-
bation initialization by leveraging diffusion-based semantic anchoring. Instead of employing a conventional
random noise initialization, our method synthesizes a target image corresponding to a desired prompt using
a state-of-the-art diffusion model, such as Stable Diffusion XL (SDXL). The generated image serves as a
semantic anchor for aligning the adversarial example via a basic mean squared error (MSE) loss calculated
between the outputs of the VLM’s vision encoder. This approach provides a more effective initialization,
ensuring that the adversarial perturbations are semantically informed from the start.

4.4.1 Diffusion-Based Target Synthesis

Given a target prompt 7', we first generate an image X¢arget that embodies the semantic attributes described
by T. This is accomplished via a diffusion model, specifically Stable Diffusion XL (SDXL). The generation
process can be formalized as follows:

Xtarget — D(T, Z; GSDXL)7 (5)
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where D denotes the diffusion process, z is sampled from a Gaussian distribution, and fgpxr, represents
the pre-trained weights of the diffusion model. The resulting image Xarget effectively captures the semantic
essence of the prompt 7', thus providing an informative basis for initializing adversarial perturbations.

4.4.2 \Vision-Encoder Anchored Perturbation

Let f,(-) denote the vision encoder component of the VLM. Our objective is to craft an adversarial per-
turbation § such that the perturbed image x + § mimics the semantic representation of the target image
in the vision encoder’s output space. To achieve this, we derive the initial perturbation by minimizing the
following objective:
. 2
Oinit = argmin || f,(x 4 8) — fo (Xarget) I3 (6)
8]l <e

where € is the maximum allowable perturbation (ensuring imperceptibility under an £, constraint). This
initialization ensures that the adversarial example starts within a semantically meaningful neighborhood of
the target prompt’s representation.

4.4.3 Adversarial Optimization via PGD

After initializing the perturbation, we refine the adversarial example using projected gradient descent (PGD).
For the *! iteration, the update rule is given by:
1
X = T, ) | Xaay — V@ ﬁMSE}’ (7)
where « is the step size, and Ilg_(x) projects the updated input back onto the admissible /., ball around the
original image x. The loss function used during optimization is a simple mean squared error (MSE) between
the vision encoder outputs:

EMSE = ”fv(xadv) - fv(xtarget)Hg- (8)

This loss ensures that each update incrementally aligns the adversarial example with the target’s semantic
embedding.

4.4.4 Experimental Considerations

Preliminary experiments performed on models such as BLIP-2 and InstructBLIP suggest that initializing
adversarial perturbations with semantically informed noise significantly enhances the attack’s efficacy over
traditional random initializations while only increasing the computation time for a single image by 20-25
seconds on a single GPU. The diffusion-based approach not only improves alignment in the vision encoder’s
feature space but also preserves the visual fidelity of the resulting adversarial examples while conforming to
strict perturbation budgets.

4.5 Doubly- Universal Adversarial Perturbation
4.5.1 Doubly-UAP (Value Vector)

This incorporaion is adapted from a component of the Doubly-UAP method proposed in |Kim et al.| (2024)
which introduced a UAP by identifying which specific components within the vision encoder’s attention
mechanism most effectively influence the performance of the VLM. We choose to focus on the two components
with the most fundamental roles in the attention mechanism:

1. Attention Weights: These control how much each patch should focus on other patches, determining the
level of interaction or relevance between patches. We hypothesize that by targeting the attention weights,
we can effectively interfere with the encoder’s ability to establish these relationships.

2. Value Vectors: These hold the actual information within each patch. We expect that perturbing the
value vectors will disrupt the essential information content within patches, further impairing the model’s
interpretative abilities.
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Additionally, since the attention mechanism spans multiple layers, we explore whether their impact on LLM
output varies across layers viz. Early, Middle and Late. We target the vision encoders within VLM, as they
are crucial for visual interpretation. Specifically, we focus on the attention mechanism within the vision
encoder, the core process responsible for interpreting visual features. We aim to disrupt this mechanism by
targeting its most vulnerable components—the value vectors at the middle-to-late layers—based on prior
analysis.

Formally, in the standard Doubly-UAP attack, the perturbation ¢* is obtained as:
1
5 = argmgxxmZLoss(Vl(x),Vl(x—ké)), 9)
leL

where Vj(x) represents the value vectors associated with the I-th layer with input image z, and Loss(+) is the
loss function applied to the target vectors.

4.5.2 Our Modified Approach

We adapt this approach by introducing a modified loss function that incorporates a target value vector derived
from a reference image corresponding to a desired target text T. Instead of solely maximizing the deviation
of value vectors from their original representation, we enforce alignment between the vision encoder’s output
and a predefined target representation. Our method consists of the following steps:

1. Extract the value vectors from the I-th layer of the vision encoder for both the input image and the target
text’s associated image.

2. Compute the Language Model Loss or cosine similarity loss between these value vectors.
3. Jointly minimize this loss along with the CroPA loss to ensure adversarial robustness and target alignment.

Formally, let V;(z 4+ ¢) denote the perturbed value vectors of the i-th attention head for the input image x,
and let V; represent the value vectors of the target text’s reference image. We define our value vector loss

as:
N

La.uap = ZHVi(CC-HS) —Vill3, (10)
=1

where N is the number of attention heads. This loss encourages the perturbed image’s value vectors to
closely align with the target text’s representation.

We integrate this loss with the CroPA loss to formulate our final objective function:

Lye-cropa = Lcropa (xv + 0y, Ty + Oy, T) + ALq.uap (511) (11)

where A is a hyperparameter controlling the relative importance of the value vector loss.

By jointly optimizing both losses, our approach not only preserves the adversarial nature of the perturbation
but also enforces semantic alignment with the target text. Specifically, during optimization, the gradi-
ents from both loss components are combined to update the perturbation ¢, ensuring that the generated
adversarial example exhibits both cross-prompt transferability and guided semantic influence.

This enhancement to the Doubly-UAP framework allows for more precise adversarial manipulation of VLMs,
facilitating controlled and interpretable perturbations with applications in adversarial robustness and security
analysis.

5 Discussion

Our study aimed to replicate key aspects and findings of [Luo et al. (2024)) on the Cross-Prompt Attack
(CroPA) framework, we have substantiated the original claims regarding the enhancement of cross-prompt
adversarial transferability in Vision-Language Models (VLMs). Our experiments corroborate that adversarial
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examples generated through CroPA maintain their deceptive efficacy across diverse textual prompts, thereby
underscoring the robustness of this approach.

Despite these affirmations, the domain of cross-prompt adversarial transferability remains underexplored.
The considerable lack of literature in this area highlights a gap in our understanding of prompt-induced
vulnerabilities within VLMs. Addressing this gap is imperative, as it holds profound implications for the
secure deployment of these models.

From an attacker standpoint, adversarial examples exhibiting high cross-prompt transferability pose signifi-
cant threats. Such examples can manipulate VLMs to produce malicious or misleading outputs, even when
prompted with harmless queries. This capability could be exploited to disseminate false information or to
subvert systems dependent on VLMs for content generation and decision-making.

Conversely, from a defensive perspective, the application of imperceptible perturbations offers a novel mech-
anism to safeguard sensitive information. By embedding these perturbations into images, it is possible to
induce VLMs to consistently output predetermined, non-sensitive text, thereby thwarting unauthorized at-
tempts to extract confidential data from personal images. This technique serves as a proactive measure to
enhance privacy and data security in an era where visual data is increasingly susceptible to exploitation.

Our study also introduces refinements to the CroPA framework, including improved initialization strategies
and an enhanced loss function. These modifications have demonstrated a marked increase in both the Attack
Success Rate (ASR) and the generalizability of adversarial examples across different models and images. Such
advancements not only reinforce the efficacy of cross-prompt attacks but also pave the way for more resilient
defenses against them.

In conclusion, while our reproducibility study affirms the foundational work of Luo et al. (2024), it also
accentuates the necessity for deeper investigation into cross-prompt adversarial transferability. A compre-
hensive understanding of this phenomenon is crucial for developing robust VLMs capable of withstanding
adversarial manipulations and for formulating effective countermeasures to protect user data and maintain
the integrity of model outputs.

5.1 Limitations and Future Work

While our study successfully reproduces and validates the key findings of [Luo et al. (2024) regarding the
effectiveness of Cross-Prompt Attack (CroPA), certain aspects of our experiments remain incomplete due to
significang computational constraints. Specifically, we were unable to conduct a comprehensive set of ablation
studies to systematically analyze the impact of different components within our proposed modifications.

The high cost of generating and evaluating adversarial examples across multiple prompts and models also
limited our ability to scale experiments. Despite these constraints, we are committed to completing our
ablation studies and additional experiments before the end of the review period. Moving forward, we aim
to explore more computationally efficient methods to reduce overhead. Furthermore, we plan to extend our
evaluation to a broader set of Vision-Language Models beyond those originally tested as well as more robust
attack methodologies for comparison.

5.2 Communication With Original Authors

No direct communication could be established with the original authors during the replication process. The
issue raised on their GitHub repository regarding the BLIP-2 and InstructBLIP models remains unresolved
at the time of writing.
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