
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNLOCKING THE THEORY BEHIND SCALING 1-BIT
NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, 1-bit Large Language Models (LLMs) have emerged, showcasing an
impressive combination of efficiency and performance that rivals traditional LLMs.
Research by Wang et al. (2023); Ma et al. (2024) indicates that the performance of
these 1-bit LLMs progressively improves as the number of parameters increases,
hinting at the potential existence of a Scaling Law for 1-bit Neural Networks. In
this paper, we present the first theoretical result that rigorously establishes this
scaling law for 1-bit models. We prove that, despite the constraint of weights
restricted to {−1,+1}, the dynamics of model training inevitably align with kernel
behavior as the network width grows. This theoretical breakthrough guarantees
convergence of the 1-bit model to an arbitrarily small loss as width increases.
Furthermore, we introduce the concept of the generalization difference, defined as
the gap between the outputs of 1-bit networks and their full-precision counterparts,
and demonstrate that this difference maintains a negligible level as network width
scales. Building on the work of Kaplan et al. (2020), we conclude by examining
how the training loss scales as a power-law function of the model size, dataset
size, and computational resources utilized for training. Our findings underscore
the promising potential of scaling 1-bit neural networks, suggesting that int1 could
become the standard in future neural network precision.

1 INTRODUCTION

Large-scale neural networks, particularly Large Language Models (LLMs) (Brown et al., 2020;
Zhao et al., 2023) and Large Multimodel Models (LMMs) (Yin et al., 2023; Wu et al., 2023), are
becoming increasingly relevant to our day-to-day lives, finding a huge variety of applications in both
the workplace and at home (Lin et al., 2023; Yang et al., 2023). However, it is expensive to deploy
and run these models due to their substantial computational requirements, large memory footprints,
and energy consumption (Vaswani et al., 2017; Alman & Song, 2023; Zhou et al., 2024). This is
especially true for resource-constrained environments, such as mobile devices, edge computing, or
companies with limited infrastructure (Howard et al., 2017; Li et al., 2022b; Chen et al., 2023). To
make these models more efficient and accessible, quantization techniques are used, which reduce the
precision of the model’s parameters (such as weights and activations) from floating-point numbers
to lower-bit representations (e.g., 8-bit or even lower) (Nagel et al., 2021a; Frantar et al., 2022;
Gholami et al., 2022; Lin et al., 2024; Ahmadian et al., 2023). Quantization reduces the memory and
computational costs of inference, enabling faster processing with less energy, while maintaining a
comparable level of performance. This optimization allows language models to be more practical,
scalable, and sustainable for widespread use across various platforms (Bondarenko et al., 2021; Li
et al., 2022a; Guo et al., 2023).

In particular, quantization techniques could be primarily divided into two methods: Post-Training
Quantization (PTQ) (Liu et al., 2021; Xiao et al., 2023; Tseng et al., 2024) and Quantization-Aware
Training (QAT) (Liu et al., 2023; Wang et al., 2023; Ma et al., 2024). PTQ methods, including uniform
and non-uniform quantization, conveniently convert pre-trained model weights and activations to
lower-bit representations post-training. However, this leads to accuracy loss, especially in lower
precision, as the model is not optimized for these quantized representations and significant shifts in
weight distribution occur (Nagel et al., 2021b). The alternative, Quantization-Aware Training (QAT),
incorporates quantization during training, allowing the model to fine-tune and adapt its parameters to

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the quantized representation, compensating for quantization errors. Therefore, compared to PTQ,
QAT maintains higher accuracy and robustness even in lower precision.

Recent studies (Liu et al., 2022; Wang et al., 2023; Ma et al., 2024; Zhu et al., 2024) have shown that
1-bit LLMs, most of which have matrix weights in the range of {−1,+1}, can be trained from scratch
to deliver performance that rivals that of standard LLMs. These models exhibit remarkable efficiency,
particularly in terms of scaling laws. Experimental results indicate that the performance of the 1-bit
model improves as the number of parameters increases, a principle that mirrors the training approach
utilized in standard LLMs (Kaplan et al., 2020). Despite the demonstrated efficiency of quantization
methods, our understanding of the training mechanism for quantization remains limited. Specifically,
it remains unclear how and why the 1-bit QAT enhances learning capability as the number of neurons
in the model is scaled up. In addition, we are also concerned about whether the quantization method
damages the generalization ability compared to full precision networks.

In this study, we initially apply the Neural Tangent Kernel (NTK) framework to delve into the
optimization and generalization issues associated with a two-layer linear network operating in 1-bit
(int1) precision, as detailed in Section 4. We introduce a 1-bit quantization method to the hidden-layer
weights W ∈ Rd×m of the conventional NTK linear network, where d represents the input dimension
and m indicates the model’s width. Our analysis reveals that the training dynamics of the 1-bit model
approximate kernel behavior as the model width m expands. This key finding paves the way for an
established relationship between the theoretically guaranteed loss and the model width, endowing the
model with robust learning capabilities akin to kernel regression. Ultimately, the model achieves an
insignificantly small training loss, contingent on setting a sufficiently large model width, selecting an
appropriate learning rate, and allowing an adequate training duration.

Moreover, Section 5 provides a theoretical confirmation that, within the scaling trend, the disparities
in predictions of the 1-bit model from those of the original linear network on identical inputs maintain
a negligible value. We assess the error between our 1-bit linear and standard linear networks on both
the training and test datasets. Our theorem demonstrates that for any input from these datasets, the
absolute error between the two network predictions can be denoted as ϵquant ≤ O(κd log(md/δ))
for scale coefficient κ ≤ 1, model width m, dimension d and failure probability δ ∈ (0, 0.1).
This indicates that the output behavior of the 1-bit linear model increasingly aligns with that of
the standard linear model. The observed similarity on the test dataset validates the generalization
similarity, suggesting the feasibility of approximating training neural networks with int1 precision
equivalent to full precision.

Finally, in Section 6, we verify our theoretical results by implementing training models to learn
complicated functions to compare the difference between 1-bit networks and full precision networks.
Firstly, we choose difficult functions across the exponential function, trigonometric function, logarith-
mic function, the Lambert W function, the Gamma function, and their combination. Therefore, we
sample random data points and split train and test datasets. We next compare how the training loss
decreases as the model width m scales up. Besides, as shown in Section 6.3, in the trend of a growing
number of parameters, the error of predictions both on training and test input likewise converge as
the power-law in 1-bit networks optimization. In particular, we visualize some 1-dimension function
to see how the differences of outputs are. We demonstrate the results complying with our theoretical
guarantee with a negligible error.

2 RELATED WORK

Efficient Training Methods for Quantized Networks Training large-scale neural networks with
quantization introduces significant computational and memory savings, but it also presents challenges
in optimization, particularly when dealing with extremely low precision formats like 1-bit or 8-bit. To
address these challenges, several efficient training methods have been developed that aim to maintain
accuracy while leveraging the benefits of quantization. One key method is Gradient Quantization,
where the gradients during backpropagation are quantized to lower precision to reduce memory
overhead and bandwidth during distributed training. Techniques like stochastic rounding are used to
mitigate the impact of quantization noise, ensuring the training process remains stable and converges
effectively.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Another important approach is Low-Rank Factorization (Sainath et al., 2013; Hsu et al., 2022), which
decomposes the large weight matrices in neural networks into smaller matrices, reducing the number
of parameters that need to be updated during training. When combined with quantization, this method
significantly reduces both the memory footprint and computational complexity, allowing for faster
training on hardware with limited resources.

Quantization Techniques for Accelerating Language Models Beyond traditional weight and
activation quantization, several advanced methods utilize quantization to enhance the efficiency of
large language models (LLMs). One key approach is KV cache quantization (Hooper et al., 2024;
Zhang et al., 2024b; Liu et al., 2024; Zandieh et al., 2024), which reduces the memory footprint of
transformer models during inference by quantizing the stored attention keys and values. This method
is particularly beneficial for tasks involving long sequences, significantly speeding up inference and
lowering memory consumption without a substantial loss in accuracy.

Another effective technique is mixed-precision quantization (Pandey et al., 2023; Tang et al., 2023),
where different parts of the model are quantized at varying precision levels based on their sensitivity.
For example, attention layers might use higher precision (e.g., 16-bit), while feedforward layers are
quantized to 8-bit or lower. This balances computational efficiency and model performance. These
strategies, combined with methods like activation pruning, showcase how targeted quantization can
drastically accelerate LLMs while maintaining their effectiveness in real-world applications.

Neural Tangent Kernel. The study of Neural Tangent Kernel (NTK) (Jacot et al., 2018) focuses on
the gradient flow of neural networks during the training process, revealing that neural networks are
equivalent to Gaussian processes at initialization in the infinite-width limit. This equivalence has been
explored in numerous studies (Li & Liang, 2018; Du et al., 2018; Song & Yang, 2019; Allen-Zhu
et al., 2019; Wei et al., 2019; Bietti & Mairal, 2019; Lee et al., 2020; Chizat & Bach, 2020; Shi et al.,
2021; Zhou et al., 2021; Seleznova & Kutyniok, 2022; Gao et al., 2023; Li et al., 2024; Shi et al.,
2024) that account for the robust performance and learning capabilities of over-parameterized neural
networks. The kernel-based analysis framework provided by NTK is gaining popularity for its utility
in elucidating the emerging abilities of large-scale neural networks. In a remarkable stride, Arora
et al. (2019) introduced the first exact algorithm for computing the Convolutional NTK (CNTK).
This was followed by Alemohammad et al. (2020) who proposed the Recurrent NTK, and Hron et al.
(2020) who presented the concept of infinite attention via NNGP and NTK for attention networks.
These innovative works have showcased the enhanced performance achievable with the application
of NTK to various neural network architectures. In a specific study, Malladi et al. (2023) examined
the training dynamics of fine-tuning Large Language Models (LLMs) using NTK, affirming the
efficiency of such approaches.

3 PRELIMINARY

In this section, we give the basic setups of this paper, which includes the introduction of the
quantization method in this paper (Section 3.1), our NTK-style problem setup that we aim to solve in
this paper (Section 3.2) and recalling the classical NTK setup for a two-layer linear network with
ReLU activation function (Section 3.3).

3.1 QUANTIZATION

We first show how we reduce the computation of the inner product of two vectors from multiplication
and addition operations to addition operations only, which is achieved by binarizing one of the vectors.
This method could be extended to matrix multiplication easily since the basic matrix multiplication is
to implement the inner product computation of two vectors in parallels. For a vector w ∈ Rd, we
define our quantization function as (Wang et al., 2023; Ma et al., 2024):

Quant(w) := Sign
(
Ln(w)

)
∈ {−1,+1}d,

where Ln(w) is the normalization method that is given by:

Ln(w) :=
w − E(w) · 1d√

V (w)
∈ Rd.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Specially, we use E(w) := 1
d

∑d
k=1 wk ∈ R to denote the computational expectation of vector w

and use V (w) := ∥w − E(w) · 1d∥22 ∈ R to denote the corresponding variance.

Besides, the kth entry of signal function Sign(z) ∈ Rd for z ∈ Rd, k ∈ [d] is define by:

Signk(z) :=

{
+1, zk ≥ 0

−1, zk < 0

Hence, we have a binary vector Quant(w) where each entry of it is limited in the range {−1,+1},
and we denote that w̃ := Quant(w) to simplify the notation. For any other vector x ∈ Rd, addition
operation

∑d
k=1 ±xk is sufficient to compute ⟨w̃, x⟩. After that, we introduce the dequantization

function to recover the original computation result by showing:

Dequant(⟨w̃, x⟩) :=
√
V (w) · ⟨w̃, x⟩+ E(w) · ⟨1, x⟩

3.2 NTK PROBLEM SETUP

Data Points. We consider a supervised learning task with a training dataset D = {(xi, yi)}ni=1 ⊂
Rd × R, where each data point is under a mild assumption that ∥xi∥2 = 1 and yi ≤ 1, ∀i ∈ [n]
(Du et al., 2018). Moreover, we are also concerned about the problem of the generalization of
1-bit models, we define the test dataset to compare 1-bit networks with standard networks, that is
Dtest := {(xtest,i, ytest,i)}ni=1 ⊂ Rd × R, where ∥xtest,i∥2 = 1 and ytest,i ≤ 1, ∀i ∈ [n].

Model. Here, we use hidden-layer weights W = [w1, w2, . . . , wm] ∈ Rd×m and output-layer
weights a = [a1, a2, . . . , am]⊤ ∈ Rm. We consider a two-layer attention model f , which is defined
as follows:

f(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r, x⟩)

)
,

where ReLU(z) :=

{
z, z ≥ 0

0, z < 0
, for all z ∈ R, dq : R → R is a omitted version of dequantization

function Dequant : R → R, and w̃r := Quant(wr) as we denoted in previous section, κ ∈ (0, 1]
is a scale coefficient. Especially, we initialize each weight vector wr, ∀r ∈ [m] by sampling
wr(0) ∼ N (0, σ · Id) with σ = 1. For output-layer a, we randomly sample ar ∼ Uniform{−1,+1}
independently for r ∈ [m]. Additionally, output-layer weight a is fixed during the training.

Training and Straight-Through Estimator (STE). The training loss is measured by quadratic ℓ2
norm of the difference between model prediction f(xi,W, a) and ideal output vector yi. Formally,
we consider to train W (t) = [w1(t), w2(t), . . . , wm(t)] ∈ Rd×m for t ≥ 0 utilizing the following
loss:

L(t) :=
1

2
·

n∑

i=1

∥f(xi,W (t), a)− yi∥22. (1)

Moreover, since the signal function Sign is not differentiable, we use Straight-Through Estimator
(STE) to skip the signal function in back-propagation (Bengio et al., 2013; Yin et al., 2019; Wang
et al., 2023; Ma et al., 2024), thus updating the trainable weights W (t). For t ≥ 0 and denote η as the
learning rate, we omit fi(t) := f(xi,W (t), a) ∈ R,∀i ∈ [n], the formulation to update rth column
of W (t) for all r ∈ [m] is given by:

wr(t+ 1) := wr(t)− η

n∑

i=1

(fi(t)− yi) · κar1dq(⟨w̃r,xi⟩)≥0xi.

3.3 RECALLING CLASSIC NTK SETUP

We now recall the classic NTK setup for the two-layer ReLU linear regression (Karp et al., 2021;
Allen-Zhu & Li, 2020; 2022; Zhang et al., 2024a). The function is given by:

f ′(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU
(
⟨wr, x⟩

)
.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We define that W ′(0) := W (0) ∈ Rd×m to denote the trainable parameter for classic NTK setup,
these two matrices are equal at initialization. For t ≥ 0, we define the loss of training f ′ as follows:

L′(t) :=
1

2
·

n∑

i=1

∥f ′(xi,W
′(t), a)− yi∥22.

Then the update of W ′(t) is:

W ′(t+ 1) := W ′(t)− η · ∇W ′(t)L
′(t).

4 KERNEL BEHAVIOR AND TRAINING CONVERGENCE

We give our convergence analysis for training 1-bit model within the framework of Neural Tangent
Kernel (NTK) in this section. First, we state our theoretical results that define the kernel function
in training and show how it converges to NTK and maintains the PD (Positive Definite) property in
Section 4.1. Then we demonstrate the arbitrary small loss convergence guarantee of training 1-bit
model (Eq. (1)) in Section 4.2.

4.1 NEURAL TANGENT KERNEL

Here, we utilize the NTK to describe the training dynamic of the 1-bit model. Following pre-
conditions in the previous section, we define a kernel function, that denotes H(t) ∈ Rn×n (Gram
matrix). Especially, the (i, j)-th entry of H(t) is given by:

Hi,j(t) := κ2 1

m
x⊤
i xj

m∑

r=1

1dq(⟨w̃r(t),xi⟩)≥01dq(⟨w̃r(t),xj⟩)≥0. (2)

We define the formal NTK as H∗ := H(0) ∈ Rn×n. Additionally, there’s a commonly introduced
assumption in NTK analysis: we denote the minimum value of eigenvalues of A with λmin(A) for
any A ∈ Rn×n. In our work’s context, we presuppose that H is a Positive-definite (PD) matrix,
meaning that λmin(H

∗) > 0.

1-Bit ReLU Pattern. The pattern of the Rectified Linear Unit (ReLU) function is determined by the
indicator of function activation. As illustrated by Du et al. (2018), in the settings of Section 3.3, the
event 1⟨wr(0),x⟩≥0 ̸= 1⟨w,x⟩≥0 happens infrequently for any w, x ∈ Rd that satisfies ∥w−wr(0)∥2 ≤
R. Notably, R := maxr∈[m] ∥wr(t)− wr(0)∥2 = η∥∑t

τ=1 ∆wr(τ)∥2. In our analysis, for Eq. (2),
the event 1dq(⟨w̃r(0),x⟩)≥0 ̸= 1dq(⟨w̃r(t),x⟩)≥0 is also unlikely to occur during training.

The convergence of H(t) towards H∗, as well as the property of H(t) being a PD matrix for any
t ≥ 0, can be validated by the following lemma:
Lemma 4.1 (NTK convergence and PD property during the training, informal version of Lemma F.5).
Assume λmin(H

∗) > 0. δ ∈ (0, 1), define D := max{
√
log(md/δ), 1}. Let R ≤ O(λδ/(κ2n2dD)),

then for any t ≥ 0, with probability at least 1− δ, we have:

• Part 1. ∥H(t)−H∗∥F ≤ O(κ2n2dRD/δ).

• Part 2. λmin(H(t)) ≥ λ/2.

Proof of Lemma 4.1. The proof of Part 1 of this Lemma follows from the pattern 1dq(⟨w̃r(t),xi⟩)≥0

for i ∈ [n] and r ∈ [m] is rarely changed during the training, this habit is similar to the regular
ReLU pattern 1⟨wr(t),xi⟩≥0 (Du et al., 2018). The proof of Part 2 of this Lemma can be obtained by
plugging R ≤ O(λδ/(κ2n2dD)). Please refer to Lemma F.5 for the detailed proof.

4.2 TRAINING CONVERGENCE

Having confirmed the convergence of the kernel function of the 1-bit linear network during training
in Lemma 4.1, we can transform the dynamics of the loss function L(t) into the following kernel
behavior:

L(t+ 1)− L(t) = − (F(t)− y)⊤H(t)(F(t)− y) + C2 + C3 + C4

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

≈ − (F(t)− y)⊤H(t)(F(t)− y),

In this equation, F(t) = [f(x1,W (t), a), · · · , f(xn,W (t), a)]⊤ ∈ Rn and y = [y1, · · · , yn]⊤ ∈ Rn,
while C2, C3, C4 are negligible terms (please refer to Appendix H for a rigorous proof).

Further, by λmin(H(t)) > 0 (as per Part 2 of Lemma 4.1), for each optimization step t ≥ 0,
we find that L(t + 1) ≤ (1 − ηλ/2)L(t), thus ensuring a non-increase in loss. Given sufficient
training iterations and an appropriately chosen learning rate, we can achieve training convergence,
the confirmation of which is provided in the following section.

Theorem 4.2 (Training convergence guarantee, informal version of Theorem H.1). Given an ex-
pected error ϵ > 0. Assume λmin(H

∗) > 0. δ ∈ (0, 0.1), define D :=
√
log(md/δ). Choose

m ≥ Ω(λ−8n12d8/(δϵ)4), η ≤ O(λδ/(κ2n2dD)). Then let T ≥ Ω((ηλ)−1 log(ndD2/ϵ)), with
probability at least 1− δ, we have: L(T) ≤ ϵ.

Proof sketch of Theorem 4.2. We first combine L(0) = O(
√
ndD2) (Lemma H.3) and L(t + 1) ≤

(1 − ηλ/2)L(t) (Lemma H.2), then we choose a sufficient large T ≥ Ω((ηλ)−1 log(ndD2/ϵ)) to
achieve L(T) ≤ ϵ. For the complete proof, please see Theorem H.1.

Scaling Law for 1-Bit Neural Networks. Theorem 4.2 primarily illustrates a fact for any dataset
with n data points. After initializing the hidden-layer weights W ∈ Rd×m from a normal distribution,
and assuming the minimum eigenvalue of NTK λ > 0, we set m to be a large enough value to
ensure the network is sufficiently over-parameterized. With an appropriate learning rate, the loss
can be minimized in finite training time to an arbitrarily small error ϵ. This offers a crucial insight
that confirms the existence of a scaling law for 1-bit neural networks, which is strictly bounded by
the model width m and training steps T . Consequently, we present the following Proposition that
elucidates the principle of training 1-bit linear networks from scratch. This proposition is built upon
Theorem 4.2 and the principle of training loss that scales as a power-law with model size, dataset
size, and the amount of compute used for training (Kaplan et al., 2020).

Proposition 4.3 (Scaling Law for 1-Bit Neural Networks). δ ∈ (0, 0.1). Define N := O(md) as
the number of parameters, D := O(n) as the size of training dataset, C := O(NDT) as the total
compute cost. Especially, we denote the scale coefficients as α := Dd log(md/δ), and we then
choose η ≤ O(λδ/(mκ2n2dD)) and T ≥ Ω((ηλm)−1 log(nd log(md/δ)/ϵ)). Thus, the training
loss, denoted as Lscale, satisfies:

Lscale ≈ max{D
3 · d2.25
λ2N0.25

,
α

exp(ηλC)
}

Proof of Proposition 4.3. This proof follows from the definitions of N, D, C and α. Then, by choosing
η ≤ O(λδ/(mn2dD)) and T ≥ Ω((ηλm)−1 log(nd log(md/δ)/ϵ)), we utilize Theorem 4.2 to
obtain our proposition.

Proposition 4.3 demonstrates that the training loss of the prefix learning converges exponentially as
we increase the computational cost C, which primarily depends on the number of parameters and
the training time in prefix learning. This further suggests a potential relationship for formulating a
scaling law for 1-bit neural networks.

Extensibility. Our analysis is conducted within a two-layer linear network defined in Section 3, which
might raise concerns about its effectiveness in real-world multiple-layer 1-bit networks. However,
due to the theory of Hierarchical Learning (Bengio et al., 2006; Zeiler & Fergus, 2014; Abbe et al.,
2022), the optimization of a deep neural network is equivalent to training each layer of the network
greedily. Therefore, our theoretical conclusion could be easily extended to the situation of training
multiple layers 1-bit model.

5 GENERALIZATION SIMILARITY

In this section, we present our theoretical analysis that proves that training large-scale 1-bit neural
networks is equivalent to training standard large-scale neural networks. In Section 5.1, we explain how

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

217 219 221

10−4

10−2

100

lo
ss

f1

1-bit MLP (depth 3)

FP32 MLP (depth 3)

1-bit MLP (depth 5)

FP32 MLP (depth 5)

217 219 221
10−18

10−14

10−10

10−6

10−2

f2

1-bit MLP (depth 3)

FP32 MLP (depth 3)

1-bit MLP (depth 5)

FP32 MLP (depth 5)

217 219 221
10−6

10−5

10−4

10−3

10−2

f3

1-bit MLP (depth 3)

FP32 MLP (depth 3)

1-bit MLP (depth 5)

FP32 MLP (depth 5)

217 219 221

number of parameters

10−9

10−6

10−3

100

lo
ss

f4

1-bit MLP (depth 3)

FP32 MLP (depth 3)

1-bit MLP (depth 5)

FP32 MLP (depth 5)

217 219 221

number of parameters

10−18

10−14

10−10

10−6

10−2

f5

1-bit MLP (depth 3)

FP32 MLP (depth 3)

1-bit MLP (depth 5)

FP32 MLP (depth 5)

217 219 221

number of parameters

10−5

10−3

10−1

f6

1-bit MLP (depth 3)

FP32 MLP (depth 3)

1-bit MLP (depth 5)

FP32 MLP (depth 5)

Figure 1: Verification experiment for scaling law for 1-bit neural networks. Minimum training loss
of scaling number of parameters for MLP model to learn complicated functions f1, f2, f3, f4, f5 and
f6, and these function is defined in Section 6.1.

the difference between the outputs of our 1-bit model and outputs of the standard NTK-style linear
network for the same input at initialization, which is defined as function difference at initialization,
will be kept in a small error while the model width (denoted as m) increase. Next, in Section 5.2, we
confirm that in the trend of scaling up the model width, during the training, the predictions of 1-bit
model and full precision model are also similar to a very slight error on both the training dataset and
the test dataset.

5.1 FUNCTION DIFFERENCE AT INITIALIZATION

To begin with, at initialization, the boundary on |f(x,W (0), a)−f ′(x,W ′(0), a)| is stated as follows:
Lemma 5.1 (Function difference at initialization, informal version of Lemma J.4). δ ∈ (0, 0.1).
Denote D :=

√
log(md/δ). ∀x ∈ Rd that satisfies ∥x∥2 = 1, for any initial quantization error

ϵinit > 0, we choose κ ≤ O(ϵinit/(
√
dD2)). Then with a probability 1− δ, we have:

|f(x,W (0), a)− f ′(x,W ′(0), a)| ≤ ϵinit

Proof sketch of Lemma 5.1. Due to the initialization of W (0) and W ′(0), we then have the tail bound
of the Gaussian distribution. Hence, the difference could be bounded by Hoeffding bound, we then
get the result. Please refer to Lemma J.4 for the formal proof of this Lemma.

5.2 GENERALIZATION SIMILARITY

We now address whether using 1-bit precision compromises the generalization ability of standard
neural networks. Specifically, we use the test dataset to evaluate the generalization similarity - a
measure of the similarity between two functions on out-of-distribution (OOD) data. This measure
is designed to assess the equivalence between two functions. If, during each step of training two
networks, these two training processes are deemed equivalent, then we assert that the generalization
similarity is valid.

Addressing the above concern, we demonstrate that the predictions of two functions on both training
and test datasets can be bounded to an arbitrarily small quantization error, provided that m is
sufficiently large. Theoretically, as m scales towards infinity, the quantization error converges to
0. This finding confirms the validity of our generalization similarity measure and asserts that 1-bit
precision does not compromise the generalization ability of standard neural networks.
Theorem 5.2 (Training and generalization similarity, informal version of Theorem J.1). Let all
pre-conditions in Theorem 4.2 satisfy. For any quantization error ϵquant > 0, we choose κ ≤

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

O(ϵquant/(dD
2)). Integer ∀t ≥ 0. For any training input xi ∈ Rd in D and any test input

xtest,i ∈ Rd in Dtest, with a probability at least 1− δ, we have:

• Part 1. |f(xi,W (t), a)− f(xi,W (t), a)| ≤ ϵquant.

• Part 2. |f(xtest,i,W (t), a)− f(xtest,i,W (t), a)| ≤ ϵquant.

Proof. Proof sketch of Theorem 5.2 Since we proved |f(x,W (0), a)− f ′(x,W ′(0), a)| ≤ ϵinit in
Lemma 5.1, then as we choose appropriate R and learning rate η, the equations in Part 1 and Part 2
of this Theorem would be bounded by scaling m to be sufficiently large. We state the complete proof
in Theorem J.1.

Training Equivalence. Here, we say training f and f ′ are equivalent since we achieve the predictions
that these two functions are extremely similar by plugging an appropriate value of κ. Besides, as we
proved in Theorem 4.2, this implementation would not harm the optimization of 1-bit networks. This
further explains why 1-bit precision even processes better when the scales of networks are increasing,
instead of turning to a training collapse. Therefore, we believe it is the theory unlocking the potential
of 1-bit neural networks from the perspective of kernel-based analysis.

−2 0 2
x

−0.25

0.00

0.25

0.50

0.75

1.00

y

1-bit MLP

FP32 MLP

f(x) = J0(20x)

−2 0 2
x

−0.5

0.0

0.5

1.0

1.5
1-bit MLP

FP32 MLP

f(x) = e−0.5|x| · sin(5x) +H(x− 1)

−2 0 2
x

−1.0

−0.5

0.0

0.5

1.0

1.5
1-bit MLP

FP32 MLP

f(x) = log(1 + |x|) · sin(10x) + 10 tan
(
x
6

)
· e−x2

Figure 2: This plot shows the difference between the predicted and actual values of the functions on
the test dataset. We tested three complex functions, as seen in the images, and the performance of the
1-bit model is nearly identical to that of the standard 32-bit floating-point model.

6 EXPERIMENTS

In this section, we aim to verify our theory by evaluating how well our quantization works for learning
rigorous functions and comparing it to the standard model. We designed our experiment to 1) validate
the scaling law, 2) visually demonstrate that the performance difference is minimal compared to
the standard model, which uses full-bit precision, through visualizations of single-variable input
functions, and 3) show how the test and train losses decrease as the model’s parameter size increases
and as the epochs progress.

6.1 VERIFICATION ON SCALING LAW

Experiment Setup In this experiment, we aimed to learn rigorous functions using a Multi-Layer
Perceptron (MLP) with varying depths of 3 and 5 layers. The MLP models had different sizes for the
hidden layers, and we measured the minimum loss achieved throughout the training process. Each
model was trained for 100,000 steps. We experimented with various parameter sizes and plotted
the corresponding loss functions. Additionally, we compared our method with the standard training
approach using 32-bit floating-point precision.

We experimented with a variety of target functions, and for each function, the inputs xi were randomly
chosen within the range [−1, 1]. Specifically, each xi was sampled from a uniform distribution over
this interval to ensure that the network could handle input values across the entire domain of interest.
We sampled 100 data points and trained our model over the this set.

The functions we aimed to learn during the experiment are listed below:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1. f1(x1, x2, x3, x4, x5) = exp
(

1
5

∑5
i=1 sin

2
(
πxi

2

))
, This function takes five inputs and

applies a sinusoidal transformation followed by an exponential operation.

2. f2(x1, x2, x3, x4) = ln(1+ |x1|) +
(
x2
2 − x2

)
+ sin(x3)− ex4 , the function combines log-

arithmic, polynomial, trigonometric, and exponential components over four input variables.

3. f3(x1, x2, x3) = x1 × x2 − x3, This is a simple linear function over three inputs, involving
multiplication and subtraction.

4. f4(x1, x2, x3, x4) = x0 · sin(x1) + cos(x2) − 0.5 · x3, A four-input function mixing
trigonometric and linear terms, with coefficients applied to the terms.

5. f5(x1, x2, x3, x4) =
x2
0

1+|x1| − ex2 + tanh(x3) +
√
|x0 · x2|, This function incorporates

nonlinear operations like exponentials, hyperbolic tangents, and square roots.

6. f6(x1, x2, x3, x4) = LambertW(x0 ·x1)+
x2

log(1+ex3) −
Γ(x1)
1+|x0| , The most complex function

we tested, which includes special functions like the Lambert W function and the Gamma
function, alongside logarithmic and exponential components.

Result Interpretation In this experiment, we compare our quantized model (using INT1, 32×
smaller) to a standard non-quantized model (using 32-bit precision). For all functions (f1 to f6), we
observe (in) that as the number of parameters increases, the loss decreases, supporting our theoretical
claim that larger models lead to convergence.

Although the standard method generally performs better due to its 32-bit precision, the gap decreases
as the number of parameters grows. This shows that while our method has a slightly higher loss, it
remains competitive, offering significant memory and computational efficiency.

6.2 COMPARISON ON 1-D FUNCTIONS

Experiment Setup In this experiment, we aimed to visually demonstrate the performance on highly
complex functions with sharp spikes between [−π, π]. We sampled 100 uniformly spaced points and
trained a 2-layer MLP with 20M parameters to learn the function. Additionally, we sampled 100
random points uniformly from this interval as the test dataset.

Findings The first observation from the plot is that both the standard and 1-bit methods learn all the
functions almost perfectly, with minimal difference between them. Secondly, both methods perform
similarly on these functions, which can be easily observed by comparing the scatter plots of the 1-bit
and standard models. The 1-bit model requires 32× less energy and computation.

0 20 40
number of epochs

0

1

2

3

lo
ss

f (x) = J0(20x)
2.40K Parameters, training set

2.40K Parameters, test set

204.00K Parameters, training set

204.00K Parameters, test set

20.04M Parameters, training set

20.04M Parameters, test set

0 20 40
number of epochs

0

1

2

3

lo
ss

f (x) = e−0.5|x| · sin(5x) + H(x− 1)
2.40K Parameters, training set

2.40K Parameters, test set

204.00K Parameters, training set

204.00K Parameters, test set

20.04M Parameters, training set

20.04M Parameters, test set

0 20 40
number of epochs

0.0

2.5

5.0

7.5

10.0

12.5

lo
ss

f (x) = log(1 + |x|) · sin(10x) + 10
tan(x6)
ex2

2.40K Parameters, training set

2.40K Parameters, test set

204.00K Parameters, training set

204.00K Parameters, test set

20.04M Parameters, training set

20.04M Parameters, test set

Figure 3: This plot shows the ℓ2 difference between both the training and test points and the predicted
points throughout the training phase for different model sizes and parameter counts. Each plot
demonstrates how the error decreases as training progresses, highlighting the impact of model size on
both training and test performance.

6.3 EVALUATION ON TRAINING AND GENERALIZATION SIMILARITY

Experimental Design For the same set of functions, we show how the loss functions for both the
train and test datasets decrease as the number of epochs increases. As the training progresses, the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

loss converges towards zero for models with a higher number of parameters. We experimented with
models containing 2.4k, 204k, and 20M parameters, each consisting of only 2 layers.

Insights Across all three functions, the loss decreases rapidly in the early epochs and stabilizes for
both the training and test sets. Larger models with 20M parameters consistently achieve lower final
losses compared to smaller models with 2.4k and 204k parameters, demonstrating the benefit of
increased model size. The gap between training and test loss remains minimal, indicating strong
generalization across different parameter sizes. While smaller models perform reasonably well,
especially on simpler functions, the advantage of larger models becomes more evident with more
complex functions, where the test loss is significantly lower. This supports the scaling law, confirming
that increasing model size leads to better convergence and generalization.

7 CONCLUSION

In conclusion, our theoretical results confirm the scaling law for 1-bit neural networks. We demon-
strated that the model achieves a small loss as the number of parameters increases. Despite the
constraint of binary weights, 1-bit models show similar behavior to full-precision models as their
width grows. Our experiments support this theory, showing that 1-bit networks perform nearly as
well as standard models on complex functions. As the number of parameters grows, the performance
gap between 1-bit and full-precision models reduces. These findings highlight that 1-bit networks are
both efficient and effective, providing a strong alternative to traditional models.

REFERENCES

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
networks. In Conference on Learning Theory, pp. 4782–4887. PMLR, 2022.

Arash Ahmadian, Saurabh Dash, Hongyu Chen, Bharat Venkitesh, Zhen Stephen Gou, Phil Blunsom,
Ahmet Üstün, and Sara Hooker. Intriguing properties of quantization at scale. Advances in Neural
Information Processing Systems, 36:34278–34294, 2023.

Sina Alemohammad, Zichao Wang, Randall Balestriero, and Richard Baraniuk. The recurrent neural
tangent kernel. arXiv preprint arXiv:2006.10246, 2020.

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020.

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 977–988. IEEE, 2022.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in neural information processing
systems, 32, 2019.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of
deep networks. Advances in neural information processing systems, 19, 2006.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Sergei Bernstein. On a modification of chebyshev’s inequality and of the error formula of laplace.
Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Alberto Bietti and Julien Mairal. On the inductive bias of neural tangent kernels. Advances in Neural
Information Processing Systems, 32, 2019.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming the
challenges of efficient transformer quantization. arXiv preprint arXiv:2109.12948, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song Wen, Chul-Ho Lee, and S-H Gary Chan.
Run, don’t walk: chasing higher flops for faster neural networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 12021–12031, 2023.

Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. The Annals of Mathematical Statistics, pp. 493–507, 1952.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on learning theory, pp. 1305–1338. PMLR, 2020.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Sergey Foss, Dmitry Korshunov, Stan Zachary, et al. An introduction to heavy-tailed and subexpo-
nential distributions, volume 6. Springer, 2011.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression. arXiv
preprint arXiv:2303.16504, 2023.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Cong Guo, Jiaming Tang, Weiming Hu, Jingwen Leng, Chen Zhang, Fan Yang, Yunxin Liu, Minyi
Guo, and Yuhao Zhu. Olive: Accelerating large language models via hardware-friendly outlier-
victim pair quantization. In Proceedings of the 50th Annual International Symposium on Computer
Architecture, pp. 1–15, 2023.

Uffe Haagerup. The best constants in the khintchine inequality. Studia Mathematica, 70(3):231–283,
1981.

David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities for quadratic forms in
independent random variables. The Annals of Mathematical Statistics, 42(3):1079–1083, 1971.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected
works of Wassily Hoeffding, pp. 409–426, 1994.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization, 2024. URL https://arxiv.org/abs/2401.18079.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and ntk
for deep attention networks. In International Conference on Machine Learning, pp. 4376–4386.
PMLR, 2020.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization, 2022. URL https://arxiv.org/abs/
2207.00112.

11

https://arxiv.org/abs/2401.18079
https://arxiv.org/abs/2207.00112
https://arxiv.org/abs/2207.00112

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Stefani Karp, Ezra Winston, Yuanzhi Li, and Aarti Singh. Local signal adaptivity: Provable feature
learning in neural networks beyond kernels. Advances in Neural Information Processing Systems,
34:24883–24897, 2021.

Aleksandr Khintchine. Über dyadische brüche. Mathematische Zeitschrift, 18(1):109–116, 1923.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model selection.
Annals of statistics, pp. 1302–1338, 2000.

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak, and
Jascha Sohl-Dickstein. Finite versus infinite neural networks: an empirical study. Advances in
Neural Information Processing Systems, 33:15156–15172, 2020.

Chenyang Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Exploring the frontiers of softmax: Prov-
able optimization, applications in diffusion model, and beyond. arXiv preprint arXiv:2405.03251,
2024.

Shigang Li, Kazuki Osawa, and Torsten Hoefler. Efficient quantized sparse matrix operations on
tensor cores. In SC22: International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–15. IEEE, 2022a.

Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,
and Jian Ren. Efficientformer: Vision transformers at mobilenet speed. Advances in Neural
Information Processing Systems, 35:12934–12949, 2022b.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. Advances in neural information processing systems, 31, 2018.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Hao Zhang, Yong Liu, Chuhan Wu,
Xiangyang Li, Chenxu Zhu, et al. How can recommender systems benefit from large language
models: A survey. arXiv preprint arXiv:2306.05817, 2023.

Zechun Liu, Barlas Oguz, Aasish Pappu, Lin Xiao, Scott Yih, Meng Li, Raghuraman Krishnamoorthi,
and Yashar Mehdad. Bit: Robustly binarized multi-distilled transformer. Advances in neural
information processing systems, 35:14303–14316, 2022.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models, 2023. URL https://arxiv.org/abs/2305.17888.

Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. Post-training quantization
for vision transformer. Advances in Neural Information Processing Systems, 34:28092–28103,
2021.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024.

Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle Ungar. Faster ridge regression via the
subsampled randomized hadamard transform. Advances in neural information processing systems,
26, 2013.

12

https://arxiv.org/abs/2305.17888

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 2024.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based
view of language model fine-tuning. In International Conference on Machine Learning, pp.
23610–23641. PMLR, 2023.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen, and Tij-
men Blankevoort. A white paper on neural network quantization. arXiv preprint arXiv:2106.08295,
2021a.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and
Tijmen Blankevoort. A white paper on neural network quantization, 2021b. URL https:
//arxiv.org/abs/2106.08295.

Nilesh Prasad Pandey, Markus Nagel, Mart van Baalen, Yin Huang, Chirag Patel, and Tijmen
Blankevoort. A practical mixed precision algorithm for post-training quantization, 2023. URL
https://arxiv.org/abs/2302.05397.

Mark Rudelson and Roman Vershynin. Hanson-wright inequality and sub-gaussian concentration.
2013.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets. In
2013 IEEE international conference on acoustics, speech and signal processing, pp. 6655–6659.
IEEE, 2013.

Mariia Seleznova and Gitta Kutyniok. Neural tangent kernel beyond the infinite-width limit: Effects
of depth and initialization. In International Conference on Machine Learning, pp. 19522–19560.
PMLR, 2022.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. A theoretical analysis on feature learning in neural
networks: Emergence from inputs and advantage over fixed features. In International Conference
on Learning Representations, 2021.

Zhenmei Shi, Junyi Wei, and Yingyu Liang. Provable guarantees for neural networks via gradient
feature learning. Advances in Neural Information Processing Systems, 36, 2024.

Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff bound.
arXiv preprint arXiv:1906.03593, 2019.

Chen Tang, Kai Ouyang, Zhi Wang, Yifei Zhu, Yaowei Wang, Wen Ji, and Wenwu Zhu. Mixed-
precision neural network quantization via learned layer-wise importance, 2023. URL https:
//arxiv.org/abs/2203.08368.

Joel A Tropp. Improved analysis of the subsampled randomized hadamard transform. Advances in
Adaptive Data Analysis, 3(01n02):115–126, 2011.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks, 2024. URL
https://arxiv.org/abs/2402.04396.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 2017.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models.
arXiv preprint arXiv:2310.11453, 2023.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

13

https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2106.08295
https://arxiv.org/abs/2302.05397
https://arxiv.org/abs/2203.08368
https://arxiv.org/abs/2203.08368
https://arxiv.org/abs/2402.04396

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and S Yu Philip. Multimodal large
language models: A survey. In 2023 IEEE International Conference on Big Data (BigData), pp.
2247–2256. IEEE, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Zhenjie Yang, Xiaosong Jia, Hongyang Li, and Junchi Yan. A survey of large language models for
autonomous driving. arXiv preprint arXiv:2311.01043, 2023.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
standing straight-through estimator in training activation quantized neural nets. arXiv preprint
arXiv:1903.05662, 2019.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey on
multimodal large language models. arXiv preprint arXiv:2306.13549, 2023.

Amir Zandieh, Majid Daliri, and Insu Han. Qjl: 1-bit quantized jl transform for kv cache quantization
with zero overhead, 2024. URL https://arxiv.org/abs/2406.03482.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part I 13, pp. 818–833. Springer, 2014.

Tianren Zhang, Chujie Zhao, Guanyu Chen, Yizhou Jiang, and Feng Chen. Feature contamination:
Neural networks learn uncorrelated features and fail to generalize. arXiv preprint arXiv:2406.03345,
2024a.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per channel:
Efficient large language model inference with coupled quantization, 2024b. URL https://
arxiv.org/abs/2405.03917.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-parameterized two-layer
neural network. In Conference on Learning Theory, pp. 4577–4632. PMLR, 2021.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. arXiv
preprint arXiv:2404.14294, 2024.

Rui-Jie Zhu, Yu Zhang, Ethan Sifferman, Tyler Sheaves, Yiqiao Wang, Dustin Richmond, Peng
Zhou, and Jason K Eshraghian. Scalable matmul-free language modeling. arXiv preprint
arXiv:2406.02528, 2024.

14

https://arxiv.org/abs/2406.03482
https://arxiv.org/abs/2405.03917
https://arxiv.org/abs/2405.03917

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix

CONTENTS

1 Introduction 1

2 Related Work 2

3 Preliminary 3

3.1 Quantization . 3

3.2 NTK Problem Setup . 4

3.3 Recalling Classic NTK Setup . 4

4 Kernel Behavior and Training Convergence 5

4.1 Neural Tangent Kernel . 5

4.2 Training Convergence . 5

5 Generalization Similarity 6

5.1 Function Difference at Initialization . 7

5.2 Generalization Similarity . 7

6 Experiments 8

6.1 Verification on Scaling Law . 8

6.2 Comparison on 1-D Functions . 9

6.3 Evaluation on Training and Generalization Similarity 9

7 Conclusion 10

A Preliminary 17

A.1 Notations . 17

A.2 Basic Facts . 17

A.3 Probability Tools . 17

A.4 Basic Bound . 19

B NTK Problem Setup 19

B.1 Dataset . 19

B.2 Model . 19

B.3 Training . 20

C Quantization 22

C.1 Quantization Functions . 22

C.2 Dequantization Functions . 22

C.3 Quantization Error . 22

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D Patterns 24

D.1 ReLU Pattern . 24

D.2 Sign Pattern . 24

E Straight-Through Estimator (STE) 24

E.1 STE Functions . 24

E.2 Gradient Computation . 25

F Neural Tangent Kernel 25

F.1 Kernel Function . 25

F.2 Assumption: H∗ is Positive Definite . 27

F.3 Kernel Convergence and PD Property . 27

G Training Dynamic 29

G.1 Decompose Loss . 29

G.2 Bounding C1 . 31

G.3 Bounding C2 . 33

G.4 Bounding C3 . 34

G.5 Bounding C4 . 37

H Inductions 38

H.1 Main Result 1: Training Convergence Guarantee 38

H.2 Induction for Loss . 40

H.3 Induction for STE Gradient . 42

H.4 Induction for Weights . 43

I Supplementary Setup for Classic Linear Regression 44

I.1 Model Function . 44

I.2 Loss and Training . 45

I.3 Induction for Weights . 46

I.4 Induction for Loss . 46

J Similarities 47

J.1 Main Result 2: Training Similarity . 47

J.2 Test Dataset for Generalization Evaluation . 48

J.3 Function Similarity at Initialization . 49

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A PRELIMINARY

A.1 NOTATIONS

In this paper, we use integer m > 0 to denote the width of neural networks, in particular, m is
sufficiently large. We use integer d > 0 to denote the dimension of neural networks. We use integer
n > 0 to denote the size of the training dataset.

A.2 BASIC FACTS

Fact A.1. For a variable x ∼ N (0, σ2), then with probability at least 1− δ, we have:

|x| ≤ Cσ
√
log(1/δ)

Fact A.2. For an 1-Lipschitz function f(·), we have:

|f(x)− f(y)| ≤ |x− y|,∀x, y ∈ Rd

Fact A.3. For a Gaussian variable x ∼ N (0, σ2 · Id) where σ ∈ R, then for any t > 0, we have:

Pr[x ≤ t] ≤ 2t√
2πσ

Fact A.4. For a Gaussian vector w ∼ N (0, σ2 · Id) where σ ∈ R, and a fixed vector x ∈ Rd, we
have:

w⊤x ∼ N (0, σ2∥x∥2 · Id)

Fact A.5. For two matrices H, H̃ ∈ Rn×n, we have:

λmin(H̃) ≥ λmin(H)− ∥H − H̃∥F
Fact A.6. For x ∈ (0, 1), integer t ≥ 0, we have:

t∑

τ=1

(1− x)τ ≤ − 1

log(1− x)
≤ 2

x

A.3 PROBABILITY TOOLS

Here, we state a probability toolkit in the following, including several helpful lemmas we’d like to
use. Firstly, we provide the lemma about Chernoff bound in (Chernoff, 1952) below.
Lemma A.7 (Chernoff bound, (Chernoff, 1952)). Let X =

∑n
i=1 Xi, where Xi = 1 with probability

pi and Xi = 0 with probability 1− pi, and all Xi are independent. Let µ = E[X] =
∑n

i=1 pi. Then

• Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0;

• Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/1), ∀0 < δ < 1.

Next, we offer the lemma about Hoeffding bound as in (Hoeffding, 1994).
Lemma A.8 (Hoeffding bound, (Hoeffding, 1994)). Let X1, · · · , Xn denote n independent bounded
variables in [ai, bi] for ai, bi ∈ R. Let X :=

∑n
i=1 Xi, then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp(− 2t2∑n
i=1(bi − ai)2

)

We show the lemma of Bernstein inequality as (Bernstein, 1924).
Lemma A.9 (Bernstein inequality, (Bernstein, 1924)). Let X1, · · · , Xn denote n independent zero-
mean random variables. Suppose |Xi| ≤ M almost surely for all i. Then, for all positive t,

Pr[

n∑

i=1

Xi ≥ t] ≤ exp(− t2/2∑n
j=1 E[X2

j] +Mt/3
)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Then, we give the Khintchine’s inequality in (Khintchine, 1923; Haagerup, 1981) as follows:
Lemma A.10 (Khintchine’s inequality, (Khintchine, 1923; Haagerup, 1981)). Let σ1, · · · , σn be i.i.d
sign random variables, and let z1 · · · , zn be real numbers. Then there are constants C > 0 so that
for all t > 0

Pr[|
n∑

i=1

ziσi| ≥ t∥z∥2] ≤ exp(−Ct2)

We give Hason-wright inequality from (Hanson & Wright, 1971; Rudelson & Vershynin, 2013)
below.
Lemma A.11 (Hason-wright inequality, (Hanson & Wright, 1971; Rudelson & Vershynin, 2013)).
Let x ∈ Rn denote a random vector with independent entries xi with E[xi] = 0 and |xi| ≤ K Let A
be an n× n matrix. Then, for every t ≥ 0

Pr[|x⊤Ax− E[x⊤Ax]| > t] ≤ 2 exp(−cmin{t2/(K4∥A∥2F), t/(K2∥A∥)})

We state Lemma 1 on page 1325 of Laurent and Massart (Laurent & Massart, 2000).
Lemma A.12 (Lemma 1 on page 1325 of Laurent and Massart, (Laurent & Massart, 2000)). Let
X ∼ X 2

k be a chi-squared distributed random variable with k degrees of freedom. Each one has zero
mean and σ2 variance. Then

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp(−t)

Pr[X − kσ2 ≥ 2
√
ktσ2] ≤ exp(−t)

Here, we provide a tail bound for sub-exponential distribution (Foss et al., 2011).
Lemma A.13 (Tail bound for sub-exponential distribution, (Foss et al., 2011)). We say X ∈
SE(σ2, α) with parameters σ > 0, α > 0, if

E[eλX] ≤ exp(λ2σ2/2),∀|λ| < 1/α.

Let X ∈ SE(σ2, α) and E[X] = µ, then:

Pr[|X − µ| ≥ t] ≤ exp(−0.5min{t2/σ2, t/α})

In the following, we show the helpful lemma of matrix Chernoff bound as in (Tropp, 2011; Lu et al.,
2013).
Lemma A.14 (Matrix Chernoff bound, (Tropp, 2011; Lu et al., 2013)). Let X be a finite set of
positive-semidefinite matrices with dimension d× d, and suppose that

max
X∈X

λmax(X) ≤ B.

Sample {X1, · · · , Xn} uniformly at random from X without replacement. We define µmin and µmax

as follows:

µmin := n · λmin(E
X∈X

(X))

µmax := n · λmax(E
X∈X

(X)).

Then

Pr[λmin(

n∑

i=1

Xi) ≤ (1− δ)µmin] ≤ d · exp(−δ2µmin/B) for δ ∈ (0, 1],

Pr[λmax(

n∑

i=1

Xi) ≥ (1 + δ)µmax] ≤ d · exp(−δ2µmax/(4B)) for δ ≥ 0.

Finally, we state Markov’s inequality as below.
Lemma A.15 (Markov’s inequality). If X is a non-negative random variable and a > 0, then the
probability that X is at least a is at most the expectation of X divided by a:

Pr[X ≥ a] ≤ E[X]

a

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.4 BASIC BOUND

Definition A.16. For δ ∈ (0, 0.1) and a sufficiently large constant C > 0, we define:

D := max{C
√
log(md/δ), 1}

B NTK PROBLEM SETUP

B.1 DATASET

We consider a dataset where each data point is a tuple that includes a vector input and a scalar output.
In particular, we assume that ℓ2 norm of each input equals 1 and the absolute value of each target is
not bigger than 1. We give the formal definition as follows:
Definition B.1 (Data Points). We define dataset D := {(xi, yi)}ni=1 ⊂ Rd × R, where ∥xi∥2 = 1
and |yi| ≤ 1 for any i ∈ [n].

B.2 MODEL

Weights and Initialization.
Definition B.2. We give the following definitions:

• Hidden-layer weights W ∈ Rd×m. We define the hidden-layer weights W :=
[w1, w2, · · · , wm] ∈ Rd×m where wr ∈ Rd,∀r ∈ [m].

• Output-layer weights a ∈ Rm. We define the output-layer weights a :=

[a1, a2, · · · , am]
⊤ ∈ Rm, especially, vector a is fixed during the training.

Definition B.3. We give the following initializations:

• Initialization of hidden-layer weights W ∈ Rd×m. We randomly initialize W (0) :=
[w1(0), w2(0), · · · , wm(0)] ∈ Rd×m, where its r-th column for r ∈ [m] is sampled by
wr(0) ∼ N (0, σ2 · Id) with σ2 = 1.

• Initialization of output-layer weights a ∈ Rm. We randomly initialize a ∈ Rm where its
r-th entry for r ∈ [m] is sampled by ar ∼ Uniorm{−1,+1}.

Model.
Definition B.4. For a scalar x ∈ R, we define:

ReLU(x) = max{0, x} ∈ R
Definition B.5. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weights W ∈ Rd×m as Definition B.2.

• For a output-layer weights a ∈ Rm as Definition B.2.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let ReLU : R → R be defined as Definition B.4.

• For κ ∈ (0, 1].

We define:

f(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r, x⟩)

)
∈ R

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Lemma B.6. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weights W ∈ Rd×m as Definition B.2.

• For a output-layer weights a ∈ Rm as Definition B.2.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let ReLU : R → R be defined as Definition B.4.

• Let u : Rd → Rd be defined as Definition C.6.

• For κ ∈ (0, 1].

Then we have:

f(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU
(
⟨wr, x⟩+ ⟨u(wr), x⟩

)

Proof. We have

f(x,W, a) = κ
1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r, x⟩)

)

= κ
1√
m

m∑

r=1

ar · ReLU
(√

V (w) · (⟨w̃, x⟩+ E(w) · ⟨x,1d⟩)
)

= κ
1√
m

m∑

r=1

ar · ReLU
(
⟨wr, x⟩+ ⟨u(wr), x⟩

)

where the first step follows from Definition B.5, the second step follows from Definition C.5, the last
step follows from Definition C.6.

B.3 TRAINING

Training.
Definition B.7. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• Let a ∈ Rm be initialized as Definition B.3.

• Let f : Rd × Rd×m × Rm → R be defined as Definition B.5.

• For any t ≥ 0.

We define:

L(W (t)) :=
1

2
·

n∑

i=1

(f(xi,W (t), a)− yi)
2

Definition B.8. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• Let a ∈ Rm be initialized as Definition B.3.

• Let f : Rd × Rd×m × Rm → R be defined as Definition B.5.

• For any t ≥ 0.

• Let L(W (t)) be defined as Definition B.7.

• Denote η > 0 as the learning rate.

• Let ∆W (t) ∈ Rd×m be defined as Definition E.2.

We update:

W (t+ 1) := W (t)− η ·∆W (t)

Compact Form.
Definition B.9. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• Let a ∈ Rm be initialized as Definition B.3.

• Let f : Rd × Rd×m × Rm → R be defined as Definition B.5.

• For any t ≥ 0.

• Let L(W (t)) be defined as Definition B.7.

• Let W (t) be updated by Definition B.8.

We give the following compact form of defined variables and functions:

• Compact form of model function. We define:

F(t) := [f(x1,W (t), a), f(x2,W (t), a), · · · , f(xn,W (t), a)]
⊤ ∈ Rn

• Compact form of the input vector in the training dataset. We define:

X := [x1, x2, · · · , xn]
⊤ ∈ Rn×d

• Compact form of the targets in the training dataset. We define:

y := [y1, y2, · · · , yn]⊤ ∈ Rn

• Compact form of the training objective. We define:

L(t) :=
1

2
· ∥F(t)− y∥22

Especially, we have L(t) = L(W (t)) by simple algebras.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C QUANTIZATION

C.1 QUANTIZATION FUNCTIONS

Definition C.1. For a vector w ∈ Rd, we define Sign(w) ∈ {−1,+1}d where its k-th entry for
k ∈ [d] is given by:

Signk(w) :=

{−1, if wk < 0

+1, if wk ≥ 0
∈ {−1,+1}

Definition C.2. For a vector w ∈ Rd, we define expectation function as follows:

E(w) :=
⟨w,1d⟩

d
∈ R

Definition C.3. Let E : Rd → R be defined as Definition C.2. For a vector w ∈ Rd, we define
variance function as follows:

V (w) :=
1

d
· ∥w − E(w) · 1d∥22 ∈ R

Definition C.4. If the following conditions hold:

• Let Sign : Rd → {−1,+1}d be defined as Definition C.1.

• Let E : Rd → R be defined as Definition C.2.

• Let V : Rd → R be defined as Definition C.3.

• For a weight vector w ∈ Rd.

We define the quantization function as follows:

q(w) := Sign(
w − E(w) · 1d√

V (w)
) ∈ {−1,+1}d

C.2 DEQUANTIZATION FUNCTIONS

Definition C.5. If the following conditions hold:

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Let E : Rd → R be defined as Definition C.2.

• Let V : Rd → R be defined as Definition C.3.

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.

• For a vector x ∈ Rd.

We define the dequantization function as follows:

dq(⟨w̃, x⟩) :=
√

V (w) · ⟨w̃, x⟩+ E(w) · ⟨x,1d⟩ ∈ R

C.3 QUANTIZATION ERROR

Definition C.6. If the following conditions hold:

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Let E : Rd → R be defined as Definition C.2.

• Let V : Rd → R be defined as Definition C.3.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.

• For a vector x ∈ Rd.

We define the quantization difference vector as follows:

u(w) :=
√
V (w)w̃ + E(w) · 1d − w ∈ Rd

Lemma C.7. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Let E : Rd → R be defined as Definition C.2.

• Let V : Rd → R be defined as Definition C.3.

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.

• For a vector x ∈ Rd and ∥x∥2 = 1.

• Let u : Rd → Rd be defined as Definition C.6.

Then we have:

⟨u(w), x⟩ ≤ O
(
d(D +R)

)

Proof. We define:

Ln(w) =
w − E(w)1d√

V (w)

Then by simple algebras, we can show that:

1

d
∥Ln(w)∥22 =

1

d

∥∥∥∥∥
w − E(w)1d√

V (w)

∥∥∥∥∥

2

2

<
1

d

∥w − E(w)1d∥22
V (w)

< 1 (3)

Thus, we obtain:

∥Ln(w)∥∞ ≤ ∥Ln(w)∥2
= (∥Ln(w)∥22)

1
2

<
√
d

where these steps follow from simple algebras and Eq. (3).

Finally, we can get that

|⟨u(w), x⟩| =
√

V (w) · |⟨w̃ − Ln(w), x⟩|
= O(D +R) · |⟨w̃ − Ln(w), x⟩|
≤ O(D +R) · ∥w̃ − Ln(w)∥2

= O(D +R) ·
(d∑

k=1

(w̃k − Lnk(w))
2
) 1

2

≤ O(D +R) ·
(d∑

k=1

(max{
√
d− 1, 1})2

) 1
2

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

≤ O
(
d(D +R)

)

where the first step follows from Definition C.6, the second step follows from Part 7 of Lemma H.6,
the third step follows from Cauchy-Schwarz inequality and ∥x∥2 = 1, the fourth step follows from
the definition of ℓ2 norm, the fifth step follows from Definition C.1 and simple algebras, the last step
follows from simple algebras.

D PATTERNS

D.1 RELU PATTERN

Definition D.1. If the following conditions hold:

• For any w ∈ Rd.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• For R > 0.

• For i ∈ [n] and r ∈ [m].

We define:

Ai,r := {∃w ∈ Rd : ∥w − wr(0)∥2 ≤ R,1dq(⟨wr(0),xi⟩)≥0 ̸= 1dq(⟨w,xi⟩)≥0}
Definition D.2. Let event Ai,r for i ∈ [n] and r ∈ [m] be defined as Definition D.1. We define:

Si := {r ∈ [m] : I{Ai,r} = 0}
S⊥
i := [m]/Si

D.2 SIGN PATTERN

Definition D.3. If the following conditions hold:

• For any w ∈ Rd.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• For R > 0.

• For k ∈ [d] and r ∈ [m].

We define:

Br,k := {∃w ∈ Rd : |wk − wr,k(0)| ≤ R,1wr,k(0)−E(wr(0))≥0 ̸= 1wk−E(w)≥0}

E STRAIGHT-THROUGH ESTIMATOR (STE)

E.1 STE FUNCTIONS

Definition E.1. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weights W ∈ Rd×m as Definition B.2.

• For a output-layer weights a ∈ Rm as Definition B.2.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let ReLU : R → R be defined as Definition B.4.

We define:

fste(x,W, a) := κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r,x⟩)≥0 · ⟨wr, x⟩ ∈ R

Then its compact form is given by

Fste(t) := [fste(x1,W (t), a), fste(x2,W (t), a), · · · , fste(xn,W (t), a)]
⊤ ∈ Rn

Definition E.2. Let W (0) ∈ Rd×m be initialized as Definition B.3. For any t ≥ 0. We define:

∆W (t) :=

n∑

i=1

(Fi(t)− yi) ·
dFste,i(t)

dW (t)

E.2 GRADIENT COMPUTATION

Lemma E.3. If the following conditions hold:

• For i ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let Fste(t) be defined as Definition E.1.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• For κ ∈ (0, 1].

Then we have:

dFste,i(t)

dwr(t)
= κ

1√
m
ar · 1dq(⟨w̃r(t),xi⟩)≥0 · xi

Proof. This proof follows from simple calculations.

F NEURAL TANGENT KERNEL

F.1 KERNEL FUNCTION

Definition F.1. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• For κ ∈ (0, 1].

We the kernel function as H(t) ∈ Rn×n, where its (i, j)-th entry is given by:

Hi,j(t) := κ2 1

m
x⊤
i xj ·

m∑

r=1

1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 ∈ R

Claim F.2. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• For κ ∈ (0, 1].

We first define the neural tangent network as H∗ := H(0) ∈ Rn×n, where its (i, j)-th entry is given
by:

H∗
i,j := Hi,j(0)

= κ2 1

m
x⊤
i xj ·

m∑

r=1

1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0

≈ κ2x⊤
i xj · E

wr∼N (0,σ2·Id)
[1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0]

Proof. We have

H∗
i,j = Hi,j(0)

= κ2 1

m
x⊤
i xj ·

m∑

r=1

1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0

≈ κ2x⊤
i xj · E

wr∼N (0,σ2·Id)
[1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0]

where the first step follows from the definition of H∗, the second step follows from Definition F.1,
the third step holds since m → +∞.

Definition F.3. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let S⊥
i be defined as Definition D.2.

We the pattern-changing kernel function as H⊥(t) ∈ Rn×n, where its (i, j)-th entry is given by:

H⊥
i,j(t) := κ2 1

m
x⊤
i xj ·

∑

r∈S⊥
i

1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 ∈ R

F.2 ASSUMPTION: H∗ IS POSITIVE DEFINITE

Assumption F.4. Let H∗ ∈ Rn×n be defined as Definition F.1. We assume that H∗ is positive
definite (PD), where its minimum eigenvalue is given by:

λ := λmin(H
∗) > 0

F.3 KERNEL CONVERGENCE AND PD PROPERTY

Lemma F.5. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• Denote λ = λmin(H
∗) > 0 as Assumption F.4.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• Let H∗ ∈ Rn×n be defined as Claim F.2.

• R ≤ O(λδ
κ2n2dD).

• δ ∈ (0, 0.1).

Then with probability at least 1− δ, we have:

• Part 1.

∥H(t)−H∗∥F ≤ O
(
n2dRδ−1D

)

• Part 2.

λmin(H(t)) ≥ λ/2

Proof. Proof of Part 1. Let Ai,r be defined as Definition D.1, we first show that when ⟨wr(0), x⟩ ≥
R+O

(
d(D +R)

)

dq(⟨w̃r(0), xi⟩) =
√
V (wr(0)) · ⟨w̃r(0), xi⟩+ ⟨E(wr(0)) · 1d, xi⟩

= ⟨wr(0), xi⟩+ ⟨u(wr(0)), xi⟩
≥ ⟨wr(0), xi⟩ − |⟨u(wr(0)), xi⟩|
≥ R

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where the first step follows from Definition C.5, the second step follows from Definition C.6. the
third step follows from simple algebras, the last step follows from ⟨wr(0), x⟩ ≥ R+O

(
d(D +R)

)

and Lemma C.7.

Thus, for any w ∈ Rd that satisfies ∥w − wr(0)∥2 ≤ R, we have:

dq(⟨w̃, xi⟩) =
√

V (w) · ⟨w̃, xi⟩+ ⟨E(w) · 1d, xi⟩
= ⟨w, xi⟩+ ⟨u(w), xi⟩
≥ ⟨w, xi⟩ − |⟨u(w), xi⟩|
≥ ⟨wr(0), xi⟩ − ∥w − wr(0)∥2 − |⟨u(w), xi⟩|
≥ 0

where the first step follows from Definition C.5, the second step follows from Definition C.6. the
third step follows from simple algebras, the fourth step follows from Cauchy-Schwarz inequality
and ∥xi∥ = 1, the last step follows from ∥w−wr(0)∥2 ≤ R, ⟨wr(0), x⟩ ≥ R+O

(
d(D+R)

)
and

Lemma C.7.

The above situation says:

Pr
[
I{Ai,r} = 1] ≤ Pr[⟨wr(0), x⟩ < R+O

(
d(D +R)

)]

≤
4R+O

(
d(D +R)

)

√
2π

≤ O
(
dR(D +R)

)

≤ O
(
dRD

)
(4)

where the second step follows from anti-concentration of Gaussian (Fact A.3) and Fact A.4, the third
step follows from simple algebras and the last step follows from plugging R ≤ D.

For i, j ∈ [n], we have

E[|Hi,j(t)−H∗
i,j |]

= E
[∣∣∣κ2 1

m
x⊤
i xj

m∑

r=1

(1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 − 1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0)
∣∣∣
]

= κ2 1

m

m∑

r=1

E
[
1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 − 1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0

]

≤ κ2 1

m

m∑

r=1

E
[
I{Ai,r ∪Aj,r}

]

≤ O
(
κ2dRD

)
(5)

where the first step follows from Definition F.1 and Claim F.2, the second and third step follows from
simple algebras, the last step follows from Eq. (4).

Then we have:

E[
n∑

i=1

n∑

j=1

|Hi,j(t)−H∗
i,j |] =

n∑

i=1

n∑

j=1

E[|Hi,j(t)−H∗
i,j |]

≤ O
(
κ2n2dRD

)

where the first step follows from simple algebras, the second step follows from Eq. (5).

Hence, by Markov’s inequality (Lemma A.15), with probability at least 1− δ, we have:
n∑

i=1

n∑

j=1

|Hi,j(t)−H∗
i,j | ≤

E[
∑n

i=1

∑n
j=1 |Hi,j(t)−H∗

i,j |]
δ

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

≤ O
(
κ2n2dRδ−1(D +R)

)

We obtain:

∥H(t)−H∗∥F ≤ ∥H(t)−H∗∥1

=

n∑

i=1

n∑

j=1

|Hi,j(t)−H∗
i,j |

≤ O
(
κ2n2dRδ−1D

)

Now following Fact A.5, we have:

λmin(H(t)) ≥ λmin(H
∗)− ∥H(t)−H∗∥F

≥ λ−O
(
κ2n2dRδ−1D

)

≥ λ/2

where the last step follows from choosing R ≤ O(λδ
κ2n2dD).

G TRAINING DYNAMIC

G.1 DECOMPOSE LOSS

Definition G.1. Let W (0) ∈ Rd×m be initialized as Definition B.3. For any t ≥ 0. Let u : Rd → Rd

be defined as Definition C.6. For r ∈ [m]. We define:

ur(t) := u(wr(t))

Then the Fi(t),∀i ∈ [n] can be given by:

Fi(t) = κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r(t),xi⟩)≥0 ·
(
⟨wr(t), xi⟩+ ⟨ur(t), xi⟩

)

Claim G.2. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• Define

C1 := − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

• Define

C2 := − κ
1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C3 := − κ
1√
m

n∑

i=1

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C4 :=
1

2
∥F(t)− F(t+ 1)∥22

• For κ ∈ (0, 1].

Then we have:

L(t+ 1) = L(t) + C1 + C2 + C3 + C4

Proof. We have

L(t+ 1) =
1

2
· ∥F(t+ 1)− y∥22

=
1

2
· ∥(F(t)− y)− (F(t)− F(t+ 1))∥22

=
1

2
· (∥F(t)− y∥22 − 2⟨F(t)− y,F(t)− F(t+ 1)⟩+ ∥F(t)− F(t+ 1)∥22)

= L(t)− ⟨F(t)− y,F(t)− F(t+ 1)⟩+ 1

2
∥F(t)− F(t+ 1)∥22

these steps follow from simple algebras and Definition B.9.

Then for i ∈ [n]

Fi(t)− Fi(t+ 1)

= κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r(t),xi⟩)≥0 ·
(
⟨wr(t), xi⟩+ ⟨ur(t), xi⟩

)

− κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r(t+1),xi⟩)≥0 ·
(
⟨wr(t+ 1), xi⟩+ ⟨ur(t+ 1), xi⟩

)

= κ
1√
m

m∑

r=1

ar ·
(
1dq(⟨w̃r(t),xi⟩)≥0 ·

(
⟨wr(t), xi⟩+ ⟨ur(t), xi⟩

)

− 1dq(⟨w̃r(t+1),xi⟩)≥0 ·
(
⟨wr(t+ 1), xi⟩+ ⟨ur(t+ 1), xi⟩

))

= M1,i +M2,i +M3,i

where these steps follows from simple algebras and defining:

M1,i := κ
1√
m

∑

r∈Si

ar

(
1dq(⟨w̃r(t),xi⟩)≥0 · ⟨wr(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0 · ⟨wr(t+ 1), xi⟩

)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

M2,i := κ
1√
m

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0 · ⟨wr(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0 · ⟨wr(t+ 1), xi⟩

)

M3,i := κ
1√
m

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0 · ⟨ur(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0 · ⟨ur(t+ 1), xi⟩

)

Thus, by the definitions in Lemma conditions, we can show that

L(t+ 1) = L(t) + C1 + C2 + C3 + C4

G.2 BOUNDING C1

Lemma G.3. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition F.3.

• Let H∗ ∈ Rn×n be defined as Claim F.2. Assume λmin(H
∗) > 0 as Assumption F.4.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• δ ∈ (0, 0.1).

• Define

C1 := − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

• For κ ∈ (0, 1].

Then with probability at least 1− δ, we have:

C1 ≤
(
− ηκλ+O(ηκ

n2dRD

δ
)
)
· L(t)

Proof. We have:

C1 = − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

= − κ
1√
m

n∑

i=1

∑

r∈Si

ar(⟨wr(t), xi⟩ − ⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

= − κ2η
1

m

n∑

i=1

∑

r∈Si

(Fi(t)− yi) · (
n∑

j=1

x⊤
i xj · 1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 · (Fj(t)− y))

= − η(F(t)− y)⊤ · (H(t)−H⊥(t)) · (F(t)− y)

= − η(F(t)− y)⊤ ·H(t) · (F(t)− y) + η(F(t)− y)⊤ ·H⊥(t) · (F(t)− y)

≤ − ηλ/2 · ∥F(t)− y∥22 + η∥H⊥(t)∥F · ∥F(t)− y∥2
= (−ηλ+ ∥H⊥(t)∥F) · L(t)

where the first step follows from definition of C1, the second step follows from the definition of Si

(Definition D.2), the third step follows from Definition B.8 and Definition E.2, the fourth step follows
from Definition F.1, Definition F.3 and simple algebras, the fifth step follows from simple algebras,
the sixth step follows from Lemma F.5 and simple algebras, the last step follows from Definition B.9.

Besides, we have

|H⊥
i,j | = | 1

m
x⊤
i xj ·

∑

r∈S⊥
i

1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0|

≤ | 1
m
x⊤
i xj · |S⊥

i ||

≤ 1

m
|S⊥

i | (6)

where the first step follows from Definition F.3, the second step follows from simple algebras, the
third step follows from ∥x∥i = 1.

We give that

E[
n∑

i=1

|S⊥
i |] =

n∑

i=1

m∑

r=1

Pr[I{Ai,r} = 1]

≤ O(mndRD)

where the first step follows from simple algebras, the second step follows from Eq. (4).

Hence, by Markov’s inequality (Lemma A.15), we have
n∑

i=1

|S⊥
i | ≤ O(

mndRD

δ
) (7)

Thus,

∥H⊥∥F ≤
n∑

i=1

n∑

j=1

|H⊥
i,j |

≤ 1

m

n∑

i=1

n∑

j=1

|S⊥
i |

≤ O(
n2dRD

δ
)

where the first step follows from simple algebras, the second step follows from Eq. (6), the last step
follows from simple algebras and Eq. (7).

Finally, we conclude all the results, we have:

C1 ≤
(
− ηλ+O(η

n2dRD

δ
)
)
· L(t)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

G.3 BOUNDING C2

Lemma G.4. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition F.3.

• Let H∗ ∈ Rn×n be defined as Claim F.2. Assume λmin(H
∗) > 0 as Assumption F.4.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• δ ∈ (0, 0.1).

• Define

C2 := − κ
1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)

• κ ∈ (0, 1].

Then with probability at least 1− δ, we have:

|C2| ≤ O(ηκ
n1.5dRD

δ
) · L(t)

Proof. We have:

|C2| = |κ 1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)|

≤ |κ 1√
m

n∑

i=1

|Si⊥ | · |⟨wr(t), xi⟩ − ⟨wr(t+ 1), xi⟩| · (Fi(t)− yi)|

≤ |κ 1√
m

n∑

i=1

|Si⊥ | · ∥η∆wr(t)∥2 · (Fi(t)− yi)|

≤ κ
1√
m

n∑

i=1

|Si⊥ | · ∥η∆wr(t)∥2∥F(t)− y∥2

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

≤ ηκ

√
n

m

n∑

i=1

|Si⊥ | · ∥F(t)− y∥22

≤ O(ηκ
n1.5dRD

δ
) · L(t)

where the first step follows from the definition of C2, the second step follows from Fact A.2 and
Definition D.2 (S⊥

i), the third step follows from simple algebras and Definition B.8, the fourth step
follows from simple algebras, the fifth step follows from Lemma H.4, last step follows from Eq. (7)
and Definition B.9.

G.4 BOUNDING C3

Lemma G.5. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition F.3.

• Let H∗ ∈ Rn×n be defined as Claim F.2. Assume λmin(H
∗) > 0 as Assumption F.4.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• δ ∈ (0, 0.1).

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

• Define

C3 := − κ
1√
m

n∑

i=1

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩
)
· (Fi(t)− yi)

• κ ∈ (0, 1].

Then with probability at least 1− δ, we have:

C3 ≤ O
(
ηκ

R2n1.5
√
d

δϵ
√
m

D
)
· L(t)

Proof. We have:

|ur,k(t)− ur,k(t+ 1)|

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

= |
√
V (wr(t)) · w̃r,k(t) + E(wr(t))− wr,k(t)

−
√

V (wr(t+ 1)) · w̃r,k(t+ 1)− E(wr(t+ 1)) + wr,k(t+ 1)|
≤ |w̃r,k(t)

√
V (wr(t))− w̃r,k(t+ 1)

√
V (wr(t+ 1))|

+ |ηE(∆wr(t))|+ |η∆wr,k(t)|
≤
∣∣∣w̃r,k(t+ 1)(

√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣

+
∣∣∣
√

V (wr(t))(w̃r,k(t)− w̃r,k(t+ 1))
∣∣∣+ |ηE(∆wr(t))|+ |η∆wr,k(t)|

= Q1,r,k +Q2,r,k +Q3,r,k +Q4,r,k (8)

where the first step follows from Definition G.1, the second step follows from triangle inequality and
Definition B.8, the third step follows from simple algebras, the last step follows from defining:

Q1,r,k :=
∣∣∣w̃r,k(t+ 1)(

√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣

Q2,r,k :=
∣∣∣
√
V (wr(t))(w̃r,k(t)− w̃r,k(t+ 1))

∣∣∣
Q3,r,k := |ηE(∆wr(t))|
Q4,r,k := |η∆wr,k(t)|

Bounding Q1,r,k.

We have:

Q1,r,k =
∣∣∣w̃r,k(t+ 1)(

√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣

=
∣∣∣(
√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣
≤ ∥wr(t)− E(wr(t))1d − wr(t+ 1) + E(wr(t+ 1))1d∥2
≤ ∥η∆wr(t)∥2 +

√
d · |ηE(∆wr(t))|

≤ η
(1 +

√
d)
√
n√

m
∥F(t)− y∥2

where the first step follows from the definition of Q1,r,k, the second step follows from w̃r,k(t+ 1) ∈
{−1,+1}, the third step follows from Definition C.3 and reverse triangle inequality, the fourth step
follows from ∥1d∥2 =

√
d and Definition B.8, the last step follows from Lemma H.4.

Bounding Q2,r,k.

We have:

Q2,r,k =
∣∣∣
√
V (wr(t))(w̃r,k(t)− w̃r,k(t+ 1))

∣∣∣

= |
√
V (wr(t))| · |w̃r,k(t)− w̃r,k(t+ 1)|

≤ ∥wr(t)− E(wr(t))1d∥ · |w̃r,k(t)− w̃r,k(t+ 1)|
≤ O(

√
dD +R) · |w̃r,k(t)− w̃r,k(t+ 1)| (9)

where the first step follows from the definition of Q2,r,k, the second step follows from simple algebras,
the third step follows from Definition C.3, the last step follows from Part 2 of Lemma H.6.

At the same time, we can show that

E[|w̃r,k(t)− w̃r,k(t+ 1)|]
≤ 2(1− Pr[I{Br,k} = 0 ∩ I{|wr,k(t)− E(wr(t))| ≥ |η∆wr,k(t)− ηE(∆wr(t))|}])

≤ 2(1− Pr[z ≥ 2R+ 2η

√
n√
m
∥F(t)− y∥2])

= 2Pr[z ≤ 2R+ 2η

√
n√
m
∥F(t)− y∥2]

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

≤ O(η

√
n√
m
)∥F(t)− y∥2 +O(1)R

≤ O(η
R
√
n

ϵ
√
m

)∥F(t)− y∥2

where the first step follows from Definition D.3 and simple algebras, the second step follows from
defining:

z := wr,k(0)− E(wr(0))

=
d− 1

d
wr,k − 1

d

∑

k′∈[d]/{k}
wr,k′(0)

∼ N
(
0, σ2

√
d− 1

d
· Id
)

and the last steps follow from the anti-concentration of the Gaussian variable (Fact A.3) and ∥F(t)−
y∥2 ≥ ϵ by Lemma condition.

Following Markov’s inequality, we get:

|w̃r,k(t)− w̃r,k(t+ 1)| ≤ O(η
R
√
n

δϵ
√
m
)∥F(t)− y∥2 (10)

Hence,

Q2,r,k ≤ O
(
η
R2

√
nd

δϵ
√
m

D
)
∥F(t)− y∥2

where this step follows from Eq. (10) and Eq. (9).

Bounding Q3,r,k and Q4,r,k.

We can show that Q3,r,k ≤ η
√
n√
m

· ∥F(t) − y∥2 and Q4,r,k ≤ η
√
n√
m

· ∥F(t) − y∥2 by following
Lemma H.4.

Combination. We have:

E[C3] = 0

where this step follows from the symmetry of a.

Also
(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩

)

≤ |⟨ur(t), xi⟩ − ⟨ur(t+ 1), xi⟩|
= Q1,r,k +Q2,r,k +Q3,r,k +Q4,r,k

≤ O
(
η
R2

√
nd

δϵ
√
m

D
)
∥F(t)− y∥2 (11)

where the first step follows from ReLU is a 1-Lipschitz function (Fact A.2), the last step follows from
simple algebras and the combination of these terms.

By Hoeffding’s inequality (Lemma A.8), with a probability at least 1− δ, we have:

|C3| ≤ O
(
ηκ

R2n1.5
√
d

δϵ ·m
√
mD

)
∥F(t)− y∥22

≤ O
(
ηκ

R2n1.5
√
d

δϵ
√
m

D
)
· L(t)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

G.5 BOUNDING C4

Lemma G.6. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition F.3.

• Let H∗ ∈ Rn×n be defined as Claim F.2. Assume λmin(H
∗) > 0 as Assumption F.4.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• δ ∈ (0, 0.1).

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

• Define

C4 :=
1

2
∥F(t)− F(t+ 1)∥22

Then with probability at least 1− δ, we have:

|C4| ≤ O
(
η2κ2R

4n2d

δ2ϵ2m
D2
)
L(t)

Proof. We have:

|1dq(⟨w̃r(t),xi⟩)≥0(⟨wr(t), xi⟩+ ⟨ur(t), xi⟩)
− 1dq(⟨w̃r(t+1),xi⟩)≥0(⟨wr(t+ 1), xi⟩+ ⟨ur(t+ 1), xi⟩)|

≤ |⟨η∆wr(t), xi⟩+ ⟨ur(t), xi⟩ − ⟨ur(t+ 1), xi⟩|
≤ U1,i,r + U2,i,r

where the first step follows from Fact A.2, the fifth step follows from Definition B.8, and the last step
follows from defining:

U1,i,r := ⟨η∆wr(t), xi⟩
U2,i,r := ⟨ur(t), xi⟩ − ⟨ur(t+ 1), xi⟩

For the first term U1,i,r, we have:

|U1,i,r| ≤ η

√
n√
m
∥F(t)− y∥2

this step holds since Part 2 of Lemma H.4.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

For the second term U2,i,r, we have:

|U2,i,r| ≤ O
(
η
R2

√
nd

δϵ
√
m

D
)
∥F(t)− y∥2

this step follows from Eq. (11) and Eq. (8).

Thus, we have:

C4 =
1

2
∥F(t)− F(t+ 1)∥22

=
1

2

n∑

i=1

(Fi(t)− Fi(t+ 1))2

=
1

2

n∑

i=1

(
κ

1√
m

m∑

r=1

ar(U1,i,r + U2,i,r)
)2

Combining two terms, then by Hoeffing inequality (Lemma A.8), with a probability at least 1− δ,
E[
∑m

r=1 ar(U1,i,r + U2,i,r)] = 1, we have:

|C4| ≤ O
(
η2κ2R

4n2d

δ2ϵ2m
D2
)
∥F(t)− y∥22 ≤ O

(
η2κ2R

4n2d

δ2ϵ2m
D2
)
L(t)

H INDUCTIONS

H.1 MAIN RESULT 1: TRAINING CONVERGENCE GUARANTEE

Theorem H.1. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• Given a expected error ϵ > 0.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• Let H∗ ∈ Rn×n be defined as Claim F.2. Assume λmin(H
∗) > 0 as Assumption F.4.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• δ ∈ (0, 0.1), κ ∈ (0, 1].

• Choose m ≥ Ω
(
λ−8 n12d8

δ4ϵ4

)
.

• Choose η ≤ O
(
λ δ

κ2n2dD

)
.

• Choose T ≥ Ω
(

1
ηλ log(ϵ−1ndD2)

)
.

Then with probability at least 1− δ, we have:

L(T) ≤ ϵ

Proof. Choice of m.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Following Lemma H.2, we have

m ≥ Ω
(
λ−4κ4R

8n6d2

δ4ϵ4

)

Particularly, following Claim H.5, we have:

R ≤ 4
√
n

λ
√
m
∥F(0)− y∥2

≤ 4
√
n

λ
√
m

·O
(√

ndD2
)

≤ O
(nd

λ
√
m
D2
)

where the first step follows from Claim H.5, the second step follows from Lemma H.3, the third step
follows from simple algebras.

Besides, by Lemma H.2, we need that

R ≤ O(
λδ

κ2n2dD
)

where the second step follows from Definition A.16.

Thus, showing that D3 ≤ O(m
1
4) and κ ≤ 1, we plug m as follows:

m ≥ Ω
(
λ−8n

12d8

δ4ϵ4

)

Choice of η. We have

∥η∆wr(0)∥2 ≤ η

√
n√
m
∥F(0)− y∥2

≤ η

√
n√
m
O
(√

ndD2
)

≤ R

where the first step follows from Part 2 of Lemma H.4, the second step follows from Lemma H.3, the
third step follows from plugging η ≤ O

(
λ δ

κn2dD

)
and m ≥ Ω

(
λ−8 n12d8

δ4ϵ4

)
.

Choice of T . We have:

L(T) ≤ ϵ ⇐⇒ (1− ηλ/2)TL(0) ≤ ϵ

⇐⇒ (1− ηλ/2)TO
(√

ndD2
)
≤ ϵ

⇐⇒ (1− ηλ/2)T ≤ O
(ϵ√

ndD2

)

⇐⇒ T ≥ Ω
(
log(

ϵ√
ndD2

)/ log(1− ηλ/2)
)

⇐⇒ T ≥ Ω
(
− 1

ηλ
log(

ϵ√
ndD2

)
)

⇐⇒ T ≥ Ω
(1

ηλ
log(ϵ−1ndD2)

)

where the first step follows from Lemma H.2, the second step follows from Lemma H.3, the third and
fourth steps follow from simple algebras, the fifth step follows from Fact A.6, the sixth step follows
from simple algebras.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

H.2 INDUCTION FOR LOSS

Lemma H.2. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition F.3.

• Let H∗ ∈ Rn×n be defined as Claim F.2. Assume λmin(H
∗) > 0 as Assumption F.4.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• δ ∈ (0, 0.1).

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

• m ≥ Ω
(
λ−4κ4R8n6d2

δ4ϵ4

)
.

• R ≤ O(λδ
κ2n2dD).

• Define

C1 := − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

• Define

C2 := − κ
1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C3 := − κ
1√
m

n∑

i=1

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C4 :=
1

2
∥F(t)− F(t+ 1)∥22

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

• δ ∈ (0, 1].

Then with probability at least 1− δ, we have:

L(t+ 1) ≤ (1− λ/2η) · L(t)
Moreover, we can show that:

L(t) ≤ (1− λ/2η)t · L(0)

Proof. We have:

L(t+ 1) ≤ L(t) +
(
− ηλ+O(η

n2dRD

δ
) +O(ηκ

n1.5dRD

δ
)

+O(ηκ
R2n1.5

√
d

δϵ
√
m

D) +O(η2κ2R
4n2d

δ2ϵ2m
D2
)
· L(t)

≤ L(t) +
(
− ηλ+

1

8
ηλ+

1

8
ηλ+

1

8
ηλ+

1

8
ηλ
)
· L(t)

≤ (1− ηλ/2)L(t)

where the first step follows from Claim G.2, Lemma G.3, Lemma G.4, Lemma G.5, Lemma G.6
and ηλ ≤ 1, the second step follows from the choice of R and m, the last step follows from simple
algebras.

Choice of R. We have:

R ≤ O(
λδ

κ2n2dD
) (12)

where this step is following the combination of Lemma F.5 and O(η κ2n2dRD
δ ≤ 1

8ηλ).

Choice of m. We have:
√
m ≥ Ω

(
λ−1κ

R2n1.5d0.5

δϵ
D
)

⇐⇒ √
m ≥ Ω

(
λ−1κ

R2n1.5d0.5

δϵ
m

1
4

)

⇐⇒ m
1
4 ≥ Ω

(
λ−1κ

R2n1.5d0.5

δϵ

)

⇐⇒ m ≥ Ω
(
λ−4κ4R

8n6d2

δ4ϵ4

)

where the first step follows from plugging O(ηκR2n1.5
√
d

δϵ
√
m

D) ≤ 1
8ηλ, the last three steps follow from

simple algebras.

Lemma H.3. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

Then with probability at least 1− δ, we have:

∥F(0)− y∥2 ≤ O
(√

ndD2
)

Proof. We have:

∥F(0)− y∥2 ≤ ∥F(0)∥2 + ∥y∥2
≤ ∥F(0)∥2 +

√
n

≤ (

n∑

i=1

|Fi(0)|2)
1
2 +

√
n

≤ (

n∑

i=1

|κ 1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r(0), xi⟩)

)
|2) 1

2 +
√
n

≤ O
(√

n log(m/δ)dD
)
+

√
n

≤ O
(√

ndD2
)

where the first step follows from triangle inequality, the second step follows from yi ≤ 1,∀i ∈ [n]
and simple algebras, the third step follows from the definition of ℓ2 norm, the fourth step follows from
Definition B.9 and Definition B.5, the last two steps follow by Hoeffding’s inequality (Lemma A.8),
Definition B.1 and simple algebras, and we can show that:

E[
m∑

r=1

ar · ReLU
(
dq(⟨w̃r(0), xi⟩)

)
] = 0

also,

dq(⟨w̃r(0), xi⟩) =
√
V (wr(0) · ⟨w̃r(0), xi⟩+ E(wr(0))⟨1d, xi⟩

≤ O(
√
dD) ·

√
d+O(D) ·

√
d

≤ O(dD)

where these steps follow from Definition C.5, Lemma H.6 and simple algebras.

H.3 INDUCTION FOR STE GRADIENT

Lemma H.4. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

• Let ur(t) be defined as Definition G.1.

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

Then with probability at least 1− δ, we have:

• Part 1. ∀k ∈ [d]

|∆wr,k(t)| ≤
√

n

m
· ∥F(t)− y∥2

• Part 2.

∥∆wr(t)∥2 ≤
√

n

m
· ∥F(t)− y∥2

Proof. Proof of Part 1. We have:

|∆wr,k(t)| = |κ 1√
m

n∑

i=1

ar · 1dq(⟨w̃r(t),xi⟩)≥0 · xi,k · (Fi(t)− yi)|

≤ κ
1√
m

(n∑

i=1

(ar · 1dq(⟨w̃r(t),xi⟩)≥0 · xi,k)
2
) 1

2 · ∥F(t)− y∥2

≤
√

n

m
· ∥F(t)− y∥2

where the first step follows from Definition E.2, the second step follows from Cauchy-Schwarz
inequality, the third step follows from

max
r∈[m],i∈[n],k∈[d]

|1dq(⟨w̃r(t),xi⟩)≥0 · xi,k| ≤ 1

the above equation follows from simple algebras and ∥xi∥i = 1.

Proof of Part 2.

By ∥x∥i = 1,∀i ∈ [n], this proof is trivially the same as Proof of Part 1.

H.4 INDUCTION FOR WEIGHTS

Claim H.5. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Then with probability at least 1− δ, we have:

R := max
t≥0

max
r∈[m]

∥wr(0)− wr(t)∥2 ≤ 4
√
n

λ
√
m
∥F(0)− y∥2

Proof. We have

R = max
t≥0

max
r∈[m]

∥wr(0)− wr(t)∥2

≤ max
t≥0

max
r∈[m]

∥
t∑

τ=1

η∆wr(τ)∥2

≤ ηmax
t≥0

max
r∈[m]

t∑

τ=1

∥∆wr(τ)∥2

≤ η

√
n√
m

max
t≥0

t∑

τ=1

∥F(τ)− y∥2

≤ η

√
n√
m

max
t≥0

t∑

τ=1

(1− ηλ/2)τ∥F(0)− y∥2

≤ 4
√
n

λ
√
m
∥F(0)− y∥2

where the first step follows from the definition of R, the second step follows from Definition B.8, the
third step follows from triangle inequality, the fourth step follows from Part 2 of Lemma H.4, the
fifth step follows from Lemma H.2, the last step follows from Fact A.6.

Lemma H.6. Let δ ∈ (0, 0.1). Let D > 0 be defined as Definition A.16. Let E : Rd → R be defined
as Definition C.2. Let V : Rd → R be defined as Definition C.3. Let W (0) ∈ Rd×m be initialized
as Definition B.3, denote W := [w1, w2, · · · , wm] ∈ Rd×m satisfying ∥wr − wr(0)∥2 ≤ R where
R ≥ 0, then with a probability at least 1− δ, we have

• Part 1. |wr,k(0)| ≤ O(D), ∀r ∈ [m], k ∈ [d].

• Part 2. ∥wr(0)∥2 ≤ O(
√
dD), ∀r ∈ [m].

• Part 3. ∥wr∥2 ≤ O(
√
dD +R), ∀r ∈ [m].

• Part 4. E(wr(0)) ≤ O(D), ∀r ∈ [m].

• Part 5.
√

V (wr(0)) ≤ O(D), ∀r ∈ [m].

• Part 6. E(wr) ≤ O(D +R), ∀r ∈ [m].

• Part 7.
√
V (wr) ≤ O(D +R), ∀r ∈ [m].

Proof. This proof follows from the union bound of the Gaussian tail bound (Fact A.1) and some
simple algebras.

I SUPPLEMENTARY SETUP FOR CLASSIC LINEAR REGRESSION

I.1 MODEL FUNCTION

Definition I.1. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weights W ∈ Rd×m as Definition B.2.

• For a output-layer weights a ∈ Rm as Definition B.2.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

• Let ReLU : R → R be defined as Definition B.4.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• t ≥ 0, let W (0) ∈ Rd×m and a ∈ Rm be initialized as Definition B.3.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim I.3.

• κ ∈ (0, 1].

We define:

f ′(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU(⟨wr, x⟩) ∈ R

Then we define the compact form of f(x,W ′t), a), we define:

F′(t) = [f(x1,W
′(t), a), f(x2,W

′(t), a), · · · , f(xn,W
′t), a)]

⊤ ∈ Rn

I.2 LOSS AND TRAINING

Definition I.2. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• Let a ∈ Rm be initialized as Definition B.3.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition I.1.

• For any t ≥ 0.

We define:

L′(t) :=
1

2
∥F′(t)− y∥22

Claim I.3. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition I.1.

• Let L′(t) be defined as Definition I.2.

• For any t ≥ 0.

• Denote η > 0 aa the learning rate.

We define:

W ′(t+ 1) := W ′(t)− η ·∆W ′(t)

Here, we also define that:

W ′(t) :=
d

dW ′(t)
L′(t)

=

n∑

i=1

(F′
i(t)− yi) · κ

[
a1 · 1⟨w′

1(t),xi⟩≥0xi · · · am · 1⟨w′
m(t),xi⟩≥0xi

]
∈ Rd×m

Proof. This proof follows from simple algebras.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

I.3 INDUCTION FOR WEIGHTS

Lemma I.4 (See Corollary 4.1 and the fifth equation of page 6 in Du et al. (2018)). If the following
conditions hold:

• t ≥ 0, let W (0) ∈ Rd×m and a ∈ Rm be initialized as Definition B.3.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim I.3.

• R ≤ O(λδ
κ2n2dD).

Then we have

∥w′
r(t)− w′

r(0)∥ ≤ R

Proof. Following Corollary 4.1 in Du et al. (2018), we can show that:

∥w′
r(t)− w′

r(0)∥ ≤ 4
√
n√

mλ
∥F′(0)− y∥2

Then we can complete this proof by combining the equation above with Lemma I.5 and R ≤ O(λδ
n2dD)

in Lemma conditions.

I.4 INDUCTION FOR LOSS

Lemma I.5. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• Let a ∈ Rm be initialized as Definition B.3.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition I.1.

• For any t ≥ 0.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim I.3.

• δ ∈ (0, 0.1).

Then with probability at least 1− δ, we have:

∥F′(0)− y∥2 ≤ O
(√

ndD2
)

Proof. We have:

∥F′(0)− y∥2 ≤ ∥F′(0)∥2 + ∥y∥2
≤ ∥F′(0)∥2 +

√
n

≤ (

n∑

i=1

|F′
i(0)|2)

1
2 +

√
n

≤ (

n∑

i=1

|κ 1√
m

m∑

r=1

ar · ReLU
(
⟨w′

r(0), xi⟩
)
|2) 1

2 +
√
n

= (

n∑

i=1

|κ 1√
m

m∑

r=1

ar · ReLU
(
⟨wr(0), xi⟩

)
|2) 1

2 +
√
n

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

≤ O
(√

n log(m/δ)dD
)
+
√
n

≤ O
(√

ndD2
)

where the first step follows from triangle inequality, the second step follows from yi ≤ 1,∀i ∈ [n]
and simple algebras, the third step follows from the definition of ℓ2 norm, the fourth step follows
from Definition B.9 and Definition B.5, the fifth step follows from W ′(0) = W (0), the last two steps
follow by Hoeffding’s inequality (Lemma A.8), Definition B.1, κ ≤ 1 and simple algebras, and we
can show that:

E[
m∑

r=1

ar · ReLU
(
⟨wr(0), xi⟩

)
] = 0

also,

⟨wr(0), xi⟩ = ⟨wr(0), xi⟩
≤ O(

√
dD) ≤ O(dD)

where this step follows from Lemma H.6 and simple algebras.

J SIMILARITIES

J.1 MAIN RESULT 2: TRAINING SIMILARITY

Theorem J.1. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• Given a expected error ϵ > 0.

• Let H∗ ∈ Rn×n be defined as Claim F.2. Assume λmin(H
∗) > 0 as Assumption F.4.

• Let Dtest := {(xtest,i, ytest,i)}ni=1 ⊂ Rd × R be defined as Definition J.2.

• Let F′(t) ∈ Rn be defined as Definition I.1.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let F′
test(t) ∈ Rn be defined as Definition J.3.

• Let Ftest(t) ∈ Rn be defined as Definition J.3.

• For any t ≥ 0.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim I.3.

• For any error ϵquant > 0.

• δ ∈ (0, 0.1).

• Choose κ ≤ O(
ϵquant

dD2).

Then with probability at least 1− δ, we have:

• Part 1. |Ftest,i(t)− F′
test,i(t)| ≤ ϵquant.

• Part 2. |Fi(t)− F′
i(t)| ≤ ϵquant.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Proof. Proof of Part 1. We have:

|1dq(⟨w̃r(t),xtest,i⟩)≥0(⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩)
− 1⟨w′

r(t),xtest,i⟩≥0⟨w′
r(t), xtest,i⟩|

≤ |⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩ − ⟨w′
r(t), xtest,i⟩|

= |⟨wr(0)− η

t−1∑

τ=0

∆wr(τ), xtest,i⟩+ ⟨ur(t), xtest,i⟩ − ⟨w′
r(0)− η

t−1∑

τ=0

∆w′
r(τ), xtest,i⟩|

= | − ⟨η
t−1∑

τ=0

∆wr(τ), xtest,i⟩+ ⟨ur(t), xtest,i⟩+ ⟨η
t−1∑

τ=0

∆w′
r(τ), xtest,i⟩|

≤ |⟨η
t−1∑

τ=0

∆wr(τ), xtest,i⟩|+ |⟨η
t−1∑

τ=0

∆w′
r(τ), xtest,i⟩|+ |⟨ur(t), xtest,i⟩|

≤ R+R+ |⟨ur(t), xtest,i⟩|
≤ O

(
d(D +R)

)

where the first step follows from Fact A.2, the second step follows from Definition B.8 and Claim I.3,
the third step follows from w′

r(0) = wr(0), the fourth step follows from triangle inequality, the fifth
step follows from Claim H.5 and Lemma I.4, the last step follows from Lemma C.7 and δ ∈ (0, 0.1).

Then we have:

|Ftest,i(t)− F′
test,i(t)| ≤

∣∣∣κ 1√
m

m∑

r=1

ar

(
1dq(⟨w̃r(t),xtest,i⟩)≥0(⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩)

− 1⟨w′
r(t),xtest,i⟩≥0⟨w′

r(t), xtest,i⟩
)∣∣∣

≤ κ
√
log(m/δ) ·O

(
d(D +R)

)

≤ ϵquant

where the first step follows from Definition J.3, the second step follows from Hoeffding’s inequality
(Lemma A.8), E[

∑m
r=1 arσi,r] = 0, σi,r ≤ O

(√
n

m (D +R) +R/δ
)

and defining:

σi,r := |1dq(⟨w̃r(t),xtest,i⟩)≥0(⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩)
− 1⟨w′

r(t),xtest,i⟩≥0⟨w′
r(t), xtest,i⟩|

and the last step follows from choosing

κ ≤ O(
ϵquant

dD2 + dDR
) ≤ O(

ϵquant
dD2

)

Proof of Part 2. This part can be proved in the same way as Proof of Part 1.

J.2 TEST DATASET FOR GENERALIZATION EVALUATION

Definition J.2. We define test dataset Dtest := {(xtest,i, ytest,i)}ni=1 ⊂ Rd×R, where ∥xtest,i∥2 = 1
and ytest,i ≤ 1 for any i ∈ [n].
Definition J.3. If the following conditions hold:

• Let Dtest := {(xtest,i, ytest,i)}ni=1 ⊂ Rd × R be defined as Definition J.2.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition I.1.

• Let f : Rd × Rd×m × Rm → R be defined as Definition B.5.

• For any t ≥ 0.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim I.3.

We define:

F′
test(t) := [f ′(xtest,1,W

′(t), a), f ′(xtest,2,W
′(t), a), · · · , f ′(xtest,n,W

′(t), a)]
⊤

Ftest(t) := [f(xtest,1,W (t), a), f(xtest,2,W (t), a), · · · , f(xtest,n,W (t), a)]
⊤

J.3 FUNCTION SIMILARITY AT INITIALIZATION

Lemma J.4. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Let E : Rd → R be defined as Definition C.2.

• Let V : Rd → R be defined as Definition C.3.

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.

• For a vector x ∈ Rd and ∥x∥2 = 1.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition I.1.

• Let f : Rd × Rd×m × Rm → R be defined as Definition B.5.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• W ′(0) := W (0).

• δ ∈ (0, 0.1).

• For any error ϵinit > 0.

• We choose κ ≤ O(ϵinit/(
√
dD2))

Then with probability at least 1− δ, we have:

|f(x,W (0), a)− f ′(x,W ′(0), a)| ≤ ϵinit

Proof. We have:

|1dq(⟨w̃r(0),x⟩)≥0dq(⟨w̃r(0), x⟩)
− 1⟨wr(0),x⟩≥0⟨wr(0), x⟩|

≤ |dq(⟨w̃r(0), x⟩)− ⟨wr(0), x⟩|
≤ |
√
V (wr(0))⟨w̃r(0), x⟩+ E(wr(0)) · ⟨1d, x⟩ − ⟨wr(0), x⟩|

≤ O(
√
dD)

where the first step follows from Fact A.2, the second step follows from Definition C.5, the last step
follows from Lemma H.6.

Then by Hoeffding inequality (Lemma A.8), with a probability at least 1− δ, we have:

|f(x,W (0), a)− f ′(x,W ′(0), a)| ≤ κ| 1√
m

m∑

r=1

arσ̂r|

≤ κO(
√
dD) ·

√
log(m/δ)

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

≤ O(κ
√
dD2)

where we have:

σ̂r := 1dq(⟨w̃r(0),x⟩)≥0dq(⟨w̃r(0), x⟩)− 1⟨wr(0),x⟩≥0⟨wr(0), x⟩

E[
m∑

r=1

arσ̂r] = 1

|σ̂r| ≤ O(
√
dD)

50

	Introduction
	Related Work
	Preliminary
	Quantization
	NTK Problem Setup
	Recalling Classic NTK Setup

	Kernel Behavior and Training Convergence
	Neural Tangent Kernel
	Training Convergence

	Generalization Similarity
	Function Difference at Initialization
	Generalization Similarity

	Experiments
	Verification on Scaling Law
	Comparison on 1-D Functions
	Evaluation on Training and Generalization Similarity

	Conclusion
	Preliminary
	Notations
	Basic Facts
	Probability Tools
	Basic Bound

	NTK Problem Setup
	Dataset
	Model
	Training

	Quantization
	Quantization Functions
	Dequantization Functions
	Quantization Error

	Patterns
	ReLU Pattern
	Sign Pattern

	Straight-Through Estimator (STE)
	STE Functions
	Gradient Computation

	Neural Tangent Kernel
	Kernel Function
	Assumption: is Positive Definite
	Kernel Convergence and PD Property

	Training Dynamic
	Decompose Loss
	Bounding
	Bounding
	Bounding
	Bounding

	Inductions
	Main Result 1: Training Convergence Guarantee
	Induction for Loss
	Induction for STE Gradient
	Induction for Weights

	Supplementary Setup for Classic Linear Regression
	Model Function
	Loss and Training
	Induction for Weights
	Induction for Loss

	Similarities
	Main Result 2: Training Similarity
	Test Dataset for Generalization Evaluation
	Function Similarity at Initialization

