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Abstract

This paper tackles the cross-modality person re-
identification (re-ID) problem by suppressing the modality
discrepancy. In cross-modality re-ID, the query and gallery
images are in different modalities. Given a training identity,
the popular deep classification baseline shares the same
proxy (i.e., a weight vector in the last classification layer)
for two modalities. We find that it has considerable toler-
ance for the modality gap, because the shared proxy acts as
an intermediate relay between two modalities. In response,
we propose a Memory-Augmented Unidirectional Metric
(MAUM) learning method consisting of two novel designs,
i.e., unidirectional metrics, and memory-based augmen-
tation. Specifically, MAUM first learns modality-specific
proxies (MS-Proxies) independently under each modality.
Afterward, MAUM uses the already-learned MS-Proxies as
the static references for pulling close the features in the
counterpart modality. These two unidirectional metrics (IR
image to RGB proxy and RGB image to IR proxy) jointly al-
leviate the relay effect and benefit cross-modality associa-
tion. The cross-modality association is further enhanced by
storing the MS-Proxies into memory banks to increase the
reference diversity. Importantly, we show that MAUM im-
proves cross-modality re-ID under the modality-balanced
setting and gains extra robustness against the modality-
imbalance problem. Extensive experiments on SYSU-MM01
and RegDB datasets demonstrate the superiority of MAUM
over the state-of-the-art. The code will be available.

1. Introduction
This paper considers cross-modality person re-

identification (re-ID). Re-ID aims to retrieve images
of the person-of-interest from the database. Real-world
re-ID systems sometimes require recognizing the same
person across daytime and night. To this end, they use two
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Figure 1. Comparison between baseline and MAUM. We visual-
ize the embedding space of baseline and MAUM with t-SNE [27],
respectively. (a) In baseline, each identity has a modality-agnostic
proxy for two modalities, which acts as a relay between IR and
RGB features. The relay effect of baseline is revealed in the t-
SNE visualization, where the modality gap between IR and RGB
features is pretty large. (b) MAUM has two modality-specific
proxies (MS-proxies, the orange solid dot for RGB and the blue
solid dot for IR). Each MS-Proxy is fixed as a static reference for
pulling close the features in the counterpart modality (dotted ar-
row). Further, MAUM stores historical MS-Proxies (void dot) into
two memory banks, one for IR modality and one for RGB modal-
ity. Correspondingly, each identity has multiple IR and RGB prox-
ies. The farthest MS-Proxies from the modality boundary become
hard positive references and thus have a stronger “pulling close”
effect (solid arrow). Consequently, as the visualization shows,
MAUM suppresses the modality discrepancy.

different devices, i.e., the RGB camera at daytime and the
Infra-Red (IR) camera at night. When the query and the
gallery images are from different modalities, the significant
modality discrepancy stands out as the most prominent
challenge. In this paper, we try to improve cross-modality
re-ID by addressing the modality discrepancy problem.

From the metric learning viewpoint, the keynote of re-ID
is to learn an embedding space with both within-class com-
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pactness and between-class separability. A popular deep
learning baseline [8, 17, 23, 23, 29, 41] for re-ID and face
recognition task is based on deep classification learning.
During training, it pulls all the features of the same iden-
tity toward a corresponding proxy (i.e., the weight vector in
the classification layer).

When we apply this baseline to the cross-modality re-ID,
we find that the modality discrepancy problem significantly
hinders the within-class compactness, as illustrated in Fig. 1
(a). In the baseline, all the instances of the same identity
share a single proxy, regardless of the underlying modality.
The modality-agnostic proxy strives to accommodate both
the IR and RGB features and acts as an intermediate relay
between them. Such relay effects result in considerable tol-
erance for the modality discrepancy. From the t-SNE [27]
visualization in Fig. 1 (a), we observe that there is an appar-
ent modality discrepancy between the features of the two
modalities. The features with different identities but same
modality are even closer than those with same identity but
different modality. For example, the between-class distance
between ID-116 and ID-129 is smaller than the within-class
distance of ID-116.

To suppress the modality discrepancy, we propose
a Memory-Augmented Unidirectional Metric (MAUM)
learning method. It is featured for two novel designs, i.e.,
1) learning unidirectional metrics and 2) enhancing the uni-
directional metrics with the memory bank.

First, we learn two unidirectional metrics (“IR to RGB”
and “RGB to IR”) to alleviate the relay effect of the base-
line. To this end, MAUM learns two modality-specific prox-
ies (MS-Proxies) for each identity, as illustrated in Fig. 1
(b). The RGB (IR) proxies only receive gradients from the
RGB (IR) features and thus represent the dedicated modal-
ity. Afterward, we freeze them and use the RGB proxies as
the static references for pulling IR features, and vice versa.
These two unidirectional metrics promote the better cross-
modality association.

Second, we further enhance these two unidirectional
metrics through memory-based augmentation. MAUM
stores the IR and RGB proxies into a respective memory
bank after every iteration. Since the MS-proxies keep on
changing iteration by iteration (i.e., the “drift” phenomenon
[30]), each person has multiple diverse IR and RGB prox-
ies in the memory bank, as illustrated in Fig. 1 (b). Some
historical MS-Proxies are farther away from the modality
boundary (than the up-to-date MS-Proxies) and thus lay
stronger “pulling close” effect on the counterpart-modality
features. In a word, the memory bank enhances MAUM
with hard positive references and consequentially promotes
cross-modality association. We point out that memory-
based learning in MAUM reveals a previously unknown yet
important potential of the memory bank. Specifically, we
employ the “drift” to enhance the references. In contrast,

the previous works [10,15,25,30] consider the “drift” bring-
ing negative impact and try to avoid it (as detailed in Section
2.2). As the visualization in Fig. 1 (b) shows, the features
with the same identity distribute compactly, which indicates
that the modality discrepancy is suppressed. For example,
the within-class embedding of ID-116 is significantly more
compact than that in baseline (Fig). 1 (a).

In addition to the effectiveness of mitigating modality
discrepancy, the proposed MAUM has a particular advan-
tage under the modality imbalance scenario. In the train-
ing data, the IR images are usually scarcer than the RGB
images because people have less movement at night, and
the IR images are harder to annotate. In MAUM, both the
unidirectional metrics and the memory-based augmentation
are modality-specific. The augmentation on IR proxies is
independent of that on RGB proxies and vice versa. There-
fore, MAUM may re-balance the enhancement for the IR
and RGB modalities. By re-balancing the augmentation,
the MAUM compensates for the shortage of IR images and
gains strong robustness against the modality imbalance.

Our main contributions are summarized as follows:
• We propose a novel memory-augmented unidirectional

metric learning method for cross-modality re-ID. It learns
explicit cross-modality metrics in two uni-directions and
further enhances them with memory-based augmentation.

• We consider the modality imbalance, which is an es-
sential realistic problem in cross-modality re-ID. By ad-
justing the modality-specific augmentation, MAUM shows
strong robustness against modality imbalance.

• We comprehensively evaluate our method under
modality-balance and modality-imbalance scenarios. Ex-
perimental results confirm that MAUM improves cross-
modality re-ID under both settings, surpassing the state-of-
the-art significantly.

2. Related Work

2.1. Cross-modality metric learning

Cross-modality problem has been first studied in het-
erogenous face recognition [12, 14, 21]. These early works
all use modality-agnostic proxies to enforce within-class
compactness (i.e., the baseline in Section 1). [33] first intro-
duce the cross-modality problem in person re-identification,
and gradually draws the attention of re-ID community [18,
32, 35–40]. Among these works, we note the closest
one to ours is [36]. Similar to our method, they also
employ modality-specific classification layers. However,
there are significant differences. [36] uses the ensemble
of the modality-specific classifier to generate an enhanced
teacher model for collaborative ensemble learning. In con-
trast, MAUM uses modality-specific classifiers to learn the
modality-specific proxies. Those proxies are fixed after
convergence and used for learning unidirectional metrics.
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Figure 2. The framework of the proposed MAUM. MAUM adopts ResNet50 as the backbone and shares the parameters from “conv2”
to “conv4” for two modalities. The RGB and IR images are mapped into the deeply-embedded space to get the RGB and IR features,
respectively. MAUM has three classifiers, i.e., the modality-agnostic, the RGB, and the IR classifier, which are implemented with three
Fully-Connected (FC) layers. Unlike the modality-agnostic classifier, the RGB (IR) classifier only accepts the RGB (IR) features so that
the learned MS-Proxies are highly specific and alleviate the relay effect. Given the already-learned MS-Proxies, MAUM stores them into
two corresponding memory banks after every iteration. The memory banks have three critical functions, i.e., unidirectional metric learning,
augmentation through drift, and resisting modality-imbalance.

2.2. Memory-based learning

Memory bank has been extensively explored in super-
vised [30], semi-supervised [15,25] and unsupervised learn-
ing [10]. In semi-supervised learning, [15, 25] uses the
memory bank to get the temporal ensemble of the histor-
ical predictions. It enforces consistency between the up-
to-date prediction of the unlabeled sample and the tempo-
ral ensemble. Two important works in unsupervised learn-
ing(i.e., MOCO [10]) and supervised metric learning (i.e.,
XBM [30]) share a similar motivation for using the mem-
ory bank. Specifically, MOCO increases the quantity of the
stored keys for better contrastive learning. XBM enhances
the hard mining effect by storing historical features. To our
understanding, they both benefit from the memory bank by
the increase of negative features.

Against this background of memory-based learning, we
point out that the novelty of MAUM lies in a new mech-
anism for cross-modality metric learning. In MAUM, the
benefit of the memory bank is not due to the temporal
consistency (as in the semi-supervised learning) or more
negative samples (as in MOCO and XBM). The benefit
in MAUM originates from the model drift, which helps
MAUM to get hard positive references and promotes cross-
modality association. This insight reveals a previously un-
known yet important potential of the memory bank. More-
over, MAUM stores the proxies into the memory bank,
which can be viewed as a novel model augmentation for the
metric learning task. In contrast, the previous works store
only the feature vectors.

2.3. Imbalanced data learning

Data imbalance is an important challenge in deep learn-
ing. Most previous researches [4, 7, 22, 31] pay attention
to the class imbalance problem and introduce two main ap-
proaches, i.e., re-sampling [7, 13, 31] and re-weighting [2–
4, 22, 42]. Re-sampling over-sample the minority classes
(with few samples) or under-sample the frequent class (with
many samples) in training, aiming to balance the head and
tail data in every iteration. Re-weighting assigns adaptive
weights for different classes or even different samples in
the loss function.

This paper notices a unique data imbalance problem in
cross-modality tasks, i.e., the modality imbalance. It refers
to the situation that one modality contains more samples
than the other modality. In MAUM, the modality-specific
augmentation is naturally disentangled and allows inde-
pendent augmentation for a specified modality. It endows
MAUM with strong robustness against the modality imbal-
ance. As an essential contribution of this work, we hope it
will inspire the community to pay attention to the modality
imbalance problem.

3. Proposed Method
3.1. Learning MAUM

The framework of MAUM is illustrated in Fig 2. MAUM
adopts ResNet50 [11] as the backbone network and ac-
cepts RGB and IR images as its input. MAUM splits the
first convolutional block into two independent branches to
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accommodate modality-specific low-level feature patterns,
one for RGB and the other for IR modality. Two modali-
ties for computation efficiency share all the following con-
volutional blocks. Given the convolutional feature maps,
MAUM uses a global average pooling (GAP) to generate
a deep embedding for each input image. Based on this
commonly-adopted backbone setting [37, 40], the proposed
MAUM lays emphasis on its novel memory-augmented uni-
directional metric learning approach. Specifically, MAUM
learns two sets of modality-specific proxies (IR and RGB
proxies) and stores them into the MS-Proxy memory banks.
Given the MS-proxies in the memory banks and the fea-
tures in the mini-batch, MAUM combines them to learn
the unidirectional metrics. We elaborate the process of
“learning modality-specific proxies”, “constructing memory
bank” and “learning unidirectional metrics” as follows.

3.1.1 Learning Modality-Specific Proxies

MAUM first supplements the modality-agnostic ID classi-
fier in the baseline with two modality-specific (IR and RGB)
ID classifiers to facilitate the unidirectional metrics. All
these three ID classifiers are implemented with a respective
Fully-Connected (FC) layer. The difference between them
is that the modality-agnostic ID classifier accepts both RGB
and IR features, while the IR (RGB) ID classifiers only
accept IR (RGB) features for training. Correspondingly,
the IR and RGB ID classifiers learn two sets of modality-
specific proxies. Given the RGB features, the RGB classi-
fier employs the widely-used cross-entropy loss as the opti-
mization objective, which is formulated as:

LRGB = − 1

NR

NR∑
i=1

log
exp

(
wR

yi
xR
i

)∑C
k exp

(
wR

kx
R
i

) , (1)

where the superscript “R” indicates the RGB modality, NR

is the RGB instances number in current mini-batch, C is the
class number, yi is the ground-truth identity of xi. We use
the weight vector wyi as the proxy of yi in RGB modality.

The loss function for the IR classifier and the modality-
agnostic classifier is denoted as LIR and Lcom, respectively.
The formulations are similar to Eq. 1 and omitted here.

In each modality-specific classifier, the MS-Proxies no
longer struggle to accommodate the two opposite modali-
ties and are thus highly representative for their dedicated
modality.

3.1.2 Constructing Memory Bank

After the modality-specific proxies are fully trained,
MAUM collects them into two corresponding memory
banks. Specifically, we use a queue strategy for updating
the memory bank. We set the memory bank sizes for RGB
modality and IR modality as SRGB and SIR, respectively.

After the memory bank reaches its size limitation, we en-
queue the newest proxies and dequeue the oldest ones. The
memory banks have three critical functions for MAUM.
First, they freeze the already-learned MS-Proxies and use
them as static references for unidirectional metric learn-
ing. Second, they employ the model drift phenomenon [30]
by accumulating the historical MS-proxies to increase the
diversity of these MS-Proxies. Third, they help MAUM
to gain extra robustness against modality-imbalance be-
cause the memory-based augmentation is modality-specific,
which can be independently adjusted to re-balance the en-
hancement for the IR and RGB modalities (Section 3.2).

3.1.3 Learning Unidirectional Metrics

We freeze the MS-proxies in the memory bank. Then we
use them as the static references for pulling close the fea-
tures in the counterpart modality.

We note that although there is only a single IR and RGB
proxy for each identity in the modality-specific classifier,
storing historical MS-Proxies into the memory bank grad-
ually increases their quantity. Consequently, in the RGB
(IR) memory bank, there are multiple RGB (IR) proxies
for every single identity, providing multiple positive ref-
erences for a single IR (RGB) feature. Specifically, given
a single RGB feature xR, we assume there are N pos-
itive references {uI

1, u
I
2, · · · , uI

N} and M negative refer-
ences {vI

1, v
I
2, · · ·I , vI

M} (the superscript “I” indicates the IR
modality) in IR memory bank. Inspired by Circle Loss [23],
we define the loss function for learning the unidirectional
metric from RGB image to IR proxy as:

LR→I = log

1 + M∑
j=1

N∑
i=1

exp(α(vI
jx

R − uI
ix

R + δ))

 ,

(2)
where the feature and the proxies are l2 normalized, α is
the scale factor, and δ is the margin parameter. We formu-
late LR→I with only a single feature xR for simplicity. In
practice, the loss function is averaged over all the RGB fea-
tures in the current mini-batch.

The LI→R for learning IR-feature-to-RGB-proxy metric
is symmetric to Eq. 2 and thus omitted here.

3.1.4 Optimization

We combine a modality-shared loss (Lcom), two modality-
specific losses (LRGB and LIR) and two unidirectional met-
ric losses (LR→I and LI→R) to get the overall loss function
LTotal as follows:

LTotal = Lcom + LRGB + LIR + λ(LR→I + LI→R), (3)

where λ is the hyper-parameter which balances the contri-
butions of the unidirectional metric loss.
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3.1.5 MAUM with Part Features.

We note that part feature generally improves the visible re-
ID [24], as well as the cross-modality re-ID [18, 39]. To
validate that MAUM is compatible to part feature, we intro-
duce a part-feature-based variant, i.e., MAUMP. Accord-
ing to a simple part feature baseline [24], MAUMP evenly
divides the last convolutional feature map into six-part fea-
tures. During training, each part is supervised with a re-
spective LTotal. During testing, all the six-part features are
concatenated to form the final representation.

3.2. MAUM under Modality-imbalance Scenario

In cross-modality re-ID, the IR images are usually
more scarce than the RGB images, yielding the modality-
imbalance problem. It is because people usually have less
movement at night time, and the IR images are inherently
harder to annotate. When the modality-imbalance reaches
an extreme, some identities may have only a single modality
(i.e., RGB). We formally define these two cases as follows:

• Modality-imbalance scenario. Each identity has two
modalities. The IR images are fewer than the RGB images.

• Modality-fragmentary scenario. Some identities
have only a single modality (i.e., RGB images), and the
other identities have two modalities.

So far as we know, MAUM is the first work to consider
the modality-imbalance problem in cross-modality re-ID.
Experiments show that this problem significantly deterio-
rates the re-ID accuracy. In MAUM, since the augmentation
is based on two modality-specific memory banks, the ratio
between them can be flexibly adjusted to compensate for the
shortage of IR images. Consequently, MAUM could pro-
vide strong resistance against the modality-imbalance prob-
lem. Specifically, the IR proxy memory size is MIR

MRGB of the
RGB proxy memory size. MRGB and M IR are the amount
of RGB images and IR images, respectively.

3.3. Mechanism Analysis

In this section, we analyze the mechanism of memory-
based augmentation in MAUM. We show that the accumu-
lated proxy drift in the memory bank is the reason for the
enhancement of the unidirectional metric learning.

When we observe the proxy of the same identity at two
different training iterations, these two observations natu-
rally differ from each other. For quantitative analysis, we
define the difference between two observations of the same
proxy as the proxy drift, which is formulated by:

D(p, t,△t) = ||p(t)− p(t−△t)||22 (4)

where p is the proxy under observation, t is the current iter-
ation index, and △t is the sampling interval. Such definition
is similar to [30], except that the object under observation
is different. In [30], the drift is based on the features, while

(a) (b)
Iterations
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dr

ift

up-to-date proxy
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Figure 3. (a) Larger interval brings larger drift. (b) The t-SNE [27]
visualization of the proxy distribution in the memory bank. The
drift increases the diversity of the historical proxies. The proxies
far away from the modality boundary become hard positives for
pulling close the features in the counterpart modality.

in MAUM, the drift is based on the weight vectors (i.e., the
proxies).

Fig. 3 (a) visualizes the drift under different sampling
intervals. It is observed that a larger interval brings a larger
drift. Therefore, when storing the proxies into the mem-
ory bank, MAUM favors a relatively large sampling inter-
val (△t = 10 in our implementation) to promote diversity
among historical proxies.

Fig. 3 (b) visualizes the distribution of the proxies in the
memory bank with t-SNE [27]. Due to the proxy drift, the
historical proxies scatter around the up-to-data proxy (of the
same identity). Some historical proxies stay farther away
from the modality boundary, which becomes hard positives
for pulling close the feature in the counterpart modality.
They facilitate the stronger cross-modality association and
consequentially improve cross-modality re-ID.

Discussion. Recently, XBM [30] also noticed the drift
phenomenon when using the memory bank to enhance met-
ric learning. However, it considers the drift as a negative
side effect accompanying the memory bank. Therefore, it
begins the memory-based learning after the drift decays to
a small range. Similarly, in MOCO [10], it applies exponen-
tial moving average operation on the deep model to smooth
the drift of historical keys. In contrast, MAUM is funda-
mentally different from them. In MAUM, the drift is ben-
eficial for augmentation. It uses the drift to increase the
diversity of the historical proxies, which helps to learn the
robust cross-modality association. This finding is contrary
to the previous research and inspires a new understanding
of the drift phenomenon and memory-based learning.

4. Experiments
4.1. Primary settings

Datasets. We evaluate our method on two public
cross-modality re-ID datasets, i.e SYSU-MM01 [33] and
RegDB [19]. SYSU-MM01 consists of 491 identities from
four RGB cameras and two IR cameras in indoor and out-
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Methods
SYSU-MM01 RegDB

All-Search Indoor-Search Visible to Infrared Infrared to Visible
Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

G

MAC [35] 33.26 36.22 36.43 37.03 36.43 37.03 36.20 36.63
Hi-CMD [6] 34.49 35.94 - - 70.93 66.04 - -
MSR [9] 37.35 38.11 39.64 50.88 48.43 48.67 - -
AlignGAN [28] 42.40 40.70 45.90 54.30 57.90 53.60 56.30 53.40
Xmodel [16] 49.92 50.73 - - 62.21 60.28 - -
LZW [1] 45.00 45.94 49.66 59.81 - - - -
MACE [36] 51.64 50.11 57.35 64.79 72.27 69.09 72.12 68.57
CMAlign [20] 55.41 54.14 58.46 66.33 74.17 67.64 72.43 65.46
FMI [26] 60.02 58.80 66.05 72.98 73.20 71.60 71.80 70.10
BaselineG 49.45 47.21 55.23 62.86 64.22 58.21 61.18 59.76
MAUMG 61.59 59.96 67.07 73.58 83.39 78.75 81.07 78.89

P

DDAG [39] 54.75 53.02 61.02 67.98 69.34 63.46 68.06 61.80
cm-SSFT [18] 61.60 63.20 70.50 72.60 72.30 72.90 71.00 71.70
NFS [5] 56.91 55.45 62.79 69.79 80.54 72.10 77.95 69.79
MPANet [34] 70.58 68.24 76.74 80.95 82.80 80.70 83.70 80.90
BaselineP 55.57 53.96 55.61 56.31 69.59 58.93 67.33 61.32
MAUMP 71.68 68.79 76.97 81.94 87.87 85.09 86.95 84.34

Table 1. Comparison with the state-of-the-art methods on SYSU-MM01 and RegDB, respectively. Rank-1 and mAP are reported. For fair
comparison, we divide the compared methods into two groups, i.e., “G” for the global-feature-based methods and “P” for the part-feature-
based methods.

door environments. There are 22, 258 RGB images and
11, 909 IR images of 395 identities in the training set. The
query set contains 3, 803 IR images, while the gallery set
contains 301 RGB images. Following [33], we employ two
test protocols, i.e., all-search and indoor-search. RegDB
is collected by dual-camera systems, including one visible
and one infrared camera. There are 412 identities, with 206
identities for training and 206 identities for testing. Each
identity contains 10 RGB and 10 IR images. There are also
two evaluation modes. One is thermal to visible to search
RGB images from an IR image. The other one is visible to
thermal to search IR images from an RGB image.

Evaluation metrics. All experiments follow the stan-
dard evaluation protocol, i.e., the Cumulative Matching
Characteristic (CMC) and mean average precision (mAP).
All the reported results are the average of 10 trials.

Implementation details. For fair comparison, we use
ResNet50 [11] pre-trained on ImageNet as the backbone
model. The input images are resized to 288 × 144 × 3,
for both RGB and IR images. MAUM with global feature
(MAUMG) uses a 2048-d vector for feature representation,
while MAUM with part features (MAUMP) uses 3072-d
(512 × 6, 6 is the part number) vector for feature repre-
sentation. The training batch size is set to 64, comprised of
8 identities with 4 RGB images and 4 infrared images for
each identity. The scale factor α and the margin parameter
δ are set to 22 and 0.2, respectively. λ in Eq. 3 is set to 1.0.

In SYSU-MM01, the memory bank size is set to 3000 and
1500 for RGB and IR modality, respectively. In RegDB, the
memory bank size of RGB and IR modality is set to 1500.

4.2. Effectiveness of MAUM

We evaluate the effectiveness of MAUM with compar-
isons against the baseline and the state-of-the-art methods.
For fair comparison, we we divide the compared methods
into two groups, i.e., the global-feature-based methods and
the part-feature-based methods. Table 1 summarizes the re-
sults on RegDB and SYSU-MM01, from which we draw
two observations.

First, comparing MAUM against Baseline, we observe
that MAUM significantly improves the baseline. Specifi-
cally, 1) comparing MAUMG against BaselineG, MAUMG

surpasses the BaselineG by +12.14% Rank-1 accuracy on
SYSU-MM01 (all-search), and by +19.17% Rank-1 ac-
curacy on RegDB (visible to infrared). 2) Comparing
MAUMP against BaselineP, MAUMP is higher than the
BaselineP by +16.11% Rank-1 accuracy on SYSU-MM01
(all-search), and by +18.28% Rank-1 accuracy on RegDB
(visible to infrared)

Second, MAUM achieves competitive performance, un-
der both global feature and part feature settings. Specif-
ically, using global feature, MAUMG outperforms all
the other global-feature-based methods. It surpasses the
strongest competitor (FMI) by +1.57% and +10.19%
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Rank-1 accuracy on SYSU-MM01 (all-search) and RegDB
(visible to infrared), respectively. Using part features,
MAUMP surpasses the strongest competitor (i.e., MPANet)
by +1.10% and +5.07% Rank-1 accuracy, on SYSU-
MM01 (all-search) and RegDB (visible to infrared), re-
spectively. In this paper, we report the new state-of-the-art.
Specifically, based on the global feature, MAUM achieves
61.59% and 83.39% Rank-1 accuracy on SYSU-MM01 and
RegDB, respectively. Based on the part feature, MAUM
achieves 71.68% and 87.87% Rank-1 accuracy on SYSU-
MM01 and RegDB, respectively.

4.3. Ablation Study

Method UM MA All Search
Rank-1 mAP

Baseline % % 49.45 47.21
MAUM− ! % 55.97 53.42
MAUM ! ! 61.59 59.96

Table 2. Ablation study on SYSU-MM01 (all search). UM: unidi-
rectional metrics, MA: memory-based augmentation.

We investigate the two key components, i.e. unidi-
rectional metrics (UM) and memory-based augmentation
(MA) through ablation. The experimental results are sum-
marized in Table 2, from which we draw two observations.

First, comparing “MAUM−” (i.e., MAUM without
memory-based augmentation) with “Baseline”, we observe
that using only the UM component already brings +6.52%
Rank-1 accuracy and +6.21% mAP improvement. It vali-
dates that UM effectively suppress the modality discrepancy
and improve the cross-modality recognition.

Second, comparing “MAUM” with “MAUM−”, we find
that adding the memory-based augmentation further im-
proves +5.62% Rank-1 accuracy and +6.54% mAP. It in-
dicates that memory-based augmentation effectively rein-
forces the unidirectional metric learning.

Combining these two observations, we conclude that
both the unidirectional metrics and the memory-based aug-
mentation components are critical for MAUM.

4.4. Modality-imbalance Scenario

We investigate MAUM under modality-imbalance sce-
nario. For comprehensive investigation, we synthesize
several different imbalance settings based on the original
SYSU-MM01 dataset. Specifically, we set the number of
IR images per identity N from 1 to 15, resulting in various
imbalance ratios between RGB and IR modality. We com-
pare MAUM with Baseline, MAUM− (i.e., MAUM with-
out memory-based augmentation) and FMI [26] (i.e., the
strongest competitor). The results are summarized in Ta-
ble 3, from which we have the following observations.

N Acc.
Method

Baseline FMI MAUM− MAUM

Full
R-1 49.5 60.0 56.0 61.6
mAP 47.2 58.8 53.4 59.0

15
R-1 36.3 (-26.7%) 44.7 (-25.5%) 40.3 (-28.7%) 47.3 (-23.2%)

mAP 35.5 (-24.8%) 45.6 (-22.4%) 38.8 (-27.3%) 46.9 (-20.5%)

10
R-1 32.1 (-35.2%) 40.6 (-32.3%) 37.3 (-33.4%) 44.7 (-27.4%)

mAP 32.8 (-30.5%) 41.6 (-29.2%) 37.1 (-30.5%) 43.2 (-26.8%)

5
R-1 29.3 (-40.8%) 37.4 (-37.7%) 34.1 (-39.1%) 40.2 (-34.7%)

mAP 30.2 (-36.0%) 39.5 (-32.8%) 33.7 (-36.9%) 43.2 (-26.8%)

1
R-1 13.2 (-73.3%) 23.6 (-60.7%) 15.2 (-72.9%) 25.4 (-58.8%)

mAP 16.2 (-65.7%) 24.9 (-57.7%) 20.5 (-61.6%) 27.7 (-53.1%)

Table 3. Evaluation on SYSU-MM01 under modality-imbalance
scenario. We set the number of IR images from 1 to 15, resulting
in various imbalance ratios between RGB and IR modality. N is
the number of IR images per identity.

First, as N decreases, the re-ID accuracy of all meth-
ods dramatically drop. For example, the mAP accuracy of
the baseline dramatically drops from 47.2% (all-search) to
35.5% (N = 15), 32.8% (N = 10), 30.2% (N = 5) and
16.2% (N = 1). It indicates that the modality-imbalance
problem significantly challenges cross-modality re-ID.

Second, comparing the accuracy decrease ratio of Base-
line and MAUM−, MAUM− is close to Baseline. It in-
dicates that only unidirectional metrics also undergoes the
challenge of modality-imbalance problem.

Third, compared with MAUM−, MAUM presents higher
robustness against the modality-imbalance problem. For ex-
ample, when N = 5, the mAP accuracy decrease ratios of
MAUM − is −36.9%. In contrast, the mAP accuracy de-
crease ratio of MAUM is −26.8%. This indicates that the
higher robustness of MAUM benefits from the independent
modality-specific memory augmentation.

Moreover, compared with the SOTA method FMI [26],
MAUM outperforms FMI under all the imbalanced settings
and gains higher robustness against modality-imbalance.

4.5. Modality-fragmentary Scenario

We investigate MAUM under the modality-fragmentary
scenario, i.e., some training identities have only a single
(RGB) modality. Based on the original SYSU-MM01,
we synthesize several modality-fragmentary datasets by re-
moving some identities’ IR images. Specifically, there are
only 50, 100 and 200 identities with IR images. For the
RGB modality, we maintain the number of identities as 395.
The results are summarized in Table 4, from which we draw
the following observations.

First, when there are 395 RGB identities and the num-
ber of IR identities gradually decreases from 395 to 200,
100 and 50, all methods’ re-ID accuracy dramatically drops.
It indicates that the modality fragmentary problem hinders
cross-modality re-ID.
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RGBs / IRs Acc.
Method

Baseline FMI MAUM− MAUM

395 / 395
R-1 49.5 60.0 56.0 61.6
mAP 47.2 58.8 53.4 59.0

395 / 200
R-1 42.8 (-13.5%) 53.2 (-11.3%) 47.7 (-14.8%) 56.2 (-8.8%)

mAP 42.7 (-9.5%) 53.3 (-9.3%) 47.3 (-11.4%) 54.6 (-7.5%)

395 / 100
R-1 25.9 (-47.7%) 35.0 (-41.6%) 31.2 (-44.3%) 38.5 (-37.5%)

mAP 26.3 (-44.3%) 36.0 (-38.8%) 30.6 (-42.7%) 39.2 (-33.6%)

395 / 50
R-1 18.2 (-63.2%) 24.2 (-59.7%) 21.1 (-62.3%) 28.8 (-53.2%)

mAP 20.5 (-56.6%) 29.3 (-50.2%) 24.2 (-54.7%) 36.1 (-38.8%)

Table 4. Evaluation on SYSU-MM01 under modality-fragmentary
scenario. RGBs / IRs denotes the quantity of RGB / IR identities.

Second, comparing the accuracy decrease ratio of Base-
line, MAUM− and MAUM, MAUM− is close to Base-
line. While, MAUM presents higher robustness against the
modality-fragmentary problem. This further indicates that
the higher robustness of MAUM benefits from the indepen-
dent modality-specific memory augmentation. This obser-
vation is consistent with that of modality-imbalance sce-
nario.

Third, under all modality-fragmentary setting, MAUM
outperforms FMI [26] and gains the higher robustness.

5. Analysis of Hyper-parameters
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Figure 4. The impact of memory size and sampling interval (△t in
Eq. 4). (a) As the memory size increases, the accuracy increases
to the maximum (when memory is 3000) and then decreases. (b)
As the sampling interval increases, the accuracy undergoes an in-
crease and decrease, as well.

The drift-based augmentation of the memory bank is
a key component of MAUM. According to Section 3.3,
the augmentation strength is controlled by two hyper-
parameters, i.e., the memory bank and the sampling inter-
val. Fig. 4 experimentally analyze the impact of these two
hyper-parameters on SYSU-MM01. In Fig.4 (a), we fix
the sampling interval (i.e., 10), and then increase the RGB
memory size from 0 to 5000 (we set the IR memory size to
be the half of RGB memory). In Fig.4 (b), we fix the RGB
memory size to 3000, and then adjust the sampling interval
from 1 to 20. We make three observations as follows.

First, in Fig. 4 (a), when the memory size is 0, which
means there is NO unidirectional learning, the achieved ac-
curacy is even lower than the baseline. It indicates that the
unidirectional metric learning is critical for MAUM. Re-
moving it dramatically corrupts MAUM.

Second, in Fig.4 (a), as the memory size increases, the
accuracy of MAUM gradually increases to the maximum
(when memory size is 3000) and then decreases. It indi-
cates the memory bank has two-fold impacts on MAUM.
On the one-hand, approximately increasing the quantity of
stored proxies benefits the memory bank with higher diver-
sity. On the other hand, over large memory might include
some deeply-outdated historical proxies, which is not quite
comparable with the up-to-date features [10, 30]. Based on
the above observation, we select 3000 as the default mem-
ory size in all experiments.

Third, in Fig.4 (b), we observe a similar “increase and
decrease” phenomenon over the increase of sampling inter-
val. It is reasonable because the sampling interval has a
similar impact as the memory size. While increasing the in-
terval enlarges the diversity of neighbouring proxies (which
is beneficial), it also risks over-large divergence between the
earliest proxies and the up-to-date proxies. In this paper, we
recommend using 10 as the optimized sampling interval.

6. Conclusions
This paper proposes the Memory-augmented Unidirec-

tional Metric (MAUM) learning method for cross-modality
re-ID. MAUM has two advantages. First, instead of using a
modality-agnostic proxy as the intermediate relay between
two modalities, MAUM enforces explicit cross-modality as-
sociation with two unidirectional metrics. Second, by ex-
ploring a novel potential of the model drift phenomenon,
MAUM further enhances the cross-association through
memory-based augmentation. Equipped with the two ad-
vantages, MAUM significantly suppresses the modality dis-
crepancy and improves cross-modality re-ID. As another
contribution, we bring the modality-imbalance problem into
the cross-modality re-ID community, and demonstrate that
MAUM presents high robustness and superiority on this
problem.

Limitation. In MAUM, we employ two modality-specific
memory banks to store the MS-Proxies. Although these
proxies have no gradient, storing and employing them still
need a few memory and computation cost. When the train-
ing set is large-scale, such as an industrial dataset, the mem-
ory and computation cost can not be ignored. How to opti-
mize the memory and computation cost will be explored in
our future work.
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