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Abstract

Theory of Mind (ToM)—the ability to reason
about the mental states of other people—is a key
element of our social intelligence. Yet, despite
their ever more impressive performance, large-
scale neural language models still lack basic the-
ory of mind capabilities out-of-the-box. We posit
that simply scaling up models will not imbue them
with theory of mind due to the inherently symbolic
and implicit nature of the phenomenon, and in-
stead investigate an alternative: can we design
a decoding-time algorithm that enhances theory
of mind of off-the-shelf neural language models
without explicit supervision? We present SYM-
BOLICTOM, a plug-and-play approach to reason
about the belief states of multiple characters in
reading comprehension tasks via explicit sym-
bolic representation. More concretely, our ap-
proach tracks each entity’s beliefs, their estima-
tion of other entities’ beliefs, and higher-order
levels of reasoning, all through graphical repre-
sentations, allowing for more precise and inter-
pretable reasoning than previous approaches. Em-
pirical results on the well-known ToMi bench-
mark (Le et al., 2019) demonstrate that SYM-
BOLICTOM dramatically enhances off-the-shelf
neural networks’ theory of mind in a zero-shot
setting while showing robust out-of-distribution
performance compared to supervised baselines.
Our work also reveals spurious patterns in exist-
ing theory of mind benchmarks, emphasizing the
importance of out-of-distribution evaluation and
methods that do not overfit a particular dataset.
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Alice and Bob are in a room with a basket and a box. 
Alice puts some celery in the basket and leaves the 

room. Bob then moves the celery into the box. 

Where will Bob search for the celery? (*) 
Where does Bob think that Alice  

will look for the celery when she returns? (**)
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Figure 1. A simple story requiring theory of mind. Note that Al-
ice’s belief of the celery’s location differs from reality (i.e. Alice
holds a false belief ). Readers must reason that Alice will look
for the celery where she left it, and that Bob will make that same
assumption. Questions shown require different depths of mental
state modeling.

1. Introduction
Reasoning about other people’s intentions, desires, thoughts,
and beliefs is a cornerstone of human social intelligence.
Children naturally develop an understanding of every indi-
vidual’s unique mental state and how it might impact their
actions (Frith et al., 2003). Known as Theory of Mind (ToM)
(Premack & Woodruff, 1978), this ability is crucial for effi-
cient and effective communication.

Cognitive and literary studies have extensively argued theory
of mind’s key role in understanding stories, in order to
explain and predict each character’s actions (Zunshine,
2006; Carney et al., 2014; Leverage et al., 2010; van Duijn



et al., 2015, inter alia). As exemplified in Figure 1, readers
need to model Bob’s mental state (called first-order ToM),
as well as Bob’s estimation of Alice’s mental state (second-
order ToM) to answer questions.

Despite recent progress in language understanding abilities,
large language models have been shown to lack theory of
mind skills (Sap et al., 2022). Existing efforts to enable them
have primarily relied on supervised methods (e.g., Grant
et al., 2017; Nematzadeh et al., 2018; Arodi & Cheung,
2021). However, current reading comprehension datasets for
theory of mind reasoning are simplistic and lack diversity,
leading to brittle downstream models which, as we show,
fail with even slight out-of-distribution perturbations.

We introduce SYMBOLICTOM, an inference-time method
that improves large language models’ theory of mind ca-
pabilities by augmenting them with an explicit symbolic
graphical representation of each character’s beliefs. Unlike
prior efforts, our approach does not require training and in-
stead divides the problem into simpler subtasks, leveraging
off-the-shelf models to solve them, and carefully consolidat-
ing their results. This makes SYMBOLICTOM significantly
more robust than existing models trained specifically for
theory of mind behavior.

While beliefs about the world state differ among people,
most existing work on encoding belief states do not model
this behavior relying on singular graphs (Jacqmin et al.,
2022; Jansen, 2022). SYMBOLICTOM, instead, utilizes a
set of graphs, each representing what the character p1 thinks
that p2 believes that [...] pm assumes to be the current state
of the world, where m is the maximum reasoning depth as
determined by the user. This explicit, recursive mental state
representation enables the model to answer questions from
the perspective of each character. SYMBOLICTOM’s pro-
cess of selecting and querying a particular character’s graph
grounds it in cognitive science research arguing theory of
mind as an essential mechanism of selective attention (Leslie
et al., 2004). Our approach also instills desirable inductive
biases, such as object permanence—for example, object lo-
cations (represented by edges in the graphs) are assumed to
be constant until the method can infer a change. Although
existing NLP datasets only test up to second-order reasoning
(m ≤ 2), SYMBOLICTOM is designed to work at any depth.

SYMBOLICTOM dramatically improves the performance
of large language models in theory of mind reading com-
prehension tasks. For example, GPT-3-Davinci’s (Brown
et al., 2020) accuracy on the ToMi benchmark (Le et al.,
2019) increases by 38 absolute points using SYMBOLIC-
TOM (yielding 92% accuracy averaging across question
types). Furthermore, we extend the ToMi test sets with di-
verse story structures and sentence paraphrases and demon-
strate that our approach is significantly more robust than
supervised approaches.

2. Motivation and Background
Although large-scale language models have recently shown
improvements in some classic theory of mind examples,
they are still far from reliably showing theory of mind ca-
pabilities (Sap et al., 2022; Yu et al., 2022; Ullman, 2023;
Shapira et al., 2023). While the training data for these
models includes human-written stories which require theory
of mind reasoning, this information is largely implicit and
hence difficult for models to learn. ChatGPT and GPT3-
Davinci’s incorrect answers to Figure 1’s question #2 are
shown below.1

ChatGPT (gpt-3.5-turbo): Based on the information
provided, Bob would likely think that Alice will look for the
celery in the box when she returns. Since Bob moved the celery
from the basket to the box, he would assume that Alice would
expect to find it in its new location.
GPT3 (text-davinci-003): Bob will likely think that
Alice will look for the celery in the box, since that is where he
moved it.

Natural stories which make theory of mind explicit are
scarce, necessitating automatically generated, template-
based datasets like ToM-bAbI (Nematzadeh et al., 2018)
and ToMi (Le et al., 2019). However, templated narra-
tives cover limited types of interactions, and include only
simplistic discourse and sentence structures. On the other
hand, relying on human-generated data, e.g., in situated
dialogue (Bara et al., 2021), leads to barriers in dataset size
due to high annotation costs. Moreover, another source
of data—text-based games with multiple characters—also
faces limitations; in particular, modeling mental states is
required mainly to infer intents (Zhou et al., 2022) and to
maintain a consistent style of each character (Qiu et al.,
2022). Rather, in this work, we aim to study and evalu-
ate differences in knowledge and beliefs among multiple
characters, traditional cognitive aspects of theory of mind.

To the best of our knowledge, the only available datasets
for measuring theory of mind in reading comprehension
tasks are ToM-bAbI and ToMi. Because of their templated
nature, supervised training on them is prone to overfitting
to spurious artifacts in the data. While ToMi was developed
to counter this behavior in ToM-bAbI by introducing noise
in the form of flexible sentence ordering and distractor sen-
tences and characters, we show it still faces the same pitfalls.

Due to theory of mind’s inherently implicit nature and lim-
ited naturally available data, in this work, we argue against
supervision as a way forward and instead call for unsuper-
vised, or inference-time approaches that combine modern
neural models and traditional symbolic algorithms.

1Queried on May 22, 2023 with top p=1 and temp=0. Given
the non-deterministic and continuously changing nature of these
models, exact examples may not produce the response we report.
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Figure 2. Pipeline overview of SYMBOLICTOM, a decoding-time algorithm that enhances large language models’ theory of mind
capabilities. SYMBOLICTOM does not require training: it divides the problem into smaller subtasks and uses off-the-shelf models to solve
them. Given a passage, SYMBOLICTOM constructs explicit symbolic graphical representations of each character’s belief states (step 1).
To answer ToM questions, it retrieves relevant sentences from the graph (step 2) and then queries the LLM in a zero-shot manner (step 3).

3. Methods
3.1. SYMBOLICTOM: Algorithm Overview

Our goal is to automatically answer reading comprehen-
sion questions given a story involving multiple characters,
without requiring any supervised training or fine-tuning on
this task. We first introduce key notation, then provide a
high-level overview of SYMBOLICTOM (Algorithm 1).

Notation We use the term k-th order theory of mind to
refer to an estimate of what a character p1 thinks that p2
thinks that [...] pk thinks about the world state. We de-
note this belief by Bp1,...,pk

. We let k ≤ m, where m is a
maximum reasoning depth. This is a user-specified limit,
denoting the maximum recursion that the reader is assumed
to be capable of performing. For instance, in Figure 1, ques-
tions #1 and #2 measure 1st- and 2nd-order theory of mind
respectively; BBob refers to Bob’s beliefs about the current
world state, and BBob,Alice represents Bob’s estimation of
Alice’s beliefs about the world state. In this work, Bp1,...,pk

only represents beliefs about the current world state, without
additional modeling of other characters’ mental states, such
as their opinions.

A benefit of this notation is that any belief state can be rep-
resented as an m-th order one. We assume that what pk
thinks that pk thinks is equivalent to what pk thinks, and by
induction, Bp1...pk

≡Bp1,...,pk,pk,...,pk
, where the last pk is

repeated m−k times. We adopt this notation going forward,
denoting all states as m-th order. As a conceptual note, the
set of belief states {Bp1...pk,qk+1...qm | ∀qk+1, . . . , qm} rep-
resents the mental state from the perspective of p1, . . . , pk,
using m− k order of theory of mind.

Local and Global Context We represent each Bp1...pk

as a graph (a simplified version is depicted in Figure
1) where each node represents an entity (e.g., a charac-
ter, object, room, container) and each edge connects two
nodes with a stated relationship in the story. We con-
struct the graphs by iterating through a story one sentence
at a time, and adding both nodes and edges to the graph
(BELIEFTRACKINGSTRUCTURE; described in §3.2 and Al-
gorithm 2). Each edge is also paired with the sentence from

the story from which it was constructed. We refer to the set
of all belief state graphs as the local contexts. We also main-
tain a global context graph, denoted by G, which contains
the true world state. G has an identical structure toBp1...pk

.
See §A.1 for a detailed definition of G.

Question Answering After parsing a story and construct-
ing the complete set of belief-tracking structures, we can
use these structures to answer questions by querying the
appropriate graph and considering it as the real-world state.
For example, if the question is “Where will Bob think that
Alice will look for the celery?”, we retrieve BBob, Alice, but
if instead the question were “Where will Bob look for the
celery?”, we would retrieve BBob. In both cases, we would
ask “Where is the celery?” on the retrieved graph. Figure 2
shows an example of the full pipeline.

Given a question, we identify the relevant characters
p1, . . . , pk mentioned in order heuristically, and rephrase
the question to ask directly about the world state
(PROCESSQUESTION; owing to the questions’ templatic
nature in our evaluation data, this approach rephrases all
questions correctly).2 We then retrieve the corresponding
graph; i.e., Bp1,...,pk

, of which we can simply ask the ques-
tion “Where is the celery?”. To obtain the answer, we
first reconstruct a subset S′ of sentences in the original
story, consisting of those represented by the retrieved graph
(SENTENCESREPRESENTEDBYGRAPH). We then use a
large language model L to answer the simplified question
zero-shot given S′, using as input the sentences in S′ in
the same order as they appeared in the original text, and
preserving phrasing.3

3.2. Computing the Belief Graphs Bp1...pk

Assuming each story is told chronologically, SYMBOLIC-
TOM processes each sentence s sequentially in two stages

2Our explorations show that GPT3 is also capable of rephrasing
the questions zero-shot (see §A.3), but we refrained from this
solution due to budget concerns.

3We optionally further filter S′ based on the entities mentioned
in the question (FILTERBASEDONQUESTION; §C.1). An ablation
study showed this step can often be skipped.



Algorithm 1 SYMBOLICTOM
B ← BELIEFTRACKINGSTRUCTURE(sentences)
p1,. . ., pk, question

′← PROCESSQUESTION(question)
S′← SENTENCESREPRESENTEDBYGRAPH(Bp1,...,pk )
S′′ ← FILTERBASEDONQUESTION(S′, question)
return S′′, question′

Alice and Bob are in a room with a basket and a box. Alice puts 
some celery in the basket and leaves the room. Bob then moves 

the celery into the box. Charles immediately enters the room. 
Charles puts the celery in a chest.
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Figure 3. High-level depiction of the belief update procedure for
m = 2. Bp1,...,pk denotes a graph, and the graph updating proce-
dure is detailed in the main text.

(Algorithm 2). First, it extracts all actions in s and updates
the global context G from an omniscient point of view while
identifying the characters (W) who witnessed actions and
world state changes described in the sentence. Second, for
each witness w ∈ W , it propagates this new information
to update w’s local contexts; i.e., we only update Bp1,...,pm

with, for 1 ≤ i ≤ m, each pi ∈ W , and leave the rest
unchanged.

Algorithm 2 Belief Tracking
function BELIEFTRACKINGSTRUCTURE(sentences)

for s ∈ sentences do
G,W ← GLOBALCONTEXTUPDATE(G, s)
for all [p1, . . . , pm] ∈ Wm do

Bp1...pm←LOCALCONTEXTUPDATE(Bp1...pm ,G,s)
end for

end for
end function

As an example, when processing the last sentence in Fig-
ure 3, we update Bob and Charles’s state (BBob and BCharles)
and the perception of others’ respective state (BBob,Charles,
BCharles, Bob), but we need not update Alice’s state, or Bob
and Charles’s perception of Alice’s mental state, because
she did not witness the actions described.

3.2.1. DETECTING WITNESSES, UPDATING GRAPHS,
AND PROPAGATING KNOWLEDGE

Starting with an empty graph, for each new sentence s, we
update the global context G by combining off-the-shelf mod-
els in four steps (Algorithm 3; GLOBALCONTEXTUPDATE).
First, we detect the existing edges E in G that contradict
s. This is implemented as detecting Natural Language In-
ference (NLI) contradictions, considering s as the premise,
and every edge in G as a hypothesis. Second, we augment
G with new edges and nodes, by first deriving a natural lan-
guage representation r of the state resulting from the actions
described in s, and then extract new nodes and edges from
r as OpenIE triples (Stanovsky et al., 2018). For example,
for “Bob then moves the celery to the box”, the resulting
state r would be the sentence “The celery is in the box”.
To obtain r from s, we prompt a language model such as
GPT3.4 After obtaining r, we use the corresponding triple
(e.g., (celery, box, is in)) to add new nodes and
edges to G if not already present (e.g., the nodes “celery”
and “box”, and a directed edge connecting them labeled
by “is in”). Importantly, we only add edges that represent
positive relations between nodes; i.e., there will not be an
edge representing “The celery is not in the box”. Third, we
detect the witnesses W of the actions described in s. Since
each character will be a node in G, we identify W as all
the characters that are in the same connected component
as the newly added edges. Finally, we remove all edges
E that are no longer valid in G as identified by the NLI
contradictions. This step is done last to ensure all witnesses
are found before their edges are deleted.

Algorithm 3 World State Beliefs Graphs Update
function GLOBALCONTEXTUPDATE(G, s)
E ← DETECTCONTRADICTINGEDGES(G, s)
G← G ∪ TRIPLES(RESULTINGSTATE(s))
W ← FINDWITNESSES(G)
G← G \ E
return G,W

end function

function LOCALCONTEXTUPDATE(C , G, s)
E ← DETECTCONTRADICTINGEDGES(G, s)
C ← C ∪ TRIPLES(RESULTINGSTATE(s))
C ← PROPAGATEKNOWLEDGE(G,C, s)
C ← C \ E
return C

end function

The local contexts (Bp1,...,pk
) are updated similarly

(LOCALCONTEXTUPDATE in Algorithm 3), except for an
additional step of knowledge propagation. While perform-
ing an action, a character may implicitly gain information
not described in the text. For example, when entering a room,
a character may gain knowledge of the people and visible

4See Appendix A.2 for additional details.



objects in the room. This knowledge (already present in G,
which tracks the omniscient world state) needs to be propa-
gated to each Bp1,...,pk

with each pi∈W . As G represents
the true world state, we simplify the problem: if a character
pi is in a specific connected component D of G, then it
possesses all knowledge encoded in D. To model implicit
knowledge gain, we add all edges in D to Bp1,...,pk

. As D
represents the latest global context information, we remove
from the local context edges that are in Bp1,...,pk

but not in
D (representing outdated beliefs about the world state).

3.3. Notes on Memory Efficiency

Memory requirements grow exponentially with m, the max-
imum order of theory of mind considered. However, m in
practice is small, as humans find tasks increasingly chal-
lenging as m increases. For example, psychological tests
for m = 3 are aimed at teenagers and adults (Valle et al.,
2015). All experiments in this work are done with m = 2,
the maximum order of theory of mind reasoning that current
datasets evaluate. If memory were a concern, one could pro-
cess the questions first for memory efficiency, and compute
only the graphs Bp1,...,pk

required for target queries.

4. Fundamental Issues in Existing ToM Datasets
Construction of ToMi As introduced in §2, the sole large-
scale theory of mind dataset for reading comprehension
tasks is ToMi (Le et al., 2019). Barring its added distractor
characters and sentences, ToMi strictly mimics the Sally-
Anne test, a widely adopted evaluation for assessing chil-
dren’s social cognitive ability to reason about others’ mental
states (Wimmer & Perner, 1983; Baron-Cohen et al., 1985).
Stories are structured are as follows: characters A and B
are in a room, and A moves an object from an opaque con-
tainer to another; B may or may not leave the room before
A moves the object. B will know the object’s new loca-
tion if and only if they were in the room at the time it was
moved. Four types of ToM questions are posed: first-order
or second-order, probing a character about either a true or a
false belief (i.e, belief that matches reality or not). ToMi also
includes questions probing about reality (or zeroth-order
ToM, Sclar et al., 2022) and memory.

ToMi has six types of sentences (i.e. six primitives) with
set phrasing. These include someone (a) entering or (b)
exiting a room; the location of (c) an object or (d) a person;
(e) someone moving an object; and (f) someone’s opinion
about an object (distractors). Primitives are combined into
stories with a finite list of possible orderings. Despite the
limited types of primitives, correctly answering questions
requires high-order levels of reasoning.

Templated stories are filled with randomly sampled objects,
locations, containers, and rooms from a set list. ToMi im-
plicitly assumes that questions about the story do not depend

1. Oliver entered the front yard.
2. Ethan entered the front yard.
3. Liam entered the kitchen.
4. objectA is in the basket.
5. Ethan exited the front yard.
6. Ethan entered the kitchen.
7. Oliver moved objectA to the containerX.
8. Where does Ethan think objectA is?

ToMi Gold Label: basket

Figure 4. Interpretation of ambiguities in ToMi can be affected
by commonsense. In the above template, the correct label is that
Ethan thinks objectA is in the basket, as this is where he last
saw it. Setting objectA to hat and containerX to box results
in 80% human accuracy. However, setting these to apple and
pantry, accuracy drops to 20%. Physical commonsense suggests
the pantry is likely in the kitchen, changing the answer to pantry,
but regardless of the identity of objectA or containerX, the correct
label in ToMi is basket.

on these decisions, only on the underlying story template.
Yet, in a small-scale human study, we find physical common-
sense leads human answers to change, and disagree with
ToMi’s labels depending on the noun. Table 4 shows an
example where the object and container have a large effect
on human responses.5

Resolving Unintentional Ambiguities ToMi’s story con-
struction process often leaves object locations ambiguous,
which forces humans to (incorrectly) rely on their physical
commonsense. For example, the location of the basket in
line 4 of Figure 4 is ambiguous. This ambiguity is at times
resolved at a later step in the story (Arodi & Cheung, 2021),
but it is not true for all cases, and these resolutions were not
expressly intended by ToMi’s original design. This compli-
cates the task beyond theory of mind. For example, in Table
4, the reader must conclude from “Oliver is in front yard”,

“Oliver moved the objectA (...)”, and “The objectA is in bas-
ket” that the basket is in the front yard, and hence that Ethan
saw it there. This requires 3-hop reasoning, and knowing
ahead of time that, in ToMi, characters do not change rooms
unless explicitly stated.

To solve these unintentional ambiguities and additional 3-
hop reasoning requirements, and instead solely measure
theory of mind reasoning skills, we automatically add a
sentence that disambiguates the location of each container
immediately after each primitive (c) or (e) (e.g., adding “The
basket is in the front yard” as line 5 in Table 4). Finally, as
reported in Arodi & Cheung (2021); Sap et al. (2022), ToMi
contains some mislabeled second-order questions, which
we also correct.

5Using Amazon Mechanical Turk, we present 20 humans with
the template in Table 1, using either (hat,box) or (apple, pantry).
Workers are paid $1 per HIT.



5. Experiments
We experiment with several base LMs, and evaluate each
of them both out-of-the-box via zero-shot prompting, and
by applying SYMBOLICTOM to ToMi stories to produce an-
swers. We evaluate Macaw-3B (Tafjord & Clark, 2021),
GPT3-{Curie,Davinci} (Brown et al., 2020), Flan-T5-
{XL,XXL} (Chung et al., 2022), LLaMA-{7B, 13B} (Tou-
vron et al., 2023), GPT3.5 (OpenAI, 2022), and GPT4 (Ope-
nAI, 2023). We use WANLI (Liu et al., 2022) for identify-
ing NLI contradictions, and the AllenNLP library (Gardner
et al., 2018) for OpenIE. We additionally refine each subject
and object in extracted triples to remove any stopwords that
may be accidentally included by OpenIE.

We first evaluate SYMBOLICTOM’s performance as a plug-
and-play method for different base LMs on ToMi (§5.1).
We then test whether performance gains are robust to ToMi
story structure modifications (§5.2). Finally, we explore
SYMBOLICTOM’s robustness to linguistic diversity (§5.3).

Supervised Models For comparison, we train two super-
vised models: Textual Time Travel (TTT) (Arodi & Cheung,
2021), and a fine-tuned GPT3-Curie. TTT is a modification
of EntNet (Henaff et al., 2017) designed for theory of mind
tasks; GPT3-Curie is finetuned on 6000 ToMi examples for
one epoch. GPT3-Curie achieves near-perfect performance
when finetuned on ToMi (98.5% accuracy when averaging
all questions; Table 4). Interestingly, GPT3-Curie achieves
a higher accuracy than the theory of mind-motivated TTT
(accuracy 92.3%). We explore model robustness in §5.2.

5.1. In-Domain Evaluation

We evaluate all base LMs comparing their performance out-
of-the-box, versus when adding SYMBOLICTOM. Figure 5
shows results by question type, showing dramatic improve-
ments for all theory of mind questions: +62 points in accu-
racy for first-order false-belief questions for Flan-T5-XL,
+78 points in accuracy for second-order false-belief ques-
tions for GPT3.5, among other improvements. In addition,
we observe all models maintain near-perfect performance
with and without SYMBOLICTOM in memory questions. Su-
pervised models show high accuracy for all question types.

We only see significant decreases in performance for reality
questions in Flan-T5 models. This can be partially attributed
to the questions’ phrasing: questions are posed as “Where
is the celery really?”. Removing really yields 96% accuracy
for Flan-T5-XL. Flan-T5-XXL empirically shows a bias to-
wards providing a room rather than container as an answer
when only one container is mentioned, which is often the
case for SYMBOLICTOM-filtered stories. Rooms are invalid
answers in ToMi. An ablation on the final filter function of
Algorithm 1 suggests that keeping more containers in the
final story reduces this bias and still yields significant im-
provements for false-belief questions across models (§C.1).
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Figure 5. Accuracy for each ToMi question type and base model
(higher is better). Dots in the upper triangle have higher perfor-
mance with SYMBOLICTOM than the base model out-of-the-box.
Horizontal lines give supervised models’ performance. Full results
in Table 4.

Besides reality questions, Flan-T5-XXL with SYMBOLIC-
TOM achieves results comparable to the supervised TTT.

5.2. Story Structure Robustness Test Sets

We create three test sets by modifying ToMi’s stories struc-
tures without adding new types of actions or linguistic diver-
sity. These tests were only evaluated once, after finishing de-
velopment of SYMBOLICTOM. Test sets are defined below.6

Double Room False Belief Story (D1) Two false belief
substories involving the same two characters p1, p2 are con-
catenated to yield a longer, more complex story. Each sub-
story has different objects being moved, across different
containers. The system is probed using all four combina-
tions of second-order theory of mind questions involving
the two characters and locations. Questions are evenly split
between the first and second substory.

Three Active Characters Story (D2) Three characters
p1, p2, p3 are in the same room, where an object o1 and three

6See Appendix B.2 for concrete examples.
7Low scores are due to the model refusing to answer, e.g. an-

swering “There is no information in the given text to determine
where Bob thinks Alice searches for the celery.”



Table 1. Precision using SYMBOLICTOM on all questions from
100 stories for each of the modified test sets Di. Supervised models
were trained on ToMi; all others do not require training. Paren-
thesis reflect differences between using and not using SYMBOLIC-
TOM: bold reflects higher overall performance, and green reflects
the highest net improvements when using SYMBOLICTOM.

D1 D2 D3

Off-the-shelf models
Macaw-3B 8 12 30
Flan-T5-XL 86 51 68

Flan-T5-XXL 69 59 52
GPT3-Curie 37 39 57

GPT3-Davinci 20 25 39
GPT3.57 1 0 48

GPT4 58 62 97
LLaMA-7B 17 17 17

LLaMA-13B 26 36 37

SYMBOLICTOM + Off-the-shelf models
Macaw-3B 89 (+81) 71 (+60) 70 (+41)
Flan-T5-XL 76 (-10) 96 (+46) 100 (+33)

Flan-T5-XXL 93 (+24) 100 (+41) 100 (+49)
GPT3-Curie 84 (+48) 81 (+42) 73 (+16)

GPT3-Davinci 92 (+73) 91 (+66) 90 (+50)
GPT3.5 100 (+99) 100 (+99) 99 (+51)
GPT4 100 (+42) 100 (+38) 100 ( +4)

LLaMA-7B 99 (+82) 92 (+75) 88 (+71)
LLaMA-13B 78 (+52) 84 (+48) 84 (+47)

Supervised models
TTT 49 65 78

Finetuned GPT3 51 68 32

containers c1, c2, c3 are available. The story is as follows:
p2 leaves before p1 moves o1 from c1 to c2, but p3 witnesses
the move. Then, p1 leaves the room. Later, p3 moves the
object to container c3 without any witnesses. The system
is probed using all combinations of second-order theory of
mind questions.

Multiple Object Movements Across Four Containers
(D3) Two characters p1, p2 are in a room, with a single
object, and four containers c1, . . . , c4. p1 moves the object
from c1 to c2 and right before leaving the room, p2 enters.
p2 then moves the object to c3, and then c4. We probe with
all first and second-order theory of mind questions.

Results Supervised models significantly overfit to ToMi’s
original story structures (Table 1). In contrast, all models
had high accuracy when equipped with SYMBOLICTOM, es-
pecially larger models, such as GPT3.5, LLaMA-{7B,13B},
among others.

D2 may also be used to test third-order ToM reasoning, ask-

0.0

0.5

1.0
1st order ToM True Belief 1st order ToM False Belief

0.0

0.5

1.0
2nd order ToM True Belief 2nd order ToM False Belief

0.0 0.5 1.0
0.0

0.5

1.0
Reality

0.0 0.5 1.0

Memory

Base model accuracy

Ba
se

 m
od

el
 +

 S
ym

bo
lic

To
M

 a
cc

ur
ac

y

Figure 6. Results for ParaphrasedToMi when prompting GPT3
as implementation of RESULTINGSTATE (Davinci for all except
for Curie). Dots in the upper triangle imply performance with
SYMBOLICTOM is higher than using the base model out-of-the-
box. Horizontal lines reflect supervised models’ performance
(higher is better).

ing questions such as “Where does p1 think that p2 thinks
that p1 will search for the o1?”. Third-order ToM is a reason-
ing depth currently untested by available NLP benchmarks.
SYMBOLICTOM consistently enhances the performance of
off-the-shelf LLMs and outperforms supervised methods in
the third-order ToM setting. See details in Appendix C.2.
This experiment showcases how extensions of ToMi may be
used to test higher-order reasoning. This is the first approach
towards testing third-order ToM in LLMs; a benchmark to
comprehensively test such order of reasoning exceeds the
scope of this paper.

5.3. Paraphrasing Robustness Evaluation

We assess the robustness of all models when utilizing
various wordings for each sentence. We reword all tem-
plates using GPT3-Davinci, utilizing different choices of
objects, rooms, and names, and manually excluded incor-
rect paraphrases. The resulting dataset—ParaphrasedToMi—
exhibits much greater complexity, as these rewordings can
express actions in a less straightforward way.8

8All paraphrases are shown in Appendix B.1.



Figure 6 demonstrates significant performance decreases for
supervised models transferring to ParaphrasedToMi. TTT’s
average accuracy drops 54 points from ToMi, with losses
across all question types. Finetuned GPT3 exhibits signifi-
cant losses in false-belief questions (-40 average accuracy)
but is robust for other question types.

Methods without supervision also suffer significant losses,
but SYMBOLICTOM still results in large improvements for
theory of mind questions. Models equipped with SYMBOL-
ICTOM perform significantly better than the supervised TTT
model across all theory of mind questions. Paraphrased-
ToMi is significantly more difficult for SYMBOLICTOM
since it triggers more errors in edge removal (due to errors
in NLI classification), as well as errors in edge insertion (due
to errors in the resulting state’s triple extraction). Although
computing RESULTINGSTATE by prompting the base LMs
was successful with original phrasings (as defined in §3.2.1),
we observed differences in robustness when prompting with
paraphrases. We found implementing RESULTINGSTATE
with GPT3 reliable, and thus we use it for all models. Re-
sults using other models are included in §C.3: false-belief
performance was shown to be even better for models like
LLaMA, GPT3.5, or GPT4.

6. Related Work
Existing Approaches Classical reasoning tasks require
achieving some goal, e.g., proving a statement, given a set
of facts and universally valid rules (e.g., Tafjord et al.,
2021). A common approach is to decompose the target
reasoning task into subtasks, for example by using off-the-
shelf LMs (Creswell et al., 2023; Kazemi et al., 2022; Nye
et al., 2021). We use a similar technique in SYMBOLIC-
TOM, breaking the higher-level reasoning task into graph
reasoning subtasks. Nonetheless, these approaches cannot
be simply ported to our domain: stories’ facts (i.e. the world
state) change over time and are not universally accessible to
all characters, and commonsense rules and assumptions like
object permanence must made explicit. SYMBOLICTOM’s
design addresses these challenges by maintaining and up-
dating graphs about facts and beliefs as a story progresses.

In scenarios where world state changes over time, such
as in text-based games, existing approaches maintain and
update structured world representations as the world state
changes (Ammanabrolu & Riedl, 2021; Adhikari et al.,
2020). However, while these approaches could potentially
be applied in our scenario to update G, they would not
address the problems of multiple-belief representation or
knowledge propagation to witnesses’ graphs, with some
approaches even being explicitly impossible for modeling
second-order ToM (Qiu et al., 2022).

ToM beyond NLP Theory of mind is also crucial in multi-
agent reinforcement learning (Rabinowitz et al., 2018), in-
cluding in bidirectional symbolic-communication (Wang
et al., 2022; Sclar et al., 2022), unidirectional natural-
language settings (Zhu et al., 2021); and recently, by com-
bining reinforcement learning, planning, and language, to
create a human-level Diplomacy player (, FAIR). It has also
received increased attention in human-computer interaction
(Wang et al., 2021) and explainable AI (Akula et al., 2022).

Psychologists divide theory of mind into two types of rea-
soning: affective (emotions, desires) and cognitive (beliefs,
knowledge) (Shamay-Tsoory et al., 2010), with the former
developing earlier in children (Wellman, 2014). Our work
focuses on the latter, but the principle of multiple belief rep-
resentation could also be applied to affective theory of mind
reasoning. Existing work has shown that humans are profi-
cient at second-order or higher false-belief reasoning, also
referred to as advanced ToM (Białecka-Pikul et al., 2017),
with evidence that we can perform third- and fourth-order
reasoning (Valle et al., 2015; Osterhaus et al., 2016). While,
to best of our knowledge, no dataset requires beyond second-
order ToM, SYMBOLICTOM explicitly models the recursive
reasoning that supports queries of any reasoning order.

7. Conclusions
Theory of mind is an essential social intelligence ability. De-
veloping agents with theory of mind is requisite for a wide
range of applications, including reading comprehension,
tutoring, dialogue, personalization, and negotiation. For ex-
ample, in reading comprehension settings (and broadly for
natural language understanding), having a multi-level under-
standing of texts is crucial for providing meaningful and con-
textualized answers: stories often rely on theory of mind rea-
soning to create conflict (e.g., in murder mysteries, drama,
and romances, as in the final acts of Romeo and Juliet).

We present SYMBOLICTOM, a plug-and-play method to
enable theory of mind reasoning in language models via
explicit symbolic representations in the form of nested belief
states. SYMBOLICTOM requires no training or fine-tuning,
a key aspect for a domain with scarce supervised data and
limited success in learning from massive unlabeled text
alone. With experiments on reading comprehension tasks,
our approach demonstrates dramatic improvement in the
accuracy of base language models, especially for false-belief
scenarios.

We also show that, in contrast to supervised methods, SYM-
BOLICTOM is highly robust to story perturbations and out-
of-domain inputs where supervised methods suffer signifi-
cant degradations (as in, e.g., Yu et al., 2022).9 Our results

9As a part of out-of-domain testing, we also create a more
challenging version of the available ToM datasets, which we will



show the promise of augmenting neural language models
with symbolic knowledge for improving their social reason-
ing skills. We leave to future work to investigate similar
approaches for other types of social intelligence; as well
as develop new datasets that cover a more diverse set of
interactions.
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Faghihi & Kordjamshidi (2021). Furthermore, since we use
off-the-shelf models (WANLI (Liu et al., 2022) and OpenIE
(Stanovsky et al., 2018)) to create and update the graphs,
the presented approach may propagate errors as revealed
in the linguistic diversity experiments. However, these is-
sues can be largely alleviated by using more sophisticated
models, even the LLMs like GPT3 themselves. We do not
experiment with them due to budgetary restrictions.

Currently, all NLP datasets available for theory of mind
reasoning describe Sally-Anne tests. In these datasets, the
concept of large distances is absent, meaning that anyone
specified to be in a location is assumed to be a witness of the
actions that occur there. This assumption can be violated in
realistic settings. For example, “Anne is in the USA” does
not imply she is a witness to every action happening in the
USA. In future work, this approach can be improved by
refining the witnesses detection algorithm to incorporate
physical commonsense reasoning. We could also refine
the witness detection algorithm by sampling paths between
the inserted edge and each node referring to a person, to
query an LM directly on that substory by asking if the
person witnessed the action. To be able to test both of these
ideas, we would need to obtain new theory of mind datasets
with significantly more types of interactions and physical
commonsense in the stories.

Ethics Statement
Theory of mind research at its core deals with reasoning
about the mental states of others. In this work, we focus
on reading comprehension, a task which can similarly be
exposed to ethical concerns: for example, when a model
makes erroneous predictions about the mental states of char-
acters in the description, when it is misused to reason about
private situations, and when it makes predictions which re-
inforce social biases. This issue can be exacerbated if the
characters are actual people. In this work, however, we
experiment with simple, prototypical character references
from a public dataset, and not with actual people. This de-
cision is intentional. Furthermore, we focus on reasoning
about physical objects and observers’ knowledge about their
location in space, which is less prone to ethical concerns.
This data can nonetheless lead to biased decisions, such as
imbalanced decisions correlated with social attributes like
gender (often correlated with names). Future work in this
area may include scenarios with more realistic human-agent
interaction, such as dialogue tasks, where parties involved
may not have the same incentive structure. These scenarios
will need to be handled with special care as they could lead
to agents learning to deceive humans by exploiting a pre-
dicted (lack of) knowledge. The state-of-the-art in machine
theory of mind is still far from these capabilities, but we be-
lieve it is important to consider these risks when designing

experiments.

A. Additional Details on SYMBOLICTOM
A.1. Detailed Description of Information Contained in

Global Context G

In the main paper, we define G as a graph containing the
true world state (as opposed to beliefs about the current
world state). This means that G will represent where peo-
ple and objects are truly located, regardless of beliefs. G
will in general contain only the observable true world state.
Thus, information passed verbally would not be stored in
the global context (e.g. someone speaking in a room is not
observable after they finished talking), and would instead
be stored in the local contexts of the people that heard the
speech. Since verbal interactions are not tested by available
datasets, this distinction is not relevant in ToMi.

A.2. Prompts for Resulting State Extraction

For GPT3-Curie we 2-shot prompt with the following
prompt (both for original and linguistic diversity experi-
ments):
John quit his job. The resulting
state after this action is that John
no longer has a job.\n\nJohn signed a
contract. The resulting state after
this action is that the contract is
signed.\n\n<sentence>. The resulting
state after this action is that

We find that GPT3-Davinci, Flan-T5-XL, GPT3.5, and
GPT4 are able to zero-shot answer to this subtask just by
describing the instruction, but smaller models benefit from
few-shot. We were unable to query Macaw for this task, so
we instead rely on GPT3-Curie, a model of comparable size.
Zero-shot instruction is as follows:

<sentence>. What is the resulting
state after this action? Do not add
new information. The resulting state
after this action is that

We observe that GPT3 is significantly more robust to para-
phrases than Flan-T5: Flan-T5 models are poor at detecting
the resulting state for florid paraphrases, although the origi-
nal phrasings are a straightforward task for Flan-T5.

Larger models like GPT3.5 and GPT4 are able to perform
the task well zero-shot, similarly to GPT3; LLaMA models
require fewer demonstrations than Flan-T5. We ran all main
experiments implementing Resulting State Extraction with
GPT3.



A.3. Solving PROCESSQUESTION using GPT3

Our explorations suggest that GPT3 (Curie and GPT3-
Davinci text-davinci-002—the version used in all
our experiments) can successfully extract entities and
rephrase the question. See Figure 7 for an example prompt.

Figure 7. GPT3 shows one-shot generalization abilities from first-
order to second-order questions.

B. Details on Out-Of-Domain Evaluation
B.1. Linguistic Diversity Per ToMi Template

Table 2. Number of paraphrases per original sentence tem-
plate. Paraphrases were obtained from prompting GPT3-Davinci
(text-davinci-002).

Sentence type Count

Object’s Position 38
Distractor Negative Sentiment 36
Distractor Positive Sentiment 31

Person Entered Room 21
Person Exited Room 19
Person Moved Object 18

Person’s Position 9

B.1.1. ALL PARAPHRASES OF PERSONX ENTERED

THE ROOMY.

PersonX entered the RoomY.
PersonX approached the RoomY.
PersonX arrived at the RoomY.
PersonX arrived in the RoomY.
PersonX bounded into the RoomY.
PersonX came by the RoomY.
PersonX came into the RoomY.
PersonX came to the RoomY.
PersonX crept into the RoomY.
PersonX entered the RoomY.
PersonX leapt into the RoomY.
PersonX showed up at the RoomY.
PersonX shuffled into the RoomY.
PersonX sidled into the RoomY.
PersonX slithered into the RoomY.

PersonX stepped into the RoomY.
PersonX tiptoed into the RoomY.
PersonX visited the RoomY.
PersonX walked into the RoomY.
PersonX went into the RoomY.
PersonX went to the RoomY.

B.1.2. ALL PARAPHRASES OF PERSONX EXITED

THE ROOMY.

Prompted with the prompt: Find 30 alternative ways of
expressing the following sentence: Abigail exited the bed-
room. and manually filtering results (with this and other
name/location selection.

PersonX exited the RoomY.
PersonX left the RoomY.
PersonX walked out of the RoomY.
PersonX stepped out of the RoomY.
PersonX departed the RoomY.
PersonX went out of the RoomY.
PersonX came out of the RoomY.
PersonX emerged from the RoomY.
PersonX quit the RoomY.
PersonX took off from the RoomY.
PersonX bolted from the RoomY.
PersonX flew from the RoomY.
PersonX ran from the RoomY.
PersonX sprinted from the RoomY.
PersonX jogged from the RoomY.
PersonX hurried from the RoomY.
PersonX crawled from the RoomY.
PersonX crept from the RoomY.
PersonX tiptoed from the RoomY.

B.1.3. ALL PARAPHRASES OF THE OBJECT1 IS IN

THE CONTAINER1.

Prompted with Object1=apple,
Container1={fridge, envelope, bathtub}.
Then filtered to remove object-specific wording.

The Object1 is in the Container1.
The Object1 is stored in the
Container1.
The Object1 is kept in the Container1.
The Object1 is located in the
Container1.
The Object1 is situated in the
Container1.
The Object1 is set in the Container1.
The Object1 is placed in the
Container1.
The Object1 is found in the Container1.
The Object1 is positioned in the



Container1.
The Object1 is set upon in the
Container1.
The Object1 is put in the Container1.
The Object1 is laid in the Container1.
The Object1 is deposited in the
Container1.
The Object1 is stationed in the
Container1.
The Object1 is put to rest in the
Container1.
The Object1 is set to rest in the
Container1.
The Object1 is rested in the
Container1.
The Object1 is set aside in the
Container1.
The Object1 is stowed in the
Container1.
The Container1 contains the Object1.
The Object1 is inside the Container1.
The Object1 is within the Container1.
The Container1 is where the Object1 is.
The Container1 has the Object1.
The Container1 is holding the Object1.
The Container1 is keeping the Object1.
The Container1 is safeguarding the
Object1.
The Container1 is storing the Object1.
The Container1 has the Object1 within
it.
The Container1 has the Object1 inside
of it.
The Container1 is holding the Object1
within it.
The Container1 is keeping the Object1
inside of it.
The Container1 is safeguarding the
Object1 inside of it.
The Container1 is storing the Object1
inside of it.
There is a Object1 in the Container1.
A Object1 is in the Container1.
The Container1 has a Object1 in it.
Inside the Container1 is a Object1.

B.1.4. ALL PARAPHRASES OF PERSONX MOVED THE

OBJECT1 TO THE CONTAINER1.

PersonX moved the Object1 to the
Container1.
PersonX relocated the Object1 to the
Container1.
PersonX transferred the Object1 to the

Container1.
PersonX shifted the Object1 to the
Container1.
PersonX placed the Object1 in the
Container1.
PersonX set the Object1 in the
Container1.
PersonX put the Object1 in the
Container1.
PersonX stowed the Object1 in the
Container1.
PersonX stored the Object1 in the
Container1.
PersonX hid the Object1 in the
Container1.
PersonX shoved the Object1 into the
Container1.
PersonX pushed the Object1 to the
Container1.
PersonX carried the Object1 to the
Container1.
PersonX conveyed the Object1 to the
Container1.
PersonX led the Object1 to the
Container1.
PersonX transported the Object1 to the
Container1.
PersonX brought the Object1 to the
Container1.
PersonX took the Object1 to the
Container1.

B.1.5. ALL PARAPHRASES OF PERSONX IS IN THE

ROOMY.

PersonX is in the RoomY.
PersonX is inside the RoomY.
PersonX is located in the RoomY.
PersonX is situated in the RoomY.
PersonX is present in the RoomY.
PersonX is to be found in the RoomY.
PersonX is contained in the RoomY.
The RoomY holds PersonX.
The RoomY shelters PersonX.

B.1.6. ALL PARAPHRASES OF POSITIVE DISTRACTOR
SENTENCES

PersonX has a bad case of Object1
fever.
PersonX is Object1 crazy.
PersonX is Object1-crazed.
PersonX is Object1-obsessed.
PersonX is a Object1 fiend.
PersonX is a Object1 maniac.



PersonX is a Object1-aholic.
PersonX is always thirsty for a
Object1.
PersonX is besotted with the Object1.
PersonX is captivated by the Object1.
PersonX is charmed by the Object1.
PersonX is crazy about the Object1.
PersonX is crazy for the Object1.
PersonX is eager for the Object1.
PersonX is enamored with the Object1.
PersonX is enthusiastic about the
Object1.
PersonX is entranced by the Object1.
PersonX is fascinated by the Object1.
PersonX is fond of the Object1.
PersonX is in love with the Object1.
PersonX is infatuated with the Object1.
PersonX is keen on the Object1.
PersonX is mad about the Object1.
PersonX is never seen without a
Object1.
PersonX is nuts about the Object1.
PersonX is smitten with the Object1.
PersonX is spellbound by the Object1.
PersonX is taken with the Object1.
PersonX is wild about the Object1.
PersonX loves to drink from a Object1.
PersonX would do anything for a
Object1.

B.1.7. ALL PARAPHRASES OF POSITIVE NEGATIVE
SENTENCES (PERSONX HATES OBJECTY)

PersonX hates Object1.
PersonX can’t stand the Object1.
PersonX despises the Object1.
PersonX detests the Object1.
PersonX is annoyed by the Object1.
PersonX is bothered by the Object1.
PersonX is concerned by the Object1.
PersonX is disconcerted by the Object1.
PersonX is discouraged by the Object1.
PersonX is disgusted by the Object1.
PersonX is disheartened by the Object1.
PersonX is disquieted by the Object1.
PersonX is grieved by the Object1.
PersonX is horrified by the Object1.
PersonX is irritated by the Object1.
PersonX is offended by the Object1.
PersonX is pained by the Object1.
PersonX is repelled by the Object1.
PersonX is revolted by the Object1.
PersonX is scandalized by the Object1.
PersonX is shocked by the Object1.

PersonX is sorrowful by the Object1.
PersonX is terrified by the Object1.
PersonX is troubled by the Object1.
PersonX is vexed by the Object1.
PersonX loathes the Object1.
The Object1 horrifies PersonX.
The Object1 is abhorrent to PersonX.
The Object1 nauseates PersonX.
The Object1 offends PersonX.
The Object1 repulses PersonX.
The Object1 revolts PersonX.
The Object1 scandalizes PersonX.
The Object1 shocks PersonX.
The Object1 sickens PersonX.
The Object1 terrifies PersonX.
The Object1 turns PersonX’s stomach.

B.2. Structure of Story Structure Robustness Test Sets

B.2.1. DOUBLE ROOM FALSE-BELIEF EPISODE

person1 entered the room1.
person2 entered the room1.
The object1 is in the container1.
The container1 is in the room1.
person2 exited the room1.
person1 moved the object1 to the
container2.
The container2 is in the room1.
person1 exited the room1.
person2 entered the room2.
person1 entered the room2.
The object2 is in the container3.
The container3 is in the room2.
person1 exited the room2.
person2 moved the object2 to the
container4.
The container4 is in the room2.
person2 exited the room2.

B.2.2. THREE ACTIVE CHARACTERS STORY

person1 entered the room1.
person2 entered the room1.
person3 entered the room1.
The object1 is in the container1.
The container1 is in the room1.
person2 exited the room1.
person1 moved the object1 to the
container2.
The container2 is in the room1.
person1 exited the room1.
person3 moved the object1 to the
container3.
The container3 is in the room1.



person3 exited the room1.

B.2.3. TRUE-BELIEF INTERACTION, FALSIFIED BY
UNWITNESSED THIRD-PERSON STORY

person1 entered the room1.
person2 entered the room1.
The object1 is in the container1.
The container1 is in the room1.
person1 moved the object1 to the
container2.
The container2 is in the room1.
person2 exited the room1.
person1 exited the room1.
person3 entered the room1.
person3 moved the object1 to the
container1.

B.2.4. FOUR CONTAINERS WITH MULTIPLE
MOVEMENTS

person1 is in the room1.
The object1 is in the container1.
The container1 is in the room1.
person1 moved the object1 to the
container2.
The container2 is in the room1.
person2 entered the room1.
person1 exited the room1.
person2 moved the object1 to the
container3.
The container3 is in the room1.
person2 moved the object1 to the
container4.
The container4 is in the room1.

C. Expanded Results
Experimental Note: All zero-shot GPT3
(text-curie-001 and text-davinci-002)
experiments were performed between November 2022 and
January 2023. GPT3.5 (gpt-3.5-turbo) and GPT4
(gpt-4) were added in May 2023.

C.1. Ablating FILTERBASEDONQUESTION from
SYMBOLICTOM

FILTERBASEDONQUESTION definition This function
filters the story S′ to obtain an even shorter subset of the
original story S′′ by only keeping edges where at least one of
the endpoints represents an entity mentioned in the question.

The last step of Algorithm 1 is applying FILTERBASE-
DONQUESTION, which yields an even shorter story to feed
language models. We evaluate the effect this final filter has
on the final performances reported by SYMBOLICTOM.
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Figure 8. Precision using SYMBOLICTOM on ToMi, for several
language models without the final filter function. Performance
is shown for each question type, dots in upper triangle imply
performance improvements. Full results table may be found in
Table 5.

FILTERBASEDONQUESTION has a positive effect on
Macaw-3B, GPT3, Flan-T5-XXL, and LLaMA-7B (+7,
+3.5, +12.8, and +15 points in average accuracy gain across
all question types), and a mild negative one on Flan-T5-
XL, and GPT4 (-5.3, and -4 points of accuracy on av-
erage). See Table 6 for all differences between execut-
ing SYMBOLICTOM using this final filtering or not. Fig-
ure 8 visually represents the accuracy of all models by
question type. Regardless of the final filter application,
GPT4+SYMBOLICTOM significantly outperforms out-of-
the-box GPT4 in all four ToM question types and maintains
performance on Reality and Memory questions. For Flan-
T5-XL, Flan-T5-XL+SYMBOLICTOM outperforms Flan-
T5-XL significantly in all four ToM question types (e.g.
+76 and +36 points in accuracy for first and second-order
false belief questions), and shows slight declines for Reality
and Memory questions—in line with findings on the full
algorithm, but with less stark declines, suggesting that hav-
ing more entities may help reduce bias towards answering
rooms instead of containers. See Table 5 for the full table
of accuracy differences.

Regardless of the final filtering application, SYMBOLIC-
TOM shows improvements in theory of mind questions for
all models. We only find the filter application to be rele-
vant to beat the base model in theory of mind questions for



Flan-T5-XXL.

C.2. Third-Order Theory of Mind Evaluation

We ask all third-order theory of mind questions for each D2

story, such as “Where does p1 think that p2 thinks that p1
will search for the o1?”. Questions involving p2 will have
a final answer c1, since everyone saw p2 leaving. We ask
all six possible questions involving p2. We also ask the two
third-order theory of mind questions that do not involve p2
nor repeats the same person twice consecutively (“Where
does p1 think that p3 thinks that p1 will search for the o1?”
and “Where does p3 think that p1 thinks that p3 will search
for the o1?”), totaling eight questions per D2 story.

Table 3. Precision using SYMBOLICTOM on all questions from
100 stories for each of the modified test sets Di. Supervised
models were trained on ToMi; all others do not require training.
Parenthesis reflect differences between using and not using SYM-
BOLICTOM: bold reflects higher overall performance, and green
reflects the highest net improvements when using SYMBOLIC-
TOM.

D2’S THIRD-ORDER
TOM QUESTIONS

Off-the-shelf models
Macaw-3B 13
Flan-T5-XL 32

Flan-T5-XXL 62
GPT3-Curie 28

GPT3-Davinci 19
GPT3.5 8
GPT4 26

LLaMA-7B 22
LLaMA-13B 39

SYMBOLICTOM + Off-the-shelf models
Macaw-3B 85 (+72)
Flan-T5-XL 97 (+65)

Flan-T5-XXL 100 (+38)
GPT3-Curie 89 (+61)

GPT3-Davinci 90 (+71)
GPT3.5 100 (+91)
GPT4 100 (+73)

LLaMA-7B 90 (+68)
LLaMA-13B 95 (+57)

Supervised models
TTT 52

Finetuned GPT3 76

Table 3 shows results for all models using k = 2 representa-
tions (same depth as in the main paper). Using SYMBOL-
ICTOM significantly outperforms the supervised baselines
and yields dramatic improvements with respect to using the
LLMs off-the-shelf. We hypothesize that although the task

theoretically requires k = 3, the second-order theory of
mind representation already helps models avoid attending to
parts of the story that are inaccessible to relevant characters.

C.3. Alternative RESULTINGSTATE Implementations
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Figure 9. Results for ParaphrasedToMi when using the same model
for implementing the RESULTINGSTATE function as in the final
question-answering task (except using Davinci for Macaw, who
did not show reliable enough few shot-prompting). Dots in upper
triangle imply performance with SYMBOLICTOM is higher than
using the base model out-of-the-box. Horizontal lines reflect su-
pervised models’ performance (higher is better).

RESULTINGSTATE(s) refers to the state of the world after
s has been performed. For example, if “Oliver moved the
apple to the box”, then the resulting state is that “The apple
is in the box”. If “Oliver exited the bedroom”, the resulting
state would be that “Oliver is no longer in the bedroom”.
These are the relationships that we may insert in a context
graph—actions are instantaneous and do not reflect an
observable state.

In this section, we explore using the same LLM for imple-
menting RESULTINGSTATE as well as the final inference.
In the main text, we use Davinci for all non-GPT3-based
models.

We find GPT3 to be among the most reliable to answer the



resulting state of a given action in a zero-shot (Davinci)
or two-shot (Curie) manner. Similarly, GPT3.5 and GPT4
perform well zero-shot: for experiments, we use GPT3.5
zero-shot and GPT4 two-shot to improve the resulting phras-
ing stability.

Additional exploration shows that although Flan-T5 models
perform worse zero-shot than GPT models, they are capable
of performing this task with more careful prompting. Figure
9 shows the results after nine-shot prompting Flan-T5-XL
and eleven-shot prompting Flan-T5-XXL. Our explorations
show that LLaMA models require fewer demonstrations
than the Flan-T5 models to compute the resulting state: we
observe highly reliable results when using six-shot prompt-
ing for LLaMA-7B, and seven-shot prompting for LLaMA-
13B. Accuracy using LLaMA was even higher than when
using GPT3.



C.4. Detailed Result Tables

All results in the appendix show accuracy as a ratio (between 0 and 1). For simplicity of reading, in the main text, they are
referred to in percentages (values 0 to 100, higher is better). Figures 4, 5, and 6 show performances when applying the final
filtering function, when not applying it, and the difference in performance between the two, respectively.

Table 4. Performance per model and question using SYMBOLICTOM, with out-of-the-box performance shown in brackets (100 samples
per question type). Bottom rows represent supervised baselines.

1st TB 1st FB 2nd TB 2nd FB Reality Memory

Macaw-3B 0.86 [0.50] 0.79 [0.33] 0.86 [0.34] 0.84 [0.17] 0.10 [0.14] 0.95 [0.91]
GPT3-Curie 0.77 [0.42] 0.82 [0.35] 0.73 [0.26] 0.89 [0.26] 0.61 [0.69] 0.99 [0.86]

GPT3-Davinci 0.96 [0.75] 0.96 [0.25] 0.93 [0.14] 0.90 [0.26] 0.77 [0.86] 0.98 [0.98]
Flan-T5-XL 0.98 [0.97] 0.80 [0.18] 0.98 [0.68] 0.78 [0.56] 0.73 [0.97] 1.00 [1.00]

Flan-T5-XXL 0.98 [0.84] 0.95 [0.67] 1.00 [0.76] 0.90 [0.39] 0.13 [0.63] 1.00 [1.00]
LLaMA-7B 0.82 [0.32] 0.95 [0.66] 0.66 [0.31] 0.72 [0.41] 0.87 [0.37] 1.00 [0.83]
LLaMA-13B 0.82 [0.60] 0.86 [0.67] 0.70 [0.53] 0.62 [0.77] 0.87 [0.48] 1.00 [0.90]

GPT3.5 0.97 [0.76] 0.95 [0.66] 0.99 [0.02] 0.87 [0.09] 0.98 [1.00] 0.99 [0.80]
GPT4 0.98 [0.83] 0.94 [0.73] 0.98 [0.36] 0.89 [0.64] 0.94 [1.00] 1.00 [1.00]

Finetuned GPT3 0.95 0.99 0.97 1.00 1.00 1.00
TTT-learned 0.84 1.00 0.82 0.88 1.00 1.00

Table 5. Performance per model and question using SYMBOLICTOM without FILTERBASEDONQUESTION, with out-of-the-box perfor-
mance shown in brackets (100 samples per question type). Bottom rows represent supervised baselines.

1st TB 1st FB 2nd TB 2nd FB Reality Memory

Macaw-3B 0.54 [0.50] 0.86 [0.33] 0.56 [0.34] 0.88 [0.17] 0.16 [0.14] 0.98 [0.91]
GPT3-Curie 0.66 [0.42] 0.79 [0.35] 0.69 [0.26] 0.87 [0.26] 0.65 [0.69] 0.94 [0.86]

GPT3-Davinci 0.94 [0.75] 0.88 [0.25] 0.90 [0.14] 0.83 [0.26] 0.83 [0.86] 0.90 [0.98]
Flan-T5-XL 1.00 [0.97] 0.94 [0.18] 1.00 [0.68] 0.92 [0.56] 0.88 [0.97] 0.85 [1.00]

Flan-T5-XXL 0.74 [0.84] 0.69 [0.67] 0.68 [0.76] 0.64 [0.39] 0.44 [0.63] 1.00 [1.00]
LLaMA-7B 0.48 [0.32] 0.95 [0.66] 0.38 [0.31] 0.98 [0.41] 0.48 [0.37] 0.84 [0.83]
LLaMA-13B 0.75 [0.60] 0.96 [0.67] 0.70 [0.53] 0.96 [0.77] 0.57 [0.48] 0.89 [0.90]

GPT3.5 0.99 [0.76] 1.00 [0.66] 1.00 [0.02] 0.98 [0.09] 0.98 [1.00] 0.90 [0.80]
GPT4 0.99 [0.83] 1.00 [0.73] 1.00 [0.36] 0.98 [0.64] 1.00 [1.00] 1.00 [1.00]

Finetuned GPT3 0.95 0.99 0.97 1.00 1.00 1.00
TTT-learned 0.84 1.00 0.82 0.88 1.00 1.00

Table 6. Differences between accuracy of base models using SYMBOLICTOM with the final FILTERBASEDONQUESTION filter, and
without using the final filter. As shown in Table 4 and 5, both versions are still far superior to not using SYMBOLICTOM.

1st TB 1st FB 2nd TB 2nd FB Reality Memory

Macaw-3B 0.32 -0.07 0.30 -0.04 -0.06 -0.03
GPT3-Curie 0.11 0.03 0.04 0.02 -0.04 0.05

GPT3-Davinci 0.02 0.08 0.03 0.07 -0.06 0.08
Flan-T5-XL -0.02 -0.14 -0.02 -0.14 -0.15 0.15

Flan-T5-XXL 0.24 0.26 0.32 0.26 -0.31 0.00
LLaMA-7B 0.34 0.00 0.28 -0.26 0.39 0.16
LLaMA-13B 0.07 -0.10 0.00 -0.34 0.30 0.11

GPT3.5 -0.02 -0.05 -0.01 -0.11 0.00 0.09
GPT4 -0.01 -0.06 -0.02 -0.09 -0.06 0.00


