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ABSTRACT

Recently, 1-bit Large Language Models (LLMs) have emerged, showcasing an
impressive combination of efficiency and performance that rivals traditional LLMs.
Research by Wang et al. (2023); Ma et al. (2024) indicates that the performance of
these 1-bit LLMs progressively improves as the number of parameters increases,
hinting at the potential existence of a Scaling Law for 1-bit Neural Networks. In
this paper, we present the first theoretical result that rigorously establishes this
scaling law for 1-bit models. We prove that, despite the constraint of weights
restricted to {−1,+1}, the dynamics of model training inevitably align with kernel
behavior as the network width grows. This theoretical breakthrough guarantees
convergence of the 1-bit model to an arbitrarily small loss as width increases.
Furthermore, we introduce the concept of the generalization difference, defined as
the gap between the outputs of 1-bit networks and their full-precision counterparts,
and demonstrate that this difference maintains a negligible level as network width
scales. Building on the work of Kaplan et al. (2020), we conclude by examining
how the training loss scales as a power-law function of the model size, dataset
size, and computational resources utilized for training. Our findings underscore
the promising potential of scaling 1-bit neural networks, suggesting that int1 could
become the standard in future neural network precision.

1 INTRODUCTION

Large-scale neural networks, particularly Large Language Models (LLMs) (Brown et al., 2020;
Zhao et al., 2023) and Large Multimodel Models (LMMs) (Yin et al., 2023; Wu et al., 2023), are
becoming increasingly relevant to our day-to-day lives, finding a huge variety of applications in both
the workplace and at home (Lin et al., 2023; Yang et al., 2023). However, it is expensive to deploy
and run these models due to their substantial computational requirements, large memory footprints,
and energy consumption (Vaswani et al., 2017; Alman & Song, 2023; Zhou et al., 2024). This is
especially true for resource-constrained environments, such as mobile devices, edge computing, or
companies with limited infrastructure (Howard et al., 2017; Li et al., 2022b; Chen et al., 2023). To
make these models more efficient and accessible, quantization techniques are used, which reduce the
precision of the model’s parameters (such as weights and activations) from floating-point numbers
to lower-bit representations (e.g., 8-bit or even lower) (Nagel et al., 2021a; Frantar et al., 2022;
Gholami et al., 2022; Lin et al., 2024; Ahmadian et al., 2023). Quantization reduces the memory and
computational costs of inference, enabling faster processing with less energy, while maintaining a
comparable level of performance. This optimization allows language models to be more practical,
scalable, and sustainable for widespread use across various platforms (Bondarenko et al., 2021; Li
et al., 2022a; Guo et al., 2023).

In particular, quantization techniques could be primarily divided into two methods: Post-Training
Quantization (PTQ) (Liu et al., 2021; Xiao et al., 2023; Tseng et al., 2024) and Quantization-Aware
Training (QAT) (Liu et al., 2023; Wang et al., 2023; Ma et al., 2024). PTQ methods, including uniform
and non-uniform quantization, conveniently convert pre-trained model weights and activations to
lower-bit representations post-training. However, this leads to accuracy loss, especially in lower
precision, as the model is not optimized for these quantized representations and significant shifts in
weight distribution occur (Nagel et al., 2021b). The alternative, Quantization-Aware Training (QAT),
incorporates quantization during training, allowing the model to fine-tune and adapt its parameters to
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the quantized representation, compensating for quantization errors. Therefore, compared to PTQ,
QAT maintains higher accuracy and robustness even in lower precision.

Recent studies (Liu et al., 2022; Wang et al., 2023; Ma et al., 2024; Zhu et al., 2024) have shown that
1-bit LLMs, most of which have matrix weights in the range of {−1,+1}, can be trained from scratch
to deliver performance that rivals that of standard LLMs. These models exhibit remarkable efficiency,
particularly in terms of scaling laws. Experimental results indicate that the performance of the 1-bit
model improves as the number of parameters increases, a principle that mirrors the training approach
utilized in standard LLMs (Kaplan et al., 2020). Despite the demonstrated efficiency of quantization
methods, our understanding of the training mechanism for quantization remains limited. Specifically,
it remains unclear how and why the 1-bit QAT enhances learning capability as the number of neurons
in the model is scaled up. In addition, we are also concerned about whether the quantization method
damages the generalization ability compared to full precision networks.

In this study, we initially apply the Neural Tangent Kernel (NTK) framework to delve into the
optimization and generalization issues associated with a two-layer linear network operating in 1-bit
(int1) precision, as detailed in Section 4. We introduce a 1-bit quantization method to the hidden-layer
weights W ∈ Rd×m of the conventional NTK linear network, where d represents the input dimension
and m indicates the model’s width. Our analysis reveals that the training dynamics of the 1-bit model
approximate kernel behavior as the model width m expands. This key finding paves the way for an
established relationship between the theoretically guaranteed loss and the model width, endowing the
model with robust learning capabilities akin to kernel regression. Ultimately, the model achieves an
insignificantly small training loss, contingent on setting a sufficiently large model width, selecting an
appropriate learning rate, and allowing an adequate training duration.

Moreover, Section 5 provides a theoretical confirmation that, within the scaling trend, the disparities
in predictions of the 1-bit model from those of the original linear network on identical inputs maintain
a negligible value. We assess the error between our 1-bit linear and standard linear networks on both
the training and test datasets. Our theorem demonstrates that for any input from these datasets, the
absolute error between the two network predictions can be denoted as ϵquant ≤ O(κd log(md/δ))
for scale coefficient κ ≤ 1, model width m, dimension d and failure probability δ ∈ (0, 0.1).
This indicates that the output behavior of the 1-bit linear model increasingly aligns with that of
the standard linear model. The observed similarity on the test dataset validates the generalization
similarity, suggesting the feasibility of approximating training neural networks with int1 precision
equivalent to full precision.

Finally, in Section 6, we verify our theoretical results by implementing training models to learn
complicated functions to compare the difference between 1-bit networks and full precision networks.
Firstly, we choose difficult functions across the exponential function, trigonometric function, logarith-
mic function, the Lambert W function, the Gamma function, and their combination. Therefore, we
sample random data points and split train and test datasets. We next compare how the training loss
decreases as the model width m scales up. Besides, as shown in Section 6.3, in the trend of a growing
number of parameters, the error of predictions both on training and test input likewise converge as
the power-law in 1-bit networks optimization. In particular, we visualize some 1-dimension function
to see how the differences of outputs are. We demonstrate the results complying with our theoretical
guarantee with a negligible error.

2 RELATED WORK

Efficient Training Methods for Quantized Networks Training large-scale neural networks with
quantization introduces significant computational and memory savings, but it also presents challenges
in optimization, particularly when dealing with extremely low precision formats like 1-bit or 8-bit. To
address these challenges, several efficient training methods have been developed that aim to maintain
accuracy while leveraging the benefits of quantization. One key method is Gradient Quantization,
where the gradients during backpropagation are quantized to lower precision to reduce memory
overhead and bandwidth during distributed training. Techniques like stochastic rounding are used to
mitigate the impact of quantization noise, ensuring the training process remains stable and converges
effectively.
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Another important approach is Low-Rank Factorization (Sainath et al., 2013; Hsu et al., 2022), which
decomposes the large weight matrices in neural networks into smaller matrices, reducing the number
of parameters that need to be updated during training. When combined with quantization, this method
significantly reduces both the memory footprint and computational complexity, allowing for faster
training on hardware with limited resources.

Quantization Techniques for Accelerating Language Models Beyond traditional weight and
activation quantization, several advanced methods utilize quantization to enhance the efficiency of
large language models (LLMs). One key approach is KV cache quantization (Hooper et al., 2024;
Zhang et al., 2024b; Liu et al., 2024; Zandieh et al., 2024), which reduces the memory footprint of
transformer models during inference by quantizing the stored attention keys and values. This method
is particularly beneficial for tasks involving long sequences, significantly speeding up inference and
lowering memory consumption without a substantial loss in accuracy.

Another effective technique is mixed-precision quantization (Pandey et al., 2023; Tang et al., 2023),
where different parts of the model are quantized at varying precision levels based on their sensitivity.
For example, attention layers might use higher precision (e.g., 16-bit), while feedforward layers are
quantized to 8-bit or lower. This balances computational efficiency and model performance. These
strategies, combined with methods like activation pruning, showcase how targeted quantization can
drastically accelerate LLMs while maintaining their effectiveness in real-world applications.

Neural Tangent Kernel. The study of Neural Tangent Kernel (NTK) (Jacot et al., 2018) focuses on
the gradient flow of neural networks during the training process, revealing that neural networks are
equivalent to Gaussian processes at initialization in the infinite-width limit. This equivalence has been
explored in numerous studies (Li & Liang, 2018; Du et al., 2018; Song & Yang, 2019; Allen-Zhu
et al., 2019; Wei et al., 2019; Bietti & Mairal, 2019; Lee et al., 2020; Chizat & Bach, 2020; Shi et al.,
2021; Zhou et al., 2021; Seleznova & Kutyniok, 2022; Gao et al., 2023; Li et al., 2024; Shi et al.,
2024) that account for the robust performance and learning capabilities of over-parameterized neural
networks. The kernel-based analysis framework provided by NTK is gaining popularity for its utility
in elucidating the emerging abilities of large-scale neural networks. In a remarkable stride, Arora
et al. (2019) introduced the first exact algorithm for computing the Convolutional NTK (CNTK).
This was followed by Alemohammad et al. (2020) who proposed the Recurrent NTK, and Hron et al.
(2020) who presented the concept of infinite attention via NNGP and NTK for attention networks.
These innovative works have showcased the enhanced performance achievable with the application
of NTK to various neural network architectures. In a specific study, Malladi et al. (2023) examined
the training dynamics of fine-tuning Large Language Models (LLMs) using NTK, affirming the
efficiency of such approaches.

3 PRELIMINARY

In this section, we give the basic setups of this paper, which includes the introduction of the
quantization method in this paper (Section 3.1), our NTK-style problem setup that we aim to solve in
this paper (Section 3.2) and recalling the classical NTK setup for a two-layer linear network with
ReLU activation function (Section 3.3).

3.1 QUANTIZATION

We first show how we reduce the computation of the inner product of two vectors from multiplication
and addition operations to addition operations only, which is achieved by binarizing one of the vectors.
This method could be extended to matrix multiplication easily since the basic matrix multiplication is
to implement the inner product computation of two vectors in parallels. For a vector w ∈ Rd, we
define our quantization function as (Wang et al., 2023; Ma et al., 2024):

Quant(w) := Sign
(
Ln(w)

)
∈ {−1,+1}d,

where Ln(w) is the normalization method that is given by:

Ln(w) :=
w − E(w) · 1d√

V (w)
∈ Rd.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Specially, we use E(w) := 1
d

∑d
k=1 wk ∈ R to denote the computational expectation of vector w

and use V (w) := ∥w − E(w) · 1d∥22 ∈ R to denote the corresponding variance.

Besides, the kth entry of signal function Sign(z) ∈ Rd for z ∈ Rd, k ∈ [d] is define by:

Signk(z) :=

{
+1, zk ≥ 0

−1, zk < 0

Hence, we have a binary vector Quant(w) where each entry of it is limited in the range {−1,+1},
and we denote that w̃ := Quant(w) to simplify the notation. For any other vector x ∈ Rd, addition
operation

∑d
k=1 ±xk is sufficient to compute ⟨w̃, x⟩. After that, we introduce the dequantization

function to recover the original computation result by showing:

Dequant(⟨w̃, x⟩) :=
√
V (w) · ⟨w̃, x⟩+ E(w) · ⟨1, x⟩

3.2 NTK PROBLEM SETUP

Data Points. We consider a supervised learning task with a training dataset D = {(xi, yi)}ni=1 ⊂
Rd × R, where each data point is under a mild assumption that ∥xi∥2 = 1 and yi ≤ 1, ∀i ∈ [n]
(Du et al., 2018). Moreover, we are also concerned about the problem of the generalization of
1-bit models, we define the test dataset to compare 1-bit networks with standard networks, that is
Dtest := {(xtest,i, ytest,i)}ni=1 ⊂ Rd × R, where ∥xtest,i∥2 = 1 and ytest,i ≤ 1, ∀i ∈ [n].

Model. Here, we use hidden-layer weights W = [w1, w2, . . . , wm] ∈ Rd×m and output-layer
weights a = [a1, a2, . . . , am]⊤ ∈ Rm. We consider a two-layer attention model f , which is defined
as follows:

f(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r, x⟩)

)
,

where ReLU(z) :=

{
z, z ≥ 0

0, z < 0
, for all z ∈ R, dq : R → R is a omitted version of dequantization

function Dequant : R → R, and w̃r := Quant(wr) as we denoted in previous section, κ ∈ (0, 1]
is a scale coefficient. Especially, we initialize each weight vector wr, ∀r ∈ [m] by sampling
wr(0) ∼ N (0, σ · Id) with σ = 1. For output-layer a, we randomly sample ar ∼ Uniform{−1,+1}
independently for r ∈ [m]. Additionally, output-layer weight a is fixed during the training.

Training and Straight-Through Estimator (STE). The training loss is measured by quadratic ℓ2
norm of the difference between model prediction f(xi,W, a) and ideal output vector yi. Formally,
we consider to train W (t) = [w1(t), w2(t), . . . , wm(t)] ∈ Rd×m for t ≥ 0 utilizing the following
loss:

L(t) :=
1

2
·

n∑

i=1

∥f(xi,W (t), a)− yi∥22. (1)

Moreover, since the signal function Sign is not differentiable, we use Straight-Through Estimator
(STE) to skip the signal function in back-propagation (Bengio et al., 2013; Yin et al., 2019; Wang
et al., 2023; Ma et al., 2024), thus updating the trainable weights W (t). For t ≥ 0 and denote η as the
learning rate, we omit fi(t) := f(xi,W (t), a) ∈ R,∀i ∈ [n], the formulation to update rth column
of W (t) for all r ∈ [m] is given by:

wr(t+ 1) := wr(t)− η

n∑

i=1

(fi(t)− yi) · κar1dq(⟨w̃r,xi⟩)≥0xi.

3.3 RECALLING CLASSIC NTK SETUP

We now recall the classic NTK setup for the two-layer ReLU linear regression (Karp et al., 2021;
Allen-Zhu & Li, 2020; 2022; Zhang et al., 2024a). The function is given by:

f ′(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU
(
⟨wr, x⟩

)
.
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We define that W ′(0) := W (0) ∈ Rd×m to denote the trainable parameter for classic NTK setup,
these two matrices are equal at initialization. For t ≥ 0, we define the loss of training f ′ as follows:

L′(t) :=
1

2
·

n∑

i=1

∥f ′(xi,W
′(t), a)− yi∥22.

Then the update of W ′(t) is:

W ′(t+ 1) := W ′(t)− η · ∇W ′(t)L
′(t).

4 KERNEL BEHAVIOR AND TRAINING CONVERGENCE

We give our convergence analysis for training 1-bit model within the framework of Neural Tangent
Kernel (NTK) in this section. First, we state our theoretical results that define the kernel function
in training and show how it converges to NTK and maintains the PD (Positive Definite) property in
Section 4.1. Then we demonstrate the arbitrary small loss convergence guarantee of training 1-bit
model (Eq. (1)) in Section 4.2.

4.1 NEURAL TANGENT KERNEL

Here, we utilize the NTK to describe the training dynamic of the 1-bit model. Following pre-
conditions in the previous section, we define a kernel function, that denotes H(t) ∈ Rn×n (Gram
matrix). Especially, the (i, j)-th entry of H(t) is given by:

Hi,j(t) := κ2 1

m
x⊤
i xj

m∑

r=1

1dq(⟨w̃r(t),xi⟩)≥01dq(⟨w̃r(t),xj⟩)≥0. (2)

We define the formal NTK as H∗ := H(0) ∈ Rn×n. Additionally, there’s a commonly introduced
assumption in NTK analysis: we denote the minimum value of eigenvalues of A with λmin(A) for
any A ∈ Rn×n. In our work’s context, we presuppose that H is a Positive-definite (PD) matrix,
meaning that λmin(H

∗) > 0.

1-Bit ReLU Pattern. The pattern of the Rectified Linear Unit (ReLU) function is determined by the
indicator of function activation. As illustrated by Du et al. (2018), in the settings of Section 3.3, the
event 1⟨wr(0),x⟩≥0 ̸= 1⟨w,x⟩≥0 happens infrequently for any w, x ∈ Rd that satisfies ∥w−wr(0)∥2 ≤
R. Notably, R := maxr∈[m] ∥wr(t)− wr(0)∥2 = η∥∑t

τ=1 ∆wr(τ)∥2. In our analysis, for Eq. (2),
the event 1dq(⟨w̃r(0),x⟩)≥0 ̸= 1dq(⟨w̃r(t),x⟩)≥0 is also unlikely to occur during training.

The convergence of H(t) towards H∗, as well as the property of H(t) being a PD matrix for any
t ≥ 0, can be validated by the following lemma:
Lemma 4.1 (NTK convergence and PD property during the training, informal version of Lemma F.5).
Assume λmin(H

∗) > 0. δ ∈ (0, 1), define D := max{
√
log(md/δ), 1}. Let R ≤ O(λδ/(κ2n2dD)),

then for any t ≥ 0, with probability at least 1− δ, we have:

• Part 1. ∥H(t)−H∗∥F ≤ O(κ2n2dRD/δ).

• Part 2. λmin(H(t)) ≥ λ/2.

Proof of Lemma 4.1. The proof of Part 1 of this Lemma follows from the pattern 1dq(⟨w̃r(t),xi⟩)≥0

for i ∈ [n] and r ∈ [m] is rarely changed during the training, this habit is similar to the regular
ReLU pattern 1⟨wr(t),xi⟩≥0 (Du et al., 2018). The proof of Part 2 of this Lemma can be obtained by
plugging R ≤ O(λδ/(κ2n2dD)). Please refer to Lemma F.5 for the detailed proof.

4.2 TRAINING CONVERGENCE

Having confirmed the convergence of the kernel function of the 1-bit linear network during training
in Lemma 4.1, we can transform the dynamics of the loss function L(t) into the following kernel
behavior:

L(t+ 1)− L(t) = − (F(t)− y)⊤H(t)(F(t)− y) + C2 + C3 + C4

5
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≈ − (F(t)− y)⊤H(t)(F(t)− y),

In this equation, F(t) = [f(x1,W (t), a), · · · , f(xn,W (t), a)]⊤ ∈ Rn and y = [y1, · · · , yn]⊤ ∈ Rn,
while C2, C3, C4 are negligible terms (please refer to Appendix H for a rigorous proof).

Further, by λmin(H(t)) > 0 (as per Part 2 of Lemma 4.1), for each optimization step t ≥ 0,
we find that L(t + 1) ≤ (1 − ηλ/2)L(t), thus ensuring a non-increase in loss. Given sufficient
training iterations and an appropriately chosen learning rate, we can achieve training convergence,
the confirmation of which is provided in the following section.

Theorem 4.2 (Training convergence guarantee, informal version of Theorem H.1). Given an ex-
pected error ϵ > 0. Assume λmin(H

∗) > 0. δ ∈ (0, 0.1), define D :=
√
log(md/δ). Choose

m ≥ Ω(λ−8n12d8/(δϵ)4), η ≤ O(λδ/(κ2n2dD)). Then let T ≥ Ω((ηλ)−1 log(ndD2/ϵ)), with
probability at least 1− δ, we have: L(T ) ≤ ϵ.

Proof sketch of Theorem 4.2. We first combine L(0) = O(
√
ndD2) (Lemma H.3) and L(t + 1) ≤

(1 − ηλ/2)L(t) (Lemma H.2), then we choose a sufficient large T ≥ Ω((ηλ)−1 log(ndD2/ϵ)) to
achieve L(T ) ≤ ϵ. For the complete proof, please see Theorem H.1.

Scaling Law for 1-Bit Neural Networks. Theorem 4.2 primarily illustrates a fact for any dataset
with n data points. After initializing the hidden-layer weights W ∈ Rd×m from a normal distribution,
and assuming the minimum eigenvalue of NTK λ > 0, we set m to be a large enough value to
ensure the network is sufficiently over-parameterized. With an appropriate learning rate, the loss
can be minimized in finite training time to an arbitrarily small error ϵ. This offers a crucial insight
that confirms the existence of a scaling law for 1-bit neural networks, which is strictly bounded by
the model width m and training steps T . Consequently, we present the following Proposition that
elucidates the principle of training 1-bit linear networks from scratch. This proposition is built upon
Theorem 4.2 and the principle of training loss that scales as a power-law with model size, dataset
size, and the amount of compute used for training (Kaplan et al., 2020).

Proposition 4.3 (Scaling Law for 1-Bit Neural Networks). δ ∈ (0, 0.1). Define N := O(md) as
the number of parameters, D := O(n) as the size of training dataset, C := O(NDT ) as the total
compute cost. Especially, we denote the scale coefficients as α := Dd log(md/δ), and we then
choose η ≤ O(λδ/(mκ2n2dD)) and T ≥ Ω((ηλm)−1 log(nd log(md/δ)/ϵ)). Thus, the training
loss, denoted as Lscale, satisfies:

Lscale ≈ max{D
3 · d2.25
λ2N0.25

,
α

exp(ηλC)
}

Proof of Proposition 4.3. This proof follows from the definitions of N, D, C and α. Then, by choosing
η ≤ O(λδ/(mn2dD)) and T ≥ Ω((ηλm)−1 log(nd log(md/δ)/ϵ)), we utilize Theorem 4.2 to
obtain our proposition.

Proposition 4.3 demonstrates that the training loss of the prefix learning converges exponentially as
we increase the computational cost C, which primarily depends on the number of parameters and
the training time in prefix learning. This further suggests a potential relationship for formulating a
scaling law for 1-bit neural networks.

Extensibility. Our analysis is conducted within a two-layer linear network defined in Section 3, which
might raise concerns about its effectiveness in real-world multiple-layer 1-bit networks. However,
due to the theory of Hierarchical Learning (Bengio et al., 2006; Zeiler & Fergus, 2014; Abbe et al.,
2022), the optimization of a deep neural network is equivalent to training each layer of the network
greedily. Therefore, our theoretical conclusion could be easily extended to the situation of training
multiple layers 1-bit model.

5 GENERALIZATION SIMILARITY

In this section, we present our theoretical analysis that proves that training large-scale 1-bit neural
networks is equivalent to training standard large-scale neural networks. In Section 5.1, we explain how
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Figure 1: Verification experiment for scaling law for 1-bit neural networks. Minimum training loss
of scaling number of parameters for MLP model to learn complicated functions f1, f2, f3, f4, f5 and
f6, and these function is defined in Section 6.1.

the difference between the outputs of our 1-bit model and outputs of the standard NTK-style linear
network for the same input at initialization, which is defined as function difference at initialization,
will be kept in a small error while the model width (denoted as m) increase. Next, in Section 5.2, we
confirm that in the trend of scaling up the model width, during the training, the predictions of 1-bit
model and full precision model are also similar to a very slight error on both the training dataset and
the test dataset.

5.1 FUNCTION DIFFERENCE AT INITIALIZATION

To begin with, at initialization, the boundary on |f(x,W (0), a)−f ′(x,W ′(0), a)| is stated as follows:
Lemma 5.1 (Function difference at initialization, informal version of Lemma J.4). δ ∈ (0, 0.1).
Denote D :=

√
log(md/δ). ∀x ∈ Rd that satisfies ∥x∥2 = 1, for any initial quantization error

ϵinit > 0, we choose κ ≤ O(ϵinit/(
√
dD2)). Then with a probability 1− δ, we have:

|f(x,W (0), a)− f ′(x,W ′(0), a)| ≤ ϵinit

Proof sketch of Lemma 5.1. Due to the initialization of W (0) and W ′(0), we then have the tail bound
of the Gaussian distribution. Hence, the difference could be bounded by Hoeffding bound, we then
get the result. Please refer to Lemma J.4 for the formal proof of this Lemma.

5.2 GENERALIZATION SIMILARITY

We now address whether using 1-bit precision compromises the generalization ability of standard
neural networks. Specifically, we use the test dataset to evaluate the generalization similarity - a
measure of the similarity between two functions on out-of-distribution (OOD) data. This measure
is designed to assess the equivalence between two functions. If, during each step of training two
networks, these two training processes are deemed equivalent, then we assert that the generalization
similarity is valid.

Addressing the above concern, we demonstrate that the predictions of two functions on both training
and test datasets can be bounded to an arbitrarily small quantization error, provided that m is
sufficiently large. Theoretically, as m scales towards infinity, the quantization error converges to
0. This finding confirms the validity of our generalization similarity measure and asserts that 1-bit
precision does not compromise the generalization ability of standard neural networks.
Theorem 5.2 (Training and generalization similarity, informal version of Theorem J.1). Let all
pre-conditions in Theorem 4.2 satisfy. For any quantization error ϵquant > 0, we choose κ ≤
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O(ϵquant/(dD
2)). Integer ∀t ≥ 0. For any training input xi ∈ Rd in D and any test input

xtest,i ∈ Rd in Dtest, with a probability at least 1− δ, we have:

• Part 1. |f(xi,W (t), a)− f(xi,W (t), a)| ≤ ϵquant.

• Part 2. |f(xtest,i,W (t), a)− f(xtest,i,W (t), a)| ≤ ϵquant.

Proof. Proof sketch of Theorem 5.2 Since we proved |f(x,W (0), a)− f ′(x,W ′(0), a)| ≤ ϵinit in
Lemma 5.1, then as we choose appropriate R and learning rate η, the equations in Part 1 and Part 2
of this Theorem would be bounded by scaling m to be sufficiently large. We state the complete proof
in Theorem J.1.

Training Equivalence. Here, we say training f and f ′ are equivalent since we achieve the predictions
that these two functions are extremely similar by plugging an appropriate value of κ. Besides, as we
proved in Theorem 4.2, this implementation would not harm the optimization of 1-bit networks. This
further explains why 1-bit precision even processes better when the scales of networks are increasing,
instead of turning to a training collapse. Therefore, we believe it is the theory unlocking the potential
of 1-bit neural networks from the perspective of kernel-based analysis.
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Figure 2: This plot shows the difference between the predicted and actual values of the functions on
the test dataset. We tested three complex functions, as seen in the images, and the performance of the
1-bit model is nearly identical to that of the standard 32-bit floating-point model.

6 EXPERIMENTS

In this section, we aim to verify our theory by evaluating how well our quantization works for learning
rigorous functions and comparing it to the standard model. We designed our experiment to 1) validate
the scaling law, 2) visually demonstrate that the performance difference is minimal compared to
the standard model, which uses full-bit precision, through visualizations of single-variable input
functions, and 3) show how the test and train losses decrease as the model’s parameter size increases
and as the epochs progress.

6.1 VERIFICATION ON SCALING LAW

Experiment Setup In this experiment, we aimed to learn rigorous functions using a Multi-Layer
Perceptron (MLP) with varying depths of 3 and 5 layers. The MLP models had different sizes for the
hidden layers, and we measured the minimum loss achieved throughout the training process. Each
model was trained for 100,000 steps. We experimented with various parameter sizes and plotted
the corresponding loss functions. Additionally, we compared our method with the standard training
approach using 32-bit floating-point precision.

We experimented with a variety of target functions, and for each function, the inputs xi were randomly
chosen within the range [−1, 1]. Specifically, each xi was sampled from a uniform distribution over
this interval to ensure that the network could handle input values across the entire domain of interest.
We sampled 100 data points and trained our model over the this set.

The functions we aimed to learn during the experiment are listed below:
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1. f1(x1, x2, x3, x4, x5) = exp
(

1
5

∑5
i=1 sin

2
(
πxi

2

))
, This function takes five inputs and

applies a sinusoidal transformation followed by an exponential operation.

2. f2(x1, x2, x3, x4) = ln(1+ |x1|) +
(
x2
2 − x2

)
+ sin(x3)− ex4 , the function combines log-

arithmic, polynomial, trigonometric, and exponential components over four input variables.

3. f3(x1, x2, x3) = x1 × x2 − x3, This is a simple linear function over three inputs, involving
multiplication and subtraction.

4. f4(x1, x2, x3, x4) = x0 · sin(x1) + cos(x2) − 0.5 · x3, A four-input function mixing
trigonometric and linear terms, with coefficients applied to the terms.

5. f5(x1, x2, x3, x4) =
x2
0

1+|x1| − ex2 + tanh(x3) +
√
|x0 · x2|, This function incorporates

nonlinear operations like exponentials, hyperbolic tangents, and square roots.

6. f6(x1, x2, x3, x4) = LambertW(x0 ·x1)+
x2

log(1+ex3 ) −
Γ(x1)
1+|x0| , The most complex function

we tested, which includes special functions like the Lambert W function and the Gamma
function, alongside logarithmic and exponential components.

Result Interpretation In this experiment, we compare our quantized model (using INT1, 32×
smaller) to a standard non-quantized model (using 32-bit precision). For all functions (f1 to f6), we
observe (in ) that as the number of parameters increases, the loss decreases, supporting our theoretical
claim that larger models lead to convergence.

Although the standard method generally performs better due to its 32-bit precision, the gap decreases
as the number of parameters grows. This shows that while our method has a slightly higher loss, it
remains competitive, offering significant memory and computational efficiency.

6.2 COMPARISON ON 1-D FUNCTIONS

Experiment Setup In this experiment, we aimed to visually demonstrate the performance on highly
complex functions with sharp spikes between [−π, π]. We sampled 100 uniformly spaced points and
trained a 2-layer MLP with 20M parameters to learn the function. Additionally, we sampled 100
random points uniformly from this interval as the test dataset.

Findings The first observation from the plot is that both the standard and 1-bit methods learn all the
functions almost perfectly, with minimal difference between them. Secondly, both methods perform
similarly on these functions, which can be easily observed by comparing the scatter plots of the 1-bit
and standard models. The 1-bit model requires 32× less energy and computation.
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Figure 3: This plot shows the ℓ2 difference between both the training and test points and the predicted
points throughout the training phase for different model sizes and parameter counts. Each plot
demonstrates how the error decreases as training progresses, highlighting the impact of model size on
both training and test performance.

6.3 EVALUATION ON TRAINING AND GENERALIZATION SIMILARITY

Experimental Design For the same set of functions, we show how the loss functions for both the
train and test datasets decrease as the number of epochs increases. As the training progresses, the
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loss converges towards zero for models with a higher number of parameters. We experimented with
models containing 2.4k, 204k, and 20M parameters, each consisting of only 2 layers.

Insights Across all three functions, the loss decreases rapidly in the early epochs and stabilizes for
both the training and test sets. Larger models with 20M parameters consistently achieve lower final
losses compared to smaller models with 2.4k and 204k parameters, demonstrating the benefit of
increased model size. The gap between training and test loss remains minimal, indicating strong
generalization across different parameter sizes. While smaller models perform reasonably well,
especially on simpler functions, the advantage of larger models becomes more evident with more
complex functions, where the test loss is significantly lower. This supports the scaling law, confirming
that increasing model size leads to better convergence and generalization.

7 CONCLUSION

In conclusion, our theoretical results confirm the scaling law for 1-bit neural networks. We demon-
strated that the model achieves a small loss as the number of parameters increases. Despite the
constraint of binary weights, 1-bit models show similar behavior to full-precision models as their
width grows. Our experiments support this theory, showing that 1-bit networks perform nearly as
well as standard models on complex functions. As the number of parameters grows, the performance
gap between 1-bit and full-precision models reduces. These findings highlight that 1-bit networks are
both efficient and effective, providing a strong alternative to traditional models.
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A PRELIMINARY

A.1 NOTATIONS

In this paper, we use integer m > 0 to denote the width of neural networks, in particular, m is
sufficiently large. We use integer d > 0 to denote the dimension of neural networks. We use integer
n > 0 to denote the size of the training dataset.

A.2 BASIC FACTS

Fact A.1. For a variable x ∼ N (0, σ2), then with probability at least 1− δ, we have:

|x| ≤ Cσ
√
log(1/δ)

Fact A.2. For an 1-Lipschitz function f(·), we have:

|f(x)− f(y)| ≤ |x− y|,∀x, y ∈ Rd

Fact A.3. For a Gaussian variable x ∼ N (0, σ2 · Id) where σ ∈ R, then for any t > 0, we have:

Pr[x ≤ t] ≤ 2t√
2πσ

Fact A.4. For a Gaussian vector w ∼ N (0, σ2 · Id) where σ ∈ R, and a fixed vector x ∈ Rd, we
have:

w⊤x ∼ N (0, σ2∥x∥2 · Id)

Fact A.5. For two matrices H, H̃ ∈ Rn×n, we have:

λmin(H̃) ≥ λmin(H)− ∥H − H̃∥F
Fact A.6. For x ∈ (0, 1), integer t ≥ 0, we have:

t∑

τ=1

(1− x)τ ≤ − 1

log(1− x)
≤ 2

x

A.3 PROBABILITY TOOLS

Here, we state a probability toolkit in the following, including several helpful lemmas we’d like to
use. Firstly, we provide the lemma about Chernoff bound in (Chernoff, 1952) below.
Lemma A.7 (Chernoff bound, (Chernoff, 1952)). Let X =

∑n
i=1 Xi, where Xi = 1 with probability

pi and Xi = 0 with probability 1− pi, and all Xi are independent. Let µ = E[X] =
∑n

i=1 pi. Then

• Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0;

• Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/1), ∀0 < δ < 1.

Next, we offer the lemma about Hoeffding bound as in (Hoeffding, 1994).
Lemma A.8 (Hoeffding bound, (Hoeffding, 1994)). Let X1, · · · , Xn denote n independent bounded
variables in [ai, bi] for ai, bi ∈ R. Let X :=

∑n
i=1 Xi, then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp(− 2t2∑n
i=1(bi − ai)2

)

We show the lemma of Bernstein inequality as (Bernstein, 1924).
Lemma A.9 (Bernstein inequality, (Bernstein, 1924)). Let X1, · · · , Xn denote n independent zero-
mean random variables. Suppose |Xi| ≤ M almost surely for all i. Then, for all positive t,

Pr[

n∑

i=1

Xi ≥ t] ≤ exp(− t2/2∑n
j=1 E[X2

j ] +Mt/3
)
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Then, we give the Khintchine’s inequality in (Khintchine, 1923; Haagerup, 1981) as follows:
Lemma A.10 (Khintchine’s inequality, (Khintchine, 1923; Haagerup, 1981)). Let σ1, · · · , σn be i.i.d
sign random variables, and let z1 · · · , zn be real numbers. Then there are constants C > 0 so that
for all t > 0

Pr[|
n∑

i=1

ziσi| ≥ t∥z∥2] ≤ exp(−Ct2)

We give Hason-wright inequality from (Hanson & Wright, 1971; Rudelson & Vershynin, 2013)
below.
Lemma A.11 (Hason-wright inequality, (Hanson & Wright, 1971; Rudelson & Vershynin, 2013)).
Let x ∈ Rn denote a random vector with independent entries xi with E[xi] = 0 and |xi| ≤ K Let A
be an n× n matrix. Then, for every t ≥ 0

Pr[|x⊤Ax− E[x⊤Ax]| > t] ≤ 2 exp(−cmin{t2/(K4∥A∥2F ), t/(K2∥A∥)})

We state Lemma 1 on page 1325 of Laurent and Massart (Laurent & Massart, 2000).
Lemma A.12 (Lemma 1 on page 1325 of Laurent and Massart, (Laurent & Massart, 2000)). Let
X ∼ X 2

k be a chi-squared distributed random variable with k degrees of freedom. Each one has zero
mean and σ2 variance. Then

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp(−t)

Pr[X − kσ2 ≥ 2
√
ktσ2] ≤ exp(−t)

Here, we provide a tail bound for sub-exponential distribution (Foss et al., 2011).
Lemma A.13 (Tail bound for sub-exponential distribution, (Foss et al., 2011)). We say X ∈
SE(σ2, α) with parameters σ > 0, α > 0, if

E[eλX ] ≤ exp(λ2σ2/2),∀|λ| < 1/α.

Let X ∈ SE(σ2, α) and E[X] = µ, then:

Pr[|X − µ| ≥ t] ≤ exp(−0.5min{t2/σ2, t/α})

In the following, we show the helpful lemma of matrix Chernoff bound as in (Tropp, 2011; Lu et al.,
2013).
Lemma A.14 (Matrix Chernoff bound, (Tropp, 2011; Lu et al., 2013)). Let X be a finite set of
positive-semidefinite matrices with dimension d× d, and suppose that

max
X∈X

λmax(X) ≤ B.

Sample {X1, · · · , Xn} uniformly at random from X without replacement. We define µmin and µmax

as follows:

µmin := n · λmin( E
X∈X

(X))

µmax := n · λmax( E
X∈X

(X)).

Then

Pr[λmin(

n∑

i=1

Xi) ≤ (1− δ)µmin] ≤ d · exp(−δ2µmin/B) for δ ∈ (0, 1],

Pr[λmax(

n∑

i=1

Xi) ≥ (1 + δ)µmax] ≤ d · exp(−δ2µmax/(4B)) for δ ≥ 0.

Finally, we state Markov’s inequality as below.
Lemma A.15 (Markov’s inequality). If X is a non-negative random variable and a > 0, then the
probability that X is at least a is at most the expectation of X divided by a:

Pr[X ≥ a] ≤ E[X]

a
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A.4 BASIC BOUND

Definition A.16. For δ ∈ (0, 0.1) and a sufficiently large constant C > 0, we define:

D := max{C
√
log(md/δ), 1}

B NTK PROBLEM SETUP

B.1 DATASET

We consider a dataset where each data point is a tuple that includes a vector input and a scalar output.
In particular, we assume that ℓ2 norm of each input equals 1 and the absolute value of each target is
not bigger than 1. We give the formal definition as follows:
Definition B.1 (Data Points). We define dataset D := {(xi, yi)}ni=1 ⊂ Rd × R, where ∥xi∥2 = 1
and |yi| ≤ 1 for any i ∈ [n].

B.2 MODEL

Weights and Initialization.
Definition B.2. We give the following definitions:

• Hidden-layer weights W ∈ Rd×m. We define the hidden-layer weights W :=
[w1, w2, · · · , wm] ∈ Rd×m where wr ∈ Rd,∀r ∈ [m].

• Output-layer weights a ∈ Rm. We define the output-layer weights a :=

[a1, a2, · · · , am]
⊤ ∈ Rm, especially, vector a is fixed during the training.

Definition B.3. We give the following initializations:

• Initialization of hidden-layer weights W ∈ Rd×m. We randomly initialize W (0) :=
[w1(0), w2(0), · · · , wm(0)] ∈ Rd×m, where its r-th column for r ∈ [m] is sampled by
wr(0) ∼ N (0, σ2 · Id) with σ2 = 1.

• Initialization of output-layer weights a ∈ Rm. We randomly initialize a ∈ Rm where its
r-th entry for r ∈ [m] is sampled by ar ∼ Uniorm{−1,+1}.

Model.
Definition B.4. For a scalar x ∈ R, we define:

ReLU(x) = max{0, x} ∈ R
Definition B.5. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weights W ∈ Rd×m as Definition B.2.

• For a output-layer weights a ∈ Rm as Definition B.2.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let ReLU : R → R be defined as Definition B.4.

• For κ ∈ (0, 1].

We define:

f(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r, x⟩)

)
∈ R
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Lemma B.6. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weights W ∈ Rd×m as Definition B.2.

• For a output-layer weights a ∈ Rm as Definition B.2.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let ReLU : R → R be defined as Definition B.4.

• Let u : Rd → Rd be defined as Definition C.6.

• For κ ∈ (0, 1].

Then we have:

f(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU
(
⟨wr, x⟩+ ⟨u(wr), x⟩

)

Proof. We have

f(x,W, a) = κ
1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r, x⟩)

)

= κ
1√
m

m∑

r=1

ar · ReLU
(√

V (w) · (⟨w̃, x⟩+ E(w) · ⟨x,1d⟩)
)

= κ
1√
m

m∑

r=1

ar · ReLU
(
⟨wr, x⟩+ ⟨u(wr), x⟩

)

where the first step follows from Definition B.5, the second step follows from Definition C.5, the last
step follows from Definition C.6.

B.3 TRAINING

Training.
Definition B.7. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• Let a ∈ Rm be initialized as Definition B.3.

• Let f : Rd × Rd×m × Rm → R be defined as Definition B.5.

• For any t ≥ 0.

We define:

L(W (t)) :=
1

2
·

n∑

i=1

(f(xi,W (t), a)− yi)
2

Definition B.8. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.
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• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• Let a ∈ Rm be initialized as Definition B.3.

• Let f : Rd × Rd×m × Rm → R be defined as Definition B.5.

• For any t ≥ 0.

• Let L(W (t)) be defined as Definition B.7.

• Denote η > 0 as the learning rate.

• Let ∆W (t) ∈ Rd×m be defined as Definition E.2.

We update:

W (t+ 1) := W (t)− η ·∆W (t)

Compact Form.
Definition B.9. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• Let a ∈ Rm be initialized as Definition B.3.

• Let f : Rd × Rd×m × Rm → R be defined as Definition B.5.

• For any t ≥ 0.

• Let L(W (t)) be defined as Definition B.7.

• Let W (t) be updated by Definition B.8.

We give the following compact form of defined variables and functions:

• Compact form of model function. We define:

F(t) := [f(x1,W (t), a), f(x2,W (t), a), · · · , f(xn,W (t), a)]
⊤ ∈ Rn

• Compact form of the input vector in the training dataset. We define:

X := [x1, x2, · · · , xn]
⊤ ∈ Rn×d

• Compact form of the targets in the training dataset. We define:

y := [y1, y2, · · · , yn]⊤ ∈ Rn

• Compact form of the training objective. We define:

L(t) :=
1

2
· ∥F(t)− y∥22

Especially, we have L(t) = L(W (t)) by simple algebras.
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C QUANTIZATION

C.1 QUANTIZATION FUNCTIONS

Definition C.1. For a vector w ∈ Rd, we define Sign(w) ∈ {−1,+1}d where its k-th entry for
k ∈ [d] is given by:

Signk(w) :=

{−1, if wk < 0

+1, if wk ≥ 0
∈ {−1,+1}

Definition C.2. For a vector w ∈ Rd, we define expectation function as follows:

E(w) :=
⟨w,1d⟩

d
∈ R

Definition C.3. Let E : Rd → R be defined as Definition C.2. For a vector w ∈ Rd, we define
variance function as follows:

V (w) :=
1

d
· ∥w − E(w) · 1d∥22 ∈ R

Definition C.4. If the following conditions hold:

• Let Sign : Rd → {−1,+1}d be defined as Definition C.1.

• Let E : Rd → R be defined as Definition C.2.

• Let V : Rd → R be defined as Definition C.3.

• For a weight vector w ∈ Rd.

We define the quantization function as follows:

q(w) := Sign(
w − E(w) · 1d√

V (w)
) ∈ {−1,+1}d

C.2 DEQUANTIZATION FUNCTIONS

Definition C.5. If the following conditions hold:

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Let E : Rd → R be defined as Definition C.2.

• Let V : Rd → R be defined as Definition C.3.

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.

• For a vector x ∈ Rd.

We define the dequantization function as follows:

dq(⟨w̃, x⟩) :=
√

V (w) · ⟨w̃, x⟩+ E(w) · ⟨x,1d⟩ ∈ R

C.3 QUANTIZATION ERROR

Definition C.6. If the following conditions hold:

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Let E : Rd → R be defined as Definition C.2.

• Let V : Rd → R be defined as Definition C.3.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.

• For a vector x ∈ Rd.

We define the quantization difference vector as follows:

u(w) :=
√
V (w)w̃ + E(w) · 1d − w ∈ Rd

Lemma C.7. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Let E : Rd → R be defined as Definition C.2.

• Let V : Rd → R be defined as Definition C.3.

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.

• For a vector x ∈ Rd and ∥x∥2 = 1.

• Let u : Rd → Rd be defined as Definition C.6.

Then we have:

⟨u(w), x⟩ ≤ O
(
d(D +R)

)

Proof. We define:

Ln(w) =
w − E(w)1d√

V (w)

Then by simple algebras, we can show that:

1

d
∥Ln(w)∥22 =

1

d

∥∥∥∥∥
w − E(w)1d√

V (w)

∥∥∥∥∥

2

2

<
1

d

∥w − E(w)1d∥22
V (w)

< 1 (3)

Thus, we obtain:

∥Ln(w)∥∞ ≤ ∥Ln(w)∥2
= (∥Ln(w)∥22)

1
2

<
√
d

where these steps follow from simple algebras and Eq. (3).

Finally, we can get that

|⟨u(w), x⟩| =
√

V (w) · |⟨w̃ − Ln(w), x⟩|
= O(D +R) · |⟨w̃ − Ln(w), x⟩|
≤ O(D +R) · ∥w̃ − Ln(w)∥2

= O(D +R) ·
( d∑

k=1

(w̃k − Lnk(w))
2
) 1

2

≤ O(D +R) ·
( d∑

k=1

(max{
√
d− 1, 1})2

) 1
2
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≤ O
(
d(D +R)

)

where the first step follows from Definition C.6, the second step follows from Part 7 of Lemma H.6,
the third step follows from Cauchy-Schwarz inequality and ∥x∥2 = 1, the fourth step follows from
the definition of ℓ2 norm, the fifth step follows from Definition C.1 and simple algebras, the last step
follows from simple algebras.

D PATTERNS

D.1 RELU PATTERN

Definition D.1. If the following conditions hold:

• For any w ∈ Rd.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• For R > 0.

• For i ∈ [n] and r ∈ [m].

We define:

Ai,r := {∃w ∈ Rd : ∥w − wr(0)∥2 ≤ R,1dq(⟨wr(0),xi⟩)≥0 ̸= 1dq(⟨w,xi⟩)≥0}
Definition D.2. Let event Ai,r for i ∈ [n] and r ∈ [m] be defined as Definition D.1. We define:

Si := {r ∈ [m] : I{Ai,r} = 0}
S⊥
i := [m]/Si

D.2 SIGN PATTERN

Definition D.3. If the following conditions hold:

• For any w ∈ Rd.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• For R > 0.

• For k ∈ [d] and r ∈ [m].

We define:

Br,k := {∃w ∈ Rd : |wk − wr,k(0)| ≤ R,1wr,k(0)−E(wr(0))≥0 ̸= 1wk−E(w)≥0}

E STRAIGHT-THROUGH ESTIMATOR (STE)

E.1 STE FUNCTIONS

Definition E.1. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weights W ∈ Rd×m as Definition B.2.

• For a output-layer weights a ∈ Rm as Definition B.2.
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• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let ReLU : R → R be defined as Definition B.4.

We define:

fste(x,W, a) := κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r,x⟩)≥0 · ⟨wr, x⟩ ∈ R

Then its compact form is given by

Fste(t) := [fste(x1,W (t), a), fste(x2,W (t), a), · · · , fste(xn,W (t), a)]
⊤ ∈ Rn

Definition E.2. Let W (0) ∈ Rd×m be initialized as Definition B.3. For any t ≥ 0. We define:

∆W (t) :=

n∑

i=1

(Fi(t)− yi) ·
dFste,i(t)

dW (t)

E.2 GRADIENT COMPUTATION

Lemma E.3. If the following conditions hold:

• For i ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let Fste(t) be defined as Definition E.1.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• For κ ∈ (0, 1].

Then we have:

dFste,i(t)

dwr(t)
= κ

1√
m
ar · 1dq(⟨w̃r(t),xi⟩)≥0 · xi

Proof. This proof follows from simple calculations.

F NEURAL TANGENT KERNEL

F.1 KERNEL FUNCTION

Definition F.1. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.
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• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• For κ ∈ (0, 1].

We the kernel function as H(t) ∈ Rn×n, where its (i, j)-th entry is given by:

Hi,j(t) := κ2 1

m
x⊤
i xj ·

m∑

r=1

1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 ∈ R

Claim F.2. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• For κ ∈ (0, 1].

We first define the neural tangent network as H∗ := H(0) ∈ Rn×n, where its (i, j)-th entry is given
by:

H∗
i,j := Hi,j(0)

= κ2 1

m
x⊤
i xj ·

m∑

r=1

1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0

≈ κ2x⊤
i xj · E

wr∼N (0,σ2·Id)
[1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0]

Proof. We have

H∗
i,j = Hi,j(0)

= κ2 1

m
x⊤
i xj ·

m∑

r=1

1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0

≈ κ2x⊤
i xj · E

wr∼N (0,σ2·Id)
[1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0]

where the first step follows from the definition of H∗, the second step follows from Definition F.1,
the third step holds since m → +∞.

Definition F.3. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.
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• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let S⊥
i be defined as Definition D.2.

We the pattern-changing kernel function as H⊥(t) ∈ Rn×n, where its (i, j)-th entry is given by:

H⊥
i,j(t) := κ2 1

m
x⊤
i xj ·

∑

r∈S⊥
i

1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 ∈ R

F.2 ASSUMPTION: H∗ IS POSITIVE DEFINITE

Assumption F.4. Let H∗ ∈ Rn×n be defined as Definition F.1. We assume that H∗ is positive
definite (PD), where its minimum eigenvalue is given by:

λ := λmin(H
∗) > 0

F.3 KERNEL CONVERGENCE AND PD PROPERTY

Lemma F.5. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• Denote λ = λmin(H
∗) > 0 as Assumption F.4.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• Let H∗ ∈ Rn×n be defined as Claim F.2.

• R ≤ O( λδ
κ2n2dD ).

• δ ∈ (0, 0.1).

Then with probability at least 1− δ, we have:

• Part 1.

∥H(t)−H∗∥F ≤ O
(
n2dRδ−1D

)

• Part 2.

λmin(H(t)) ≥ λ/2

Proof. Proof of Part 1. Let Ai,r be defined as Definition D.1, we first show that when ⟨wr(0), x⟩ ≥
R+O

(
d(D +R)

)

dq(⟨w̃r(0), xi⟩) =
√
V (wr(0)) · ⟨w̃r(0), xi⟩+ ⟨E(wr(0)) · 1d, xi⟩

= ⟨wr(0), xi⟩+ ⟨u(wr(0)), xi⟩
≥ ⟨wr(0), xi⟩ − |⟨u(wr(0)), xi⟩|
≥ R
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where the first step follows from Definition C.5, the second step follows from Definition C.6. the
third step follows from simple algebras, the last step follows from ⟨wr(0), x⟩ ≥ R+O

(
d(D +R)

)

and Lemma C.7.

Thus, for any w ∈ Rd that satisfies ∥w − wr(0)∥2 ≤ R, we have:

dq(⟨w̃, xi⟩) =
√

V (w) · ⟨w̃, xi⟩+ ⟨E(w) · 1d, xi⟩
= ⟨w, xi⟩+ ⟨u(w), xi⟩
≥ ⟨w, xi⟩ − |⟨u(w), xi⟩|
≥ ⟨wr(0), xi⟩ − ∥w − wr(0)∥2 − |⟨u(w), xi⟩|
≥ 0

where the first step follows from Definition C.5, the second step follows from Definition C.6. the
third step follows from simple algebras, the fourth step follows from Cauchy-Schwarz inequality
and ∥xi∥ = 1, the last step follows from ∥w−wr(0)∥2 ≤ R, ⟨wr(0), x⟩ ≥ R+O

(
d(D+R)

)
and

Lemma C.7.

The above situation says:

Pr
[
I{Ai,r} = 1] ≤ Pr[⟨wr(0), x⟩ < R+O

(
d(D +R)

)]

≤
4R+O

(
d(D +R)

)

√
2π

≤ O
(
dR(D +R)

)

≤ O
(
dRD

)
(4)

where the second step follows from anti-concentration of Gaussian (Fact A.3) and Fact A.4, the third
step follows from simple algebras and the last step follows from plugging R ≤ D.

For i, j ∈ [n], we have

E[|Hi,j(t)−H∗
i,j |]

= E
[∣∣∣κ2 1

m
x⊤
i xj

m∑

r=1

(1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 − 1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0)
∣∣∣
]

= κ2 1

m

m∑

r=1

E
[
1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 − 1dq(⟨w̃r(0),xi⟩)≥0 · 1dq(⟨w̃r(0),xj⟩)≥0

]

≤ κ2 1

m

m∑

r=1

E
[
I{Ai,r ∪Aj,r}

]

≤ O
(
κ2dRD

)
(5)

where the first step follows from Definition F.1 and Claim F.2, the second and third step follows from
simple algebras, the last step follows from Eq. (4).

Then we have:

E[
n∑

i=1

n∑

j=1

|Hi,j(t)−H∗
i,j |] =

n∑

i=1

n∑

j=1

E[|Hi,j(t)−H∗
i,j |]

≤ O
(
κ2n2dRD

)

where the first step follows from simple algebras, the second step follows from Eq. (5).

Hence, by Markov’s inequality (Lemma A.15), with probability at least 1− δ, we have:
n∑

i=1

n∑

j=1

|Hi,j(t)−H∗
i,j | ≤

E[
∑n

i=1

∑n
j=1 |Hi,j(t)−H∗

i,j |]
δ
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≤ O
(
κ2n2dRδ−1(D +R)

)

We obtain:

∥H(t)−H∗∥F ≤ ∥H(t)−H∗∥1

=

n∑

i=1

n∑

j=1

|Hi,j(t)−H∗
i,j |

≤ O
(
κ2n2dRδ−1D

)

Now following Fact A.5, we have:

λmin(H(t)) ≥ λmin(H
∗)− ∥H(t)−H∗∥F

≥ λ−O
(
κ2n2dRδ−1D

)

≥ λ/2

where the last step follows from choosing R ≤ O( λδ
κ2n2dD ).

G TRAINING DYNAMIC

G.1 DECOMPOSE LOSS

Definition G.1. Let W (0) ∈ Rd×m be initialized as Definition B.3. For any t ≥ 0. Let u : Rd → Rd

be defined as Definition C.6. For r ∈ [m]. We define:

ur(t) := u(wr(t))

Then the Fi(t),∀i ∈ [n] can be given by:

Fi(t) = κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r(t),xi⟩)≥0 ·
(
⟨wr(t), xi⟩+ ⟨ur(t), xi⟩

)

Claim G.2. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• Define

C1 := − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)
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• Define

C2 := − κ
1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C3 := − κ
1√
m

n∑

i=1

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C4 :=
1

2
∥F(t)− F(t+ 1)∥22

• For κ ∈ (0, 1].

Then we have:

L(t+ 1) = L(t) + C1 + C2 + C3 + C4

Proof. We have

L(t+ 1) =
1

2
· ∥F(t+ 1)− y∥22

=
1

2
· ∥(F(t)− y)− (F(t)− F(t+ 1))∥22

=
1

2
· (∥F(t)− y∥22 − 2⟨F(t)− y,F(t)− F(t+ 1)⟩+ ∥F(t)− F(t+ 1)∥22)

= L(t)− ⟨F(t)− y,F(t)− F(t+ 1)⟩+ 1

2
∥F(t)− F(t+ 1)∥22

these steps follow from simple algebras and Definition B.9.

Then for i ∈ [n]

Fi(t)− Fi(t+ 1)

= κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r(t),xi⟩)≥0 ·
(
⟨wr(t), xi⟩+ ⟨ur(t), xi⟩

)

− κ
1√
m

m∑

r=1

ar · 1dq(⟨w̃r(t+1),xi⟩)≥0 ·
(
⟨wr(t+ 1), xi⟩+ ⟨ur(t+ 1), xi⟩

)

= κ
1√
m

m∑

r=1

ar ·
(
1dq(⟨w̃r(t),xi⟩)≥0 ·

(
⟨wr(t), xi⟩+ ⟨ur(t), xi⟩

)

− 1dq(⟨w̃r(t+1),xi⟩)≥0 ·
(
⟨wr(t+ 1), xi⟩+ ⟨ur(t+ 1), xi⟩

))

= M1,i +M2,i +M3,i

where these steps follows from simple algebras and defining:

M1,i := κ
1√
m

∑

r∈Si

ar

(
1dq(⟨w̃r(t),xi⟩)≥0 · ⟨wr(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0 · ⟨wr(t+ 1), xi⟩

)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

M2,i := κ
1√
m

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0 · ⟨wr(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0 · ⟨wr(t+ 1), xi⟩

)

M3,i := κ
1√
m

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0 · ⟨ur(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0 · ⟨ur(t+ 1), xi⟩

)

Thus, by the definitions in Lemma conditions, we can show that

L(t+ 1) = L(t) + C1 + C2 + C3 + C4

G.2 BOUNDING C1

Lemma G.3. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition F.3.

• Let H∗ ∈ Rn×n be defined as Claim F.2. Assume λmin(H
∗) > 0 as Assumption F.4.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• δ ∈ (0, 0.1).

• Define

C1 := − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

• For κ ∈ (0, 1].

Then with probability at least 1− δ, we have:

C1 ≤
(
− ηκλ+O(ηκ

n2dRD

δ
)
)
· L(t)

Proof. We have:

C1 = − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩
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− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

= − κ
1√
m

n∑

i=1

∑

r∈Si

ar(⟨wr(t), xi⟩ − ⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

= − κ2η
1

m

n∑

i=1

∑

r∈Si

(Fi(t)− yi) · (
n∑

j=1

x⊤
i xj · 1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0 · (Fj(t)− y))

= − η(F(t)− y)⊤ · (H(t)−H⊥(t)) · (F(t)− y)

= − η(F(t)− y)⊤ ·H(t) · (F(t)− y) + η(F(t)− y)⊤ ·H⊥(t) · (F(t)− y)

≤ − ηλ/2 · ∥F(t)− y∥22 + η∥H⊥(t)∥F · ∥F(t)− y∥2
= (−ηλ+ ∥H⊥(t)∥F ) · L(t)

where the first step follows from definition of C1, the second step follows from the definition of Si

(Definition D.2), the third step follows from Definition B.8 and Definition E.2, the fourth step follows
from Definition F.1, Definition F.3 and simple algebras, the fifth step follows from simple algebras,
the sixth step follows from Lemma F.5 and simple algebras, the last step follows from Definition B.9.

Besides, we have

|H⊥
i,j | = | 1

m
x⊤
i xj ·

∑

r∈S⊥
i

1dq(⟨w̃r(t),xi⟩)≥0 · 1dq(⟨w̃r(t),xj⟩)≥0|

≤ | 1
m
x⊤
i xj · |S⊥

i ||

≤ 1

m
|S⊥

i | (6)

where the first step follows from Definition F.3, the second step follows from simple algebras, the
third step follows from ∥x∥i = 1.

We give that

E[
n∑

i=1

|S⊥
i |] =

n∑

i=1

m∑

r=1

Pr[I{Ai,r} = 1]

≤ O(mndRD)

where the first step follows from simple algebras, the second step follows from Eq. (4).

Hence, by Markov’s inequality (Lemma A.15), we have
n∑

i=1

|S⊥
i | ≤ O(

mndRD

δ
) (7)

Thus,

∥H⊥∥F ≤
n∑

i=1

n∑

j=1

|H⊥
i,j |

≤ 1

m

n∑

i=1

n∑

j=1

|S⊥
i |

≤ O(
n2dRD

δ
)

where the first step follows from simple algebras, the second step follows from Eq. (6), the last step
follows from simple algebras and Eq. (7).

Finally, we conclude all the results, we have:

C1 ≤
(
− ηλ+O(η

n2dRD

δ
)
)
· L(t)
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G.3 BOUNDING C2

Lemma G.4. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition F.3.

• Let H∗ ∈ Rn×n be defined as Claim F.2. Assume λmin(H
∗) > 0 as Assumption F.4.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• δ ∈ (0, 0.1).

• Define

C2 := − κ
1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)

• κ ∈ (0, 1].

Then with probability at least 1− δ, we have:

|C2| ≤ O(ηκ
n1.5dRD

δ
) · L(t)

Proof. We have:

|C2| = |κ 1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)|

≤ |κ 1√
m

n∑

i=1

|Si⊥ | · |⟨wr(t), xi⟩ − ⟨wr(t+ 1), xi⟩| · (Fi(t)− yi)|

≤ |κ 1√
m

n∑

i=1

|Si⊥ | · ∥η∆wr(t)∥2 · (Fi(t)− yi)|

≤ κ
1√
m

n∑

i=1

|Si⊥ | · ∥η∆wr(t)∥2∥F(t)− y∥2
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≤ ηκ

√
n

m

n∑

i=1

|Si⊥ | · ∥F(t)− y∥22

≤ O(ηκ
n1.5dRD

δ
) · L(t)

where the first step follows from the definition of C2, the second step follows from Fact A.2 and
Definition D.2 (S⊥

i ), the third step follows from simple algebras and Definition B.8, the fourth step
follows from simple algebras, the fifth step follows from Lemma H.4, last step follows from Eq. (7)
and Definition B.9.

G.4 BOUNDING C3

Lemma G.5. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition F.3.

• Let H∗ ∈ Rn×n be defined as Claim F.2. Assume λmin(H
∗) > 0 as Assumption F.4.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• δ ∈ (0, 0.1).

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

• Define

C3 := − κ
1√
m

n∑

i=1

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩
)
· (Fi(t)− yi)

• κ ∈ (0, 1].

Then with probability at least 1− δ, we have:

C3 ≤ O
(
ηκ

R2n1.5
√
d

δϵ
√
m

D
)
· L(t)

Proof. We have:

|ur,k(t)− ur,k(t+ 1)|
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= |
√
V (wr(t)) · w̃r,k(t) + E(wr(t))− wr,k(t)

−
√

V (wr(t+ 1)) · w̃r,k(t+ 1)− E(wr(t+ 1)) + wr,k(t+ 1)|
≤ |w̃r,k(t)

√
V (wr(t))− w̃r,k(t+ 1)

√
V (wr(t+ 1))|

+ |ηE(∆wr(t))|+ |η∆wr,k(t)|
≤
∣∣∣w̃r,k(t+ 1)(

√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣

+
∣∣∣
√

V (wr(t))(w̃r,k(t)− w̃r,k(t+ 1))
∣∣∣+ |ηE(∆wr(t))|+ |η∆wr,k(t)|

= Q1,r,k +Q2,r,k +Q3,r,k +Q4,r,k (8)

where the first step follows from Definition G.1, the second step follows from triangle inequality and
Definition B.8, the third step follows from simple algebras, the last step follows from defining:

Q1,r,k :=
∣∣∣w̃r,k(t+ 1)(

√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣

Q2,r,k :=
∣∣∣
√
V (wr(t))(w̃r,k(t)− w̃r,k(t+ 1))

∣∣∣
Q3,r,k := |ηE(∆wr(t))|
Q4,r,k := |η∆wr,k(t)|

Bounding Q1,r,k.

We have:

Q1,r,k =
∣∣∣w̃r,k(t+ 1)(

√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣

=
∣∣∣(
√
V (wr(t))−

√
V (wr(t+ 1)))

∣∣∣
≤ ∥wr(t)− E(wr(t))1d − wr(t+ 1) + E(wr(t+ 1))1d∥2
≤ ∥η∆wr(t)∥2 +

√
d · |ηE(∆wr(t))|

≤ η
(1 +

√
d)
√
n√

m
∥F(t)− y∥2

where the first step follows from the definition of Q1,r,k, the second step follows from w̃r,k(t+ 1) ∈
{−1,+1}, the third step follows from Definition C.3 and reverse triangle inequality, the fourth step
follows from ∥1d∥2 =

√
d and Definition B.8, the last step follows from Lemma H.4.

Bounding Q2,r,k.

We have:

Q2,r,k =
∣∣∣
√
V (wr(t))(w̃r,k(t)− w̃r,k(t+ 1))

∣∣∣

= |
√
V (wr(t))| · |w̃r,k(t)− w̃r,k(t+ 1)|

≤ ∥wr(t)− E(wr(t))1d∥ · |w̃r,k(t)− w̃r,k(t+ 1)|
≤ O(

√
dD +R) · |w̃r,k(t)− w̃r,k(t+ 1)| (9)

where the first step follows from the definition of Q2,r,k, the second step follows from simple algebras,
the third step follows from Definition C.3, the last step follows from Part 2 of Lemma H.6.

At the same time, we can show that

E[|w̃r,k(t)− w̃r,k(t+ 1)|]
≤ 2(1− Pr[I{Br,k} = 0 ∩ I{|wr,k(t)− E(wr(t))| ≥ |η∆wr,k(t)− ηE(∆wr(t))|}])

≤ 2(1− Pr[z ≥ 2R+ 2η

√
n√
m
∥F(t)− y∥2])

= 2Pr[z ≤ 2R+ 2η

√
n√
m
∥F(t)− y∥2]
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≤ O(η

√
n√
m
)∥F(t)− y∥2 +O(1)R

≤ O(η
R
√
n

ϵ
√
m

)∥F(t)− y∥2

where the first step follows from Definition D.3 and simple algebras, the second step follows from
defining:

z := wr,k(0)− E(wr(0))

=
d− 1

d
wr,k − 1

d

∑

k′∈[d]/{k}
wr,k′(0)

∼ N
(
0, σ2

√
d− 1

d
· Id
)

and the last steps follow from the anti-concentration of the Gaussian variable (Fact A.3) and ∥F(t)−
y∥2 ≥ ϵ by Lemma condition.

Following Markov’s inequality, we get:

|w̃r,k(t)− w̃r,k(t+ 1)| ≤ O(η
R
√
n

δϵ
√
m
)∥F(t)− y∥2 (10)

Hence,

Q2,r,k ≤ O
(
η
R2

√
nd

δϵ
√
m

D
)
∥F(t)− y∥2

where this step follows from Eq. (10) and Eq. (9).

Bounding Q3,r,k and Q4,r,k.

We can show that Q3,r,k ≤ η
√
n√
m

· ∥F(t) − y∥2 and Q4,r,k ≤ η
√
n√
m

· ∥F(t) − y∥2 by following
Lemma H.4.

Combination. We have:

E[C3] = 0

where this step follows from the symmetry of a.

Also
(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩ − 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩

)

≤ |⟨ur(t), xi⟩ − ⟨ur(t+ 1), xi⟩|
= Q1,r,k +Q2,r,k +Q3,r,k +Q4,r,k

≤ O
(
η
R2

√
nd

δϵ
√
m

D
)
∥F(t)− y∥2 (11)

where the first step follows from ReLU is a 1-Lipschitz function (Fact A.2), the last step follows from
simple algebras and the combination of these terms.

By Hoeffding’s inequality (Lemma A.8), with a probability at least 1− δ, we have:

|C3| ≤ O
(
ηκ

R2n1.5
√
d

δϵ ·m
√
mD

)
∥F(t)− y∥22

≤ O
(
ηκ

R2n1.5
√
d

δϵ
√
m

D
)
· L(t)
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G.5 BOUNDING C4

Lemma G.6. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition F.3.

• Let H∗ ∈ Rn×n be defined as Claim F.2. Assume λmin(H
∗) > 0 as Assumption F.4.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• δ ∈ (0, 0.1).

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

• Define

C4 :=
1

2
∥F(t)− F(t+ 1)∥22

Then with probability at least 1− δ, we have:

|C4| ≤ O
(
η2κ2R

4n2d

δ2ϵ2m
D2
)
L(t)

Proof. We have:

|1dq(⟨w̃r(t),xi⟩)≥0(⟨wr(t), xi⟩+ ⟨ur(t), xi⟩)
− 1dq(⟨w̃r(t+1),xi⟩)≥0(⟨wr(t+ 1), xi⟩+ ⟨ur(t+ 1), xi⟩)|

≤ |⟨η∆wr(t), xi⟩+ ⟨ur(t), xi⟩ − ⟨ur(t+ 1), xi⟩|
≤ U1,i,r + U2,i,r

where the first step follows from Fact A.2, the fifth step follows from Definition B.8, and the last step
follows from defining:

U1,i,r := ⟨η∆wr(t), xi⟩
U2,i,r := ⟨ur(t), xi⟩ − ⟨ur(t+ 1), xi⟩

For the first term U1,i,r, we have:

|U1,i,r| ≤ η

√
n√
m
∥F(t)− y∥2

this step holds since Part 2 of Lemma H.4.
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For the second term U2,i,r, we have:

|U2,i,r| ≤ O
(
η
R2

√
nd

δϵ
√
m

D
)
∥F(t)− y∥2

this step follows from Eq. (11) and Eq. (8).

Thus, we have:

C4 =
1

2
∥F(t)− F(t+ 1)∥22

=
1

2

n∑

i=1

(Fi(t)− Fi(t+ 1))2

=
1

2

n∑

i=1

(
κ

1√
m

m∑

r=1

ar(U1,i,r + U2,i,r)
)2

Combining two terms, then by Hoeffing inequality (Lemma A.8), with a probability at least 1− δ,
E[
∑m

r=1 ar(U1,i,r + U2,i,r)] = 1, we have:

|C4| ≤ O
(
η2κ2R

4n2d

δ2ϵ2m
D2
)
∥F(t)− y∥22 ≤ O

(
η2κ2R

4n2d

δ2ϵ2m
D2
)
L(t)

H INDUCTIONS

H.1 MAIN RESULT 1: TRAINING CONVERGENCE GUARANTEE

Theorem H.1. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• Given a expected error ϵ > 0.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• Let H∗ ∈ Rn×n be defined as Claim F.2. Assume λmin(H
∗) > 0 as Assumption F.4.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• δ ∈ (0, 0.1), κ ∈ (0, 1].

• Choose m ≥ Ω
(
λ−8 n12d8

δ4ϵ4

)
.

• Choose η ≤ O
(
λ δ

κ2n2dD

)
.

• Choose T ≥ Ω
(

1
ηλ log(ϵ−1ndD2)

)
.

Then with probability at least 1− δ, we have:

L(T ) ≤ ϵ

Proof. Choice of m.
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Following Lemma H.2, we have

m ≥ Ω
(
λ−4κ4R

8n6d2

δ4ϵ4

)

Particularly, following Claim H.5, we have:

R ≤ 4
√
n

λ
√
m
∥F(0)− y∥2

≤ 4
√
n

λ
√
m

·O
(√

ndD2
)

≤ O
( nd

λ
√
m
D2
)

where the first step follows from Claim H.5, the second step follows from Lemma H.3, the third step
follows from simple algebras.

Besides, by Lemma H.2, we need that

R ≤ O(
λδ

κ2n2dD
)

where the second step follows from Definition A.16.

Thus, showing that D3 ≤ O(m
1
4 ) and κ ≤ 1, we plug m as follows:

m ≥ Ω
(
λ−8n

12d8

δ4ϵ4

)

Choice of η. We have

∥η∆wr(0)∥2 ≤ η

√
n√
m
∥F(0)− y∥2

≤ η

√
n√
m
O
(√

ndD2
)

≤ R

where the first step follows from Part 2 of Lemma H.4, the second step follows from Lemma H.3, the
third step follows from plugging η ≤ O

(
λ δ

κn2dD

)
and m ≥ Ω

(
λ−8 n12d8

δ4ϵ4

)
.

Choice of T . We have:

L(T ) ≤ ϵ ⇐⇒ (1− ηλ/2)TL(0) ≤ ϵ

⇐⇒ (1− ηλ/2)TO
(√

ndD2
)
≤ ϵ

⇐⇒ (1− ηλ/2)T ≤ O
( ϵ√

ndD2

)

⇐⇒ T ≥ Ω
(
log(

ϵ√
ndD2

)/ log(1− ηλ/2)
)

⇐⇒ T ≥ Ω
(
− 1

ηλ
log(

ϵ√
ndD2

)
)

⇐⇒ T ≥ Ω
( 1

ηλ
log(ϵ−1ndD2)

)

where the first step follows from Lemma H.2, the second step follows from Lemma H.3, the third and
fourth steps follow from simple algebras, the fifth step follows from Fact A.6, the sixth step follows
from simple algebras.
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H.2 INDUCTION FOR LOSS

Lemma H.2. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let H(t) ∈ Rn×n be defined as Definition F.1.

• Let H⊥(t) ∈ Rn×n be defined as Definition F.3.

• Let H∗ ∈ Rn×n be defined as Claim F.2. Assume λmin(H
∗) > 0 as Assumption F.4.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• δ ∈ (0, 0.1).

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

• m ≥ Ω
(
λ−4κ4R8n6d2

δ4ϵ4

)
.

• R ≤ O( λδ
κ2n2dD ).

• Define

C1 := − κ
1√
m

n∑

i=1

∑

r∈Si

ar(1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩) · (Fi(t)− yi)

• Define

C2 := − κ
1√
m

n∑

i=1

∑

r∈S⊥
i

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨wr(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨wr(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C3 := − κ
1√
m

n∑

i=1

m∑

r=1

ar

(
1dq(⟨w̃r(t),xi⟩)≥0⟨ur(t), xi⟩

− 1dq(⟨w̃r(t+1),xi⟩)≥0⟨ur(t+ 1), xi⟩
)
· (Fi(t)− yi)

• Define

C4 :=
1

2
∥F(t)− F(t+ 1)∥22
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• δ ∈ (0, 1].

Then with probability at least 1− δ, we have:

L(t+ 1) ≤ (1− λ/2η) · L(t)
Moreover, we can show that:

L(t) ≤ (1− λ/2η)t · L(0)

Proof. We have:

L(t+ 1) ≤ L(t) +
(
− ηλ+O(η

n2dRD

δ
) +O(ηκ

n1.5dRD

δ
)

+O(ηκ
R2n1.5

√
d

δϵ
√
m

D) +O(η2κ2R
4n2d

δ2ϵ2m
D2
)
· L(t)

≤ L(t) +
(
− ηλ+

1

8
ηλ+

1

8
ηλ+

1

8
ηλ+

1

8
ηλ
)
· L(t)

≤ (1− ηλ/2)L(t)

where the first step follows from Claim G.2, Lemma G.3, Lemma G.4, Lemma G.5, Lemma G.6
and ηλ ≤ 1, the second step follows from the choice of R and m, the last step follows from simple
algebras.

Choice of R. We have:

R ≤ O(
λδ

κ2n2dD
) (12)

where this step is following the combination of Lemma F.5 and O(η κ2n2dRD
δ ≤ 1

8ηλ).

Choice of m. We have:
√
m ≥ Ω

(
λ−1κ

R2n1.5d0.5

δϵ
D
)

⇐⇒ √
m ≥ Ω

(
λ−1κ

R2n1.5d0.5

δϵ
m

1
4

)

⇐⇒ m
1
4 ≥ Ω

(
λ−1κ

R2n1.5d0.5

δϵ

)

⇐⇒ m ≥ Ω
(
λ−4κ4R

8n6d2

δ4ϵ4

)

where the first step follows from plugging O(ηκR2n1.5
√
d

δϵ
√
m

D) ≤ 1
8ηλ, the last three steps follow from

simple algebras.

Lemma H.3. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.
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• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

Then with probability at least 1− δ, we have:

∥F(0)− y∥2 ≤ O
(√

ndD2
)

Proof. We have:

∥F(0)− y∥2 ≤ ∥F(0)∥2 + ∥y∥2
≤ ∥F(0)∥2 +

√
n

≤ (

n∑

i=1

|Fi(0)|2)
1
2 +

√
n

≤ (

n∑

i=1

|κ 1√
m

m∑

r=1

ar · ReLU
(
dq(⟨w̃r(0), xi⟩)

)
|2) 1

2 +
√
n

≤ O
(√

n log(m/δ)dD
)
+

√
n

≤ O
(√

ndD2
)

where the first step follows from triangle inequality, the second step follows from yi ≤ 1,∀i ∈ [n]
and simple algebras, the third step follows from the definition of ℓ2 norm, the fourth step follows from
Definition B.9 and Definition B.5, the last two steps follow by Hoeffding’s inequality (Lemma A.8),
Definition B.1 and simple algebras, and we can show that:

E[
m∑

r=1

ar · ReLU
(
dq(⟨w̃r(0), xi⟩)

)
] = 0

also,

dq(⟨w̃r(0), xi⟩) =
√
V (wr(0) · ⟨w̃r(0), xi⟩+ E(wr(0))⟨1d, xi⟩

≤ O(
√
dD) ·

√
d+O(D) ·

√
d

≤ O(dD)

where these steps follow from Definition C.5, Lemma H.6 and simple algebras.

H.3 INDUCTION FOR STE GRADIENT

Lemma H.4. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.
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• Let ur(t) be defined as Definition G.1.

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.

Then with probability at least 1− δ, we have:

• Part 1. ∀k ∈ [d]

|∆wr,k(t)| ≤
√

n

m
· ∥F(t)− y∥2

• Part 2.

∥∆wr(t)∥2 ≤
√

n

m
· ∥F(t)− y∥2

Proof. Proof of Part 1. We have:

|∆wr,k(t)| = |κ 1√
m

n∑

i=1

ar · 1dq(⟨w̃r(t),xi⟩)≥0 · xi,k · (Fi(t)− yi)|

≤ κ
1√
m

( n∑

i=1

(ar · 1dq(⟨w̃r(t),xi⟩)≥0 · xi,k)
2
) 1

2 · ∥F(t)− y∥2

≤
√

n

m
· ∥F(t)− y∥2

where the first step follows from Definition E.2, the second step follows from Cauchy-Schwarz
inequality, the third step follows from

max
r∈[m],i∈[n],k∈[d]

|1dq(⟨w̃r(t),xi⟩)≥0 · xi,k| ≤ 1

the above equation follows from simple algebras and ∥xi∥i = 1.

Proof of Part 2.

By ∥x∥i = 1,∀i ∈ [n], this proof is trivially the same as Proof of Part 1.

H.4 INDUCTION FOR WEIGHTS

Claim H.5. If the following conditions hold:

• For i, j ∈ [n], r ∈ [m] and integer t ≥ 0.

• Let L(t) be defined as Definition B.9.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• Let a ∈ Rm be initialized as Definition B.3.

• Let dq : R → R be defined as Definition C.5.

• Denote w̃r = q(wr) ∈ {−1,+1}d.

• Let Si,S⊥
i be defined as Definition D.2.

• Let ur(t) be defined as Definition G.1.

• For an error ϵ > 0 and ∥F(t)− y∥2 ≥ c · ϵ for a sufficient small constant c > 0.
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Then with probability at least 1− δ, we have:

R := max
t≥0

max
r∈[m]

∥wr(0)− wr(t)∥2 ≤ 4
√
n

λ
√
m
∥F(0)− y∥2

Proof. We have

R = max
t≥0

max
r∈[m]

∥wr(0)− wr(t)∥2

≤ max
t≥0

max
r∈[m]

∥
t∑

τ=1

η∆wr(τ)∥2

≤ ηmax
t≥0

max
r∈[m]

t∑

τ=1

∥∆wr(τ)∥2

≤ η

√
n√
m

max
t≥0

t∑

τ=1

∥F(τ)− y∥2

≤ η

√
n√
m

max
t≥0

t∑

τ=1

(1− ηλ/2)τ∥F(0)− y∥2

≤ 4
√
n

λ
√
m
∥F(0)− y∥2

where the first step follows from the definition of R, the second step follows from Definition B.8, the
third step follows from triangle inequality, the fourth step follows from Part 2 of Lemma H.4, the
fifth step follows from Lemma H.2, the last step follows from Fact A.6.

Lemma H.6. Let δ ∈ (0, 0.1). Let D > 0 be defined as Definition A.16. Let E : Rd → R be defined
as Definition C.2. Let V : Rd → R be defined as Definition C.3. Let W (0) ∈ Rd×m be initialized
as Definition B.3, denote W := [w1, w2, · · · , wm] ∈ Rd×m satisfying ∥wr − wr(0)∥2 ≤ R where
R ≥ 0, then with a probability at least 1− δ, we have

• Part 1. |wr,k(0)| ≤ O(D), ∀r ∈ [m], k ∈ [d].

• Part 2. ∥wr(0)∥2 ≤ O(
√
dD), ∀r ∈ [m].

• Part 3. ∥wr∥2 ≤ O(
√
dD +R), ∀r ∈ [m].

• Part 4. E(wr(0)) ≤ O(D), ∀r ∈ [m].

• Part 5.
√

V (wr(0)) ≤ O(D), ∀r ∈ [m].

• Part 6. E(wr) ≤ O(D +R), ∀r ∈ [m].

• Part 7.
√
V (wr) ≤ O(D +R), ∀r ∈ [m].

Proof. This proof follows from the union bound of the Gaussian tail bound (Fact A.1) and some
simple algebras.

I SUPPLEMENTARY SETUP FOR CLASSIC LINEAR REGRESSION

I.1 MODEL FUNCTION

Definition I.1. If the following conditions hold:

• For a input vector x ∈ Rd.

• For a hidden-layer weights W ∈ Rd×m as Definition B.2.

• For a output-layer weights a ∈ Rm as Definition B.2.
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• Let ReLU : R → R be defined as Definition B.4.

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• t ≥ 0, let W (0) ∈ Rd×m and a ∈ Rm be initialized as Definition B.3.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim I.3.

• κ ∈ (0, 1].

We define:

f ′(x,W, a) := κ
1√
m

m∑

r=1

ar · ReLU(⟨wr, x⟩) ∈ R

Then we define the compact form of f(x,W ′t), a), we define:

F′(t) = [f(x1,W
′(t), a), f(x2,W

′(t), a), · · · , f(xn,W
′t), a)]

⊤ ∈ Rn

I.2 LOSS AND TRAINING

Definition I.2. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• Let a ∈ Rm be initialized as Definition B.3.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition I.1.

• For any t ≥ 0.

We define:

L′(t) :=
1

2
∥F′(t)− y∥22

Claim I.3. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition I.1.

• Let L′(t) be defined as Definition I.2.

• For any t ≥ 0.

• Denote η > 0 aa the learning rate.

We define:

W ′(t+ 1) := W ′(t)− η ·∆W ′(t)

Here, we also define that:

W ′(t) :=
d

dW ′(t)
L′(t)

=

n∑

i=1

(F′
i(t)− yi) · κ

[
a1 · 1⟨w′

1(t),xi⟩≥0xi · · · am · 1⟨w′
m(t),xi⟩≥0xi

]
∈ Rd×m

Proof. This proof follows from simple algebras.
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I.3 INDUCTION FOR WEIGHTS

Lemma I.4 (See Corollary 4.1 and the fifth equation of page 6 in Du et al. (2018)). If the following
conditions hold:

• t ≥ 0, let W (0) ∈ Rd×m and a ∈ Rm be initialized as Definition B.3.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim I.3.

• R ≤ O( λδ
κ2n2dD ).

Then we have

∥w′
r(t)− w′

r(0)∥ ≤ R

Proof. Following Corollary 4.1 in Du et al. (2018), we can show that:

∥w′
r(t)− w′

r(0)∥ ≤ 4
√
n√

mλ
∥F′(0)− y∥2

Then we can complete this proof by combining the equation above with Lemma I.5 and R ≤ O( λδ
n2dD )

in Lemma conditions.

I.4 INDUCTION FOR LOSS

Lemma I.5. If the following conditions hold:

• Let D = {(xi, yi)}ni=1 ⊂ Rd × R be defined as Definition B.1.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• Let a ∈ Rm be initialized as Definition B.3.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition I.1.

• For any t ≥ 0.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim I.3.

• δ ∈ (0, 0.1).

Then with probability at least 1− δ, we have:

∥F′(0)− y∥2 ≤ O
(√

ndD2
)

Proof. We have:

∥F′(0)− y∥2 ≤ ∥F′(0)∥2 + ∥y∥2
≤ ∥F′(0)∥2 +

√
n

≤ (

n∑

i=1

|F′
i(0)|2)

1
2 +

√
n

≤ (

n∑

i=1

|κ 1√
m

m∑

r=1

ar · ReLU
(
⟨w′

r(0), xi⟩
)
|2) 1

2 +
√
n

= (

n∑

i=1

|κ 1√
m

m∑

r=1

ar · ReLU
(
⟨wr(0), xi⟩

)
|2) 1

2 +
√
n
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≤ O
(√

n log(m/δ)dD
)
+
√
n

≤ O
(√

ndD2
)

where the first step follows from triangle inequality, the second step follows from yi ≤ 1,∀i ∈ [n]
and simple algebras, the third step follows from the definition of ℓ2 norm, the fourth step follows
from Definition B.9 and Definition B.5, the fifth step follows from W ′(0) = W (0), the last two steps
follow by Hoeffding’s inequality (Lemma A.8), Definition B.1, κ ≤ 1 and simple algebras, and we
can show that:

E[
m∑

r=1

ar · ReLU
(
⟨wr(0), xi⟩

)
] = 0

also,

⟨wr(0), xi⟩ = ⟨wr(0), xi⟩
≤ O(

√
dD) ≤ O(dD)

where this step follows from Lemma H.6 and simple algebras.

J SIMILARITIES

J.1 MAIN RESULT 2: TRAINING SIMILARITY

Theorem J.1. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• Given a expected error ϵ > 0.

• Let H∗ ∈ Rn×n be defined as Claim F.2. Assume λmin(H
∗) > 0 as Assumption F.4.

• Let Dtest := {(xtest,i, ytest,i)}ni=1 ⊂ Rd × R be defined as Definition J.2.

• Let F′(t) ∈ Rn be defined as Definition I.1.

• Let F(t) ∈ Rn be defined as Definition B.9.

• Let F′
test(t) ∈ Rn be defined as Definition J.3.

• Let Ftest(t) ∈ Rn be defined as Definition J.3.

• For any t ≥ 0.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.

• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim I.3.

• For any error ϵquant > 0.

• δ ∈ (0, 0.1).

• Choose κ ≤ O(
ϵquant

dD2 ).

Then with probability at least 1− δ, we have:

• Part 1. |Ftest,i(t)− F′
test,i(t)| ≤ ϵquant.

• Part 2. |Fi(t)− F′
i(t)| ≤ ϵquant.
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Proof. Proof of Part 1. We have:

|1dq(⟨w̃r(t),xtest,i⟩)≥0(⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩)
− 1⟨w′

r(t),xtest,i⟩≥0⟨w′
r(t), xtest,i⟩|

≤ |⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩ − ⟨w′
r(t), xtest,i⟩|

= |⟨wr(0)− η

t−1∑

τ=0

∆wr(τ), xtest,i⟩+ ⟨ur(t), xtest,i⟩ − ⟨w′
r(0)− η

t−1∑

τ=0

∆w′
r(τ), xtest,i⟩|

= | − ⟨η
t−1∑

τ=0

∆wr(τ), xtest,i⟩+ ⟨ur(t), xtest,i⟩+ ⟨η
t−1∑

τ=0

∆w′
r(τ), xtest,i⟩|

≤ |⟨η
t−1∑

τ=0

∆wr(τ), xtest,i⟩|+ |⟨η
t−1∑

τ=0

∆w′
r(τ), xtest,i⟩|+ |⟨ur(t), xtest,i⟩|

≤ R+R+ |⟨ur(t), xtest,i⟩|
≤ O

(
d(D +R)

)

where the first step follows from Fact A.2, the second step follows from Definition B.8 and Claim I.3,
the third step follows from w′

r(0) = wr(0), the fourth step follows from triangle inequality, the fifth
step follows from Claim H.5 and Lemma I.4, the last step follows from Lemma C.7 and δ ∈ (0, 0.1).

Then we have:

|Ftest,i(t)− F′
test,i(t)| ≤

∣∣∣κ 1√
m

m∑

r=1

ar

(
1dq(⟨w̃r(t),xtest,i⟩)≥0(⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩)

− 1⟨w′
r(t),xtest,i⟩≥0⟨w′

r(t), xtest,i⟩
)∣∣∣

≤ κ
√
log(m/δ) ·O

(
d(D +R)

)

≤ ϵquant

where the first step follows from Definition J.3, the second step follows from Hoeffding’s inequality
(Lemma A.8), E[

∑m
r=1 arσi,r] = 0, σi,r ≤ O

(√
n

m (D +R) +R/δ
)

and defining:

σi,r := |1dq(⟨w̃r(t),xtest,i⟩)≥0(⟨wr(t), xtest,i⟩+ ⟨ur(t), xtest,i⟩)
− 1⟨w′

r(t),xtest,i⟩≥0⟨w′
r(t), xtest,i⟩|

and the last step follows from choosing

κ ≤ O(
ϵquant

dD2 + dDR
) ≤ O(

ϵquant
dD2

)

Proof of Part 2. This part can be proved in the same way as Proof of Part 1.

J.2 TEST DATASET FOR GENERALIZATION EVALUATION

Definition J.2. We define test dataset Dtest := {(xtest,i, ytest,i)}ni=1 ⊂ Rd×R, where ∥xtest,i∥2 = 1
and ytest,i ≤ 1 for any i ∈ [n].
Definition J.3. If the following conditions hold:

• Let Dtest := {(xtest,i, ytest,i)}ni=1 ⊂ Rd × R be defined as Definition J.2.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition I.1.

• Let f : Rd × Rd×m × Rm → R be defined as Definition B.5.

• For any t ≥ 0.

• Let W (t) ∈ Rd×m be initialized as Definition B.3 and be updated by Definition B.8.
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• W ′(0) := W (0).

• Let W ′(t) ∈ Rd×m be updated as Claim I.3.

We define:

F′
test(t) := [f ′(xtest,1,W

′(t), a), f ′(xtest,2,W
′(t), a), · · · , f ′(xtest,n,W

′(t), a)]
⊤

Ftest(t) := [f(xtest,1,W (t), a), f(xtest,2,W (t), a), · · · , f(xtest,n,W (t), a)]
⊤

J.3 FUNCTION SIMILARITY AT INITIALIZATION

Lemma J.4. If the following conditions hold:

• Let D > 0 be defined as Definition A.16.

• Let q : Rd → {−1,+1}d be defined as Definition C.4.

• Let E : Rd → R be defined as Definition C.2.

• Let V : Rd → R be defined as Definition C.3.

• For a weight vector w ∈ Rd.

• Denote quantized vector w̃ := q(w) ∈ {−1,+1}d.

• For a vector x ∈ Rd and ∥x∥2 = 1.

• Let f ′ : Rd × Rd×m × Rm → R be defined as Definition I.1.

• Let f : Rd × Rd×m × Rm → R be defined as Definition B.5.

• Let W (0) ∈ Rd×m be initialized as Definition B.3.

• W ′(0) := W (0).

• δ ∈ (0, 0.1).

• For any error ϵinit > 0.

• We choose κ ≤ O(ϵinit/(
√
dD2))

Then with probability at least 1− δ, we have:

|f(x,W (0), a)− f ′(x,W ′(0), a)| ≤ ϵinit

Proof. We have:

|1dq(⟨w̃r(0),x⟩)≥0dq(⟨w̃r(0), x⟩)
− 1⟨wr(0),x⟩≥0⟨wr(0), x⟩|

≤ |dq(⟨w̃r(0), x⟩)− ⟨wr(0), x⟩|
≤ |
√
V (wr(0))⟨w̃r(0), x⟩+ E(wr(0)) · ⟨1d, x⟩ − ⟨wr(0), x⟩|

≤ O(
√
dD)

where the first step follows from Fact A.2, the second step follows from Definition C.5, the last step
follows from Lemma H.6.

Then by Hoeffding inequality (Lemma A.8), with a probability at least 1− δ, we have:

|f(x,W (0), a)− f ′(x,W ′(0), a)| ≤ κ| 1√
m

m∑

r=1

arσ̂r|

≤ κO(
√
dD) ·

√
log(m/δ)

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

≤ O(κ
√
dD2)

where we have:

σ̂r := 1dq(⟨w̃r(0),x⟩)≥0dq(⟨w̃r(0), x⟩)− 1⟨wr(0),x⟩≥0⟨wr(0), x⟩

E[
m∑

r=1

arσ̂r] = 1

|σ̂r| ≤ O(
√
dD)
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