
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LARGE LANGUAGE MODELS BASED GRAPH CONVO-
LUTION FOR TEXT-ATTRIBUTED NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-attributed graph (TAG) tasks involve analyzing both structural information
and textual attributes. Existing methods employ text embeddings as node fea-
tures, and leverage structural information by employing Graph Neural Networks
(GNNs) to aggregate features from neighbors. These approaches demand sub-
stantial computational resources and rely on two cascaded stages, resulting in a
sub-optimal learning process and making them vulnerable to the influence of ir-
relevant neighboring nodes. The advancement of language models (LMs) presents
new avenues for tackling this task without GNNs, leveraging their ability to pro-
cess text attributes of both the target node and its important neighbors. Instead of
using graph convolution modules, LMs can assign weights to these tokens based
on relevance, enabling token-level weighted summarization. However, it is non-
trivial to directly employ LMs for TAG tasks because assessing the importance of
neighbor nodes involves both semantic and structural considerations. Addition-
ally, the large search space presents efficiency issues for computing importance
scores in a scalable manner. To this end, we propose a novel Semantic Knowledge
and Structural Enrichment framework, namely SKETCH, to adapt LMs for TAG
tasks by retrieving both structural and text-related content. Specifically, we pro-
pose a retrieval model that identifies neighboring nodes exhibiting similarity to
the target node across two dimensions: structural similarity and text similarity. To
enable efficient retrieval, we introduce a hash-based common neighbor estimation
algorithm for structural similarity and a nearest-neighbor recalling algorithm for
embedding similarity. These two similarity measures are then aggregated using
a weighted rank aggregation mechanism. The text attributes of both the retrieved
nodes and the target node provide effective descriptions of the target node and
are used as input for the LM predictor. Extensive experiments demonstrate that
SKETCH can outperform other baselines on three datasets with fewer resources.

1 INTRODUCTION

Text-attributed graphs (TAGs) are frequently encountered in various real-world scenarios, including
academic networks, e-commerce platforms, and social networks (Tang et al., 2008; He & McAuley,
2016; Jin et al., 2023). The model is required to make the inference and prediction using the tex-
tual information contained in nodes and the graphical structures formed by the edges. Traditional
pipelines use NLP techniques like bag-of-words and pre-trained models to embed text features and
apply Graph Neural Networks (GNNs) (Wu et al., 2019; Veličković et al., 2018; Huang et al., 2022)
for graph propagation. Recent studies leverage fine-tuning to learn more meaningful embeddings
for downstream tasks and utilize the strong comprehension abilities of large language models. How-
ever, this cascaded framework presents a problem, as the text representations and graph structure are
trained independently from their respective aspects, potentially resulting in sub-optimal integration
between the two modalities (Duan et al., 2023). As a result, GNNs may not fully leverage the rich
semantic contexts represented in the textual embeddings, and conversely, the text features may not
adequately account for the structural nuances present in the graph (Zhou et al., 2020). This dis-
connect leads to inefficiencies and potentially hinders the performance of downstream TAG tasks
that rely on both modalities, as the learning dynamics of the text and graph are not aligned. Con-
sequently, the separate processing stages do not take into account the simultaneous optimization of
the two data types, resulting in information loss and reduced robustness.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Besides, GNNs primarily depend on node-level aggregation via graph convolutions to compute
weighted sums of neighboring features. While effective, this method may miss the rich semantic
nuances in textual data. To address this limitation, we propose purely leveraging advanced language
models to allow for weighted-sum computations not only at the node level but also at the token
level, enhancing the representation learning of textual attributes. This shift enables a more granular
understanding of the relationships between tokens, leading to improved flexibility and adaptability.
The emergence of long context models offers the opportunity to convert graph structures into re-
lation descriptions for long-text processing. Preserving long-range dependencies in text facilitates
graph-based reasoning. By integrating extra text bodies with graph-analyzing techniques, we can
supplement text relationships and their structural connections, enhancing predictions and insights
from the graph. Purely using language models not only enhances aggregation flexibility but also
improves textual information mining compared to cascaded models, as this approach allows the
optimizer to learn attention weights for each token specifically. However, it’s non-trivial to apply
straightforwardly for two reasons: (i) Despite the increased token length, the vast number of nodes
and edges still surpasses the text limit, making it impractical to provide the model with full graphical
information. (ii) Text models can only process textual information and cannot replicate the graph-
level search along the relation path. LLMs are good at understanding the text but may struggle with
the relational context present in graphs. Therefore, identifying the underlying graph topology and
filtering out relevant contexts through linked relationships is essential to this problem.

To this end, we introduce a novel graph-retrieval learning framework called SKETCH, which con-
sists of two core modules: the semantic retrieval module and the structural retrieval module. Draw-
ing on the principles that Graph Neural Networks are designed to capture not only the informa-
tion from neighboring nodes but also features from distant nodes through a multi-layer propagation
mechanism, SKETCH selects relevant semantic and graph-related contexts. It combines them into a
long-context language model for predictions, providing rich contexts and enhancing understanding,
which improves the model’s capability to generate relevant responses and make a better inference.

Contributions:

• We introduce retrieval-enhanced learning for text-attributed graphs using long-context language
models, allowing flexible token-level aggregation without relying on graph neural networks and
shifting focus from traditional node-level aggregation.

• We propose the SKETCH framework, which improves learning by selectively integrating infor-
mative corpora from semantic and graph perspectives to extract richer information.

• To assess the structural relatedness between nodes during graph retrieval, we propose a standard on
the number of common neighbors. To alleviate the significant computational burden, we introduce
a novel hash-based method to approximate the extent of similarity.

• Extensive experiments show that our model excels in TAG learning, with SKETCH outperforming
all state-of-the-art methods while requiring fewer computational resources. The studies assess the
effectiveness of each module and the effects of various retrieval strategies.

2 APPROACH: SKETCH

Notations. Text-attributed graphs consider both text attributes and graph structure, unlike traditional
text prediction and graph prediction tasks. A text-attributed graph is defined as G = (V, E ,S), where
S represents text attributes for each node. V denotes the set of nodes, E denotes edges between text
nodes and N k(v) denotes the k-hop neighbors of node v. Ground truth labels for a given text-
attributed graph are denoted as Y = {y1, · · · ,y|S|}, where |S| is the size of the text-attributed
nodes.

Our primary objective is to examine each anchor node within the graph to effectively identify the
content that is most relevant and beneficial in enhancing the understanding of the associated text.
As mentioned in the introduction, the complexity and richness of information at both the node and
relationship levels require a nuanced analytical approach. Textual attributes offer valuable semantic
insights into the meaning and context of the nodes, while structural relationships demonstrate how
these nodes interact within the graph’s topology. Therefore, our method leverages the inherent
structure of the graph, treating all contained texts as valuable resources. In the following sections,
we will detail our methodology for retrieving both semantically and structurally related corpora,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Target

Predictions

4

1

6

3

5

2
Hash-based

Jaccard similarity

estimation

Target

Anchor node (Target)

Abstract: Mining

informative patterns from

large databases poses

numerous challenges.

BERTCounterparts

Embeddings

Similarity

Search

4

1

6

3

5

2

Target

Text Attributed Graph

Semantic similarity ranking 𝑅s𝑒𝑚

Structural similarity ranking 𝑅𝑠𝑡𝑟𝑢𝑐𝑡

𝑅sem

𝑅𝑠𝑡𝑟𝑢𝑐𝑡

Weighted

aggregation

LM

Retrieve

…

5

9

8

3

…

Intersections

Concatenate

w

Figure 1: The SKETCH method for text-attributed graphs comprises two components: the Semantic Retrieval
Module, which uses embedding similarity, and the Structural Retrieval Module, which employs Jaccard simi-
larity. A weighted-rank aggregation mechanism combines their outputs, ranking the text of nodes, which are
then fed into a language model for training and predictions.

enhancing our understanding of each anchor node and its context within the entire network. Here,
we present a detailed illustration of the overall framework and its various components in Figure 1.

2.1 SEMANTIC RELATED RETRIEVAL

The structure of text-attributed graphs encompasses textual information from various nodes. In-
spired by the concepts from Retrieval-Augmented Generation (RAG), we propose integrating addi-
tional corpus during the training process. These supplementary texts can significantly enhance the
model’s ability to make accurate predictions by providing essential context and knowledge. While
some nodes are directly connected through edges, there are also nodes that, despite not being con-
nected, may contain relevant information about the target node, referred to as the anchor node.
Consider a research paper titled "Transfer Learning for Small Datasets in Medical Imaging." This
paper addresses a specialized topic and is published in a niche journal, resulting in a limited num-
ber of direct citations. In this case, the text attributes of the paper including its abstract, keywords,
and methodology—contain critical insights about "transfer learning" and "medical imaging." For
instance, the methodologies proposed in the non-connected papers may introduce novel algorithms
or frameworks that could enhance the explanation of the proposed technique.

To leverage this potential, we employ a global embedding similarity technique to retrieve useful
nodes. This approach allows us to identify and extract information from both directly linked and
indirectly related nodes, enhancing the overall relevance and comprehensiveness of the information
associated with the anchor node. In our retrieval process, we begin by using a sentence-transformer
to embed each piece of textual information into vector representations, as shown in Figure 2. These
embeddings are then stored efficiently, allowing for quick access. To identify the most relevant con-
tent, we leverage the FAISS engine, which enables high-speed searching based on cosine similarity.
Notably, even with a dataset containing hundreds of thousands of points, we can obtain results in
just a few minutes. This efficiency ensures that we can quickly retrieve the most closely matching
texts, streamlining the integration of relevant information into our system.

2.2 STRUCTURAL RELATED RETRIEVAL

2.2.1 DEFINING STRUCTURAL RELATEDNESS

This section focuses on retrieving structurally related nodes. However, each anchor node has nu-
merous k-hop neighbors, making it impractical to include all in our analysis. Thus, we need to
rank the importance of neighbors and select the most relevant ones. Previous research suggests that
in graph learning, nodes with many common neighbors are often more closely related for several
reasons. Structural Similarity: Nodes with many shared neighbors tend to be structurally simi-
lar, indicating similar roles or functions, particularly in social or biological networks. Transitive
Relationships: Transitivity implies that if node A is connected to B and B is connected to C, A
and C may also be related. Common neighbors signify potential transitive relationships, suggesting
that nodes are indeed related. Shared Context: Common neighbors indicate that nodes share sim-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

ilar contexts or environments. For instance, in a social network, two individuals with many mutual
friends may have shared interests or activities, reflecting a closer relationship.

To better illustrate this pattern, we include a real-life example from our citation network dataset in
Figure 3. The anchor node is labeled ’database’, focusing on Kalman Filters, which may lead to
its misclassification as a ’Machine Learning’ algorithm. Here, additional context from cited papers
is crucial. The neighboring node content, such as "applying adaptive filters for query processing
in a distributed stream" and "techniques to query large data repositories efficiently", suggests that
Kalman Filters are used to handle data streams and applied in the database field. In contrast, another
connected node describing "Sensor networks have recently found many popular applications" serves
a less relevant role. Analyzing their topological differences reveals that nodes with more common
neighbors typically offer more relevant explanations. This aligns with the intuition that birds of a
feather flock together and supports our previous experience that while many papers may be cited,
some provide essential insights while others serve merely as supplementary information.

Based on this finding, we propose defining relatedness through intersection features using the Jac-
card similarity coefficient, expressed as J(A,B) = |N(A)∩N(B)|

|N(A)∪N(B)| . In this formula, J(A,B) repre-
sents the Jaccard similarity between nodes A and B, where N(A) denotes the set of neighbors of
node A and N(B) the set of neighbors of node B. The numerator, |N(A) ∩ N(B)|, indicates the
number of common neighbors shared by the two nodes, while the denominator, |N(A) ∪ N(B)|,
represents the total number of unique neighbors across both nodes. By employing the Jaccard sim-
ilarity, we can effectively capture the connectivity patterns that reflect structural relationships be-
tween nodes. This measure provides valuable insights critical for downstream graph-related tasks
within our retrieval processes, facilitating a deeper understanding of the underlying graph structure.

Vector

ID

Retrieve top-K

relevant texts

Abstract: To answer user

queries efficiently, we select

the Kalman Filter. …… BERT

…

Texts

embedding

embedding

embedding

0.3

0.9

0.1
similarity

ID-1X ID-2X ID-5X

To answer user Kalman Filter

from

…

Data systemcorpus … …dependence

embedding

Figure 2: Overview of the semantic retrieval pro-
cess. This figure illustrates in detail how we conduct
a global search for similar nodes based on their em-
beddings, leveraging FAISS (Facebook AI Similarity
Search) to efficiently identify and select the most sim-
ilar items from the entire network.

Abs: To answer user queries

efficiently, we select the

Kalman Filter. ……

Label: DATABASE

4

1

6

3

5

2

Abs: Database management

systems is data independence.

……

Label: DATABASE

7

Abs: Study the problem

of applying adaptive filters

for query processing. ……

Label: DATAMINING

Abs: Sensor networks have

recently found many popular

applications. ……

Label: ROBOTICS
Abs: Developing techniques

to query large XML data

efficiently. ……

Label: DATABASE

Anchor node Node examples with different labels

Node 1-hop 2-hop

2 1,3 8,4,6

7 5 4,6

5 6,4,7 3

MinHash

Function

Hash values of IDs

1-hop 2-hop 1-hop 2-hop

1-hop 1-hop 2-hop 2-hop

69 … 13

8 … 50 …

353 … 4

69 … 13

8 … 50 …

353 … 4

27… 1 …

99… 16…

10 … 580

Matrix Intersection

27… 1 …

99… 16…

10 … 580

69 … 13

8 … 50 …

353 … 4

27… 1 …

99… 16…

10 … 580

69 … 13

8 … 50 …

353 … 4

27… 1 …

99… 16…

10 … 580

√

Figure 3: Process of transforming neighborhood IDs
into hash values for enhanced structural retrieval. The
figure illustrates that the number of common neigh-
bors is a crucial indicator for determining node relat-
edness among the graph and can be efficiently com-
puted using matrix operations."

2.2.2 HASH-BASED JACCARD SIMILARITY ESTIMATION

As discussed in previous sections, the importance ranking of k-hop neighbors is determined by the
proportion of common neighbors; more common neighbors indicate a closer relationship. This part
formally presents our method for estimating k-hop Jaccard similarities for each pair of nodes. The
typical approach involves recording each node’s neighbors and incrementally counting the Jaccard.
However, this method is time-consuming due to the varying number of neighbors per node and the
large overall number of nodes, resulting in extensive iterations. Calculating multi-hop Jaccard, e.g.
the Jaccard between the one-hop neighbors of an anchor node and the two-hop neighbors of other
nodes, will further complicate the computation. Monte Carlo simulation is a possible solution, but
it remains inefficient as it requires large samples for even a rough estimate.

Similarity Estimation Using Minhash Functions. To properly address the inefficiency associ-
ated with direct similarity computation, we plan to map neighborhood IDs into dense sketches and
estimate the Jaccard extent in a lower-dimensional space. We choose Minhash Charikar (2002) func-
tions as the mapping functions based on their properties. In this technique, we formulate the k-hop
neighbors of a node vq ∈ V as a set N (vq). Next, we randomly hash every v ∈ N (vq) in the set
to an integer h(v) ∈ [B]. Here h is a universal hashing function Carter & Wegman (1977). Next,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

we take the minimum value of h(v) for all v ∈ N (vq) as the hash signature of the k-hop neighbors
N (vq). Next, we show that this Minhash function serves as an unbiased estimator of the Jaccard
between the k-hop neighbors of two nodes.
Definition 2.1 (Minhash for k-hop Neighbors Jaccard Estimation). Let V denote the nodes in a
graph G = (V, E ,S). LetN k(v) denote a set of the k-hop neighbors of node v ∈ V . Let h : V → [B]
denote a universal hashing function that maps a node v ∈ V to an integer in range [B]. We define a
Minhash function Minhash on N k(v) as:

Minhash(N k(v)) = minh(N k(v)).

Moreover, based on the propriety of Minhash function Charikar (2002), we see that for v1, v2 ∈ V

Pr[Minhash(N k(v1)) = Minhash(N k(v2))] =
|N k(v1) ∩N k(v2)|
|N k(v1) ∪N k(v2)|

= J (N k(v1),N k(v2)).

As shown in the definition, Minhash is a locality-sensitive hashing function (Indyk & Motwani,
1998; Datar et al., 2004; Andoni et al., 2014; Andoni & Razenshteyn, 2015; Andoni et al., 2017).
The collision probability of Minhash is equal to the Jaccard similarity of two k-hop neighbor sets.
As a result, we use the collision of two Minhash signatures as an unbiased estimator to the Jaccard
similarity between two k-hop neighbor sets N k(v1),N k(v2).

Multi-hop Similarity Estimation. Since we are required to estimate Jaccard across k hops instead
of just one-hop neighbors, we extend the aforementioned method into k dimensions. Our algorithm
(see Algorithm 1) begins by extracting N k(v), the sets of k-hop neighbors of the anchor node
v. Next, we apply R independent MinHash functions to generate R hash values for every sv,k ∈
N k(v), repeating this process l times. This effectively transforms the neighbor ID sequences into
a hash sequence of length l, which we denote as H . To simplify, we compute 2-hop intersections
by examining the one-hop and two-hop neighbors of each node, resulting in four combinations:
one-hop with one-hop, one-hop with two-hop, two-hop with one-hop, and two-hop with two-hop
neighbors. This approach can easily be extended to higher-hop manipulations.

For each node, we repeat the hash sequences corresponding to each hop. For example, let h1,1,
h1,2 represent the one-hop and two-hop neighbors of the first node, respectively. The concatenated
vector for node 1 would be [h1,1, h1,1, h1,2, h1,2]. We then arrange the hash vectors of all nodes ac-
cording to the pattern [[h1,1, h1,2, h1,1, h1,2], ..., [hk,1, hk,2, hk,1, hk,2]]. By calculating the number
of equal hash values present in each row, we effectively capture the cross-combinations that occur
during multi-hop intersections. This process can be executed rapidly by leveraging the broadcasting
capabilities of PyTorch in matrix operations. In contrast, common methods often require one-by-
one iteration due to the irregularity in the number of neighbors, which significantly slows down the
speed of computation. For simplicity, we previously set the hash sequence length for each vector
to l, indicating equal importance among all four possible intersections. To control some weights
over specific intersections, particularly the crucial one-hop intersections, we can shorten some other
vectors to a length m, where m < l. This adjustment decreases the frequency of "collision" for the
corresponding k-th hop intersection. Lastly, we rank the importance of neighbors for each anchor
node by its row-wise sum; a higher value indicates a greater likelihood of sharing more neighbors.

2.3 AGGREGATED LEARNING OF RETRIEVED CONTENT

The combination of the two aforementioned modules aims to acquire relevant information from dif-
ferent dimensions, thereby enhancing the training effectiveness of the long-context model. Semantic
retrieval focuses on identifying content that is semantically similar to the anchor node text, ensuring
that we capture deep connections between texts. In contrast, structure retrieval emphasizes the links
between texts, paying attention to the flow of information. After obtaining the relevant texts, we
rank and filter them to select the most significant ones, which are then connected to the anchor node
text to create a rich context for the long-context model. Specifically, we propose a weighted method
to combine two different similarity metrics: semantic similarity ranking and structural similarity
rankings. To create a unified scoring system, we introduce a hyperparameter w, which allows for
the adjustment of weights of the overall score. The composite score is calculated using the formula
G = Rsem+w ·Rstruct, where Rsem is the semantic rank and Rstruct is the structural similarity ranking.
This approach allows for greater flexibility and enhances the capability of our evaluation method. It

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

is similar to the Retrieval-Augmented Generation pipeline, as our goal is to supplement information
to improve model training. Our retrieval strategy draws inspiration from the fundamental principles
of graph neural networks, where the core concept revolves around propagating information across
edges to aggregate insights from spatially close and far elements. By retrieving content from these
two perspectives, we enable the language model to effectively mimic the process of capturing both
neighboring and broader contexts when processing aggregated information. This dual approach en-
sures a richer understanding of the data, enhancing the model’s ability to generate more accurate
and contextually relevant outcomes.

Algorithm 1 Hash-based Jaccard Similarity Ranking

Input: K-hop neighboring ID sequences, each
containing V nodes, processed by R inde-
pendent MinHash functions {h1, h2, . . . , hR},
each with a range of B.
Output: ranked score of node IDs.
for node v ∈ V do

for hop = 1→ k do
N k(v) = GetNeighbors(v,k)

end for
end for
Initialize: Hv ←MV×(R·K2)

Initialize: Cv ←MV×(R·K2)

for s ∈ N k(v) do

for hop = 1→ k, cv ← [] do
for r = 1→ R do

Append hr(s)K times to Hv

Append hr(s) to cv
end for
Append cv K times to Cv

end for
end for
for s ∈ N k(v) do
Scorev = Sumv[hv == Cv]
Rank Scorev in descending order

end for
return Score

3 EXPERIMENTS

We conduct extensive experiments on three real-life datasets. Our study aims to address the follow-
ing research questions: Q1: Can SKETCH achieve superior prediction performance than current
state-of-the-art frameworks without utilizing graph neural networks? Q2: How effective are seman-
tic retrieval and structure retrieval modules in selecting augmented textual information from other
nodes, and how do they perform under different scenarios? Q3: What is SKETCH’s sensitivity to
its hyperparameters, and how is the efficiency of hash simulation compared to the standard method?

Implementation Details. We use a server with six 24 GB NVidia RTX 3090 GPUs. Our method
utilizes the Adam optimizer with a learning rate of 0.001 and incorporates early stopping based on
validation set accuracy. Main experiments are evaluated by the prediction accuracy of the testing set,
with performance results on the validation dataset also included. Hyperparameters for length l and
k hops are fine-tuned using a grid search to select the optimal values for each dataset. All baseline
experiments follow the design outlined in their respective articles to ensure fairness. For detailed
descriptions of the datasets and further explanations of the baselines, please refer to the appendix A.

3.1 MAIN RESULTS

The comparison of prediction performance across three datasets between SKETCH and other base-
line methods is presented in Table 1. The best result for each baseline group has been highlighted by
underlying. We have categorized all benchmarks into four groups: (1) traditional fine-tuned BERT-
based models with GNN, (2) recent efficient parameter fine-tuning methods for LLMs, (3) leveraging
powerful chat models like GPT-4 through in-context learning, and (4) existing tailored approaches
using various techniques. Specifically, the traditional BERT-based method yields reasonable results
thanks to the flexibility of fine-tuned embeddings. In today’s landscape of large language models,
larger sizes indeed bring about improved quality. An interesting finding is that using prompts to
guide LLMs in classification is unsatisfactory. Specifically, the Llama2 models struggle to follow
instructions and often generate irrelevant content. It’s quite sensitive to the phrasing of prompts, and
minor changes in words can lead to significantly different outputs. GPT-4 models perform better but
remain inferior to specialized trained models. SKETCH surpasses all baselines in overall accuracy,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

reaching an average improvement of 1.2%. This achievement is attributed to the use of informative
retrieved text and a long-context model, with the combined corpus enhancing performance from
both semantic and structural perspectives. We have chosen two distinct language models as the
backbone of our framework: Nomic, which has 137 million parameters, and Llama-3, with 8 billion
parameters. The larger Llama-3 model demonstrates higher performance but demands significantly
more time and memory. Training Nomic takes less than one hour per epoch, while Llama-3 requires
over 9 hours on the ACM dataset. This trade-off highlights the need to consider both aspects, and
researchers can select the appropriate option according to their real-life situations.

Table 1: Performance comparison among state-of-the-art baselines on three benchmark datasets.

NLP Models GNNs ACM Wikipedia Amazon

Val-Acc. Test-Acc. Val-Acc. Test-Acc. Val-Acc. Test-Acc.

Fine-tuned LMs +/- GNNs

Bert

- 74.4 73.2 69.5 68.8 86.2 87.0
GCN 77.6 77.1 69.4 68.4 92.3 92.8
GAT 77.9 78.0 70.5 69.8 92.5 92.4
GraphSAGE 77.3 76.8 73.1 72.7 92.0 92.3

Roberta

- 78.1 76.6 67.8 68.1 84.9 85.9
GCN 80.1 79.4 68.5 68.0 92.3 92.5
GAT 79.7 78.9 70.1 71.0 92.5 92.4
GraphSAGE 78.5 78.3 72.7 72.1 92.2 92.1

Fine-tuned Large Language Models +/- GNNs

Llama3-8b - 80.7 80.6 71.9 71.2 92.0 91.6
Llama3-8b GraphSAGE 82.0 81.3 72.8 73.0 93.1 92.8

Large Language Models

Llama2-7b - 20.8 - 41.3 - 53.4
Llama2-13b - 58.9 - 48.9 - 57.6

GPT-3.5 - 54.3 - 61.8 - 49.1
GPT-4 - 67.5 - 60.9 - 40.3

Tailored Frameworks For TAG

MPAD 74.9 74.6 70.3 70.4 88.2 88.0
GLEM 76.1 76.2 69.8 70.2 88.9 88.7

LLAGA 77.2 77.5 71.7 72.0 90.1 90.8
GraphFormers 75.3 75.1 66.8 67.5 85.6 86.4
InstructGLM 76.7 75.6 72.2 71.2 94.2 94.0

Ours (Nomic) 81.4 81.1 74.1 73.6 93.3 93.5
Ours (Llama3-8b) 82.7 82.3 73.3 73.4 94.1 94.7

3.2 EFFECTIVENESS OF RETRIEVAL MODULES

To evaluate the effectiveness of the retrieved content in improving performance, we analyze accu-
racy under various conditions. The baseline benchmark uses only the text from the anchor node.
We then conduct the following experiments: (1) randomly incorporating text from other nodes in
the graph, (2) retrieving only semantically similar content, (3) retrieving structurally similar content
with three variants, and (4) testing our proposed SKETCH model. The analysis results are presented
in the table 2. Our findings highlight several important insights regarding the impact of content addi-
tion on performance. Firstly, our research shows that randomly incorporating unrelated material into
the original text does not enhance performance; in fact, it negatively affects the overall results. This
underlines the critical importance of retrieving information that is relevant to the context. While we
observed that texts with global similarities can provide some level of positive influence, they are still
less effective compared to one-hop neighboring texts. This suggests that having connected edges
serves as a valuable reference for anchor nodes, strengthening their relevance. Furthermore, our ex-
periments demonstrate that arbitrarily extending the range of neighbors does not provide additional
benefits, which further confirms the effectiveness of our hash-based similarity ranking scheme.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Comparisons across various settings. k-hop indicates the range of hops used to retrieve
neighbors, while Selection refers to either random sampling or similarity ranking as the criterion.

Variant Retrieval Strategy

Original Shuffled Semantic One-hop Multi-hops Combined Ours

Semantic × × ✓ × × ✓ ✓
Structural × × × ✓ ✓ ✓ ✓
K-hop - - - 1 3 3 3
Selection - Random Rank Random Random Random Rank
Accuracy 78.0 75.6 78.4 80.6 79.7 80.3 81.4

3.3 HYPERPARAMETER STUDY AND EFFICIENCY COMPARISON

Our framework’s complexity mainly depends on three factors: the length of the tokenized sequence
L for each concatenated paragraph and the weights of the semantic and structural retrieval mod-
ules. The ablation study evaluates classification accuracy across various configurations of these fac-
tors. Figure 4 indicates that while longer contexts can be beneficial, excessively lengthy sequences
may diminish overall understanding and introduce noise that confuses the model. Additionally,
for single-machine users, longer texts lead to smaller batch sizes, which can further decrease per-
formance. Another finding is that increasing the weights of structure ranking generally enhances
performance, emphasizing the importance and effectiveness of our intersection-based retrieval strat-
egy. Our model shows no significant drop in performance, indicating it is not excessively sensitive
to hyperparameters. We also compare the time taken by our hash-based simulation with the stan-
dard computing method. Our experiments indicate that adding extra hops does not lead to a linear
increase in time, as illustrated in figure 5. In contrast, the standard method requires exponentially
more time due to the complex cross-combination of multiple hops. This distinction highlights the
efficiency of our approach, which maintains time consumption even while considering extra ranges.

Sequence Length

1k
2k

4k

8k

Weig
hts

 of
 Stru

ctu
re

0.0

0.5

1.0

1.5

2.0

A
cc

ur
ac

y

0.77

0.78

0.79

0.80

0.81

0.82

0.772

0.781
0.778

0.780

0.783

0.784

0.792

0.809

0.814
0.809

0.785

0.796

0.803

0.810 0.802

0.779

0.789

0.794

0.8020.793

Figure 4: Effects of hyperparameters on
the performance, showing the impact of
sequence length and structural weights.

1 2 3
Number of neighbor hops

10^1

10^2

10^3

10^4

Ti
m

e
(/s

ec
)

427
615

723895

4,754

12,326

w/ Hash-based estimation
w/o Hash-based estimation

Figure 5: Comparison of computational efficiency be-
tween hash-based and standard one. The time metrics
have been logarithmically processed.

4 RELATED WORK

4.1 LLMS FOR GRAPHS

Text-attributed graphs (TAGs) possess long texts as node attributes, allowing language models
(i.e.,Bert (Devlin et al., 2019), GPT2 (Radford et al., 2019)) to significantly enhance text learn-
ing. Large language models(LLMs) have shown increasingly powerful performance in text under-
standing, especially large-scale texts. Therefore many recent researches apply LLMs to downstream
tasks of TAGs (Li et al., 2024b), such as classification and link prediction (Tan et al.), reason-
ing (Luo et al., 2024), graph generation (Yao et al., 2024) etc. To further enhance the performance,
there are many techniques, such as fine-tuning (Dernbach et al., 2024), instruction-tuning (Chung
et al., 2024) and prompt design (Guo et al., 2023; 2024). In graph-related tasks, prompts combin-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

ing graph descriptions are common. For example, TAPE (He et al., 2024) and SimCSE (Li et al.,
2024a) concatenates generated relevant information or similar neighbors to provide additional in-
formation for representation learning. However, these methods are limited by computation sources
or the limited sequence length of LLMs (Lee et al., 2024). Additionally, some research proposes
complex pipelines to fine-tune LLMs for graph learning. Pan et al. (2024) aligns the student model
and interpreter model from semantics, structures, and prediction probabilities. Moreover, Guo et al.
(2024) and Tang et al. (2024) apply instruction-tuning, one by refining the graph structure, and the
other with text-structure alignment. Besides, many deep learning methods are enforced, like con-
trastive leaning (Zhang et al., 2024a) and ensembling (Zhang et al., 2024b). Although these methods
attempt to leverage graph structures in LLMs, they focus on neighborhood nodes but are weak in
utilizing topological structures. Many other models utilize the generation ability of LLMs under
particular settings, including label-free tasks Chen et al. (2024b), few-shot and zero-shot learning
situations Liu et al. (2023). However, these works fall short of exploiting the advantages of LLMs,
limiting capability in contextual understanding.

4.2 LLMS WITH GNNS

To bridge semantics understanding and graph structures, cascaded LLMs with graph neural net-
works (GNNs) have emerged in classification tasks. Currently, related reviews categorize models
into three types: LLM-as-enhancer, LLM-as-predictor, and LLM-GNN alignment (Li et al., 2024b).
TAPE (He et al., 2024), a typical example of the first type, generates supplementary contexts. Sim-
ilarly, Fang et al. (2024) not only applies multiple language models to augment features with the
mixture of prompt experts but also employs the edge modifier to adjust neighbor weights during
graph learning. While RoSE (Seo et al., 2024) decomposes relations by generator and discrimina-
tor by LLMs to provide structure information for multi-relational GNNs. In contrast, the second
model, i.e., Dr.E (Liu et al., 2024), transfers output from GNNs to the language decoder to decom-
pose into features, edges, and labels. These two types have challenges of losing information or
misunderstanding during transformation. Except for these two cascaded designs, there are nested
integrations (Yang et al., 2024). ENGINE (Zhu et al., 2024) embeds a side structure of LLMs by
simple neural network layers as ladders, and LinguGKD (Hu et al., 2024) aligns both in each layer
by leveraging contrastive distillation loss. This synergy combines neighborhood aggregation and
semantic learning, but they find it difficult to address co-training problems or alignment errors.

5 CONCLUSION

Inspired by the potential of language models to manage text-attributed graphs, we introduce
SKETCH, a new approach that simulates graph propagation through weighted token learning from
selected node subsets. Our framework enhances the selection of informative data by retrieving nodes
that are both semantically and structurally similar, thus enriching the textual information. To reduce
the computational complexity of node intersection calculations, we implement a novel hash-based
estimation technique. Extensive experiments demonstrate that our model outperforms all baseline
methods while requiring less time and memory, eliminating the need for GNNs. Additionally, we
conduct a thorough analysis of various settings to identify key components that positively impact
text-attributed graph learning. Our proposed framework demonstrates significant potential and of-
fers valuable insights into the integration of large language models within graph-related applications.

6 REPRODUCIBILITY

To ensure the reproducibility and verifiability of our results and models, we provide a complete code-
base and step-by-step usage instructions. Specifically, (1) the results and related analysis reported in
the paper are only a summary of those available in the code; (2) the implementation of SKETCH and
all baseline models are accessible; (3) detailed information and settings about main parameters are
publicly available; (4) information regarding hyperparameter tuning and training times are included;
(5) the hardware used is also disclosed; (6) in a fixed environment (i.e., with the same hardware and
software versions), most results are bitwise reproducible.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate near
neighbors. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing
(STOC), pp. 793–801, 2015.

Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. Beyond locality-sensitive
hashing. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms,
pp. 1018–1028. SIAM, 2014.

Alexandr Andoni, Thijs Laarhoven, Ilya Razenshteyn, and Erik Waingarten. Optimal hashing-based
time-space trade-offs for approximate near neighbors. In Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 47–66. SIAM, 2017.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2022.

J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. In Proceedings of the
ninth annual ACM symposium on Theory of computing, pp. 106–112, 1977.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of computing, pp. 380–388, 2002.

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language
and graph assistant. arXiv preprint arXiv:2402.08170, 2024a.

Zhikai Chen, Haitao Mao, Hongzhi Wen, Haoyu Han, Wei Jin, Haiyang Zhang, Hui Liu, and Jiliang
Tang. Label-free Node Classification on Graphs with Large Language Models (LLMS), February
2024b.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pel-
lat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling Instruction-Finetuned Lan-
guage Models. Journal of Machine Learning Research, 25(70):1–53, 2024. ISSN 1533-7928.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pp. 253–262, 2004.

Stefan Dernbach, Khushbu Agarwal, Alejandro Zuniga, Michael Henry, and Sutanay Choudhury.
GLaM: Fine-Tuning Large Language Models for Domain Knowledge Graph Alignment via
Neighborhood Partitioning and Generative Subgraph Encoding, April 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding, May 2019.

Keyu Duan, Qian Liu, Tat-Seng Chua, Shuicheng Yan, Wei Tsang Ooi, Qizhe Xie, and Junxian
He. Simteg: A frustratingly simple approach improves textual graph learning. arXiv preprint
arXiv:2308.02565, 2023.

Yi Fang, Dongzhe Fan, Daochen Zha, and Qiaoyu Tan. GAugLLM: Improving Graph Contrastive
Learning for Text-Attributed Graphs with Large Language Models, June 2024.

Luciano Floridi and Massimo Chiriatti. GPT-3: Its Nature, Scope, Limits, and Consequences.
Minds and Machines, 30(4):681–694, December 2020. ISSN 1572-8641. doi: 10.1007/
s11023-020-09548-1.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, and Shi Han. GPT4Graph: Can Large
Language Models Understand Graph Structured Data ? An Empirical Evaluation and Benchmark-
ing, July 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Zirui Guo, Lianghao Xia, Yanhua Yu, Yuling Wang, Zixuan Yang, Wei Wei, Liang Pang, Tat-Seng
Chua, and Chao Huang. GraphEdit: Large Language Models for Graph Structure Learning,
March 2024.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025–1035, 2017. ISBN 9781510860964.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering. In Proceedings of the 25th International Conference on
World Wide Web, pp. 507–517, 2016. ISBN 9781450341431.

Xiaoxin He, Xavier Bresson, Thomas Laurent, Adam Perold, Yann LeCun, and Bryan Hooi. Har-
nessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representa-
tion Learning, March 2024.

Shengxiang Hu, Guobing Zou, Song Yang, Yanglan Gan, Bofeng Zhang, and Yixin Chen. Large
Language Model Meets Graph Neural Network in Knowledge Distillation. In KDD2024. arXiv,
February 2024.

Zhongyu Huang, Yingheng Wang, Chaozhuo Li, and Huiguang He. Going deeper into permutation-
sensitive graph neural networks. In International Conference on Machine Learning, pp. 9377–
9409. PMLR, 2022.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse
of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of
Computing (STOC), pp. 604–613, Dallas, TX, 1998.

Bowen Jin, Yu Zhang, Yu Meng, and Jiawei Han. Edgeformers: Graph-empowered transformers for
representation learning on textual-edge networks. In The Eleventh International Conference on
Learning Representations, 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, 2017.

Jinhyuk Lee, Anthony Chen, Zhuyun Dai, Dheeru Dua, Devendra Singh Sachan, Michael Boratko,
Yi Luan, Sébastien M. R. Arnold, Vincent Perot, Siddharth Dalmia, Hexiang Hu, Xudong Lin,
Panupong Pasupat, Aida Amini, Jeremy R. Cole, Sebastian Riedel, Iftekhar Naim, Ming-Wei
Chang, and Kelvin Guu. Can Long-Context Language Models Subsume Retrieval, RAG, SQL,
and More?, June 2024.

Rui Li, Jiwei Li, Jiawei Han, and Guoyin Wang. Similarity-based Neighbor Selection for Graph
LLMs, February 2024a.

Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, and Jeffrey Xu Yu. A
Survey of Graph Meets Large Language Model: Progress and Future Directions, April 2024b.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan Zhang.
One for All: Towards Training One Graph Model for All Classification Tasks, December 2023.

Zipeng Liu, Likang Wu, Ming He, Zhong Guan, Hongke Zhao, and Nan Feng. Dr.E Bridges Graphs
with Large Language Models through Words, June 2024.

Zihan Luo, Xiran Song, Hong Huang, Jianxun Lian, Chenhao Zhang, Jinqi Jiang, and Xing Xie.
GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning
Capability, April 2024.

Giannis Nikolentzos, Antoine Tixier, and Michalis Vazirgiannis. Message passing attention net-
works for document understanding. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 8544–8551, 2020.

Bo Pan, Zheng Zhang, Yifei Zhang, Yuntong Hu, and Liang Zhao. Distilling Large Language
Models for Text-Attributed Graph Learning, February 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. OpenAI blog, 1(8):9, 2019.

Hyunjin Seo, Taewon Kim, June Yong Yang, and Eunho Yang. Unleashing the Potential of Text-
attributed Graphs: Automatic Relation Decomposition via Large Language Models, May 2024.

Yanchao Tan, Zihao Zhou, Hang Lv, Weiming Liu, and Carl Yang. WalkLM: A Uniform Language
Model Fine-tuning Framework for Attributed Graph Embedding.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
GraphGPT: Graph Instruction Tuning for Large Language Models, May 2024.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: Extraction
and mining of academic social networks. In Proceedings of the 14th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 990–998, 2008. ISBN
9781605581934.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871, 2019.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation
learning on textual graph. Advances in Neural Information Processing Systems, 34:28798–28810,
2021.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. GraphFormers: GNN-nested Transformers for Representation
Learning on Textual Graph. 2024.

Yang Yao, Xin Wang, Zeyang Zhang, Yijian Qin, Ziwei Zhang, Xu Chu, Yuekui Yang, Wenwu Zhu,
and Hong Mei. Exploring the Potential of Large Language Models in Graph Generation, March
2024.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, Yongfeng Zhang, et al. Natural language is
all a graph needs. arXiv preprint arXiv:2308.07134, 4(5):7, 2023.

Peiyan Zhang, Chaozhuo Li, Liying Kang, Feiran Huang, Senzhang Wang, Xing Xie, and Sunghun
Kim. High-Frequency-aware Hierarchical Contrastive Selective Coding for Representation Learn-
ing on Text-attributed Graphs, April 2024a.

Yazhou Zhang, Mengyao Wang, Chenyu Ren, Qiuchi Li, Prayag Tiwari, Benyou Wang, and Jing
Qin. Pushing The Limit of LLM Capacity for Text Classification, February 2024b.

Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model: a statistical frame-
work. International journal of machine learning and cybernetics, 1:43–52, 2010.

Jianan Zhao, Meng Qu, Chaozhuo Li, Hao Yan, Qian Liu, Rui Li, Xing Xie, and Jian Tang. Learn-
ing on large-scale text-attributed graphs via variational inference. In The Eleventh International
Conference on Learning Representations, 2023.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI open, 1:57–81, 2020.

Yun Zhu, Yaoke Wang, Haizhou Shi, and Siliang Tang. Efficient Tuning and Inference for Large
Language Models on Textual Graphs, January 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DATASET

We assess the performance of SKTECH using the following three datasets: ACM, Wikipedia, and
Amazon. All of these three datasets are manually constructed using the raw corpus and correspond-
ing descriptions. For each dataset, we divide the labels into training, validation, and testing sets.
Statistics of these three datasets are shown in Table 3.

Wikipedia. The raw data consists of UTF-8 encoded text from Wikipedia articles1. We extract the
main content of each article as document dv , which includes hyperlinked words. A directed graph is
constructed using the hyperlink relationships between articles. The categories mentioned in the list
of reference tables are assigned as labels to the nodes.

ACM. This dataset uses 48,579 papers from the Association for Computing Machinery (ACM) as
instances Tang et al. (2008). The paper abstracts serve as the document dv for the nodes, and a
directed graph is constructed using the citation links. The instances are collected from nine distinct
domains, such as Artificial Intelligence, Data Mining, and Machine Learning, which are employed
as labels.

Amazon.The dataset comprises product reviews and metadata from Amazon He & McAuley (2016).
We construct the graph based on the browsing history, with each node v representing the textual
description of the products denoted as sv .

Table 3: Statistics of datasets in our experiment.

Datasets #nodes #edges #classes

ACM 48,579 193,034 9
Wiki 36,501 1,190,369 10

Amazon 50,000 632,802 7

A.2 BASELINES

As our study focuses on integrating the corpus proceeding with the graph network, we adopt a variety
of popular approaches in these two domains, i.e. text-embedding modules and GNN encoders. We
made a cross combination of frontier methods in each field. Here are the introductions of each
method:

• GCN Kipf & Welling (2017) aggregates information from neighboring nodes by summing over
neighbors’ representations.

• GraphSAGE Hamilton et al. (2017) samples and aggregates features from the neighborhood for
inductive graph learning.

• GAT Brody et al. (2022) introduces a dynamic graph attention mechanism, leveraging attention
layers to learn the weights of neighboring features.

• Bag of Words (BoW) Zhang et al. (2010) describes the occurrence of words within a document
and its size can be flexibly decided by the frequencies of different words.

• MPAD Nikolentzos et al. (2020) represents corpus as networks based on word co-occurrence and
applies a message-passing framework to draw the information from the graph.

• Fine-tuning a language model (LM-tune) allows for training on target texts to make the model
more adept at performing the specific task.

• GLEM framework Zhao et al. (2023) iteratively updates the language model and graph neural
network (GNN).

• GraphFormers Yang et al. (2021) integrate GNN components with transformer modules for joint
training rather than a cascaded approach.

1http://www.mattmahoney.net/dc/textdata

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

• LLAGA Chen et al. (2024a) effectively integrates LLM capabilities to manage the complexities
of graph-structured data.

• Llama Touvron et al. (2023) is a family of large-scale language models that are designed to un-
derstand and generate human-like text across various tasks.

• GPT Floridi & Chiriatti (2020) is a set of state-of-the-art language processing AI models.
• InstructGLM Ye et al. (2023) employs natural language to characterize the multi-scale geometric

structure of graphs and fine-tunes a large language model (LLM) for graph tasks.

14

	Introduction
	Approach: SKETCH
	Semantic related retrieval
	Structural related retrieval
	Defining structural relatedness
	Hash-based Jaccard Similarity Estimation

	Aggregated learning of retrieved content

	Experiments
	Main Results
	Effectiveness of Retrieval Modules
	Hyperparameter Study And Efficiency Comparison

	Related Work
	LLMs for graphs
	LLMs with GNNs

	Conclusion
	Reproducibility
	Appendix
	Dataset
	Baselines

