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ABSTRACT

Scaling laws for language model training traditionally characterize how perfor-
mance scales with model size and dataset volume. Prior work has explored archi-
tecture variants and data treatments such as dataset filtering and noise injection
in language model pretraining; however, these studies have not formalized data
quality within a principled scaling law. We introduce a dimensionless data-quality
parameter Q, and propose a quality-aware scaling law extending the Chinchilla
framework to predict loss as a joint function of model size, data volume, and
data quality. The law is motivated by an effective-sample-size and information-
theoretic view of noisy or redundant corpora, and it admits two practical estima-
tors for Q: (i) a corruption rate proxy and (ii) a deficiency measure. Through syn-
thetic experiments in neural machine translation and autoregressive modeling—
where we systematically control data quality via multiple levels of noise injection
and coverage variation—we show that loss scales predictably with data quality
and that higher-quality data can substantially reduce model size and hence com-
pute requirements. Our results demonstrate a sublinear decay of effective data
with quality and robustness to moderate data corruption; out-of-sample evalua-
tions further validate the predictive form of the law. Unlike prior empirical anal-
yses, our work establishes an explicit, generalizable law for data quality, offering
concrete guidance for balancing data curation effort and model scale in large-scale
pretraining.

1 INTRODUCTION

It is well understood in large-language model (LLM) training that both the amount of training data
and its quality influence pretraining loss. Yet most existing scaling laws are formulated solely in
terms of dataset size, remaining agnostic to quality (Henighan et al., 2020; Ghorbani et al., 2021;
Ivgi et al., 2022; Sorscher et al., 2022; Alabdulmohsin et al., 2022; Caballero et al., 2023; Tao et al.,
2024; Wu et al., 2025). This leaves a gap between common intuition–“cleaner data trains better
models”–and the quantitative laws that guide large-scale training.

The importance of such a quantitative framework is especially clear in specialized domains–
business, scientific, or medical applications–where training corpora are limited in quantity and het-
erogeneous in quality. With the same compute budget, outcomes may differ drastically depending
on how clean and representative the data are. There have been quite a number of studies to clas-
sify data quality among multiple “dimensions” (Wang & Strong, 1996; Fox et al., 1994; Sidi et al.,
2012; ISO/IEC, 2008). While the exact taxonomy varies, the core dimensions typically include:
accuracy, completeness, consistency, timeliness, uniqueness, validity. The focus of these studies is
usually datasets containing structured data that is clean and curated for a certain task or purpose. In
contrast, when collecting data to pretrain large language models, large amounts of “found” data are
collected and cleaned, usually by removing duplicate data and obviously “poor” quality data.

To reason about how such imperfect corpora affect performance, we need a simpler abstraction of
quality. In this work, we introduce a single dimensionless parameter Q ∈ (0, 1] characterizing the
usable information in a corpus. A value of Q = 1 represents fully clean and representative data,
while smaller Q values reflect increasing corruption or redundancy. As discussed below (Section 3),
Q can be estimated via corruption rates or a more general deficiency measure, and serves as a proxy
for the fraction of effective samples. We incorporate this abstraction into scaling laws through a
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term of the form B/(DβQγ) (Equation 2), linking model performance directly to both the quantity
and the quality of data. Our main contributions are:

• We propose a theoretically grounded quality-aware scaling law that augments the classical
Chinchilla form by introducing a dimensionless quality parameter Q. The law predicts loss
as L(N,D,Q) = A/Nα + B/(DβQγ) + E, capturing the interplay between model size,
data volume, and data quality.

• We derive the scaling law from an effective sample-size perspective and
information-theoretic arguments, and we provide two simple estimators for Q based
on corruption rate and data deficiency. We show that under natural assumptions these
estimators lead to the form Deff = Dg(Q) with g(Q) ≈ Qγ , recovering the proposed law.

• We conduct controlled experiments on neural machine translation and causal language
modeling to illustrate the law’s utility. These results demonstrate that loss scales pre-
dictably with our quality parameter and that higher-quality data can compensate for smaller
models. This is particularly relevant for specialized models in many real-world domains,
such as business, scientific or medical applications.

2 RELATED WORKS

Data quality in information systems. Data quality has long been studied in information sys-
tems, where datasets are evaluated along multiple dimensions—accuracy, completeness, consis-
tency, timeliness, uniqueness and validity—to ensure that structured records support downstream
tasks. A consistent finding from this literature is that diverse imperfections degrade the utility of
data and therefore motivate extensive curation practices (Batini et al., 2009). Large-scale pretraining,
however, relies on corpora assembled from the web. Here, quality varies widely across sources, and
subtle forms of corruption or deficiency persist despite deduplication or heuristic filtering. Nonethe-
less, the key insight from information systems continues to hold: the quality of training data directly
influences the performance of learned models.

Data quality in large-scale pretraining. In the era of LLMs, quality has become a first-class
design concern. Major corpora such as The Pile (Gao et al., 2020), RefinedWeb (Penedo et al.,
2023), and Dolma (Soldaini et al., 2024) highlight different philosophies of data construction, from
assembling diverse sources to aggressively filtering and refining web text. Deduplication strategies
(Lee et al., 2022) and contamination checks (Magar & Schwartz, 2022) have been shown to sub-
stantially affect evaluation reliability. Empirical analyses further suggest that careful filtering yields
performance gains comparable to scaling compute, therefore implying the nontrivial role of quality
in driving LLM performance.

Classical scaling laws and their limitations. Alongside these developments, foundational studies
on scaling laws formalized how performance scales with model size, dataset size, and compute.
Kaplan et al. (2020) showed that loss decreases predictably as models and datasets grow, while
Hoffmann et al. (2022) refined these results by introducing compute-optimal training. Despite their
influence, these existing scaling laws generally assume that the underlying data is of fixed quality. In
real-world corpora, noise, redundancy, or domain imbalance systematically distort scaling behavior,
highlighting the need to explicitly account for quality.

Data quality and scaling laws Several recent works have begun to address this gap. Bansal
et al. (2022) study scaling laws for neural machine translation, and show that while test loss scales
predictably with dataset size, architectural choices and moderate noise primarily shift the scaling
curves without changing the exponent. Goyal et al. (2024) argue that data filtering is not compute-
agnostic: the value of higher-quality data depends on the available compute budget, since reusing
small clean datasets leads to diminishing returns. Li et al. (2024) assess data quality by comparing
perplexity gaps between models of different sizes, theoretically linking their metric to inverse scaling
laws. These studies highlight the importance of data quality but stop short of providing a unified
predictive law that couples quality with model size and dataset size. By introducing a dimensionless
quality parameter Q into scaling laws, our work formalizes the influence of data quality and offers
predictive guidance for building smaller, high accuracy models in specialized domains.
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Beyond these empirical analyses, several recent studies refine scaling laws from complementary
perspectives. Chang et al. (2024) propose parameter-constrained scaling laws that combine text
diversity and syntheticity, revealing that effective training tokens depend on both data quantity and
diversity. On the theoretical front, Bahri et al. (2024) present a unifying theory of neural scaling laws,
distinguishing variance-limited and resolution-limited regimes and connecting scaling exponents to
generalization error. Although these contributions deepen our understanding of scaling, they do not
incorporate an explicit scalar quality parameter. Our work complements this literature by modeling
data quality via Q, linking it to effective sample size and generalization theory, and providing a
unified scaling law that accounts for quality.

3 DATA QUALITY MEASURES

To incorporate data quality into scaling laws, we first need a formal definition of Q. In this section
we introduce two approaches for mapping a dataset ω to a scalar Q(ω) ∈ (0, 1], with larger Q indi-
cating higher quality. These definitions capture different sources of imperfection—token corruption
versus more general deficiency—and will later allow us to connect Q to effective sample size and
generalization theory. The precise choice of Q is application-dependent; the key requirement is that
Q degrades smoothly under corruption, providing a proxy for the usable information in a dataset.

3.1 DATA CORRUPTION RATE

One of the simplest measures of data quality is what is sometimes called the data corruption rate,
which we will denote CR. We assume 0 ≤ CR < 1.
Definition 1. Let ω be a dataset with data corruption rate CR. We define the data corruption rate
data quality by

Q(ω) = 1− CR.

As an example, if we have a dataset consisting of D tokens and 10% are corrupted, then we would
say that the CR = 10% and the data quality Q is 90%. To simplify our formulas, we assume that
the data corruption rate is strictly less than 1, so that Q is strictly greater than 0. Note that standard
sampling methods (e.g. Deming (1966)) can be used to estimate data corruption.

3.2 DATA DEFICIENCY MEASURES

We introduce a dimensionless quantity ∆ call the data deficiency, which quantifies the lack of quality
in a dataset ω. We assume that the data deficiency has the following properties:

1. Positivity. ∆(ω) ≥ 0, for all datasets ω
2. Continuity. ∆(ω) is a continuous function of the dataset ω
3. Additivity. If ω1 and ω2 are independent datasets, and ω is the union of ω1 and ω2 than

∆(ω) = ∆(ω1) + ∆(ω2).

Additive noise model. Data deficiency can be measured and quantified in many ways. One of
the simplest models is to model data deficiency using an additive noise model, where each data
measurement ξi, for i = 1, . . ., has the form

ξi = xi + ϵi,

where ϵi is a noise term. We assume that ϵi ≥ 0, and that the data quality as measured by the data
deficiency worsens as ϵi increases. Note that properties (1)—(3) above hold when we model data
quality using the additive noise model. We now add a fourth assumption.

4. Maximum quality. In the additive noise model, we assume that the noise term ϵi captures
all the noise, so that data quality is maximized when ϵi = 0, for all i.

Note that the data deficiency ∆ can grow arbitrarily large with this model, so that 0 ≤ ∆(ω) < ∞,
for a dataset ω.
Definition 2. We define the data deficiency data quality Q(ω) of a dataset ω by

Q(ω) = exp (−∆(ω)) .
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4 QUALITY AWARE SCALING LAWS

A widely used empirical scaling law for LLMs (also known as the Chinchilla Scaling Law by Hoff-
mann et al. (2022)) is

L(N,D) =
A

Nα
+

B

Dβ
+ E,

where N is the number of training parameters, D is the number of training tokens, and L(N,D) is
the pretraining loss. This equation was estimated empirically from experimental studies involving
over 400 LLM, with the number of parameters ranging from 70M to 16B and the number of training
tokens ranging from 5B to 400B. Here A, B, E, α, and β are empirically estimated constants, with
E the minimal loss.

For example, one formulation studied in Hoffmann et al. (2022) is:

L(N,D) =
406.4

N−0.34
+

410.7

D−0.28
+ 1.69. (1)

In large-scale training, improvements such as filtering out low-quality data or introducing better
training objectives have yielded improved performance beyond what naive scaling might predict.
For instance, filtering training data to remove noise has been observed to effectively improve the
scaling behavior, enabling models to achieve lower loss with the same compute. This indicates that
not all tokens are equal: a billion high-quality tokens may be far more valuable than a billion noisy
or redundant ones. The Chinchilla analysis already hinted that many models are undertrained given
their size, pointing toward the need for either more data or better data. This motivates us to extend
scaling laws with explicit parameters for data quality.

4.1 EFFECTIVE SAMPLE SIZE

We now formalize when data quality Q leads to a scaling law of the form D−βQ−γ . The key idea
is that poor data quality (e.g. data corruption or large data deficiency) reduces the effective sample
size of the dataset. We formalize this with:
Definition 3. Let g be a monotone function g : [0, 1] → R+ with g(1) = 1. Then the effective
sample size of D associated with the link function g is

Deff := Dg(Q).

Assumption 1 (Effective Sample Size Factorization). There exists a monotone function g : [0, 1] →
R+ with g(1) = 1 such that the expected excess loss satisfies

LN (D,Q) ≈ B

Dβ
eff

=
B

(D · g(Q))β
.

where LN (D,Q) denotes the loss for a given parameter size N .

This assumption is consistent with classical results: in PAC learning with random classification noise
of rate η < 1/2, the sample complexity inflates by a factor (1 − 2η)−2 (Angluin & Laird, 1988;
Kearns, 1998); in regression with additive Gaussian noise of variance σ2, effective samples scale
with the signal-to-noise ratio SNR = 1/σ2 (Tsybakov, 2009); and in information theory, channel
capacity arguments show that mutual information is reduced by a multiplicative factor depending
on the corruption level (Cover & Thomas, 2006). In the following two lemmas (proof deferred to
the Appendix), we show that the usable sample size can be written as Deff = D · g(Q) with g(Q)
well-approximated by a power law Qγ over practical ranges of Q:

• γ ≈ 1 for signal-to-noise ratio like token noise (Lemma 1)
• γ ≈ 2 for symmetric label noise (Lemma 2)

Lemma 1 (Effective sample size under additive Gaussian noise). Consider i.i.d. observations of the
form yi = f(xi) + ϵi, ϵi ∼ N (0, σ2), for i = 1, . . . , D. Then the Fisher information contributed
by each observation is proportional to 1/σ2, and the total Fisher information satisfies

ID ∝ D

σ2
.

Equivalently, the D noisy samples carry the same information as Deff = D · (1/σ2) noise-free
samples.

4
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We define the deficiency as

∆ = ln
σ2

σ2
0

, Q = e−∆ =
σ2
0

σ2
.

where σ2
0 is baseline noise (i.e. e.g. noise not modeled by ∆). Without loss of generality, we may

assume σ0 := 1. In this formulation, datasets noisier than the reference (σ2 > σ2
0) have Q < 1,

while “clean” datasets (σ2 = σ2
0) have Q = 1. The effective sample size then scales as

Deff = D ·Qγ

and taking γ = 1 recovers the classical D · SNR scaling.
Lemma 2 (Effective sample size under random classification noise). Consider binary classification
with labels Y ∈ {0, 1} and i.i.d. examples (X,Y ). Suppose labels are corrupted by random classi-
fication noise (RCN) with flip rate η ∈ [0, 1/2), i.e., we observe Ỹ = Y w.p. 1− η and Ỹ = 1− Y
w.p. η, independently of X . For any classification-calibrated surrogate loss admitting an unbiased
noise-corrected estimator (e.g., logistic/hinge via the standard correction), the variance of the per-
example corrected loss inflates by a factor proportional to (1−2η)−2. Consequently, generalization
bounds and excess-risk rates scale as if the number of clean samples were

Deff = D · (1− 2η)2,

i.e., the effective sample size is reduced by (1− 2η)2 under RCN.

Lemma 2 formalizes the intuition that symmetric label noise reduces usable information multiplica-
tively, yielding Deff = D · g(Q) with g(Q) = (2Q− 1)2. In other words, if we define data quality
via the corruption rate as Q = 1 − η (cf. Section 3), then (1 − 2η)2 = (2Q − 1)2. Over practical
high-quality regimes Q ∈ (1/2, 1], the factor (2Q− 1)2 is well-approximated by a local power law
in Q with exponent γ ≈ 2, so that an effective-sample model Deff = D ·Qγ with γ ≈ 2 is justified
for RCN.

4.2 QUALITY-AWARE SCALING LAW

We incorporate the data quality Q and introduce the following quality-aware scaling law:
Definition 4 (Quality-Aware Scaling Law).

L(N,D,Q) =
A

Nα
+

B

DβQγ
+ E, (2)

where Q denotes data quality and γ is a empirically measured parameter.

Note that for the highest quality data with Q = 1, this reduces to the standard Chinchilla scaling
law, and as the quality of the data decreases, the loss increases, as is expected. On the other hand, as
the quality of the data goes up, the amount of the data required to achieve the same loss goes down.

The following corollary formalizes how the proposed form arises under mild regularity conditions:
Corollary 1. Suppose that g(Q) is regularly varying at Q = 1, i.e. g(Q) = cQγ(1 + o(1)) as
Q → 1. Then the quality-aware scaling law (Definition 4) holds under Assumption 1.

We next give an information-theoretic perspective that leads to the same law:

Proposition 1 (Information-theoretic justification). Let X denote clean tokens, X̃ their corrupted
versions produced by a memoryless channel CQ parameterized by quality Q ∈ (0, 1], and let Z
be the learned representation used for prediction. Suppose corruption reduces usable information
multiplicatively,

I(X̃;Z) = ρ(Q) I(X;Z),

with ρ(1) = 1, ρ(Q) monotone, and locally ρ(Q) ≈ cQγ as Q → 1. Here I(X;Z) denotes mutual
information as usual. If the data-dependent loss scales as1

LD ∝ 1(
D · I(X̃;Z)

)β ,
1This assumption is motivated by information-theoretic generalization bounds (Xu & Raginsky, 2017; Bu

et al., 2020), which relate generalization error to the mutual information between training data and learned
representations or weights, as well as by the Information Bottleneck principle (Tishby et al., 1999).

5
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then the quality-aware scaling law takes the form

L(N,D,Q) ≈ A

Nα
+

B

DβQγ
+ E,

after reparameterization of constants.

The proof of Proposition 1 is deferred to the appendix. For a binary symmetric channel with flip
rate η, ρ(Q) is proportional to the capacity 1 − H2(η) with Q = 1 − η; over practical ranges
this is well-approximated by Qγ with γ ≈ 2. In regression with additive Gaussian noise, ρ(Q) is
proportional to the signal-to-noise ratio, yielding γ ≈ 1. Both cases recover the effective sample
size view Deff = D · ρ(Q).

5 EXPERIMENTAL STUDIES

To establish the quality aware scaling laws, we train decoder only language models across two tasks,
neural machine translation (NMT) and causal language modeling (CLM). To capture the effects of
quality and dataset size we train on 3 different dataset volumes and 7 degrees of quality. We use
subsets of Paracrawl v8 (Bañón et al. (2020)) and C4 (Dodge et al. (2021)) as our training data for the
translation and language tasks respectively. See Table 1. We optimize cross-entropy loss averaged
over the relevant context and report the same on held out test datasets to measure the effectiveness
of our quality aware scaling law for predicting the loss on out of sample data (Table 2. We use the
parametric loss fitting approach described in Hoffmann et al. (2022) to find our parameters using two
methods, Least Squares and Huber (Huber, 1992). The full details of the experiments, and model
training details can be found in the appendix.

5.1 NEURAL MACHINE TRANSLATION

Our first task is English to German translation using the Paracrawl v8 English to German dataset
(Bañón et al., 2020). We filter the raw data with min hash deduplication, language ID filtering with
a 0.8 threshold and length filtering (≤ 258) leaving ∼ 101M sentence pairs. We use a 8L GPT
Neo model with a hidden size of 1024 with approximately ∼ 133M params. We also train our
own BPE tokenizer with a vocabulary size of 32000. We train 3 replicates for each combination
of the 3 datasets of size 500K, 1M and 2M sentence pairs and 7 quality levels for a total of 63
experiment runs. We train using AdamW with a maximum learning rate of 5e-4 and cosine decay
with a 20% warmup ratio. The full model configuration and training hyper-parameters are available
in the appendix.

5.2 CAUSAL LANGUAGE MODELING

For the CLM objective we train our models on a subset of C4 (en) (Dodge et al., 2021). We run our
pretraining experiments on a 8L Llama 3 (Grattafiori et al., 2024) model with a hidden size of 512
and a context length of 2048. We do not use ROPE scaling. We employ random data truncation on
the base dataset to sample within the context length. We also employ the pre-trained Llama-3.2-1B
tokenizer. We sample datasets of three sizes; 100M , 1B and 10B tokens and train for a single epoch
using fused AdamW (Loshchilov & Hutter, 2019) with a maximum learning rate of 1e-3 with cosine
decay and a 10% warm-up ratio. We duplicate our experiment setting to match a total of 63 runs.
The full model configuration and training hyperparameters are available in the appendix.

5.3 SYNTHETIC NOISE AND DATA SAMPLING STRATEGY

To simulate the different levels of data quality we add synthetic iid noise to the base dataset. The
base dataset after pre-processing is assumed to have quality, Q = 1.0. We vary the quality of a
dataset by increasing/decreasing the fraction of samples that are perturbed with synthetic noise. For
example, if 25% of all samples are perturbed, then the quality of that dataset is considered to be
0.75. We use two noise models, one for each task. For NMT, we randomly set 50% of all non-
special tokens in a selected sample to pad tokens, we do not discriminate between source and target
here. For CLM, we randomly swap 50% of all non-special tokens with valid non-special tokens
from the tokenizer vocabulary.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Estimated Parameters in Quality-Aware Scaling Law

TASK METHOD B β γ E+

NMT Least Squares 166.568727 0.262933 0.185135 0.146998
NMT Huber 139.602744 0.250067 0.173161 0.066539
CLM Least Squares 1428.225931 0.395142 0.388678 3.439888
CLM Huber 1441.505289 0.395859 0.400657 3.439047

Table 2: Estimated Parameters on Unseen Data - CLM

TASK METHOD B β γ E+

CLM (ours) Least Squares 1428.225931 0.395142 0.388678 3.439888
CLM (unseen) Least Squares 1589.071797 0.396787 0.332273 4.551611

CLM (ours) Huber 1441.505289 0.395859 0.400657 3.439047
CLM (unseen) Huber 1427.299279 0.390546 0.336753 4.540009

5.4 DATA SAMPLING STRATEGY

We employ a nested subset sampling strategy that guarantees noise and sample monotonicity. S =
{s1, s2, s3, . . . , sn} is the base experiment dataset with n unique samples. We draw from S thrice
using different seeds to create working datasets Sw1, Sw2 and Sw3. Each working dataset Swi is
then sampled to produce datasets of different sizes. Each of these different sized datasets are then
perturbed to various degrees to create the noised variants at that dataset size.

For example, in our CLM experiments the dataset volumes are T={0.1, 1, 10} billion (B) tokens.
We first draw thrice from C4 to get our 3 working datasets Sw1, Sw2 and Sw3 of size 40M samples
or ≃16B tokens each (Using the Meta Llama-3.2-1B tokenizer, we find that on average the “en”
subset of C4 has approximately 400 tokens per sample). We ensure that for each working dataset
Swi, we sample subsets of the form, i.e. S0.1B ⊆ S1.0B ⊆ S10.0B . At each subset level, we then
compose 7 different dataset variants with N = {0, 10, 20, 25, 30, 40, 50} percent noised samples,
meaning that quality Q = {1.0, 0.9, 0.8, 0.75, 0.7, 0.6, 0.5}.

5.5 EXPERIMENTAL SETUP

We make use of multiple compute sources in this work. NMT experiments upto a dataset volume
of 1M sentence pairs were conducted on an A100 node with 4, 80GB GPUs. All other experiments
are run on 2 Hopper nodes with 4, 141GB GPUs each. We do not use multi-node or multi-GPU
training. We utilise the GPU counts to parallelize experiment runs.

5.6 MAIN RESULTS — EFFECT OF DATA QUALITY

Our main results are summarized in Table 1, which estimates B, β, γ, and E+, and Figure 1, which
shows the test loss as Q varies from 0.5 to 1.0. Predictably, we find that test loss L decreases as
we increase the volume of data D and increase the fraction of high quality samples Q. Table 2
shows us that using our pre-trained models to evaluate loss on unseen data also follows a scaling
law similar to our fit on in distribution data, thus showing evidence for scaling generalization. To
further illustrate trade-offs between D and Q, Figure 2 presents iso-loss contours, showing how data
quality improvements can substitute for increased dataset size at fixed model capacity.

Interestingly, the estimated exponents for data quality, γ̂, are significantly less than one: γ̂ ≈ 0.173
for NMT and γ̂ ≈ 0.401 for CLM (with Huber estimation). This indicates that the effective dataset
size decays sublinearly with quality, i.e., models are more robust to moderate corruption than pre-
dicted by simple effective sample-size theories from PAC learning or channel-capacity analysis,
which typically suggest γ ≥ 1. We hypothesize that this robustness arises from redundancy in natu-
ral language data, where even partially corrupted samples carry useful contextual information (e.g.,

7
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(a) Machine translation (b) Next token prediction

Figure 1: Test loss as data quality varies from 0.5 to 1 for a) machine translation and b) next token
prediction.

syntax, alignment, or co-occurring clean tokens). The higher γ in CLM compared to NMT suggests
that autoregressive language modeling is more sensitive to token corruption, whereas NMT can
leverage cross-sequence redundancy to mitigate the impact of noise. Another plausible hypothesis
is that in the NMT noise model (padding half the tokens in a noised sample), the corrupted samples
are not completely useless: alignment and context still leak enough information. In CLM (token
swaps), the corruption is harsher for distributional modeling, since the noised tokens add entropy
and can mislead local dependencies. Hence a larger γ.

(a) Machine translation contours. (b) Next token prediction contours.

Figure 2: Iso loss contours for machine translation (a) and next token prediction (b).

Isolating the quality effect. To quantify the incremental loss due to degraded quality at fixed N
and D, define

∆L(Q) = L(N,D,Q)− L(N,D, 1). (3)

From the fitted law, this difference takes the form

∆L(Q) ≈ B̂ D−β̂
(
Q−γ̂ − 1

)
,

which makes clear that ∆L(Q) should grow approximately linearly in Q−γ̂ − 1, where γ̂ is the
estimated γ. We therefore directly plot ∆L(Q) versus Q−γ̂ − 1, using the estimated γ̂ from our
scaling experiments.

8
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As shown in Fig. 3, the resulting plots are close to linear across the tested quality levels, validating
that the multiplicative Q−γ term accurately captures the degradation due to corruption. Furthermore,
the plots show homogeneous linear functions, which suggest that the additive terms in our proposed
scaling law, A

Nα + E, indeed do not vary with data quality Q. The stability of these plots across
dataset sizes (0.1B, 1B, 10B for CLM; 0.5M, 1M, 2M pairs for NMT) (with the Huber estimation)
further suggests that γ is an intrinsic task-dependent parameter rather than an artifact of optimization
or dataset sampling.

(a) NMT, γ̂ = 0.173 (b) CLM, γ̂ = 0.400

Figure 3: ∆L(Q) vs. Q−γ̂ − 1 for a) NMT and b) CLM, where γ̂ is the estimated γ parameter using
the Huber estimation from the scaling experiments.

In practice, the exponent γ serves as a robustness index: smaller values indicate that a model-task
pair is resilient to corruption, while larger values reveal greater sensitivity to data quality. In our
experiments, both tasks show γ < 1, which means loss increases more slowly than linearly with
decreasing Q. In other words, the model is robust to moderate amounts of corruption — one needs
a large drop in Q to see a noticeable rise in loss.

6 SUMMARY AND CONCLUSION

This paper revisits scaling laws for large language model pretraining by introducing an explicit
and dimensionless measure of data quality, alongside traditional factors like model size and dataset
volume. We propose a new quality-aware scaling law that extends the widely used Chinchilla frame-
work, predicting pretraining loss as a joint function of model size, data volume, and data quality.
By systematically injecting synthetic noise and varying coverage in neural machine translation and
causal language modeling experiments, we demonstrate that higher data quality leads to significantly
lower loss for a given model size and dataset. Notably, their findings show that for high-quality
datasets, smaller models and less compute are needed to achieve strong results, which is highly
relevant for domain-specific applications. The study provides a formal scaling law:

L(N,D,Q) =
A

Nα
+

B

DβQγ
+ E,

where Q measures data quality and γ is empirically estimated. This extends earlier work that pri-
marily focused on model and data size. Their experiments on both NMT and CLM tasks, using real
datasets with systematically controlled levels of data corruption, confirm the predictive power of the
new scaling law and offer concrete guidance for balancing data curation versus model scale. The
work establishes a unified framework that quantifies data quality’s influence, enabling principled
decisions for specialized LLM development in fields building smaller models over domain specific
datasets, such as those that arise in business, scientific and medical applications.

REPRODUCIBILITY STATEMENT

We include all results from our experimental runs, all model and training configurations and recipes
and all steps taken to produce this work in the relevant sections in main and the appendix.
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A PROOFS

A.1 PROOF OF LEMMA 1

Proof of Lemma 1. For the Gaussian location family, the log-likelihood of a single observation is
ℓ(θ) = − 1

2σ2 (y − θ)2 + const, where θ = f(x). Differentiating twice with respect to θ and taking
expectation over ϵ gives the Fisher information per sample:

I1(θ) = E
[
− ∂2

∂θ2
ℓ(θ)

]
=

1

σ2
.

By additivity of Fisher information across i.i.d. samples, ID = D · I1 = D/σ2. Thus, the usable
information is equivalent to Deff = D · (1/σ2) noise-free samples. We define the deficiency as

∆ = ln
σ2

σ2
0

, Q = e−∆ =
σ2
0

σ2
.

where σ2
0 is baseline noise (i.e. noise for “clean” data; wlog σ0 := 1). In this formulation, datasets

noisier than the reference (σ2 > σ2
0) have Q < 1, while “clean” datasets (σ2 = σ2

0) have Q = 1.
The effective sample size then scales as

Deff = D ·Qγ

and taking γ = 1 recovers the classical D · SNR scaling.

A.2 PROOF OF LEMMA 2

Proof of Lemma 2. For symmetric label noise with flip rate η, the unbiased loss correction con-
structs a per-sample estimator ℓ̃(f(X), Ỹ ) whose expectation matches the clean loss: E[ℓ̃ | X,Y ] =

ℓ(f(X), Y ). For symmetric noise, the correction has the form ℓ̃ = (1−η) ℓ(f(X),Ỹ )−η ℓ(f(X),1−Ỹ )
1−2η

(Natarajan et al., 2013). This divides by (1−2η), so the variance of ℓ̃ inflates by a factor (1−2η)−2

relative to the clean loss. Uniform convergence or stability-based generalization bounds then inherit

a
√

Var[ℓ̃]/D dependence, implying an excess-risk rate equivalent to having Deff = D (1 − 2η)2

clean samples. Classic PAC analyses of RCN similarly show polynomial overheads governed by
(1− 2η)−2 (e.g., Angluin & Laird (1988)).

A.3 PROOF OF PROPOSITION 1

Proof of Proposition 1. By assumption (as in the Information Bottleneck principle (Tishby et al.,
1999)), the data-dependent loss scales as

LD ∝
(
D · I(X̃;Z)

)−β
, β > 0.

Substituting the multiplicative reduction of usable information,

I(X̃;Z) = ρ(Q) I(X;Z),

we obtain
LD ∝ D−β ρ(Q)−β I(X;Z)−β .

Since I(X;Z) does not depend on Q or D, we can absorb it into the constant B. By the regular-
variation assumption, ρ(Q) ≈ cQγ0 as Q → 1, so

ρ(Q)−β ≈ c−β Q−βγ0 .

Absorbing c−β into B and setting γ = βγ0, we obtain

LD ≈ B

DβQγ
.

Adding the standard model-size contribution A/Nα and irreducible error floor E yields

L(N,D,Q) ≈ A

Nα
+

B

DβQγ
+ E,

which is the claimed quality-aware scaling law after reparameterization of constants.
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B EXTENDED METHODS

B.1 TOKENIZER TRAINING

We pretrain a BPE tokenizer for our experiments in Neural Machine translation from English to
German. We use the HuggingFace Wolf et al. (2020) tokenizers module with the following pipeline.
We use NFKC normalization with Whitespace pre-tokenization with a 32000 vocabulary size and a
minimum frequency of 2 and < unk > , < s > , < /s > , < pad > , < sep > as the special
tokens. Predictably < s > and < /s > are the bos and eos tokens respectively.< sep > is used as
the separator token to separate the source and target languages.

B.2 MODEL CONFIGURATIONS

We present the exact configurations that we use for our model definitions for each of the tasks. We
use a GPT Neo model for NMT and a Llama model for CLM. Table 3 and Table 4 show the exact
parameter definitions used for the two models. We use the official implementations exposed via
HuggingFace transformers.

Variable Value
activation function gelu new
attention dropout 0.1
attention types [global, local] - 4

classifier dropout 0.1
embed dropout 0.1

hidden size 1024
initializer range 0.02

layer norm epsilon 1e-05
max position embeddings 260

num heads 8
num layers 8

resid dropout 0.1
vocab size 32000

window size 256

Table 3: GPT Neo config used for NMT pretraining experiments

B.3 DATA PRE-PROCESSING

B.3.1 PARACRAWL V8

In preparing our dataset for machine translation from English to German, we used a pretrained
language detection model from FastText (Joulin et al., 2016) lid.176.bin to filter the data as described
in 5.1.

B.3.2 C4

We use a cleaned version of C4 by AllenAI (c4a) available on HuggingFace, they provide 5 splits,
en, en.noclean, en.noblocklist, realnewslike, and multilingual (mC4). We use the en variant in our
experiments, it contains 364,868,892 samples in the train split and 364,608 samples in the validation
split.

C EMPIRICAL RESULTS

C.1 ADDITIONAL EXPERIMENTAL DETAILS

Table 5 shows other hyperparameters and choices made during our training experiments. We also
notably use greedy dataset packing in NMT and make use of DataCollatorWithFlattening() from

14
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Variable Value
attention bias false

attention dropout 0.0
head dim 64
hidden act silu
hidden size 512

initializer range 0.02
intermediate size 2048

max position embeddings 2048
mlp bias false

model type llama
num attention heads 8
num hidden layers 8

num key value heads 8
pretraining tp 1
rms norm eps 1e-05
rope scaling null
rope theta 10000.0

tie word embeddings true
vocab size 128256

Table 4: Llama config used for CLM pretraining experiments

HuggingFace in CLM to train to easily use Flash Attention 2 (Dao, 2023). Additionally we use
weight decay of 0.01 in both cases.

Table 5: Training Details

TASK D(avg) Batch Size Max LR Grad Acc Steps Warmup Ratio

NMT 3.6754244e+07 512 5e-4 8 0.2
NMT 7.3486728e+07 512 5e-4 8 0.2
NMT 1.4697256e+08 1024 5e-4 8 0.2
CLM 1.0317308e+08 48 1e-3 1 0.1
CLM 1.0296028e+09 48 1e-3 8 0.1
CLM 1.0294779e+10 48 1e-3 8 0.1

C.2 ADDITIONAL RESULTS

In reporting our performance we evaluate our trained models on test loss on heldout datasets. In
NMT, during dataset prepartion we partition a test set of 50,000 samples and report evaluation loss
on this heldout. For CLM, we partition 40,000 samples from the validation set of C4 en and use that
for evaluation. The full results are shown in Table 6 and Table 7 for reference.

C.3 PARAMETRIC LOSS FITTING WITH HUBER LOSS

Similar to Hoffmann et al. (2022) we minimize the following objective following a regularization
introduced by Huber (1992)

min
b,e,β,γ

∑
Run i

Huberδ
(

LSE
(
b− β logDi − γ logQi, e

)
− logLi

)
where B = exp (b), E = exp (e) and δ = 10−3 using the L-BFGS-B solver available through SciPy
minimize. We replicate the grid initialization of parameters as follows, b ∈ [0, 25, 5], e ∈ [0, 2, 0.5],
β ∈ [0.0, 0.4, 0.1] and γ ∈ [0.0, 0.4, 0.1]. We also add bounds 0 ≤ β ≤ 1 and 0 ≤ γ ≤ 1. We also
report a secondary fit using SciPy inbuilt function curve fitting functions using Least Squares.
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Table 6: Neural Machine Translation Results. D is the number of tokens used for training , Q
represents dataset quality and L is the test loss in nats. The horizontal lines demarcate the replicate
experiments and vertical sections the different dataset sizes used.

D Q L

36779001 1.00 1.853
36779001 0.90 1.859
36779001 0.80 1.914
36779001 0.75 1.949
36779001 0.70 1.964
36779001 0.60 2.018
36779001 0.50 2.117

36734209 1.00 1.842
36734209 0.90 1.866
36734209 0.80 1.941
36734209 0.75 1.952
36734209 0.70 1.951
36734209 0.60 2.025
36734209 0.50 2.087

36749529 1.00 1.853
36749529 0.90 1.891
36749529 0.80 1.927
36749529 0.75 1.955
36749529 0.70 1.954
36749529 0.60 2.024
36749529 0.50 2.082

D Q L

73479862 1.00 1.565
73479862 0.90 1.596
73479862 0.80 1.629
73479862 0.75 1.662
73479862 0.70 1.672
73479862 0.60 1.715
73479862 0.50 1.799

73487922 1.00 1.572
73487922 0.90 1.602
73487922 0.80 1.631
73487922 0.75 1.655
73487922 0.70 1.688
73487922 0.60 1.722
73487922 0.50 1.791

73492417 1.00 1.576
73492417 0.90 1.607
73492417 0.80 1.626
73492417 0.75 1.662
73492417 0.70 1.673
73492417 0.60 1.715
73492417 0.50 1.791

D Q L

146952084 1.00 1.351
146952084 0.90 1.370
146952084 0.80 1.377
146952084 0.75 1.393
146952084 0.70 1.399
146952084 0.60 1.434
146952084 0.50 1.468

147005794 1.00 1.358
147005794 0.90 1.359
147005794 0.80 1.384
147005794 0.75 1.386
147005794 0.70 1.403
147005794 0.60 1.432
147005794 0.50 1.469

146959769 1.00 1.360
146959769 0.90 1.362
146959769 0.80 1.388
146959769 0.75 1.394
146959769 0.70 1.412
146959769 0.60 1.437
146959769 0.50 1.462

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Causal Language Modeling Results.D is the number of tokens used for training , Q rep-
resents dataset quality and L is the test loss in nats. The horizontal lines demarcate the replicate
experiments and vertical sections the different dataset sizes used.

D Q L

103068758 1.00 4.401
103068758 0.90 4.447
103068758 0.80 4.520
103068758 0.75 4.534
103068758 0.70 4.566
103068758 0.60 4.630
103068758 0.50 4.701

103036697 1.00 4.402
103036697 0.90 4.472
103036697 0.80 4.510
103036697 0.75 4.550
103036697 0.70 4.560
103036697 0.60 4.628
103036697 0.50 4.710

103413788 1.00 4.407
103413788 0.90 4.464
103413788 0.80 4.502
103413788 0.75 4.523
103413788 0.70 4.557
103413788 0.60 4.627
103413788 0.50 4.693

D Q L

1029888156 1.00 3.824
1029888156 0.90 3.846
1029888156 0.80 3.867
1029888156 0.75 3.876
1029888156 0.70 3.886
1029888156 0.60 3.917
1029888156 0.50 3.957

1029558108 1.00 3.825
1029558108 0.90 3.841
1029558108 0.80 3.866
1029558108 0.75 3.880
1029558108 0.70 3.886
1029558108 0.60 3.921
1029558108 0.50 3.950

1029362179 1.00 3.824
1029362179 0.90 3.837
1029362179 0.80 3.868
1029362179 0.75 3.878
1029362179 0.70 3.887
1029362179 0.60 3.920
1029362179 0.50 3.952

D Q L

10295030326 1.00 3.581
10295030326 0.90 3.592
10295030326 0.80 3.612
10295030326 0.75 3.621
10295030326 0.70 3.633
10295030326 0.60 3.649
10295030326 0.50 3.673

10292963774 1.00 3.584
10292963774 0.90 3.592
10292963774 0.80 3.607
10292963774 0.75 3.617
10292963774 0.70 3.629
10292963774 0.60 3.650
10292963774 0.50 3.668

10296342093 1.00 3.581
10296342093 0.90 3.589
10296342093 0.80 3.602
10296342093 0.75 3.614
10296342093 0.70 3.627
10296342093 0.60 3.646
10296342093 0.50 3.667
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