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ABSTRACT

Text-attributed graph (TAG) tasks involve analyzing both structural information
and textual attributes. Existing methods employ text embeddings as node fea-
tures, and leverage structural information by employing Graph Neural Networks
(GNNs) to aggregate features from neighbors. These approaches demand sub-
stantial computational resources and rely on two cascaded stages, resulting in a
sub-optimal learning process and making them vulnerable to the influence of ir-
relevant neighboring nodes. The advancement of language models (LMs) presents
new avenues for tackling this task without GNNs, leveraging their ability to pro-
cess text attributes of both the target node and its important neighbors. Instead of
using graph convolution modules, LMs can assign weights to these tokens based
on relevance, enabling token-level weighted summarization. However, it is non-
trivial to directly employ LMs for TAG tasks because assessing the importance of
neighbor nodes involves both semantic and structural considerations. Addition-
ally, the large search space presents efficiency issues for computing importance
scores in a scalable manner. To this end, we propose a novel Semantic Knowledge
and Structural Enrichment framework, namely SKETCH, to adapt LMs for TAG
tasks by retrieving both structural and text-related content. Specifically, we pro-
pose a retrieval model that identifies neighboring nodes exhibiting similarity to
the target node across two dimensions: structural similarity and text similarity. To
enable efficient retrieval, we introduce a hash-based common neighbor estimation
algorithm for structural similarity and a nearest-neighbor recalling algorithm for
embedding similarity. These two similarity measures are then aggregated using
a weighted rank aggregation mechanism. The text attributes of both the retrieved
nodes and the target node provide effective descriptions of the target node and
are used as input for the LM predictor. Extensive experiments demonstrate that
SKETCH can outperform other baselines on three datasets with fewer resources.

1 INTRODUCTION

Text-attributed graphs (TAGs) are frequently encountered in various real-world scenarios, including
academic networks, e-commerce platforms, and social networks (Tang et al., 2008; He & McAuley,
2016; Jin et al., 2023). The model is required to make the inference and prediction using the tex-
tual information contained in nodes and the graphical structures formed by the edges. Traditional
pipelines use NLP techniques like bag-of-words and pre-trained models to embed text features and
apply Graph Neural Networks (GNNs) (Wu et al., 2019; Veličković et al., 2018; Huang et al., 2022)
for graph propagation. Recent studies leverage fine-tuning to learn more meaningful embeddings
for downstream tasks and utilize the strong comprehension abilities of large language models. How-
ever, this cascaded framework presents a problem, as the text representations and graph structure are
trained independently from their respective aspects, potentially resulting in sub-optimal integration
between the two modalities (Duan et al., 2023). As a result, GNNs may not fully leverage the rich
semantic contexts represented in the textual embeddings, and conversely, the text features may not
adequately account for the structural nuances present in the graph (Zhou et al., 2020). This dis-
connect leads to inefficiencies and potentially hinders the performance of downstream TAG tasks
that rely on both modalities, as the learning dynamics of the text and graph are not aligned. Con-
sequently, the separate processing stages do not take into account the simultaneous optimization of
the two data types, resulting in information loss and reduced robustness.
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Besides, GNNs primarily depend on node-level aggregation via graph convolutions to compute
weighted sums of neighboring features. While effective, this method may miss the rich semantic
nuances in textual data. To address this limitation, we propose purely leveraging advanced language
models to allow for weighted-sum computations not only at the node level but also at the token
level, enhancing the representation learning of textual attributes. This shift enables a more granular
understanding of the relationships between tokens, leading to improved flexibility and adaptability.
The emergence of long context models offers the opportunity to convert graph structures into re-
lation descriptions for long-text processing. Preserving long-range dependencies in text facilitates
graph-based reasoning. By integrating extra text bodies with graph-analyzing techniques, we can
supplement text relationships and their structural connections, enhancing predictions and insights
from the graph. Purely using language models not only enhances aggregation flexibility but also
improves textual information mining compared to cascaded models, as this approach allows the
optimizer to learn attention weights for each token specifically. However, it’s non-trivial to apply
straightforwardly for two reasons: (i) Despite the increased token length, the vast number of nodes
and edges still surpasses the text limit, making it impractical to provide the model with full graphical
information. (ii) Text models can only process textual information and cannot replicate the graph-
level search along the relation path. LLMs are good at understanding the text but may struggle with
the relational context present in graphs. Therefore, identifying the underlying graph topology and
filtering out relevant contexts through linked relationships is essential to this problem.

To this end, we introduce a novel graph-retrieval learning framework called SKETCH, which con-
sists of two core modules: the semantic retrieval module and the structural retrieval module. Draw-
ing on the principles that Graph Neural Networks are designed to capture not only the informa-
tion from neighboring nodes but also features from distant nodes through a multi-layer propagation
mechanism, SKETCH selects relevant semantic and graph-related contexts. It combines them into a
long-context language model for predictions, providing rich contexts and enhancing understanding,
which improves the model’s capability to generate relevant responses and make a better inference.

Contributions:

• We introduce retrieval-enhanced learning for text-attributed graphs using long-context language
models, allowing flexible token-level aggregation without relying on graph neural networks and
shifting focus from traditional node-level aggregation.

• We propose the SKETCH framework, which improves learning by selectively integrating infor-
mative corpora from semantic and graph perspectives to extract richer information.

• To assess the structural relatedness between nodes during graph retrieval, we propose a standard on
the number of common neighbors. To alleviate the significant computational burden, we introduce
a novel hash-based method to approximate the extent of similarity.

• Extensive experiments show that our model excels in TAG learning, with SKETCH outperforming
all state-of-the-art methods while requiring fewer computational resources. The studies assess the
effectiveness of each module and the effects of various retrieval strategies.

2 APPROACH: SKETCH

Notations. Text-attributed graphs consider both text attributes and graph structure, unlike traditional
text prediction and graph prediction tasks. A text-attributed graph is defined as G = (V, E ,S), where
S represents text attributes for each node. V denotes the set of nodes, E denotes edges between text
nodes and N k(v) denotes the k-hop neighbors of node v. Ground truth labels for a given text-
attributed graph are denoted as Y = {y1, · · · ,y|S|}, where |S| is the size of the text-attributed
nodes.

Our primary objective is to examine each anchor node within the graph to effectively identify the
content that is most relevant and beneficial in enhancing the understanding of the associated text.
As mentioned in the introduction, the complexity and richness of information at both the node and
relationship levels require a nuanced analytical approach. Textual attributes offer valuable semantic
insights into the meaning and context of the nodes, while structural relationships demonstrate how
these nodes interact within the graph’s topology. Therefore, our method leverages the inherent
structure of the graph, treating all contained texts as valuable resources. In the following sections,
we will detail our methodology for retrieving both semantically and structurally related corpora,
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Figure 1: The SKETCH method for text-attributed graphs comprises two components: the Semantic Retrieval
Module, which uses embedding similarity, and the Structural Retrieval Module, which employs Jaccard simi-
larity. A weighted-rank aggregation mechanism combines their outputs, ranking the text of nodes, which are
then fed into a language model for training and predictions.

enhancing our understanding of each anchor node and its context within the entire network. Here,
we present a detailed illustration of the overall framework and its various components in Figure 1.

2.1 SEMANTIC RELATED RETRIEVAL

The structure of text-attributed graphs encompasses textual information from various nodes. In-
spired by the concepts from Retrieval-Augmented Generation (RAG), we propose integrating addi-
tional corpus during the training process. These supplementary texts can significantly enhance the
model’s ability to make accurate predictions by providing essential context and knowledge. While
some nodes are directly connected through edges, there are also nodes that, despite not being con-
nected, may contain relevant information about the target node, referred to as the anchor node.
Consider a research paper titled "Transfer Learning for Small Datasets in Medical Imaging." This
paper addresses a specialized topic and is published in a niche journal, resulting in a limited num-
ber of direct citations. In this case, the text attributes of the paper including its abstract, keywords,
and methodology—contain critical insights about "transfer learning" and "medical imaging." For
instance, the methodologies proposed in the non-connected papers may introduce novel algorithms
or frameworks that could enhance the explanation of the proposed technique.

To leverage this potential, we employ a global embedding similarity technique to retrieve useful
nodes. This approach allows us to identify and extract information from both directly linked and
indirectly related nodes, enhancing the overall relevance and comprehensiveness of the information
associated with the anchor node. In our retrieval process, we begin by using a sentence-transformer
to embed each piece of textual information into vector representations, as shown in Figure 2. These
embeddings are then stored efficiently, allowing for quick access. To identify the most relevant con-
tent, we leverage the FAISS engine, which enables high-speed searching based on cosine similarity.
Notably, even with a dataset containing hundreds of thousands of points, we can obtain results in
just a few minutes. This efficiency ensures that we can quickly retrieve the most closely matching
texts, streamlining the integration of relevant information into our system.

2.2 STRUCTURAL RELATED RETRIEVAL

2.2.1 DEFINING STRUCTURAL RELATEDNESS

This section focuses on retrieving structurally related nodes. However, each anchor node has nu-
merous k-hop neighbors, making it impractical to include all in our analysis. Thus, we need to
rank the importance of neighbors and select the most relevant ones. Previous research suggests that
in graph learning, nodes with many common neighbors are often more closely related for several
reasons. Structural Similarity: Nodes with many shared neighbors tend to be structurally simi-
lar, indicating similar roles or functions, particularly in social or biological networks. Transitive
Relationships: Transitivity implies that if node A is connected to B and B is connected to C, A
and C may also be related. Common neighbors signify potential transitive relationships, suggesting
that nodes are indeed related. Shared Context: Common neighbors indicate that nodes share sim-
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ilar contexts or environments. For instance, in a social network, two individuals with many mutual
friends may have shared interests or activities, reflecting a closer relationship.

To better illustrate this pattern, we include a real-life example from our citation network dataset in
Figure 3. The anchor node is labeled ’database’, focusing on Kalman Filters, which may lead to
its misclassification as a ’Machine Learning’ algorithm. Here, additional context from cited papers
is crucial. The neighboring node content, such as "applying adaptive filters for query processing
in a distributed stream" and "techniques to query large data repositories efficiently", suggests that
Kalman Filters are used to handle data streams and applied in the database field. In contrast, another
connected node describing "Sensor networks have recently found many popular applications" serves
a less relevant role. Analyzing their topological differences reveals that nodes with more common
neighbors typically offer more relevant explanations. This aligns with the intuition that birds of a
feather flock together and supports our previous experience that while many papers may be cited,
some provide essential insights while others serve merely as supplementary information.

Based on this finding, we propose defining relatedness through intersection features using the Jac-
card similarity coefficient, expressed as J(A,B) = |N(A)∩N(B)|

|N(A)∪N(B)| . In this formula, J(A,B) repre-
sents the Jaccard similarity between nodes A and B, where N(A) denotes the set of neighbors of
node A and N(B) the set of neighbors of node B. The numerator, |N(A) ∩ N(B)|, indicates the
number of common neighbors shared by the two nodes, while the denominator, |N(A) ∪ N(B)|,
represents the total number of unique neighbors across both nodes. By employing the Jaccard sim-
ilarity, we can effectively capture the connectivity patterns that reflect structural relationships be-
tween nodes. This measure provides valuable insights critical for downstream graph-related tasks
within our retrieval processes, facilitating a deeper understanding of the underlying graph structure.
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Figure 2: Overview of the semantic retrieval pro-
cess. This figure illustrates in detail how we conduct
a global search for similar nodes based on their em-
beddings, leveraging FAISS (Facebook AI Similarity
Search) to efficiently identify and select the most sim-
ilar items from the entire network.
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Figure 3: Process of transforming neighborhood IDs
into hash values for enhanced structural retrieval. The
figure illustrates that the number of common neigh-
bors is a crucial indicator for determining node relat-
edness among the graph and can be efficiently com-
puted using matrix operations."

2.2.2 HASH-BASED JACCARD SIMILARITY ESTIMATION

As discussed in previous sections, the importance ranking of k-hop neighbors is determined by the
proportion of common neighbors; more common neighbors indicate a closer relationship. This part
formally presents our method for estimating k-hop Jaccard similarities for each pair of nodes. The
typical approach involves recording each node’s neighbors and incrementally counting the Jaccard.
However, this method is time-consuming due to the varying number of neighbors per node and the
large overall number of nodes, resulting in extensive iterations. Calculating multi-hop Jaccard, e.g.
the Jaccard between the one-hop neighbors of an anchor node and the two-hop neighbors of other
nodes, will further complicate the computation. Monte Carlo simulation is a possible solution, but
it remains inefficient as it requires large samples for even a rough estimate.

Similarity Estimation Using Minhash Functions. To properly address the inefficiency associ-
ated with direct similarity computation, we plan to map neighborhood IDs into dense sketches and
estimate the Jaccard extent in a lower-dimensional space. We choose Minhash Charikar (2002) func-
tions as the mapping functions based on their properties. In this technique, we formulate the k-hop
neighbors of a node vq ∈ V as a set N (vq). Next, we randomly hash every v ∈ N (vq) in the set
to an integer h(v) ∈ [B]. Here h is a universal hashing function Carter & Wegman (1977). Next,
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we take the minimum value of h(v) for all v ∈ N (vq) as the hash signature of the k-hop neighbors
N (vq). Next, we show that this Minhash function serves as an unbiased estimator of the Jaccard
between the k-hop neighbors of two nodes.
Definition 2.1 (Minhash for k-hop Neighbors Jaccard Estimation). Let V denote the nodes in a
graph G = (V, E ,S). LetN k(v) denote a set of the k-hop neighbors of node v ∈ V . Let h : V → [B]
denote a universal hashing function that maps a node v ∈ V to an integer in range [B]. We define a
Minhash function Minhash on N k(v) as:

Minhash(N k(v)) = minh(N k(v)).

Moreover, based on the propriety of Minhash function Charikar (2002), we see that for v1, v2 ∈ V

Pr[Minhash(N k(v1)) = Minhash(N k(v2))] =
|N k(v1) ∩N k(v2)|
|N k(v1) ∪N k(v2)|

= J (N k(v1),N k(v2)).

As shown in the definition, Minhash is a locality-sensitive hashing function (Indyk & Motwani,
1998; Datar et al., 2004; Andoni et al., 2014; Andoni & Razenshteyn, 2015; Andoni et al., 2017).
The collision probability of Minhash is equal to the Jaccard similarity of two k-hop neighbor sets.
As a result, we use the collision of two Minhash signatures as an unbiased estimator to the Jaccard
similarity between two k-hop neighbor sets N k(v1),N k(v2).

Multi-hop Similarity Estimation. Since we are required to estimate Jaccard across k hops instead
of just one-hop neighbors, we extend the aforementioned method into k dimensions. Our algorithm
(see Algorithm 1) begins by extracting N k(v), the sets of k-hop neighbors of the anchor node
v. Next, we apply R independent MinHash functions to generate R hash values for every sv,k ∈
N k(v), repeating this process l times. This effectively transforms the neighbor ID sequences into
a hash sequence of length l, which we denote as H . To simplify, we compute 2-hop intersections
by examining the one-hop and two-hop neighbors of each node, resulting in four combinations:
one-hop with one-hop, one-hop with two-hop, two-hop with one-hop, and two-hop with two-hop
neighbors. This approach can easily be extended to higher-hop manipulations.

For each node, we repeat the hash sequences corresponding to each hop. For example, let h1,1,
h1,2 represent the one-hop and two-hop neighbors of the first node, respectively. The concatenated
vector for node 1 would be [h1,1, h1,1, h1,2, h1,2]. We then arrange the hash vectors of all nodes ac-
cording to the pattern [[h1,1, h1,2, h1,1, h1,2], ..., [hk,1, hk,2, hk,1, hk,2]]. By calculating the number
of equal hash values present in each row, we effectively capture the cross-combinations that occur
during multi-hop intersections. This process can be executed rapidly by leveraging the broadcasting
capabilities of PyTorch in matrix operations. In contrast, common methods often require one-by-
one iteration due to the irregularity in the number of neighbors, which significantly slows down the
speed of computation. For simplicity, we previously set the hash sequence length for each vector
to l, indicating equal importance among all four possible intersections. To control some weights
over specific intersections, particularly the crucial one-hop intersections, we can shorten some other
vectors to a length m, where m < l. This adjustment decreases the frequency of "collision" for the
corresponding k-th hop intersection. Lastly, we rank the importance of neighbors for each anchor
node by its row-wise sum; a higher value indicates a greater likelihood of sharing more neighbors.

2.3 AGGREGATED LEARNING OF RETRIEVED CONTENT

The combination of the two aforementioned modules aims to acquire relevant information from dif-
ferent dimensions, thereby enhancing the training effectiveness of the long-context model. Semantic
retrieval focuses on identifying content that is semantically similar to the anchor node text, ensuring
that we capture deep connections between texts. In contrast, structure retrieval emphasizes the links
between texts, paying attention to the flow of information. After obtaining the relevant texts, we
rank and filter them to select the most significant ones, which are then connected to the anchor node
text to create a rich context for the long-context model. Specifically, we propose a weighted method
to combine two different similarity metrics: semantic similarity ranking and structural similarity
rankings. To create a unified scoring system, we introduce a hyperparameter w, which allows for
the adjustment of weights of the overall score. The composite score is calculated using the formula
G = Rsem+w ·Rstruct, where Rsem is the semantic rank and Rstruct is the structural similarity ranking.
This approach allows for greater flexibility and enhances the capability of our evaluation method. It
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is similar to the Retrieval-Augmented Generation pipeline, as our goal is to supplement information
to improve model training. Our retrieval strategy draws inspiration from the fundamental principles
of graph neural networks, where the core concept revolves around propagating information across
edges to aggregate insights from spatially close and far elements. By retrieving content from these
two perspectives, we enable the language model to effectively mimic the process of capturing both
neighboring and broader contexts when processing aggregated information. This dual approach en-
sures a richer understanding of the data, enhancing the model’s ability to generate more accurate
and contextually relevant outcomes.

Algorithm 1 Hash-based Jaccard Similarity Ranking

Input: K-hop neighboring ID sequences, each
containing V nodes, processed by R inde-
pendent MinHash functions {h1, h2, . . . , hR},
each with a range of B.
Output: ranked score of node IDs.
for node v ∈ V do

for hop = 1→ k do
N k(v) = GetNeighbors(v,k)

end for
end for
Initialize: Hv ←MV×(R·K2)

Initialize: Cv ←MV×(R·K2)

for s ∈ N k(v) do

for hop = 1→ k, cv ← [] do
for r = 1→ R do

Append hr(s)K times to Hv

Append hr(s) to cv
end for
Append cv K times to Cv

end for
end for
for s ∈ N k(v) do
Scorev = Sumv[hv == Cv]
Rank Scorev in descending order

end for
return Score

3 EXPERIMENTS

We conduct extensive experiments on three real-life datasets. Our study aims to address the follow-
ing research questions: Q1: Can SKETCH achieve superior prediction performance than current
state-of-the-art frameworks without utilizing graph neural networks? Q2: How effective are seman-
tic retrieval and structure retrieval modules in selecting augmented textual information from other
nodes, and how do they perform under different scenarios? Q3: What is SKETCH’s sensitivity to
its hyperparameters, and how is the efficiency of hash simulation compared to the standard method?

Implementation Details. We use a server with six 24 GB NVidia RTX 3090 GPUs. Our method
utilizes the Adam optimizer with a learning rate of 0.001 and incorporates early stopping based on
validation set accuracy. Main experiments are evaluated by the prediction accuracy of the testing set,
with performance results on the validation dataset also included. Hyperparameters for length l and
k hops are fine-tuned using a grid search to select the optimal values for each dataset. All baseline
experiments follow the design outlined in their respective articles to ensure fairness. For detailed
descriptions of the datasets and further explanations of the baselines, please refer to the appendix A.

3.1 MAIN RESULTS

The comparison of prediction performance across three datasets between SKETCH and other base-
line methods is presented in Table 1. The best result for each baseline group has been highlighted by
underlying. We have categorized all benchmarks into four groups: (1) traditional fine-tuned BERT-
based models with GNN, (2) recent efficient parameter fine-tuning methods for LLMs, (3) leveraging
powerful chat models like GPT-4 through in-context learning, and (4) existing tailored approaches
using various techniques. Specifically, the traditional BERT-based method yields reasonable results
thanks to the flexibility of fine-tuned embeddings. In today’s landscape of large language models,
larger sizes indeed bring about improved quality. An interesting finding is that using prompts to
guide LLMs in classification is unsatisfactory. Specifically, the Llama2 models struggle to follow
instructions and often generate irrelevant content. It’s quite sensitive to the phrasing of prompts, and
minor changes in words can lead to significantly different outputs. GPT-4 models perform better but
remain inferior to specialized trained models. SKETCH surpasses all baselines in overall accuracy,
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reaching an average improvement of 1.2%. This achievement is attributed to the use of informative
retrieved text and a long-context model, with the combined corpus enhancing performance from
both semantic and structural perspectives. We have chosen two distinct language models as the
backbone of our framework: Nomic, which has 137 million parameters, and Llama-3, with 8 billion
parameters. The larger Llama-3 model demonstrates higher performance but demands significantly
more time and memory. Training Nomic takes less than one hour per epoch, while Llama-3 requires
over 9 hours on the ACM dataset. This trade-off highlights the need to consider both aspects, and
researchers can select the appropriate option according to their real-life situations.

Table 1: Performance comparison among state-of-the-art baselines on three benchmark datasets.

NLP Models GNNs ACM Wikipedia Amazon

Val-Acc. Test-Acc. Val-Acc. Test-Acc. Val-Acc. Test-Acc.

Fine-tuned LMs +/- GNNs

Bert

- 74.4 73.2 69.5 68.8 86.2 87.0
GCN 77.6 77.1 69.4 68.4 92.3 92.8
GAT 77.9 78.0 70.5 69.8 92.5 92.4
GraphSAGE 77.3 76.8 73.1 72.7 92.0 92.3

Roberta

- 78.1 76.6 67.8 68.1 84.9 85.9
GCN 80.1 79.4 68.5 68.0 92.3 92.5
GAT 79.7 78.9 70.1 71.0 92.5 92.4
GraphSAGE 78.5 78.3 72.7 72.1 92.2 92.1

Fine-tuned Large Language Models +/- GNNs

Llama3-8b - 80.7 80.6 71.9 71.2 92.0 91.6
Llama3-8b GraphSAGE 82.0 81.3 72.8 73.0 93.1 92.8

Large Language Models

Llama2-7b - 20.8 - 41.3 - 53.4
Llama2-13b - 58.9 - 48.9 - 57.6

GPT-3.5 - 54.3 - 61.8 - 49.1
GPT-4 - 67.5 - 60.9 - 40.3

Tailored Frameworks For TAG

MPAD 74.9 74.6 70.3 70.4 88.2 88.0
GLEM 76.1 76.2 69.8 70.2 88.9 88.7

LLAGA 77.2 77.5 71.7 72.0 90.1 90.8
GraphFormers 75.3 75.1 66.8 67.5 85.6 86.4
InstructGLM 76.7 75.6 72.2 71.2 94.2 94.0

Ours (Nomic) 81.4 81.1 74.1 73.6 93.3 93.5
Ours (Llama3-8b) 82.7 82.3 73.3 73.4 94.1 94.7

3.2 EFFECTIVENESS OF RETRIEVAL MODULES

To evaluate the effectiveness of the retrieved content in improving performance, we analyze accu-
racy under various conditions. The baseline benchmark uses only the text from the anchor node.
We then conduct the following experiments: (1) randomly incorporating text from other nodes in
the graph, (2) retrieving only semantically similar content, (3) retrieving structurally similar content
with three variants, and (4) testing our proposed SKETCH model. The analysis results are presented
in the table 2. Our findings highlight several important insights regarding the impact of content addi-
tion on performance. Firstly, our research shows that randomly incorporating unrelated material into
the original text does not enhance performance; in fact, it negatively affects the overall results. This
underlines the critical importance of retrieving information that is relevant to the context. While we
observed that texts with global similarities can provide some level of positive influence, they are still
less effective compared to one-hop neighboring texts. This suggests that having connected edges
serves as a valuable reference for anchor nodes, strengthening their relevance. Furthermore, our ex-
periments demonstrate that arbitrarily extending the range of neighbors does not provide additional
benefits, which further confirms the effectiveness of our hash-based similarity ranking scheme.
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Table 2: Comparisons across various settings. k-hop indicates the range of hops used to retrieve
neighbors, while Selection refers to either random sampling or similarity ranking as the criterion.

Variant Retrieval Strategy

Original Shuffled Semantic One-hop Multi-hops Combined Ours

Semantic × × ✓ × × ✓ ✓
Structural × × × ✓ ✓ ✓ ✓
K-hop - - - 1 3 3 3
Selection - Random Rank Random Random Random Rank
Accuracy 78.0 75.6 78.4 80.6 79.7 80.3 81.4

3.3 HYPERPARAMETER STUDY AND EFFICIENCY COMPARISON

Our framework’s complexity mainly depends on three factors: the length of the tokenized sequence
L for each concatenated paragraph and the weights of the semantic and structural retrieval mod-
ules. The ablation study evaluates classification accuracy across various configurations of these fac-
tors. Figure 4 indicates that while longer contexts can be beneficial, excessively lengthy sequences
may diminish overall understanding and introduce noise that confuses the model. Additionally,
for single-machine users, longer texts lead to smaller batch sizes, which can further decrease per-
formance. Another finding is that increasing the weights of structure ranking generally enhances
performance, emphasizing the importance and effectiveness of our intersection-based retrieval strat-
egy. Our model shows no significant drop in performance, indicating it is not excessively sensitive
to hyperparameters. We also compare the time taken by our hash-based simulation with the stan-
dard computing method. Our experiments indicate that adding extra hops does not lead to a linear
increase in time, as illustrated in figure 5. In contrast, the standard method requires exponentially
more time due to the complex cross-combination of multiple hops. This distinction highlights the
efficiency of our approach, which maintains time consumption even while considering extra ranges.
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4 RELATED WORK

4.1 LLMS FOR GRAPHS

Text-attributed graphs (TAGs) possess long texts as node attributes, allowing language models
(i.e.,Bert (Devlin et al., 2019), GPT2 (Radford et al., 2019)) to significantly enhance text learn-
ing. Large language models(LLMs) have shown increasingly powerful performance in text under-
standing, especially large-scale texts. Therefore many recent researches apply LLMs to downstream
tasks of TAGs (Li et al., 2024b), such as classification and link prediction (Tan et al.), reason-
ing (Luo et al., 2024), graph generation (Yao et al., 2024) etc. To further enhance the performance,
there are many techniques, such as fine-tuning (Dernbach et al., 2024), instruction-tuning (Chung
et al., 2024) and prompt design (Guo et al., 2023; 2024). In graph-related tasks, prompts combin-
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ing graph descriptions are common. For example, TAPE (He et al., 2024) and SimCSE (Li et al.,
2024a) concatenates generated relevant information or similar neighbors to provide additional in-
formation for representation learning. However, these methods are limited by computation sources
or the limited sequence length of LLMs (Lee et al., 2024). Additionally, some research proposes
complex pipelines to fine-tune LLMs for graph learning. Pan et al. (2024) aligns the student model
and interpreter model from semantics, structures, and prediction probabilities. Moreover, Guo et al.
(2024) and Tang et al. (2024) apply instruction-tuning, one by refining the graph structure, and the
other with text-structure alignment. Besides, many deep learning methods are enforced, like con-
trastive leaning (Zhang et al., 2024a) and ensembling (Zhang et al., 2024b). Although these methods
attempt to leverage graph structures in LLMs, they focus on neighborhood nodes but are weak in
utilizing topological structures. Many other models utilize the generation ability of LLMs under
particular settings, including label-free tasks Chen et al. (2024b), few-shot and zero-shot learning
situations Liu et al. (2023). However, these works fall short of exploiting the advantages of LLMs,
limiting capability in contextual understanding.

4.2 LLMS WITH GNNS

To bridge semantics understanding and graph structures, cascaded LLMs with graph neural net-
works (GNNs) have emerged in classification tasks. Currently, related reviews categorize models
into three types: LLM-as-enhancer, LLM-as-predictor, and LLM-GNN alignment (Li et al., 2024b).
TAPE (He et al., 2024), a typical example of the first type, generates supplementary contexts. Sim-
ilarly, Fang et al. (2024) not only applies multiple language models to augment features with the
mixture of prompt experts but also employs the edge modifier to adjust neighbor weights during
graph learning. While RoSE (Seo et al., 2024) decomposes relations by generator and discrimina-
tor by LLMs to provide structure information for multi-relational GNNs. In contrast, the second
model, i.e., Dr.E (Liu et al., 2024), transfers output from GNNs to the language decoder to decom-
pose into features, edges, and labels. These two types have challenges of losing information or
misunderstanding during transformation. Except for these two cascaded designs, there are nested
integrations (Yang et al., 2024). ENGINE (Zhu et al., 2024) embeds a side structure of LLMs by
simple neural network layers as ladders, and LinguGKD (Hu et al., 2024) aligns both in each layer
by leveraging contrastive distillation loss. This synergy combines neighborhood aggregation and
semantic learning, but they find it difficult to address co-training problems or alignment errors.

5 CONCLUSION

Inspired by the potential of language models to manage text-attributed graphs, we introduce
SKETCH, a new approach that simulates graph propagation through weighted token learning from
selected node subsets. Our framework enhances the selection of informative data by retrieving nodes
that are both semantically and structurally similar, thus enriching the textual information. To reduce
the computational complexity of node intersection calculations, we implement a novel hash-based
estimation technique. Extensive experiments demonstrate that our model outperforms all baseline
methods while requiring less time and memory, eliminating the need for GNNs. Additionally, we
conduct a thorough analysis of various settings to identify key components that positively impact
text-attributed graph learning. Our proposed framework demonstrates significant potential and of-
fers valuable insights into the integration of large language models within graph-related applications.

6 REPRODUCIBILITY

To ensure the reproducibility and verifiability of our results and models, we provide a complete code-
base and step-by-step usage instructions. Specifically, (1) the results and related analysis reported in
the paper are only a summary of those available in the code; (2) the implementation of SKETCH and
all baseline models are accessible; (3) detailed information and settings about main parameters are
publicly available; (4) information regarding hyperparameter tuning and training times are included;
(5) the hardware used is also disclosed; (6) in a fixed environment (i.e., with the same hardware and
software versions), most results are bitwise reproducible.
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A APPENDIX

A.1 DATASET

We assess the performance of SKTECH using the following three datasets: ACM, Wikipedia, and
Amazon. All of these three datasets are manually constructed using the raw corpus and correspond-
ing descriptions. For each dataset, we divide the labels into training, validation, and testing sets.
Statistics of these three datasets are shown in Table 3.

Wikipedia. The raw data consists of UTF-8 encoded text from Wikipedia articles1. We extract the
main content of each article as document dv , which includes hyperlinked words. A directed graph is
constructed using the hyperlink relationships between articles. The categories mentioned in the list
of reference tables are assigned as labels to the nodes.

ACM. This dataset uses 48,579 papers from the Association for Computing Machinery (ACM) as
instances Tang et al. (2008). The paper abstracts serve as the document dv for the nodes, and a
directed graph is constructed using the citation links. The instances are collected from nine distinct
domains, such as Artificial Intelligence, Data Mining, and Machine Learning, which are employed
as labels.

Amazon.The dataset comprises product reviews and metadata from Amazon He & McAuley (2016).
We construct the graph based on the browsing history, with each node v representing the textual
description of the products denoted as sv .

Table 3: Statistics of datasets in our experiment.

Datasets #nodes #edges #classes

ACM 48,579 193,034 9
Wiki 36,501 1,190,369 10

Amazon 50,000 632,802 7

A.2 BASELINES

As our study focuses on integrating the corpus proceeding with the graph network, we adopt a variety
of popular approaches in these two domains, i.e. text-embedding modules and GNN encoders. We
made a cross combination of frontier methods in each field. Here are the introductions of each
method:

• GCN Kipf & Welling (2017) aggregates information from neighboring nodes by summing over
neighbors’ representations.

• GraphSAGE Hamilton et al. (2017) samples and aggregates features from the neighborhood for
inductive graph learning.

• GAT Brody et al. (2022) introduces a dynamic graph attention mechanism, leveraging attention
layers to learn the weights of neighboring features.

• Bag of Words (BoW) Zhang et al. (2010) describes the occurrence of words within a document
and its size can be flexibly decided by the frequencies of different words.

• MPAD Nikolentzos et al. (2020) represents corpus as networks based on word co-occurrence and
applies a message-passing framework to draw the information from the graph.

• Fine-tuning a language model (LM-tune) allows for training on target texts to make the model
more adept at performing the specific task.

• GLEM framework Zhao et al. (2023) iteratively updates the language model and graph neural
network (GNN).

• GraphFormers Yang et al. (2021) integrate GNN components with transformer modules for joint
training rather than a cascaded approach.

1http://www.mattmahoney.net/dc/textdata
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• LLAGA Chen et al. (2024a) effectively integrates LLM capabilities to manage the complexities
of graph-structured data.

• Llama Touvron et al. (2023) is a family of large-scale language models that are designed to un-
derstand and generate human-like text across various tasks.

• GPT Floridi & Chiriatti (2020) is a set of state-of-the-art language processing AI models.
• InstructGLM Ye et al. (2023) employs natural language to characterize the multi-scale geometric

structure of graphs and fine-tunes a large language model (LLM) for graph tasks.
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