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Abstract
We empirically investigate how well popular ap-
proximate inference algorithms for Bayesian Neu-
ral Networks (BNNs) respect the theoretical prop-
erties of Bayesian belief updating. We find strong
evidence on synthetic regression and real-world
image classification tasks that common BNN al-
gorithms such as variational inference, Laplace
approximation, SWAG, and SGLD fail to update
in a consistent manner, forget about old data un-
der sequential updates, and violate the predictive
coherence properties that would be expected of
Bayesian methods. These observed behaviors im-
ply that care should be taken when treating BNNs
as true Bayesian models, particularly when using
them beyond static prediction settings, such as for
active, continual, or transfer learning.

1. Introduction
Bayesian neural networks (BNNs) extend the principles of
Bayesian inference (Robins & Wasserman, 2000; Jaynes,
2003) to neural networks by placing prior distributions on
the model parameters and updating them based on observed
data (MacKay, 1992b; Hinton & Van Camp, 1993; Neal,
2012). This approach promises benefits such as principled
uncertainty quantification (Neal et al., 2011; Kendall & Gal,
2017), robustness to distribution shift (Daxberger et al.,
2021b), and coherent belief propagation (Gal et al., 2017),
often cited as important for tasks such as out-of-distribution
detection, sequential decision-making, and active learning.

Unfortunately, the practical implementation of Bayesian
inference in neural networks is fundamentally intractable,
necessitating the use of approximate inference methods. De-
spite typically being crude approximations of the highly
complex BNN posterior in parameter space, these methods
generally offer better predictive performance and uncer-
tainty calibration than deterministic networks in multiple
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settings (Izmailov et al., 2021b). However, due to the ap-
proximate nature of this inference, it is no longer a given
that they will still conform to Bayesian ideals.

Why does it matter if BNNs do not behave like Bayesian
models? Firstly, several recent efforts seek to improve
BNNs by refining priors (Fortuin, 2022) or proposing
methodological or algorithmic improvements for enhancing
the fidelity of approximate inference (Papamarkou et al.,
2024). However, if BNNs fail to respect Bayesian principles
such as consistent prior updating and meaningful posterior
uncertainty, then we cannot trust that objectively better pri-
ors or more faithful inference will translate to performance
gains. This is exacerbated by the fact that it is challeng-
ing to even precisely evaluate the accuracy of inference in
high-dimensional BNNs, so most research has subsequently
focused only on improving final predictive performance and
calibration metrics of the model-averaged solution (Guo
et al., 2017; Wilson & Izmailov, 2020).

Secondly, the adherence of BNNs to Bayesian principles is
of direct importance in many contexts. For example, pop-
ular active learning acquisition functions such as BALD
(Houlsby et al., 2011) and EPIG (Bickford Smith et al.,
2023) assume the model will be updated in a true Bayesian
manner, and so will become misaligned if this fails to hold.
Meanwhile, in settings such as continual and transfer learn-
ing, it is essential that sequential updates do not forget about
old data (Wang et al., 2024; Shwartz-Ziv et al., 2022). More
generally, the conformity of BNNs to Bayesian ideals is
important whenever we go beyond static prediction settings,
such as when we wish to capture reducible (epistemic) uncer-
tainty, make joint predictions, reason about possible future
data, or sequentially update our model.

In this paper we critically evaluate the behavioral proper-
ties of popular BNN algorithms. Whereas previous studies
have focused on static predictive performance and inference
convergence diagnostics (Izmailov et al., 2021b; Sommer
et al., 2024), our study aims to more systematically inves-
tigate the adherence of BNNs to the expected behavior of
true Bayesian models. We find on synthetic regression
tasks and the CIFAR and IMDB image and text classifica-
tion settings of Izmailov et al. (2021b) that BNNs fail to
preserve key features of Bayesian inference. In particular,
we show that, for the tasks considered, (1) approximate
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posteriors lack the functional variability of true Bayesian
posteriors (Section 4); (2) sequential inference using BNNs
fails to propagate information coherently, leading to signif-
icant degradation in accuracy (Section 5.1); and (3) BNN
predictive updates are not well-calibrated, failing to retain a
self-consistent amount of uncertainty, and thereby violate
fundamental information-theoretic properties of Bayesian
methods (Sections 5.2 and 6).

Our results, therefore, show that, though BNNs often give
powerful static predictive performance, we should be cau-
tious in our expectation that they practically adhere to
Bayesian principles. We further provide hope for future
improvement, by suggesting that using empirical martin-
gale posterior predictives (Fong et al., 2023) may improve
performance over conventional Bayesian model averages.

2. Background
Our focus will be on the supervised learning setting as
this is where BNNs are most commonly used. Namely,
let D = {xi, yi}ni=1 be a training set where x denotes the
input and y the labeling; our goal is to learn a conditional
predictive distribution Y |X = x.

BNNs. To model the data, we use a deep neural network
fθ(x) with model parameters θ. Instead of training a sin-
gle empirical risk minimizer θ̂SGD, BNNs elicit a prior
π(θ) over model parameters, condition on D observed
through an i.i.d. observation model Yi |xi ∼ p(yi | fθ(xi)),
and approximate the posterior distribution π(θ | D) ∝
π(θ)

∏n
i=1 p(yi |xi, θ) (Savage, 1972). The posterior pre-

dictive p(y∗ |x∗,D) =
∫
p(y∗ |x∗, θ)π(dθ | D) can then

be used to predict on new data by marginalizing over the
posterior, producing the Bayesian model average (BMA, Ap-
pendix A), which is the optimal predictive distribution from
a decision-theoretic perspective if the posterior truly repre-
sents our beliefs (Fragoso et al., 2018).

Approximate inference. The intractability of Bayesian
inference in deep learning means that practitioners resort
to approximate inference algorithms. Popular practical ap-
proaches include localized approximations around a sin-
gle mode such as variational inference (VI) (Graves, 2011;
Blei et al., 2017), Laplace approximations (MacKay, 1992a;
Daxberger et al., 2021a), and stochastic weight averaging
(SWAG) (Maddox et al., 2019), as well as more expressive
but computationally more expensive sampling algorithms
(Welling & Teh, 2011; Wenzel et al., 2020). Full-batch
Hamiltonian Monte Carlo (HMC) (Neal et al., 2011) is
typically considered state-of-the-art; however, it is computa-
tionally infeasible to run even for smaller networks.

Benefits of BNNs. The Bayesian deep learning litera-
ture highlights various attractive theoretical properties of
Bayesian inference (Blundell et al., 2015; Wilson, 2020;

Izmailov et al., 2021b; Papamarkou et al., 2024). The maxi-
mum a posteriori (MAP) solution has been observed to be
overconfident (Guo et al., 2017), which the BMA improves
on (Kendall & Gal, 2017; Izmailov et al., 2021b). This is
achieved by explicitly accounting for multiple hypotheses,
where the ensemble of multiple viable models produces
principled uncertainty estimates and prevents overfitting. In
practice, BNNs have seen measurable empirical success in
predictive tasks, outperforming the MAP estimate in multi-
ple settings (Izmailov et al., 2021b).

3. Related Work
BNNs have faced critique. For example, Bayes can be
suboptimal in misspecified models (Wang & Blei (2019),
Appendix K.2). BNNs are also often criticized for using
uninformative priors that fail to reflect relevant beliefs (Tran
et al., 2022; Fortuin, 2022). Although prior engineering is an
active research area, objective priors that place mass on non-
meaningful predictive representations are widely used (Iz-
mailov et al., 2021b; Papamarkou et al., 2024). In addition,
the fidelity of approximate inference in BNNs is routinely
questioned, with theoretical pathologies noted by Foong
et al. (2020) and Coker et al. (2022). Approximate sampling
cannot faithfully capture highly complex BNN posteriors
(Wiese et al., 2023), and many schemes make inappropriate
assumptions resulting in a crude posterior approximation.
These issues inevitably lead to downstream practical issues,
e.g. BNNs have been shown to underperform under covari-
ate shift (Izmailov et al., 2021a; Sharma et al., 2023).

Knoblauch et al. (2022) highlight that these key
assumptions—correct model specification, meaningful pri-
ors, and computationally feasible updates—underpin the
theoretical guarantees of Bayesian inference, such as consis-
tency and asymptotic optimality (Bernardo & Smith, 2009),
but are fragile in practice, particularly for BNNs. As a result,
several generalized Bayes approaches have emerged in the
wider literature to retain the useful properties of Bayesian
inference without strict adherence to full Bayesian updat-
ing. Two notable examples are Gibbs posteriors (Bissiri
et al., 2016), which replace the log-likelihood with a general
loss function, and PAC-Bayes (McAllester, 1999), which
balances empirical fit and model complexity.

In BNNs, a generalized Bayesian approach of particular
relevance is cold posteriors or power posteriors, where the
posterior is artificially sharpened to improve BMA perfor-
mance across different settings (Grünwald, 2012). Wenzel
et al. (2020) consider the family of distributions

πT (θ;D) ∝
(
π(θ)

n∏
i=1

p(yi |xi, θ)
)1/T

for “temperatures” T < 1, and demonstrate that approxi-
mate tempered posteriors outperform the Bayes posterior
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Figure 1: Synthetic regression posterior functional variability. Functional samples are drawn from approximate posteriors
on the synthetic regression task. The posterior means are similar for all four algorithms. The HMC approximate posterior
puts weight on more complex and qualitatively more varied functions compared to the other approximate posteriors,
especially in the region x > 0, but does not seem to account for the potential of non-monotonic behavior in the region
x < −1. Despite having somewhat similar point uncertainties, the VI approximation represents less complex and less varied
range of functions. Laplace and SWAG fail to capture meaningful uncertainty or functional complexity, especially for x > 0.

at T = 1. This suggests approximate samplers may strug-
gle to explore enough qualitatively different modes of the
posterior, hinting at problems with the model setup. Noci
et al. (2021) and Izmailov et al. (2021b) point to data aug-
mentation, curation, and prior issues, but no single cause
has been identified (Nabarro et al., 2022). Others argue
that posterior tempering is not necessarily against Bayesian
principles (Kapoor et al., 2022; Zhang et al., 2024).

Elsewhere, Sharma et al. (2023) showed that fully stochastic
BNNs do not typically outperform their partially stochastic
counterparts. They argue for a holistic view of BNNs as
probabilistic algorithms with good predictive performance
rather than true Bayesian models. Izmailov et al. (2021b)
systematically evaluate the predictive performance of ap-
proximate inference against a hugely expensive HMC base-
line. While HMC fails to mix in weight space, they argue it
mixes well in predictive space, and practical BNN approxi-
mate posteriors make similar predictions to HMC. However,
Sharma et al. (2023) note that their HMC baseline still ex-
hibits correlations in within-chain predictions, undermining
claims that its samples represent the true posterior.

In terms of applications, Bickford Smith et al. (2024a;b)
raise issues with BNNs in active learning, while Kirsch et al.
(2022) argue for the applicability of Bayesian deep learning
joint predictives in active learning and sampling, but find
that approximate BNNs fall short in downstream predictive
performance. Meanwhile, in continual learning, BNNs
have been shown to exhibit catastrophic forgetting, where
learning a new task worsens performance on previous ones
(Chen et al., 2021; Kessler et al., 2023; Wang et al., 2024).

Alternatives to BNNs often aim to capture uncertainty di-
rectly in predictive space. For example, epistemic neu-
ral networks directly learn a joint distribution over predic-
tions (Osband et al., 2023), while evidential deep learning
learns the parameters of a higher-order distribution (Sensoy
et al., 2018). Mlodozeniec et al. (2024) assess the “implicit
Bayesianness” of predictive updates via exchangeability

with observed data. They find through repeated re-training
on small-scale tasks that non-Bayesian algorithms may bet-
ter satisfy this criterion than Bayesian approximations, sug-
gesting that Bayesian deep learning uncertainty can be quan-
tified without explicit priors or posterior updates.

We now shift the focus away from static predictive perfor-
mance and invesitgate how practical BNNs behave with
respect to the theoretical properties of Bayesian models.

4. What Do BNN Functional Posterior
Predictives Look Like?

To start our investigation into the adherence of BNNs to
Bayesian ideals, we consider BNNs applied to synthetic re-
gression tasks, and measure empirically to what extent these
methods behave like true Bayesian models. We deliberately
focus here on regression instead of classification as it more
clearly highlights nuances of the approximate posterior pre-
dictive, noting that we can always consider regressing to
class probabilities as a special case.

We use two fully connected BNN architectures with hid-
den layers of size 32, 32, 16, and 128, 256, 128, 64, re-
spectively. To capture heteroskedastic noise, we choose
the observation model Y |x, θ ∼ N (µθ(x), σ

2
θ(x)) where

fθ(x) = (µθ(x), σ
2
θ(x)), but Appendix I shows that our

findings also generalize to homoskedastic observation mod-
els. For training, we consider the mean-field variational
inference (MFVI) (Blei et al., 2017), (diagonal) Laplace
(Daxberger et al., 2021a), and SWAG algorithms (Maddox
et al., 2019), as well as the more computationally inten-
sive Hamiltonian Monte Carlo (HMC) sampler (Neal et al.,
2011), generally considered state of the art. Appendix B
gives background on the algorithms, Appendix G details the
experimental setup, Appendix H shows the desired ground-
truth behavior of analytic Bayesian linear regression infer-
ence, and Appendix J assesses the robustness of our findings
across network size, input dimension through feature expan-
sion, and hyper-parameterization.
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Figure 2: BALD scores for approximate posteriors shown
in Figure 1. The HMC approximate posterior uncertainty
appears sensible in this instance, increasing in regions with-
out observations. Others attribute less importance to sam-
ples far from existing observations, and more importance to
observing further data around x = −1.

4.1. What is the Posterior Function Space Variability of
Different Approximate BNN Posteriors?

We begin by questioning whether the different approxi-
mate posteriors can capture epistemic uncertainty by putting
weight on all the models likely to have generated the ob-
served data. BNNs can be described as distributions over the
network parameters θ, which we refer to as the weight-space
or parameter-space characterization. Equally, they can be
considered as distributions over predictive functions, x 7→
(µ(x), σ(x))) in the case of our regression setup, by pushing
forward the weight-space distribution through the network
fθ(x) at any x, the so-called function-space or predictive-
space characterization (Izmailov et al., 2021b). Going
beyond the posterior mean (BMA) Eθ∼π(θ | D)fθ(x

∗) and
point uncertainties p(y∗ |x∗,D) and p(µ(fθ(x∗)) |x∗, θ),
we are interested in the functional properties of the approxi-
mate BNN posteriors in predictive space.

BNN use cases relying on the full posterior (some of which
will be detailed in Section 5.1) require that the posterior
approximations behave reasonably in function space to rep-
resent a range of likely models to describe the data. In
particular, they expect function draws from the posterior
to preserve the characteristics of the prior predictive in re-
gions without observations. We investigate if this holds for
practical BNNs in our regression setting.

Figure 1 shows function draws from different approximate
posteriors trained on a synthetic regression task. Based
on the samples, HMC retains more of the prior function
complexity in the high-uncertainty region x > 0 compared
to the other schemes which overly favor simpler functions.
However, even HMC does not account for qualitatively
distinct function behaviors in the region x < −1.

Variational inference (VI), when appropriately tuned (see
Appendix B.2), seems to produce somewhat sensible point
uncertainty, increasing in regions without observations.

However, the function draws are more similar to each other
than the HMC approximate posterior. Note that VI’s behav-
ior is sensitive to a range of parameters, including the choice
of β in Equation (16): smaller β, smaller initial variances,
and shorter training time all trade off a closer fit against
regularization towards the prior.

The Laplace and SWAG function-space posteriors mean-
while collapse to very specific MAP-like behaviors. Their
function draws appear to be mostly simple parallel transfor-
mations of their posterior mean; they fail to even produce
increasing point uncertainty in the region x > 0. Both algo-
rithms make local Gaussian approximations around a MAP
estimate, averaging models in this region of the parameter
space. In this instance, this local averaging does not seem to
capture qualitatively different models to describe the data.

4.2. How Much Uncertainty Reduction Should We
Expect from Observing Further Data Points?

To gain further insights into Bayesian model variabil-
ity and connect epistemic uncertainty with point uncer-
tainty, we now consider the information-theoretic BALD
score (Houlsby et al., 2011), often used in Bayesian active
learning as an acquisition function. At an input x∗, it is
defined as the mutual information between θ and Y ∗ |x∗, or
equivalently, the expected reduction in weight-space uncer-
tainty when observing a data point at x∗.

Its values for different approximate BNN posteriors on our
regression task are shown in Figure 2. The HMC approxi-
mate posterior attributes more importance to observing data
far from existing observations, whereas other approximate
posteriors would be more informed by further observations
around x = −1, which may be undesirable in learning
systems. Laplace and SWAG appear so confident in the
generalizing behavior for x > 0 that they expect negligible
information gain from observing data in this region.

Despite the differing posterior functional properties and
generalization behavior and shortcomings uncovered, the
BMAs of these approximate posteriors are all similar and
in line with our expectations. This observation motivates
our investigation into function-space behavior of practical
BNNs beyond model-averaged static performance.

5. Is Data Captured in Intermediate Posteriors
Weighted Consistently with New Data?

In this section we demonstrate deviations of practical BNNs
from Bayesian behavior in settings requiring sequential deci-
sion making in between observing data, utilizing epistemic
uncertainty directly and using intermediary posteriors in
subsequent steps of inference. Our tests will be particu-
larly relevant to the setting of active, continual, and transfer
learning as discussed below.
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Figure 3: Sequential updating experiment with VI on larger network. Each step’s prior is the posterior approximation
from the previous step. Point uncertainty is shown through high probability density intervals (HPDI) on the predictive mean
and the observation. Data points currently trained on are shown in black, previous ones in red. The last step of inference
is repeated with HMC, as well as a single-step VI approximation is shown for reference. Catastrophic forgetting occurs:
fitting the new data leads to worse fit on earlier data, and observed information is gradually lost.

Active learning and experimental design (Atlas et al., 1989;
Settles, 2009; Rainforth et al., 2024) are sequential learning
paradigms, where popular acquisition functions such as
BALD (Houlsby et al., 2011) or EPIG (Bickford Smith
et al., 2023) are based on Bayesian model uncertainty. We
might model the data with a BNN (Houlsby et al., 2011; Gal
et al., 2017) and sequentially update beliefs with the fresh
observations. This, however, requires that BNNs respect the
sequential properties of Bayesian updating.

Continual learning focuses on an agent sequentially learn-
ing a number of tasks; Bayesian formulations using online
Laplace approximations, VI, or function-space VI have been
proposed (Wang et al., 2024, see Section 3.1), where it is
crucial for the learner not to forget about old observations.

In transfer learning, a learner captures the knowledge of a
pretraining task to improve performance on a downstream
task. There have been Bayesian models of transfer learning
(Suder et al., 2023; Shwartz-Ziv et al., 2022) that propose
using an intermediary SWAG posterior learned on the pre-
training task. Here, there is an implicit assumption that this
approximate posterior is able to functionally capture pre-
training knowledge to inform training on the downstream
task. We investigate empirically if such applications of
BNNs are justified from a Bayesian modeling perspective.

5.1. Are Sequential Belief Updates Coherent?

An important aspect of Bayes’ rule is the following invari-
ance with respect to the order of observations.

Proposition 5.1 (Sequential Coherence of Bayesian Infer-
ence, Bernardo & Smith (2009)). If D and D′ are two sets of
observations, then the “iterated” posterior π ((θ | D) | D′)
is the same as the full posterior π (θ | D ∪ D′).

To set up a sequential inference, suppose we have datasets
{D(i)}Ni=1 which the learner observes sequentially and
needs to make decisions in between observing them. Sup-
pose further that we have an initial belief π(θ), and a scheme
π(θ) 7→ πy(θ) to update beliefs as a function of observed
data y. We use the incremental beliefs ((πD(1)) · · · )D(i) (θ)
to make predictions on a held-out dataset. We then test how
these beliefs generated from sequential inference compare
to conditioning on all the data in one go, i.e. π{D(i)}Ni=1

(θ).1

Synthetic regression. We partition our synthetic regres-
sion dataset into N = 5 equal groups based on the x value,
and run sequential approximate inference. According to
Bayesian coherence, each intermediate posterior should be
equal to the single-step posterior trained on all prior data
points. We find this not to hold in practice: Figure 3 grad-
ually demonstrates catastrophic forgetting. The final VI
approximate posterior differs from the single-step approx-
imate posterior, not fully respecting the first half of the
observations. HMC on the last step produces a worse fit
than VI, indicating that the intermediary VI posterior after
80 data points may be overconfident. The practically nec-
essary use of β = 0.05 < 1 masks this inconsistency by
overweighting observations 80-100 in the final step of infer-
ence. Appendix J shows a similar or even worse forgetting
behavior for Laplace and different network variants.

Image and text classification. We now scale this exper-
iment up to real-world model and image and text classifi-
cation benchmarks. Izmailov et al. (2021b) demonstrated
that Bayesian alternatives typically outperform deterministic

1This experiment requires a closed-form approximate posterior,
which holds for VI, Laplace, and SWAG. Although practitioners
may retrain on all prior observations each time, we analyze if such
algorithms are justified from a Bayesian angle in the first place.
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Figure 4: Sequential MFVI on CIFAR-10 and IMDB. We
show test accuracy, log-likelihood, and expected calibration
error (ECE) for the single step and iterated inference (mean
and st. dev. across 6 seeds). Under Bayes the two should
make the same predictions, but iterated MFVI significantly
underperforms single-step MFVI across all metrics. VI
improves over SGD, and fixes the growing overconfidence
of SGD during training. However, in iterated training, the
principled Bayesian belief sharing does not improve MFVI
more than the heuristic belief sharing improves SGD.

networks in multiple classification and regression settings.
We replicate their MFVI experiments on ResNet-20-FRN
CIFAR-10, CIFAR-100 (Appendix F.1), and CNN-LSTM
IMDB, taking their implementation and hyperparameters.

We randomly split the training sets into two splits D(1) and
D(2). We train an intermediary MFVI approximate posterior
πD(1)(θ) on the first split, and pass this as a prior to infer
a second MFVI approximate posterior (πD(1))D(2) (θ) on
the second split. As the number of sequential inference
steps grows, we expect estimation error to increase and
final approximation quality to deteriorate. To focus on the

intrinsic algorithmic difference instead of estimation error
accumulation, in this experiment we take N = 2 random
splits and do only a single step of retraining.

Figure 4 compares the iterated posterior against the single-
step posterior in terms of the predictive performance metrics
of the BMA. Contrary to Bayesian expectations, iterated VI
performs significantly and consistently worse than single-
step VI, even though (πD(1))D(2) (θ) is still an improvement
over πD(1)(θ). To evaluate this improvement, we run a “se-
quential SGD” baseline where an SGD solution is trained on
D(2) using the first-split SGD solution argmaxθ π(θ | D(1))
as an initializer without any additional training guidance
(such that the only influence of D(1) is from the initializa-
tion). This deliberately non-Bayesian bias to share beliefs
leads to a similar improvement from the intermediate MAP
to the “sequential” biased MAP as the improvement from
πD(1)(θ) to (πD(1))D(2) (θ). Based on this experiment, we
do not find the use of VI to be justified in sequential infer-
ence contexts by its Bayesian motivations alone.

5.2. How Strong are the Beliefs Captured in an
Intermediary Posterior?

We now turn back to synthetic regression and test how strong
the knowledge captured in the intermediary posterior is com-
pared to subsequent observations. To precisely quantify the
amount of information encoded in an intermediary posterior
and fresh observations, we train an approximate posterior on
50 data points generated from Yi |xi ∼ N (0.5, 0.052). The
learner then gradually observes data from the shifted dis-
tribution Yi |xi ∼ N (−0.5, 0.052) with this approximate
posterior used as the prior. Training on n new data points
should give a predictive mean of 50−n

50+n · 0.5 shrunk by the
original prior towards zero. This means we should need to
observe more than 50 new points to shift the posterior pre-
dictive mean negative if points are being weighted equally.

Figure 5: Intermediary Laplace posterior experiment. An intermediary posterior is learned from the original dataset,
then subsequent HMC inference is performed with this intermediate posterior as prior, observing data from a shifted
distribution. We show the larger network with feature expansion, but the result generalizes; see Appendix J. After only 25
points, the posterior mean becomes negative: the new observations appear to be weighted around twice as much as the
pretraining observations, despite the shrinkage of the intermediary Laplace approximate posterior towards the MAP estimate.
Single-step HMC inference on the original and shifted datasets at the same time is able to produce a sensible posterior mean.
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Figure 6: Cross-sectional predictive log-likelihoods. We
compute log-likelihoods at x = 0 on the pretraining task
observing data centered at y = 0.5. The tail behavior of
different posterior predictives exhibit significant differences.
In particular, VI is significantly heavier-tailed than others
despite over-weighting observations due to taking β < 1.
Laplace and SWAG predictives resemble Gaussian tails, and
are lighter tailed than the HMC predictive.

We use Laplace approximation to approximate the inter-
mediary posterior, which we then pass to HMC inference
as a prior, observing points from the shifted distribution.
Figure 5 shows that catastrophic forgetting is observed: re-
cent observations are weighted more heavily compared to
earlier observations (Wang et al., 2024). Either the Laplace
approximation has failed to properly incorporate the pro-
vided data, or HMC has failed to mix, potentially stuck in an
ill-conditioned optimum, or some combination of the two.

For VI, we find even stronger forgetting behavior, under-
pinned by the less confident VI intermediary posterior pre-
dictive; see Appendix J.4. Neither of these approximate
inference schemes appears to faithfully encode pretraining
data in its posteriors for use in downstream tasks, nor to
capture functional knowledge from pretraining.

We further examine the tail behavior of the posterior predic-
tive distributions in Figure 6, as this can shed light on how
flexible the current model is to change with future observa-
tions. We see that the Laplace predictive is lighter-tailed
than HMC; it is more confident in the pretraining observa-
tions. Given that we still observe forgetting when using
these lighter-tailed Laplace approximations as priors, this
suggests inaccuracies in the HMC inference.

6. Evaluating the Predictive Coherence of
Belief Updates with Martingales

In the previous section, we examined whether coherence
in predictive beliefs is maintained when sequentially updat-
ing the parametric posterior using approximate Bayesian
inference with increasing amounts of externally provided
data. We now instead investigate whether the distribution of
predictions made by BNNs is itself self-consistent with how

the model itself updates when those predictions are fed back
into the training as pseudo-data. This tests BNNs against
the important property of Bayesian models that they should
not hallucinate new information without external data or
destroy information from previous data.

In particular, given an observed dataset, any predictive
model somehow manipulates the information contained in
the data to produce a predictive distribution (Dawid, 1984).
Suppose we then generate pseudo-data from our model, im-
pute it into our training set, and perform another update.
If the model updates are well-calibrated, then on average,
across all possible imputations, the new predictive distri-
bution should not change, as no new information has been
added. If it does, it implies that information from the initial
observed data has been lost or transformed through our up-
dating scheme, resulting in miscalibration or “hallucination”
in predictive space (Falck et al., 2024).

A diagnostic based on predictive consistency therefore tests
whether a model update is retaining a consistent amount of
uncertainty with respect to the data-generating process, or if
pseudo-information is being introduced through the model’s
predictions. This diagnostic evaluates posterior model un-
certainty not captured by the BMA, thereby assessing the
coherence through a more fundamental predictive lens.

How does this relate to Bayesian behavior? The martingale
posterior framework of Fong et al. (2023) presents a predic-
tive view of Bayesian inference, where uncertainty arises
from missing data, not unknown parameters. Under this
view, the Bayesian task is not to update a prior on parame-
ters, but to assign a predictive distribution to missing data
conditional on observed data. A result from Doob (1949)
shows that this predictive uncertainty is equivalent to para-
metric uncertainty: incoherence in one implies incoherence
in the other. While this is usually framed parametrically—
an incorrect update leads to incorrect predictions—we focus
on the mirrored view: if predictions are miscalibrated, the
parametric update must also be flawed.

We now provide a brief technical exposition on the mar-
tingale posterior framework, with further details in Ap-
pendix C. Let Θ ∼ π(θ) be a parameter of interest with
some prior density π(θ) before any data is observed. For
observed data Y1:N , the posterior mean of this parameter
is θ̄N = E [Θ |Y1:N ]. Note here that we did not need to
assume some explicit likelihood form p(y1:N |θ), we simply
need a mechanism to recover E [Θ |Y1:N ] from data. For
example, we might simply have a mechanism for training a
stochastic neural network given observed data. The follow-
ing result from Doob (1949) now shows that parametric and
predictive uncertainty are equivalent if θ̄N is a martingale,
that is if its conditional expectation at each step is equal
to its previous value, meaning that new data points only
propagate uncertainty and do not introduce bias.
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Theorem 6.1 (Martingale Convergence, Doob (1949)). If
θ̄N is a martingale, with E

[
θ̄N |Y1:N−1

]
= θ̄N−1, then

under certain measurability and identifiability conditions,
θ̄N → Θ almost surely.

In other words, when this martingale property holds, rather
than viewing belief updates solely as refining our knowledge
about Θ, we can interpret them as the resolution of uncer-
tainty about future observations. Each new data point YN
refines our predictive uncertainty, and as we sequentially
impute the unseen Y1:∞, the remaining uncertainty in Θ
vanishes and our sequence of posterior means θ̄N converges
to a draw from the prior.

Under this approach, Bayesian inference is nothing more
than a predictive task, where our goal is to generate different
possible imputations of the unobserved data. Uncertainty
is then indexed over these hypothetical completions of the
dataset. Specifically, suppose we have initial belief π(θ),
a belief updating scheme π(θ) 7→ πy(θ) that incorporates
observed data y into beliefs π, and a parameterised predic-
tive model p(y | θ). Let Y ∗ be a random sample drawn from
the marginal predictive p(y∗) =

∫
p(y∗ | θ)π(dθ). Then

we define the martingale posterior distribution (Fong et al.,
2023) for this sample as the expected belief update across
all possible predictive imputations:

MPY ∗π(θ) = E [πY ∗(θ)] =

∫
πy∗(θ)p(dy

∗).

It can be estimated with the (consistent) empirical martin-
gale posterior distribution:

M̂P
(N)

Y ∗ π(θ) =
1

N

N∑
j=1

πy∗j (θ)

where y∗j
i.i.d.∼ p(y∗) averaging across N trials.

As exact Bayesian updates do satisfy the martingale prop-
erty, we can now introduce another key property of Bayesian
inference relating to its predictive belief updating:

Proposition 6.1 (Predictive Coherence of Bayesian Infer-
ence, based on Fong et al. (2023)). When the belief updating
scheme is exact Bayesian inference, the martingale posterior
recovers the initial beliefs.

Proof. In the case, for example, when prior and likelihood
densities exist and 0 < p(y∗) <∞ for p-almost every y∗,

MPY ∗π(θ) = EπY ∗ [θ] = E[θ |Y ∗] =

∫
π(θ | y∗)p(dy∗)

=

∫
π(θ)p(y∗ | θ)

p(y∗)
p(dy∗) = π(θ)

∫
p(dy∗ | θ) = π(θ).

At least in principle, it is possible for this predictive co-
herence to be satisfied even if our approximate inference
scheme is itself inaccurate. Thus one might see “Bayesian”

updating behavior in the predictive model even if our in-
ference is poorly representing the true parameter posterior.
However, in our tests below we find BNNs breaking this pro-
ductive coherence, such that they do not properly maintain
information in the data between iterations.

We use the CIFAR-10 dataset for this experiment, and con-
sider taking two random subsets of 4080 images each: a
labeled split (x, y), and an unlabeled split x∗. We first use
the labeled split to train an initial BNN posterior approxima-
tion π′(θ) = π(x,y)(θ). For the unlabeled split x∗, we use
the intermediary π′-predictive to sample labelings through
θ ∼ π′(·) followed by Y ∗ | θ ∼ p(· | θ;x∗). We then train
a new posterior approximation π′′(θ) = π(x,y)∪(x∗,Y ∗)(θ).
This label-retrain step is repeated over N trials, allowing us
to compute an empirical martingale posterior distribution

M̂P
(N)

(x∗,Y ∗)π(x,y)(θ) =
1

N

N∑
j=1

π(x,y)∪(x∗,ŷ∗j )
(θ)

that averages over the N different predictive imputations of
the unknown labels y∗. We then compare the BMA from
the initial approximate posterior Eθ∼π(x,y)(·)[fθ(xtest)]
and the BMA from the empirical martingale posterior
E
θ∼M̂P(x∗,Y ∗)π(x,y)(·)

[fθ(xtest)]. Propositions 5.1 and 6.1
imply that under Bayesian inference and N → ∞ these two
model averages should match.

With the goal of analyzing function-space predictive co-
herency, we apply this uncertainty diagnostic to MFVI and
Stochastic Gradient Langevin Dynamics (SGLD) (Welling
& Teh (2011), Appendix B.5). We treat these algorithms as
end-to-end belief updating schemes, replicating the setup
and their hyperparameters from Izmailov et al. (2021b).
Figure 7 shows the result of our martingale posterior ex-
periment on CIFAR-10, comparing the performance of the
initial posterior distribution π′ to that of the martingale pos-
terior. Specifically, we examine Bayesian model average
(BMA) metrics of accuracy, log-likelihood, and expected
calibration error as projected summaries of posterior predic-
tive performance (see Appendix A).

Under true Bayesian inference the martingale posterior
should recover π′, and thus their BMA predictions are ex-
pected to match. However, Figure 7 shows that the martin-
gale posterior metrics deviate significantly from those of π′,
with deviations exceeding bootstrapped confidence intervals.
This divergence indicates that the posteriors obtained from
MFVI and SGLD fail to fully capture the correct Bayesian
belief updating. Notably, the deviation manifests in im-
proved predictive performance, especially in the case of
MFVI. This suggests that the martingale posterior approach
of generating ensembles by simulating pseudo-data and re-
training may be generally beneficial compared to just using
the BMA in BNN setups, if the additional computation cost
of doing so can be justified.
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Figure 7: Martingale posterior BMA on CIFAR-10 sub-
set. We show the test accuracy, log-likelihood, and ECE for
the initial posterior π′; the full and inter-quartile ranges of
imputed posteriors π′′; and the empirical martingale poste-
rior with a 95% bootstrap confidence interval with respect
to resampling imputed labelings ŷ∗. For both VI and SGLD,
individual imputed posteriors underperform the initial BMA,
but their martingale ensemble outperforms it. Imputing la-
bels should not introduce new information, but here retrain-
ing increases performance, falsifying Bayesian coherency.

We further examine the full calibration curves of the model
averages in Figure 8. While the confidence of the ini-
tial trained posteriors increases on synthetically retrained
datasets, consistent with being trained on more data, the
martingale posterior exhibits reduced predictive confidence
despite improved accuracy. This is evident in the calibra-
tion plots: the martingale posterior increases accuracy for a
given confidence level on test data. This behavior parallels
the well-established benefits of ensembling: averaging over
a diverse set of predictive distributions mitigates overconfi-
dence and yields more robust uncertainty quantification.

We have thus used this prediction-powered diagnostic to
assess whether BNN updating preserves the correct model
uncertainty. In this case, both VI and SGLD fall short,
leading to suboptimal ensembling over models. Martin-
gale posterior ensembles provide a partial remedy, perform-
ing function-space correction using unlabeled data. Ap-
pendix E.2 strengthens these findings on the IMDB dataset.

7. Discussion
We have systematically examined the behavioral properties
of common BNN algorithms, highlighting deviations from
key characteristics that would be expected of exact Bayesian
models. Specifically, we find that approximate posteriors
lack functional variability, sequential inference does not
propagate prior information coherently, information can be
hallucinated or lost when updating, and predictive updates
are poorly calibrated.

Should we avoid BNNs completely? Definitely not! They
have been shown to outperform point estimates and provide
effective static uncertainty in multiple settings, which our

Figure 8: Predictive uncertainty calibration of the mar-
tingale posterior. Investigating the ECE from Figure 7 fur-
ther, for the BMA test-set predictions we show the distribu-
tion of confidence, i.e., maximum predicted class probability
(top), and calibration curves (Guo et al., 2017), i.e., pre-
diction accuracy minus confidence for test samples falling
into a given confidence bucket (bottom). The initial VI pos-
terior is overconfident while SGLD is underconfident. For
both, the individual imputed posteriors π′′ produce more
confident but not more accurate model-averaged predictions.
Their martingale posterior has reduced confidence compared
to the initial posterior, leading to under-confident but more
accurate predictions. The mismatch is greater for VI.

results do not undermine. We simply argue that practitioners
should exercise caution in their expectations and interpreta-
tion, especially when applying BNNs in distinctly Bayesian
contexts such as active, continual, and transfer learning,
where these pathologies may limit their utility. This also
applies to empirical evaluation, as good static performance
may not translate to other desired behaviors.

Overall, we encourage a pragmatic perspective: rather
than striving for strict Bayesian adherence, BNNs should
be viewed as practical algorithms inspired by Bayesian
ideas. This reframing, already acknowledged within the
field (e.g. Sharma et al. (2023)) emphasizes the importance
of factors such as optimizer design, regularization, ease of
training, and explicit solutions for coherency where needed.
In particular, although the problems we raise are a direct
result of inexact inference, improving inference schemes is
not necessarily the solution: accurate inference may be un-
achievable, and strategies focusing on final behavior could
be more effective. Further, entirely non-Bayesian methods
might in practice give more coherence in some settings.

Going forward, the improvements seen by the empirical
martingale posterior predictives hint at an interesting direc-
tion. Though requiring additional computation, these led to
gains in predictive performance without any additional data.
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A. Bayesian Model Averaging
In this section, we revise and introduce terminology for the Bayesian model average (BMA), and its estimation. We also
define the classifier evaluation metrics we use throughout the paper to compare different BMA or point predictions.

A.1. BMA for Regression and Classification

In the context of Section 2, the decision-theoretically optimal Bayes predictor at fresh input x∗ with respect to loss function l
can be constructed as the minimizer of the expected posterior loss

ŷ∗(x∗) = argmin
y∗

E [l(Y ∗, y∗) |x∗,D] = argmin
y∗

Eθ∼π(· | D)E [l(Y ∗, y∗) |x∗, θ] , (1)

see e.g. (Hirshleifer & Riley, 1992). For regression under the L2 loss this corresponds to the posterior mean

ŷ∗(x∗) = Eθ∼π(· | D)µ(fθ(x
∗)) =

∫
Θ

µ(fθ(x
∗))π(dθ | D), (2)

and for classification under the 0-1 loss this corresponds to the a-posteriori most likely class

argmax
y∗

p(y∗ |x∗,D) = argmax
y∗

∫
Θ

p(y∗ |x∗, θ)π(dθ | D). (3)

Both predictors rely on marginalization, i.e., posterior-weighted averages over models.

A.2. Approximating the BMA From Samples

Having access to posterior samples θ1, . . . , θN ∼ π(θ | D), we can approximate the BMA with the ensemble π(θ | D) ≈
1
N

∑N
j=1 δθj (θ), leading to the following finite mixture posterior predictive approximations:

p(µ(x∗) |x∗,D) =

∫
θ∈Θ:µθ(x∗)=µ(x∗)

π(dθ | D) ≈ 1

N

N∑
j=1

δµ(fθj (x∗))(µ(x
∗)) (4)

for the model mean, and

p(y∗ |x∗,D) =

∫
Θ

p(y∗ |x∗, θ)π(dθ | D) ≈ 1

N

N∑
j=1

p(y∗ |x∗, θj) (5)

for the observed Y ∗. Under some conditions, including θj being independent or samples from an ergodic Markov chain,
these likelihood estimators are consistent (Robert et al., 1999; Roberts & Rosenthal, 2004).

This leads to the following (consistent) predictive log-likelihood estimator:

log p(y∗ |x∗,D) ≈ log

 N∑
j=1

p(y∗ |x∗, θj)

− logN. (6)

A.3. Evaluating BNNs

When evaluating BNNs on a test set, for regression, we use the term BMA to refer to the predictive mean estimates
ŷ∗(x∗i ); for classification, we refer to the full predictive averaged class probability vector (p(y∗ = k |x∗i ,D))Kk=1 ≈
J−1

∑J
j=1 fθ̂j (x

∗
i ) = J−1

∑J
j=1 softmax(gθ̂j (x

∗
i )).

In classification, BNNs are often evaluated along the following metrics. Let (x∗, y∗) be a random sample and its label
picked uniformly from the test data distribution.

1. The predictive accuracy is E(x∗,y∗)1{y∗ = argmaxy p(y |x∗,D)} = N−1
test

∑N
i=1 1{y∗i = argmaxy p(y |x∗i ,D)};
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2. (normalized) log-likelihood is E(x∗,y∗) log p(y
∗ |x∗,D) = N−1

test

∑N
i=1 log p(y

∗
i |x∗i ,D);

3. and finally, to introduce calibration and expected calibration error (ECE) as defined by Guo et al. (2017), let us define

• confidence as the maximum predicted class probability C(x∗) = maxy softmax(gθ(x
∗))y;

• calibration error as absolute deviation of calibration from confidence at a given confidence level

Calibr(x∗) =

∣∣∣∣E(x∗,y∗)

[
1{y∗ = argmax

y
p(y |x∗,D)}

∣∣ C(x∗)]− C(x∗)

∣∣∣∣ ;
• and the expected calibration error as Ex∗Calibr(x∗).

The lower the ECE, the more “reliable” the output softmax probabilities are; the SGD solution has been often found to
be overconfident in its predictive softmax probabilities (Guo et al., 2017; Izmailov et al., 2021b).

B. Approximate Inference Algorithms
In this section we introduce some of the popular approximate Bayesian inference algorithms for BNNs.

B.1. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) (Neal et al., 2011; Betancourt, 2017) is a Markov-chain Monte Carlo (MCMC) algorithm
that is the state of the art for sampling from BNN posteriors (Wenzel et al., 2020; Izmailov et al., 2021b). In high-dimensional
distributions, such as BNN posteriors, there are many counter-intuitive phenomena not found in low dimensions, such as the
concentration of mass to a thin shell some distance away from the mean. An effective sampler needs to explore this typical
set of points of high density efficiently. Classical algorithms such as random-walk Metropolis or Gibbs are not suitable for
this: because the shell is thin, random-walk proposals are rejected or stay local, and Gibbs does not mix well because the
level sets of the density are non-convex.

HMC operates on the state space extended by the momentum vector of a particle whose movement is governed by
Hamiltonian dynamics. The proposal is computed by numerically integrating the path of the particle, using first-order
gradient information. This dynamics allows the particle to travel along the typical set so that the proposal is far away, but
still has a high probability of acceptance.

More concretely, assume we wish to sample from π(q). We extend the target by a momentum vector p of the same dimension
as q: π(p, q) = π(q)π(p | q) for some suitable distribution π(p | q). Let us define H(p, q) = − log π(p | q) − log π(q) =
K(p, q) + V (q) to be the Hamiltonian, K(p, q) the kinetic energy, and V (q) = − log π(q) the potential energy of a particle.

Motivated by Hamiltonian dynamics, we consider simulating the state of a particle over time t governed by the differential
equation

dq

dt
=
∂H

∂p
=
∂K

∂p
(7)

dp

dt
= −∂H

∂q
= −∂K

∂q
− ∂V

∂q
(8)

for some period to get p∗ and q∗. By change of variables, it is easy to check that H stays constant, so π(p, q) = π(p∗, q∗).
Thus, if (p, q) is a point in the typical set, so is (p∗, q∗). Note that ∂V∂q can be computed from an unnormalized density π̄(q),
which is crucial for sampling from the Bayesian posterior where the normalizing constant is intractable.

To build a MCMC algorithm based on this idea we construct a random-walk Metropolis proposal by numerically simulating
the dynamics using step size ϵ for L iterations, with additional tricks to ensure irreducibility and symmetry of the proposal
distribution. Note that under perfect simulation the densities are equal, hence the acceptance probability is always one. The
accept-reject step corrects for the integration error. Marginally, the q state of the particle will efficiently explore the typical
set of the target distribution.

The No-U-Turn sampler (NUTS) (Hoffman et al., 2014) is an adaptive variant of HMC, adjusting the step size ϵ and number
of steps L, with the goal of maximizing the distance between the current point and the proposal without wasting computation.
This allows NUTS to discover the high-dimensional state space faster and avoid the need to tune these hyperparameters
manually.
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HMC is computationally feasible for sampling from small BNN posteriors, but it is prohibitively expensive for networks
of size found in modern deep learning applications. For example, Izmailov et al. (2021b) deploy hundreds of Tensor
Processor Units to study the mixing and performance of HMC on real-world nets, and find that they mix well in predictive
space, although mixing in weight space is worse. For smaller networks, HMC is widely considered the gold standard for
representing the Bayes posterior.

B.2. Variational Inference

Variational inference (VI) (Hinton & Van Camp, 1993; Graves, 2011; Blundell et al., 2015; Blei et al., 2017) considers
variational distributions from the family Q = {q(θ;ψ) |ψ ∈ Ψ} to approximate the posterior π(θ | D). The metric used is
often the “reverse” KL divergence

DKL(q(θ;ψ) ∥ π(θ | D)) = Eθ∼q(·;ψ) log
q(θ;ψ)

π(θ | D)
. (9)

VI casts the (approximate) inference problem as optimization, finding the variational distribution minimizing the divergence
from the posterior. The objective is equivalent to the objective maximizing the evidence lower bound (ELBO)

ψ∗ ∈ argmin
ψ

DKL(q(θ;ψ) ∥ π(θ | D)) ⇐⇒ ψ∗ ∈ argmax
ψ

LQ(ψ;D), (10)

where

LQ(ψ;D) = Eθ∼q(·;ψ) log
π(θ)

∏n
i=1 p(yi |xi, θ)
q(θ;ψ)

, (11)

which no longer depends on the normalized posterior density π(θ | D).

Note that the ELBO can be rearranged as

LQ(ψ;D) =

n∑
i=1

Eθ∼q(·;ψ) log p(yi |xi, θ)−DKL(q(θ;ψ) ∥ π(θ)), (12)

providing insight into the optimization objective: the first log-likelihood term encourages the variational distribution to
assign high likelihood to the observations, and the second term acts as a regularizer, drawing the variational distribution
towards the prior.

For BNNs we need to resort to stochastic gradient-based optimization (Hoffman et al., 2014; Wingate & Weber, 2013).
Assuming our variational distribution can be reparameterized, i.e., θ ∼ q(·;ψ) can be drawn as ϵ ∼ N (0, I) ∼ ϕ(·), θ =
Tψ(ϵ) for some Tψ differentiable transform with non-singular Jacobian, parameterized by variational parameters ψ. Then

the variational density can be computed via change of variable as q(θ;ψ) = ϕ(ϵ)
∣∣∣det dTψ(ϵ)dϵ

∣∣∣−1

. The stochastic ELBO
gradient estimate becomes

∇̂ψLQ(ψ;D) =
1

N

N∑
j=1

∇ψ log
π(Tψ(ϵj))

∏n
i=1 p(yi |xi, Tψ(ϵj))

ϕ(ϵj)
∣∣∣det dTψ(ϵj)dϵ

∣∣∣−1 (13)

where ϵj
i.i.d.∼ N (0, I). This can conveniently be computed using automatic differentiation engines.

For BNNs the variational family Q needs to be simple enough to be able to store the variational parameters ψ in memory,
as even quadratic memory requirement in the number of model parameters is prohibitive. The mean-field assumption is
commonly employed (Blei et al., 2017; Farquhar et al., 2020b) where the variational distribution factorizes q(θ;ψ) =∏
i q(θi;ψi)

2. In particular, for BNNs the most commonly used variational family is the mean-field Gaussian q(θi;ψi) =
N (θi;µi, σ

2
i ) where ψ consists of a vector of means µ(q) and a vector of scales σ(q).

2Even though this seems like a restrictive family, enforcing independence, it has been shown to be expressive in deep networks
(Farquhar et al., 2020a)
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In many cases, the KL term of Equation (12) is available in closed form, allowing one to reduce the variance of the gradient
estimator:

∇̂ψLQ(ψ;D) =
1

N

N∑
j=1

n∑
i=1

∇ψ log p(yi |xi, Tψ(ϵj))−∇ψDKL(q(θ;ψ) ∥ π(θ)). (14)

For example, in the mean-field Gaussian case with mean-field Gaussian prior π(θ) = N (µ(π), σ2,(π)),

DKL(q(θ;µ(q), σ(q)) ∥ π(θ)) =
∑
i

(
log

σ(π),i

σ(q),i
+
σ2
(q),i + (µ(q),i − µ(π),i)

2

2σ2
(π),i

− 1

2

)
. (15)

In practice, one needs many ad-hoc tricks and tweaks to make VI work on larger models (Farquhar et al., 2020a). Without
these, optimization fails due to the high variance of the stochastic gradients. To reduce this, practitioners have initialized
the variational variances to very small values to aid the first stage of optimization, used early stopping criteria, or used the
β-ELBO3 with a β < 1:

L(β)
Q (ψ;D) =

n∑
i=1

Eθ∼q(·;ψ) log p(yi |xi, θ)− βDKL(q(θ;ψ) ∥ π(θ)), (16)

over-weighting the observation likelihood compared to the regularization term, allowing a tighter fit to the data at the cost of
less regularization towards the prior.

B.3. Laplace Approximation

The Laplace approximation (Laplace, 1774) provides a local Gaussian approximation of a distribution around its MAP. It
has been widely used as an approximate Bayesian inference algorithm (MacKay, 1992a) both classically and recently in the
context of Bayesian deep learning (Daxberger et al., 2021; Schnaus et al., 2023).

Laplace approximation makes a second-order approximation to the log-density of the distribution: given a probability
density f(θ) and a MAP solution θMAP,

log f(θ) ≈ log f(θMAP) +∇ log f(θMAP)
⊤(θ − θMAP) +

1

2
(θ − θMAP)

⊤∇2 log f(θMAP)(θ − θMAP) (17)

= log f(θMAP) +
1

2
(θ − θMAP)

⊤∇2 log f(θMAP)(θ − θMAP) (18)

assuming the gradient vanishes at the MAP, resulting in the approximation

f(·) ≈ N (·; θMAP, [−∇2 log f(θMAP)]
−1) (19)

once the density is normalized.

While Laplace and Gaussian VI both produce approximate Gaussian posteriors, it is important to note that VI is a global
approximation whereas Laplace is a local approximation. We will see in our experiments how this distinction defines the
behaviors of their approximate posteriors.

In the context of Bayesian inference, the likelihood factorizes log π(θ | y) = log π(θ)+ log p(y |x, θ)+ const. Alternatively,
to the Hessian of the negative log-likelihood, it is common to use the Fisher information matrix

I(θ) = −E
[
∇2 log p(Y |x, θ) | θ

]
= E

[
(∇ log p(Y |x, θ))(∇ log p(Y |x, θ))⊤ | θ

]
(20)

or the empirical Fisher
Î(θ) = (∇ log p(y |x, θ))(∇ log p(y |x, θ))⊤ (21)

at θMAP. A further widely used alternative is the generalized Gauss-Newton (GGN) matrix, which is a positive semi-definite
approximation to the Hessian, coinciding with I for common observation models (Daxberger et al., 2021; Murphy, 2012).

3Analogously to the β-VAE (Higgins et al., 2016).
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The size of the Hessian is quadratically large in the number of model parameters, which is prohibitive for real-world BNNs
of thousands or millions of parameters. This necessitates further approximations. The simplest is a diagonal approximation
to the Hessian or the Fisher information matrix (MacKay, 1992b). Even though it is a restrictive approximation enforcing
independence in the posterior, recent work by Farquhar et al. (2020b) found it to remain expressive for deep networks.

Other approximations produce low-rank or block-diagonal Hessian or Fisher matrices. In particular, the popular Kronecker-
factored approximate curvature (K-FAC) (Martens & Grosse, 2015; Daxberger et al., 2021; Schnaus et al., 2023) block-
diagonal approach further factorizes the per-layer Fishers, which are themselves infeasible to store for large networks.

We note that the diagonal Laplace approximation we evaluate is not the most expressive. However, having run full-rank
Laplace experiments on smaller networks where it is feasible, we have seen no reason to assume these qualitative behaviors
change for more expressive Laplace approximations, including K-FAC.

B.4. SWAG

Stochastic weight averaging (SWA)-Gaussian (SWAG) (Maddox et al., 2019; Wilson & Izmailov, 2020) is a heuristic
post-hoc method of obtaining approximate posteriors of trained deep learning models. Interpreting the loss as the negative
log-likelihood, the trained solution is θMAP. SWAG performs further gradient descent updates on θ with a high learning
rate η, exploring the region of the weight space near θMAP. We record the trajectory of θ and fit a low-rank Gaussian to
these samples to get the approximate posterior.

Its motivations are arguably Bayesian. These include the local quadratic nature of the loss function around θMAP, the same
fact that is exploited by Laplace. The η hyperparameter controls the posterior variance: the larger the learning rate is, the
higher-variance the samples from the trajectory. It has been used by Shwartz-Ziv et al. (2022) in the context of Bayesian
deep learning to pretrain a prior for a transfer learning task.

B.5. SGLD

Stochastic Gradient Langevin Dynamics (Welling & Teh, 2011) is a popular practical Markov Chain-based sampling scheme
for BNNs. The continuous-time Langevin diffusion with stationary measure π(θ | D) is

dθt = −∇ log π(θ | D)dt+
√
2Bt

where Bt is a Brownian motion. The score log π(θ | D) makes it tractable to deal with the posterior because the normalizing
constant cancels out. To simulate this continuous-time dynamics, one traditionally uses Euler discretization schemes

θt+1 = θt − ϵt∇ log π(θt | D) +
√
2ϵtξt,

where ϵt is the learning schedule and ξt
i.i.d.∼ N (0, 1). For further computational efficiency, one would take stochastic estimates

of the gradient by estimating it in batches of size b:

θt+1 = θt − ϵt

∇ log π(θt) +
|D|
|Bt|

∑
(x,y)∈Bt

∇ log p(y | θ;x)

+
√
2ϵtξt.

For large batch sizes and small ϵ, we expect the chain to be close to the stationary distribution; however, the discretization
and the stochastic gradient estimate both introduce some bias. It is possible to add a Metropolis-Hastings-style accept-reject
step to the algorithm to unbias it, but most practical algorithms choose to skip this step for computational efficiency, arguing
that the bias is compensated for by decreased variance.

B.6. Further Bayesian and Non-Bayesian Alternatives

Other Bayesian approximate inference algorithms include Monte Carlo dropout (Gal & Ghahramani, 2016), and further
variants of stochastic-gradient Monte Carlo (Chen et al., 2014; Zhang et al., 2020; Wenzel et al., 2020).

There are various further methods for averaging over different models or producing uncertainty estimates that are not
traditionally considered Bayesian in their motivation. Deep ensembles (Lakshminarayanan et al., 2017) are state of the art
for accuracy and out-of-sample detection on many tasks. They are an ensemble of K different MAP solutions θ(k)MAP, often
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trained with an added repulsive force between them to ensure they converge to different MAP solutions in terms of their
generalization behavior. Even though they are not widely considered a Bayesian approach, there have been arguments for
considering these discrete model averages as an approximation to the BMA (Wilson & Izmailov, 2020; D’Angelo & Fortuin,
2021)

1

K

K∑
k=1

p(y |x, θ(k)MAP) ≈
∫
Θ

p(y |x, θ)π(dθ | D). (22)

For modern large-scale models, training multiple MAPs is not feasible, offering a future research direction of more scalable
ensemble-based methods.

Other non-Bayesian approaches include epistemic neural networks (Osband et al., 2023) that incorporate a small amount of
randomness as input to the network, which allows marginalization of joint predictions.

C. Martingale Posteriors: A Review
In this section we briefly discuss the martingale posterior framework of Fong et al. (2023), and provide more context on how
we apply its ideas to test for Bayesian behavior.

The traditional Bayesian approach is to conduct a prior-posterior calculation on some parameter of interest. Specifically, in
the i.i.d. setting, with an observed sample Y1:n, we specify a prior density π(θ) and a sampling density fθ(y) to derive the
posterior π(θ | y1:n). This posterior is then used to compute the predictive density

p(y | y1:n) =
∫
fθ(y)π(θ | y1:n)dθ

The fundamental premise of Fong et al. (2023), however, is that statistical uncertainty arises due to missing observations.
If a complete population could be observed, any identifiable parameter of interest would be known precisely. Under this
viewpoint, the foundation of Bayesian inference is not to update a prior distribution, but to assign a predictive distribution
on the missing observations conditional on what has been observed. Uncertainty is then indexed over different possible
imputations of the complete dataset.

More specifically, Fong et al. (2023) partition inference into two tasks: simulating the missing future data Yn+1:∞ (or, in
practice, Yn+1:N for some sufficiently large N ), and then recovering the parameter of interest from this complete data.
Given the observed y1:n, the key component for this pipeline is a sequence of one-step-ahead predictive distributions
{p(· | y1:i)}i≥n, which simulate an infinite future dataset Yn+1:∞ through a sequential process of predictive resampling:

Yn+1 ∼ p(· | y1:n), Yn+2 ∼ p(· | y1:n+1), . . . , YN ∼ p(· | y1:N−1) for N → ∞.

The parameter of interest, denoted θ∞, is then computed from the combined observed and imputed data {y1:n, Yn+1:∞}.
The distribution of this computed θ∞ is defined as the martingale posterior distribution.

The underlying justification for this approach applies a result from Doob (1949), which demonstrates an equivalence between
Bayesian parametric and predictive uncertainty. In the above example, the authors demonstrate that choosing the standard
Bayesian posterior predictive distribution would indeed recover the conventional posterior distribution of the parameter.

C.1. Predictive Evaluations of Bayesian Updating

The predictive representation of Bayesian inference presented above suggests the possibility of predictive diagnostics to
evaluate whether models are respecting the properties of Bayesian inference. For instance, Falck et al. (2024) use this
one-step-ahead characterization to probe whether large language models are Bayesian in their in-context learning abilities,
answering negatively.

Mlodozeniec et al. (2024) take a similar approach to probe small-scale Bayesian deep learning models via repeated re-
training for sequential inference. They evaluate whether various predictive rules are “implicitly Bayesian” by testing whether
new predictions are exchangeable with observed data, finding that Bayesian algorithms may fall short on this test in practice.

In the case of BNNs, the martingale posterior framework mirrors existing trends that decouple Bayesian inference from
the standard parametric interpretation, and instead takes a functional perspective focused on behavior in predictive space.
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However, one-step-ahead predictives correspond to re-training the Bayesian model with an extra (synthetic) observation
repeatedly, which is infeasible for at-scale neural network models.

C.2. Our Adaptation for BNNs

To test the extent of adherence to Bayesian principles in real-world BNN settings, we therefore adapt this framework into a
single-step predictive resampling procedure, presented in Section 6.

Broadly speaking, our resampling approach corresponds to jointly generating Yn+1:N ∼ p(· | y1:n) as N → ∞ (corre-
sponding to the synthetic labeling procedure) instead of the one-step-ahead decomposition. In the asymptotic case, Doob’s
result implies that the resampled dataset recovers the true setting of the parameters θ. In the finite case, however, we
leverage Proposition 6.1’s coherence property to see that we recover the initial setting of the parameters in distribution.
This finite-case predictive coherence result allows us to probe at-scale BNNs by using test functions (the Bayesian model
average) to investigate the closeness of the finitely-resampled martingale posterior distribution to the initial distribution.

C.3. Conditions for the Martingale Posterior to Be Well Defined

In the context of Section 6, most generally, let us consider samples imputed from some predictive p′(dy∗). Assume that
for (p′-almost) every y∗ the updated belief density exists πy∗(θ). Then, by Fubini’s theorem, MPY ∗π(θ) is a well-defined
density.

Further, we often care about a quantity of interest, Eθ∼MPY ∗ (·)h(θ), for example, the BMA of Appendix A in the case of our
experiment. For these martingale posterior predictions to be well defined, we also require that∫∫

|h(θ)|πy∗(θ)p′(dy∗)dθ <∞.

This is satisfied in our classification experiments because the BMA is bounded.
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D. CIFAR and IMDB Experimental Setup
The setups of the CIFAR and IMDB experiments are entirely based on the work of Izmailov et al. (2021b). We de-
liberately choose a working codebase and replicate the exact settings from one of the prominent papers in the field
where Bayesian algorithms are shown to significantly outperform point predictions. This is to ensure that our experi-
mental findings around shortcomings are not merely an artifact of suboptimal hyper-parameterization. Specifically, we
follow the hyper-parameters from Table 4 of Izmailov et al. (2021b). We make our fork of their codebase available at
github.com/pitukg/bnn_seq_vi/tree/master/bnn_hmc.

E. Martingale Posterior Experiment: Further Details and Results
E.1. Estimation

We described the estimation of the empirical martingale posterior distribution in the concrete setting of the CIFAR-10
experiment in Section 6. This section elaborates further on the methodology to sample synthetic labels, and calculate
bootstrapped confidence intervals for reproducibility.

Recall that we wish to do predictive resampling of the set of observations Y ∗ at x∗ given the posterior predictive∫
p(· | θ;x∗)π′(dθ). Given the conditional independence of the Bayesian setup, the observation model factorizes.

This gives us the following procedure: use the π′ posterior to sample a setting of the parameters θ, then noise the predictions
fθ(x

∗) through the observation model Y ∗ ∼ p(· | θ) = p(· | fθ(x∗)). In the classification setting, this “noising” means
calculating the logits from the sampled model θ, and drawing independent categorical variables according to those logits for
each unlabeled observation. For regression, it similarly means noising the predictions with independent variables according
to the observation model.

Given access to n i.i.d. synthetic labelings {ŷ∗i }ni=1, we approximate a retrained posterior π̂′′
i (θ) = π(x,y)∪(x∗,ŷ∗i)

(θ) for
each. Then, we want to ensemble these posteriors to produce the empirical martingale posterior. A group of k samples is
drawn from the individually retrained synthetic posteriors each {θ̄ji ∼ π̂′′

i (·)}kj=1. Under Bayesian inference, according to
Section 6, each θ̄ji is distributed as π′, although they are not independent within groups. Specifically, any integrable test
function h(θ) is consistently approximated by our empirical martingale posterior as

Eh(θ) ≈ 1

nk

n∑
i=1

k∑
j=1

h(θ̄ji ).

We could pick any (integrable) test function to check the equivalence of the two distributions by comparing its expectation
under both. We pick the Bayesian model averaged predictions from Appendix A. The model-averaged logits of the
individually retrained posteriors are averaged to get our empirical martingale posterior BMA.

For VI, we simply sample n = 20 settings of the parameters corresponding to ordinal seeds, and k = 20 ensembling
samples. For SGLD, we take n = 18 equally spaced checkpoints post-warmup, from 1450 to 9950, using all k = 900
correlated Markov chain samples to ensemble the posteriors. The seeds used to draw the noising variables for labeling
images match the seeds for the π′ samples (for VI), or the checkpoint indices (for SGLD).

To get confidence intervals on our martingale posterior distribution test metrics, we resample and ensemble these individually-
retrained synthetic posterior model averages with replacement, yielding a bootstrap confidence interval around the empirical
martingale posterior BMA. Concretely, let {Bi

i.i.d.∼ U [1, n]}ni=1 be random bootstrap indices resampling the individually
retrained synthetic posteriors with replacement. The bootstrapped value of a test statistic h(θ) is given by

h(B)(θ) =
1

nk

n∑
i=1

k∑
j=1

h(θ̄jBi),

whose quantiles give an asymptotic confidence interval for our empirical martingale posterior mean estimator above, because
between groups, the θ̄ji are independent.
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E.2. IMDB Experiment

In addition to the CIFAR-10 result of Section 6, we perform the martingale posterior test on the IMDB text classification
dataset.
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(a) IMDB martingale posterior evaluation.
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Figure 9: Martingale posterior Bayesian model averages on IMDB splits of size 4000 each. These plots correspond to
Figures 7 and 8, respectively. The VI results are almost identical, strengthening the argument that the martingale posterior
can provide performance gains in this setting. For SGLD the performance comparison of the martingale posterior is
inconclusive. In this binary classification case SGLD is already very underconfident, and while more ensembling leads
to comparable or slightly better accuracy, this does not translate to improved likelihood under this mis-calibrated setting.
However, we still observe significant incoherence in uncertainty calibration, which this experiment was originally set up to
test.
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F. Sequential Inference Experiment: Additional Results
F.1. CIFAR-100 Results
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Figure 10: BMA comparison of single-step and sequentially trained CIFAR-100 MFVI posteriors. Mean and standard
deviation of test metrics from Appendix A are shown across 3 seeds. The single-step posterior significantly outperforms the
two-step iterated posteriors across all three metrics. Unlike CIFAR-10 and IMDB, here the SGD baseline does not show
improvement. Although the informative initialization seems to helps at the beginning of training on the second split, the
different training hyperparameters may mean this information is lost by the end of its training. Regardless, the performance
drop from iterated VI training is even more pronounced than in Figure 4.

F.2. CIFAR-10 Experiment with PCA Split

We perform the experiment of Section 5.1 on CIFAR-10 a second time, on a non-randomized split along the first PCA
direction of the training set. This is analogous to the regression analysis in Section 5.1 where we split the dataset along the
x axis. Classical Bayesian learning methods such as Gaussian Processes are able to preserve uncertainty in regions with no
observations by falling back to the prior, and we have collected evidence that some Bayesian deep learning methods may not
do so. This experiment may suggest potential further inconsistencies on top of the results from Section 5.1, but a conclusive
explanation would require more evidence.
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Figure 11: Comparing random and PCA-split CIFAR-10 sequential MFVI experiments. We perform the experiment in
two ways: training on the PCA split in the two possible permutations (mean and std across 20 seeds). In the first training
step the PCA split underperforms the randomized training, as one might expect. On the second split, however, the results are
inconclusive: in one of the runs PCA looks worse than random, but in the other run it looks equally as good.
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G. Synthetic Regression Experimental Setup
We make our codebase for the synthetic regression experiments available at github.com/pitukg/bnn-msc.

G.1. Tasks

In our experiments we consider synthetic regression tasks. Even though real-world BNNs are almost exclusively used for
classification tasks, there is high relevance of BNN’s performance and behavior on regression tasks. The pre-activation of
the last layer of classifier architectures (usually a softmax layer) is a low-dimensional (unconstrained) vector that behaves
like the output of a regressor network. If BNN regressors fail to respect properties of Bayes, that is an indication of failures
for classifiers too, even though they might manifest more gracefully because of the cruder observation model.

The posterior predictive is difficult to visualize if the input is high-dimensional. Therefore, we mainly look at one-
dimensional tasks. In the real world, deep learning is used on very high-dimensional tasks, and there is a possibility that
BNNs on low and high-dimensional tasks behave differently. We also consider tasks where the one-dimensional underlying
input is feature expanded using 100 random Fourier features under a radial basis function kernel (Williams & Rasmussen,
2006). This may provide insight into any differences between BNNs on low-dimensional and medium-dimensional inputs.

We generate toy datasets of the form

Y =

p∑
i=0

βix
i +

1

2

(
1

2
+ x

)
· sin(4x) + ε, ε ∼ N (0, σ2) (23)

for some choice of p and the βi, which is complex enough to behave differently in different regions around zero. We
observe data in two different groups separated by a gap to assess both interpolation and extrapolation uncertainty of posterior
predictives. Because common weight-space priors are not translation nor scale invariant, we consider covariates near zero,
and standardize the observations according to standard practice.

G.2. Architectures

We consider two fully-connected architectures: a small and a larger network. The small network has three hidden layers
with 32, 32, and 16 hidden units each, and has 1,714 model parameters. The larger network has 4 hidden layers with 128,
256, 128, and 64 hidden units each, and has 74,690 model parameters, still short of the number of parameters of many
modern networks.

The non-linearity used is SiLU (“softplus”, “swish”, z 7→ z/(1 + e−z)), which gives a smoother posterior than ReLU and is
standard in Bayesian deep learning.

The observation model, unless otherwise specified, is heteroskedastic: the network outputs a mean µθ(x) and a scale
value σθ(x) parameterized by network parameters θ, and the output is observed as Y |x, θ ∼ N (µθ(x), σ

2
θ(x)). The last

non-linearity of σθ(x) is scaled by 0.2 to control the prior observation noise levels compared to the predictive mean, and a
small number 10−2 is added to it, which helped control the variance of the stochastic estimators for ELBO gradients and
predictive log-likelihood by avoiding vanishing observation likelihoods.

G.3. Priors

In line with standard practice (Fortuin, 2022) we use an isotropic Gaussian prior on weights and biases of the network unless
otherwise stated. We specify the variances according to the He initialization (He et al., 2015): wℓij , b

ℓ
i ∼ N (0, 2

Dℓ
) where Dℓ

is the dimension of the activation into layer ℓ. This ensures that the variance of activations stays constant across the layers.

Note that the isotropic Gaussian prior is not translation invariant in predictive space, in contrast with e.g., Gaussian process
priors. Away from zero, their predictives tend to flatten off. Therefore, in line with standard practice, we standardize the
input features.

G.4. Inference Algorithms

To carry out our experiments we use NumPyro (Phan et al., 2019; Bingham et al., 2019), a probabilistic programming
library in Python built on JAX (Bradbury et al., 2018). NumPyro readily supports efficient HMC and stochastic variational
inference on probabilistic programs.
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• HMC. For HMC inference, we use the adaptive No-U-Turns (NUTS) sampler (Appendix B.1), running four chains in
parallel, each initialized to independent MAP solutions. For larger networks, this choice of initialization proved crucial,
often not mixing when initialized randomly, hinting at the fact that certain parts of the weight space are ill-conditioned,
and HMC does not explore the whole space.

After a burn-in, we use 150 samples from each chain to make predictions, i.e., 600 samples in total.

• VI. We use mean-field Gaussian VI, as in Appendix B.2. In our the KL term of Equation (12) between the prior
and variational distribution is analytic, as both are Gaussian, so NumPyro can use the stochastic gradient estimate of
Equation (14).

To deal with the high variance of the gradient estimates, in line with standard practice (Appendix B.2) we use a number
of tweaks:

– We initialize the variational variances to small values (10−5) so that Var
( ̂∇ψL(β)

Q (ψ;D)
)

is small initially.

Intuitively, Var
( ̂∇ψL(β)

Q (ψ;D)
)

is small if Var
( ̂L(β)

Q (ψ;D)
)
= Varθ∼q(·;ψ) (

∑n
i=1 log p(yi |xi, θ)) is, which in

turn is small when Varθ∼q(·;ψ)(θ) is small.
– We also use momentum through the Adam (Kingma & Ba, 2014) optimizer, and gradient clipping to smooth out

the optimization trajectory.
– Lastly, we use the β-ELBO (Equation (16)) with a suitable β < 1 as the maximization objective. This is necessary

for more stability during optimization, and better posterior fit (Farquhar et al., 2020a).
We pick β = 0.325 for the small network and β = 0.05 for the larger network, based on a grid search comparing
the posterior predictive uncertainty of the resulting posterior to the HMC approximation.

• Laplace. We use the diagonal approximation to the empirical Fisher information matrix Î(θMAP) from Appendix B.3.
Although many in practice use the more expressive K-FAC approximation, there are cases to be made for the diagonal
approximation (Farquhar et al., 2020b), and we have not found even the full-rank Hessian or empirical Fisher to give
qualitatively different posteriors.

To increase the stability of the curvature, we need to add a shrinkage factor λ to the precisions. The diagonal of the
curvature of the loss function l(θ) is ((

∂l(θ)

∂θ1

)2

, . . . ,

(
∂l(θ)

∂θp

)2
)⊤

.

Adding the shrinkage term and inverting element-wise, we get the scales of the isotropic Gaussian posterior:

σi =

√√√√1
/(∂l(θ)

∂θi

2

+ λ

)
.

The added shrinkage decreases the isotropic Gaussian parameter scales, making the posterior more confident in the
MAP solution.

It is also related to the cold posterior phenomenon, artificially making the posterior approximation sharper by decreasing
the variance of the Gaussian in each direction. We pick λ = 300 for the small network and λ = 2000 for the large
network, based on a grid search comparing the posterior predictive uncertainty of the resulting posterior to the HMC
approximation.

• SWAG. Our SWAG implementation relies on the Optax SWAG library (activatedgeek, 2023). 400 samples are collected
during high learning-rate gradient descent, and a rank-20 Gaussian is fitted to them. Based on similar grid search
tuning, η = 0.02 for the small network and η = 0.01 for the larger network.
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H. Synthetic Regression: Tractable Setting
As a sanity check, we compare the approximate posteriors produced by our BNN algorithms to the true analytic posterior in
a Bayesian linear regression setting. To keep higher input dimensionality, we expand into 20 random Fourier features with a
squared exponential kernel, approximating a (sinusoidal) Gaussian process regression.

Recall that Bayesian linear regression with known observation noise admits closed-form posterior updates under a Gaussian
prior. Let Φ(X) ∈ RN×D denote the random Fourier feature matrix for inputs X, with ϕj(x) =

√
2/D cos(w⊤

j x+ bj),
where wj ∼ N (0, κ−1I) and bj ∼ Uniform(0, 2π). We assume the generative model:

Prior: β ∼ N (µ0,Σ0) ,

Likelihood: y | X,β ∼ N
(
Φ(X)β, σ2I

)
,

where σ2 is fixed. By conjugacy, the posterior distribution over weights β is Gaussian:

β | y,X ∼ N (µn,Σn) ,

Σn =

(
Σ−1

0 +
1

σ2
Φ(X)⊤Φ(X)

)−1

,

µn = Σn

(
Σ−1

0 µ0 +
1

σ2
Φ(X)⊤y

)
.

This analytic solution provides a ground-truth baseline for evaluating approximate inference methods. In our experiments,
we set µ0 = 0 and Σ0 = I.

We conclude that, unlike in the at-scale experiments throughout the paper, in this small classical Bayesian problem, even our
approximate inference algorithms such as MFVI adhere to Bayesian properties, even if their approximate posteriors are not
faithful (Figure 13). This further underlines that Bayesian-inspired inference in large-scale Bayesian deep learning models
leads to different behaviors compared to classical settings, and the benefits of a Bayesian approach do not transfer by default.

-2

-1

0

1

2

y

Prior True Posterior HMC SGLD

-5.0 -2.5 0.0 2.5 5.0
x

-2

-1

0

1

2

y

Full-rank VI

-5.0 -2.5 0.0 2.5 5.0
x

Mean-field VI

-5.0 -2.5 0.0 2.5 5.0
x

Full-rank Laplace

-5.0 -2.5 0.0 2.5 5.0
x

Diagonal Laplace

Figure 12: Comparison of approximate BNN posteriors to the true posterior in Bayesian linear regression. At this
scale HMC seems to match the true posterior. SGLD captures increased uncertainty far away from data. Full-rank Gaussian
approximations match the posterior, itself a (full-rank) Gaussian, but diagonal approximations are qualitatively very different.
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(b) MFVI inference

Figure 13: Comparing MFVI to analytic posterior in sequential inference. The setting replicates that of Figure 3. Exact
inference demonstrates the desired coherent behavior. MFVI updating still shows coherence, despite its apparent lack of
faithful posterior representation. For this classical Bayesian setup, even our inexact approximate inference schemes exhibit
Bayesian properties. This contrasts the BNN behavior we find at scale.
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I. Synthetic Regression: Homoskedastic Observation Models
For the purposes of the synthetic regression experiments presented elsewhere in the paper, we made the choice to use a
heteroskedastic observation model Y |x, θ ∼ N (µθ(x), σ

2
θ(x)) where fθ(x) = (µθ(x), σ

2
θ(x)). This choice was made to

increase model complexity to get closer to large-scale problems that Bayesian deep learning solutions will encounter in
practice.

We recognize that estimating variance is inherently more difficult than estimating the mean, see e.g. Detlefsen et al. (2019).
Therefore in Figure 14 we repeat our sequential experiment from Section 5.1 under homoskedastic observation models.
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(b) Inverse Gamma prior on noise scale.

Figure 14: MFVI sequential inference under homoskedastic observation models. In both cases, the results agree with
the conclusions of Figure 3.
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J. Synthetic Regression: Further Results
In this section we present further results regarding our synthetic regressions experiment for completeness. In particular, we
give evidence for the robustness of our regression results to scaling the network architecture via larger hidden layers or the
input dimension random Fourier feature (RFF) expansion.

J.1. Posterior Uncertainty for Larger Networks

Recall from Appendix G that we perform our experiments on two network architectures with a smaller and a larger network
size, and also on a Fourier feature-expanded version of those architectures. Here we begin presenting these complementary
results.

In Figure 15 HMC appears to produce uncertainties in line with our expectation, reducing near the data, and increasing
where there have been no observations, including in-between the two groups of observations. VI and Laplace also produce
somewhat acceptable uncertainty, but their BALD scores highlight differences in their uncertainty from HMC. SWAG fails
to produce sensible uncertainty, and its BMA even fails to fit the data well.

Figure 15: Larger network approximate posteriors trained on one-dimensional toy regression task. They are
represented by the posterior predictive means, 90% credible sets for the mean representing model uncertainty, 90% credible
sets for the observation representing full predictive uncertainty, and their BALD scores (measured in natural units of
information) giving insight into underlying weight-space uncertainty.
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Figure 16: Cross-sectional predictive log-likelihoods of approximate posteriors from Figure 15. We use the estimator
from Equation (6) to compute predictive log-likelihoods at x = 0. The results strengthen the finding of Figure 6: the VI
posterior being much heavier tailed than HMC, and Laplace and SWAG posteriors being slightly lighter tailed.

Figure 17: Feature-expanded smaller network approximate posteriors trained on one-dimensional toy regression
task. The input x is expanded into 100 random Fourier features (RFF) from the RBF kernel, inducing Gaussian Process-like
predictives. Again, the HMC approximate posterior uncertainty looks sensible; VI uncertainty is somewhat reasonable but
attributes more importance to observing at x = 1. The Laplace approximation generalizes very differently from others, and
SWAG fails to capture pointwise uncertainty in a sensible way.
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J.2. Sequential Inference

Figure 18: Smaller network sequential VI inference. The first step of inference seems to over-weight flat functions and
not put enough weight on tighter-fitting functions, causing later inference steps (even HMC) not to fit the first group of
observations.

Figure 19: Larger network sequential VI inference with RFF expansion. Similarly to Figure 18, the first step of inference
seems to introduce too much inaccuracy for later steps to fit the first half of the data particularly well.
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Figure 20: Small network Laplace sequential inference. The MAP is flat, and Laplace puts weights on models close to
the MAP. The prior after the first step of inference is so restrictive that the subsequent MAPs stay flat too, and even HMC
cannot put mass on non-flat functions. This shows complete failure of Laplace to represent the posterior faithfully in this
particular case.

Figure 21: Small network Laplace sequential inference with RFF expansion. The feature expansion allows the functions
to be richer, and aims to generalize this demonstration to higher-dimensional settings. The small network is chosen so that
the MAP is no longer flat under the prior induced by the network. The random Fourier features are taken from the RBF
kernel, hence the similarity to kernel ridge with the return-to-zero behavior. Uncertainties do not respect presence of data,
and catastrophic forgetting still occurs, even though weaker than without feature expansion.

J.3. Dataset Admitting a Flat MAP

Here we demonstrate a further pathology of approximate inference in our synthetic regression setup. We pick a range of x
values from our regression data that are clustered around zero, where we may reasonably expect our posterior to mix over
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two classes of functions, but some of our algorithms fail to do so.

Figure 22: Posterior function draws on dataset admitting both flat and nonlinear fits consistent with the prior. One
might reasonably expect the posterior to mix over flat functions with higher observation scale and non-linear functions with
smaller observation scale. The HMC approximate posterior is mostly in line with this expectation, so it VI although with
smaller point uncertainty, however, Laplace and SWAG approximate posteriors fail to represent any non-linear fits, the local
approximation potentially breaking down in an ill-conditioned flat region of the parameter space.

J.4. Intermediate Posterior Forgetting Experiment with VI, and Its Dependence on β

Figure 23: Pretraining larger network with mean-field VI with tuned β = 0.05. The experiment in Section 5.2 is repeated
using mean-field VI to pretrain the intermediary posterior. Subsequent HMC inference is performed with this intermediate
posterior as prior, observing data from a shifted distribution. The initial VI posterior appears somewhat reasonable here: it
puts weights on functions that match the pretraining data, but keeps some amount of uncertainty elsewhere, even though
there is no substantial increase in uncertainty in between observations. As we observe new points with the intermediate
posterior, the observation noise variance of the likely models increases. However, after only 25 points the original data is
fully forgotten, inconsistent with the fact that it should take 50 fresh data points to shift the posterior mean to zero. The
single-step HMC approximation is able to produce a sensible posterior mean around zero.
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The β hyperparameter (see Appendix B.2, Equation (16)) affects the weighting of information in the VI intermediary
posterior: a β < 1 overweights the likelihood term compared to prior regularization through the scaled KL divergence.
In the intermediary posterior, this means a β < 1 is supposed to over-weight pretraining samples compared to the initial
uninformative prior. When HMC inference is performed on this distribution as a prior, one might expect the HMC posterior
to favor the original pretraining observations over new data. However, in this case, they are still weighted less compared to
fresh observations after HMC inference: forgetting still happens!

An even smaller value of β here corresponds to encoding the pretraining observations even more strongly into the intermediary
posterior; therefore, we expect forgetting to manifest to a lesser extent. While we do observe smaller values of β to weight
pretraining observations more, the setting of β < 0.001 where the weighting is correct leads to otherwise qualitatively
inaccurate, ill-regularized posterior. We have found the four HMC chains not to mix for such small values of β, hinting at
ill-conditioning in the resulting VI posterior.

We saw a similar result for Laplace in Section 5.2, where despite the shrinkage of the Laplace approximation towards
the MAP model (making the approximate distribution more confident on the MAP behavior, albeit without misweighting
observations and priors), forgetting also occurred. This surprising observation further demonstrates that practical VI does
not respect information as a Bayesian model is supposed to.
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K. Model Misspecification
To underpin some of the issues in the classical Bayesian literature with suboptimal behavior and pathologies of misspecified
Bayesian models, we give a short review and demonstrate empirically that such pathologies can occur for BNNs, too.

Bayes is a principled scheme to update beliefs, which is optimal in the sense defined by Bissiri et al. (2016), provided the
model is specified correctly. However, “all models are wrong” (Box, 1976), and in general we do not have any guarantees
about what Bayes may do under misspecification. In classical statistics there are many theoretical and empirical results about
inconsistency and the sub-optimality of Bayes on misspecified models (Masegosa, 2020; Grünwald & van Ommen, 2017).

BNNs may also be misspecified. As Bayesian models, BNNs consist of the neural network outputs and the observation
model. Even though the underlying neural network is very expressive, it will not be able to perfectly represent real-world
data-generating processes. For classification, the observation model is given; therefore, we do not expect misspecification
to affect classifiers much, but problems may arise, e.g., when making joint predictions. Regression settings are sensitive
to the observation model, and in general, we cannot specify the true observation noise distribution, which may lead to
inconsistency (Zhang & Nalisnick, 2021).

Appendix K.2 demonstrates a concrete example where Bayesian inference is inconsistent under misspecification.

K.1. Robustness to Covariate Shift

Covariate shift in a dataset means the distribution of the covariates differs in train and test sets. Even though the observation
model conditionally on the inputs might be correctly specified (e.g., classification), it violates the implicit modeling
assumption that train and test come from the same distribution. On real-world datasets, covariate shifts occur frequently,
as the train set is often carefully curated and augmented, inputs may be noisier at inference time, or usage patterns of an
inference system may change over time.

K.1.1. IS THE MAP MORE REGULARIZED THAN THE MODEL-AVERAGED PREDICTOR?

The massive empirical success of deep learning suggests that the MAP solution in deep neural nets found by stochastic
gradient methods has good generalization performance. This implicit form of regularization has been demonstrated in
classical statistics too, e.g., gradient descent on linear regression leads to solutions with small Euclidean norm (Gunasekar
et al., 2018).

As we saw in Section 2 the true BNN posterior is a marginalized model through BMA. It has been argued in Wilson (2020);
Wilson & Izmailov (2020) that this marginalization property is itself the case for Bayesian deep learning, making BNNs
generalize well in a data-efficient way. But given the well-regularized behavior of the MAP region of the parameter space,
the question arises if averaging over models in different regions of the parameter space can lead to loss of robustness
compared to the MAP.
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Deep ensembles, averaging over multiple MAP solutions, have often outperformed the BMA. In fact, perhaps their success
could also be attributed to the favorable generalization behavior of MAPs, when compared to non-MAP models with
posterior mass.

K.1.2. EXISTING EVIDENCE

It has been widely observed, e.g. in Izmailov et al. (2021a;b), that the Bayesian model-averaged predictive is less robust to
covariate shift than the MAP. HMC is shown to significantly underperform the MAP solution on datasets like MNIST or
CIFAR-10 with corruptions introduced to the test set, even in cases where HMC outperforms MAP on the task without shift.

A concrete example for robustness of MAP is described in Izmailov et al. (2021a). In the simplest case, consider “dead”
pixels where an input pixel is always set to zero on the train set. Under most current BNN priors (weights independent with
a mode at zero) the MAP solution will set the weights associated with this pixel to zero. However, in the Bayes posterior
those weights are distributed according to their prior, therefore the BMA solution depends on the value of this pixel in test.
This leads to higher variance in the estimator and may lead to worse generalization.

K.1.3. SPURIOUS CORRELATIONS EXPERIMENT

To further demonstrate Bayesian model averaging leading to worse robustness, we consider a regression task with spurious
correlations. We consider a task with standard Gaussian covariates with pairwise correlation ρ in train, but independent in
test. The response is generated according to Y |x ∼ N (x1, σ

2). We train a BNN on this model.

In this case, all features are informative in train, but the first feature is slightly more informative than the rest. We may
expect MAP to put predictive power on the most informative feature, and the Bayes posterior to average over models picking
different predictive features too.

Table 1: Mean squared errors on spurious correlation task. The use of Laplace prior, equivalent to lasso regularization
in linear models, induces sparsity: MAP selects the optimal model, picking the first feature only, whereas HMC averages
over the optimal and suboptimal models. Under Gaussian prior, both solutions pick many features instead of sparsity in the
solutions. This also demonstrates the strong, and sometimes counter-intuitive effects that changing to a seemingly similar
prior can have on the inference process, highlighting that simple weight-space priors do not capture our prior beliefs well.
These results generalize to Bayesian linear regression and other BNN architectures.

LAPLACE PRIOR GAUSSIAN PRIOR

MAP 0.0046 0.9059
HMC 0.1479 0.9045

This experiment demonstrates that the MAP may indeed be more regular, leading to better generalization performance, and
converging to the optimal model faster. On the other hand, one might argue that if the BNN prior was to capture our beliefs,
the Bayes estimator is decision theoretically optimal under the L2 loss, so its behavior is reasonable. However, the MSE on
the shifted dataset is in effect a different loss function. We argue, with today’s BNN priors that cannot be said to capture our
beliefs well, one should ask which behavior leads to better practical performance in real use cases.

K.2. Classical Misspecification Experiment: Does Posterior Get Better with More Data?

The Bernstein–von Mises theorem states that the (well-specified) Bayesian posterior asymptotically collapses to the true
model. If the true model is, in fact, in the range of candidate models, this consistency property is, of course, desirable.

If the observation model is misspecified, under some conditions the Bernstein–von Mises theorem still holds (Bochkina,
2019), but this collapse leads to inconsistency, preventing the inference scheme from converging to a predictive distribution
that matches the true distribution the closest (e.g., in KL divergence).
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Figure 24: Divergence of misspecified Bayesian posterior predictive from true generating distribution versus number
of observations. Performance of Bayesian inference degrades as more data is observed under a misspecified model.
As the Bayes posterior collapses to a single model, the posterior predictive gets further and further away from the true
data-generating distribution as measured by KL divergence.

To demonstrate the inconsistency of Bayesian inference on a misspecified model, we take the following task. The true data
generating distribution is a coin flip between −1 and 1, and we model it as Y |µ ∼ N (µ, σ2) with σ fixed and µ ∼ N (0, 1).

In this case, the distribution µ ∼ Bern({−1, 1}) minimizes the KL divergence between the true data generating distribution
and the posterior predictive distribution. However, simple calculation shows that the Bayes posterior collapses to µ = 0,
supported by the simulation in Figure 24 too.

This simple experiment demonstrates that Bayesian inference does not find the optimal distribution over parameters that
captures the true distribution the best. In the case of misspecification, we might become overconfident in a badly fitting
model. This is worth keeping in mind for BNNs too, especially for regression, where inference is sensitive to the choice of
observation model.
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