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Abstract

Deep neural networks (DNNs) have been proven extremely susceptible to adver-1

sarial examples, which raises special safety-critical concerns for DNN-based au-2

tonomous driving stacks (i.e., 3D object detection). Although there are extensive3

works on image-level attacks, most are restricted to 2D pixel spaces, and such at-4

tacks are not always physically realistic in our 3D world. Here we present Adv3D,5

the first exploration of modeling adversarial examples as Neural Radiance Fields6

(NeRFs). Advances in NeRF provide photorealistic appearances and 3D accurate7

generation, yielding a more realistic and realizable adversarial example. We train8

our adversarial NeRF by minimizing the surrounding objects’ confidence predicted9

by 3D detectors on the training set. Then we evaluate Adv3D on the unseen valida-10

tion set and show that it can cause a large performance reduction when rendering11

NeRF in any sampled pose. To generate physically realizable adversarial examples,12

we propose primitive-aware sampling and semantic-guided regularization that en-13

able 3D patch attacks with camouflage adversarial texture. Experimental results14

demonstrate that the trained adversarial NeRF generalizes well to different poses,15

scenes, and 3D detectors. Finally, we provide a defense method to our attacks that16

involves adversarial training through data augmentation.17

1 Introduction18

The perception system of self-driving cars heavily rely on DNNs to process input data and comprehend19

the environment. Although DNNs have exhibited great improvements in performance, they have been20

found vulnerable to adversarial examples [2,15,24,41]. These adversarial examples crafted by adding21

imperceptible perturbations to input data, can lead DNNs to make wrong predictions. Motivated22

by the safety-critical nature of self-driving cars, we aim to explore the possibility of generating23

physically realizable adversarial examples to disrupt 3D detectors in driving scenarios, and further24

improve the robustness of 3D detectors through adversarial training.25

The 2D pixel perturbations (digital attacks) [15, 41] have been proven effective in attacking DNNs in26

various computer vision tasks [13, 53, 56]. However, these 2D pixel attacks are restricted to digital27

space and are difficult to realize in our 3D world. To address this challenge, several works have28

proposed physical attacks. For example, Athalye et al. [2] propose the framework of Expectation Over29

Transformation (EOT) to improve the attack robustness over 3D transformation. Other researchers30

generate adversarial examples beyond image space through differentiable rendering, as seen in [54,59].31

These methods show great promise for advancing the field of 3D adversarial attacks and defense but32

are still limited in synthetic environments.33

Given the safety-critical demand for self-driving cars, several works have proposed physically34

realizable attacks and defense methods in driving scenarios. For example, Cao et al. [5, 6] propose to35

learn 3D-aware adversarial attacks capable of generating adversarial mesh to attack 3D detectors.36
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Methods Transferability Adv. Type Additional Requirements
Cao et al. [5, 6] Poses 3D Mesh Model, Annotation
Tu et al. [43, 44] Poses, Scenes 3D Mesh Model, Annotation
Xie et al. [57] Scenes, Categories 2D Patch Model, Annotation

Adv3D Poses, Scenes, Categories 3D NeRF Model

Table 1: Comparison with prior works of adversarial attack in autonomous driving.

However, their works only consider learning a 3D adversarial example for a few specific frames.37

Thus, the learned example is not universal and may not transfer to other scenes. To mitigate this38

problem, Tu et al. [43, 44] propose to learn a transferable adversary that is placed on top of a vehicle.39

Such an adversary can be used in any scene to hide the attacked object from 3D detectors. However,40

reproducing their attack in our physical world can be challenging since their adversary must have41

direct contact with the attacked object. We list detailed comparisons of prior works in Tab. 1.42

To address the above challenges and generate 3D adversarial examples in driving scenarios, we build43

Adv3D upon recent advances in NeRF [35] that provide both differentiable rendering and realistic44

synthesis. In order to generate physically realizable attacks, we model Adv3D in a patch-attack [40]45

manner and use an optimization-based approach that starts with a realistic NeRF object [26] to learn46

its 3D adversarial texture. We optimize the adversarial texture to minimize the predicted confidence47

of all objects in the scenes, while keeping shape unchanged. During the evaluation, we render the48

input agnostic NeRF in randomly sampled poses, then we paste the rendered patch onto the unseen49

validation set to evaluate the attack performance. Owing to the transferability to poses and scenes, our50

adversarial examples can be executed without prior knowledge of the scene and do not need direct51

contact with the attacked objects, thus making for more feasible attacks compared with [43,44,57,62].52

Finally, we provide thorough evaluations of Adv3D on camera-based 3D object detection with the53

nuScenes [4] dataset. Our contributions are summarized as follows:54

• We introduce Adv3D, the first exploration of formulating adversarial examples as NeRF to55

attack 3D detectors in autonomous driving. Adv3D provides 3D-aware and photorealistic56

synthesis that was previously unavailable.57

• By incorporating the proposed primitive-aware sampling and semantic-guided regularization,58

Adv3D generates adversarial examples with enhanced physical realism and realizability.59

• We conduct extensive real-world experiments and demonstrate the transferability of our60

adversarial examples across unseen environments and detectors.61

2 Related Work62

2.1 Adversarial Attack63

DNNs are known to be vulnerable to adversarial attacks, where a small perturbation in the input data64

can cause drastic changes in the output predictions. Szegedy et al. [41] first discovered that adversarial65

examples, generated by adding visually imperceptible perturbations to the original images, make66

DNNs predict a wrong category with high confidence. These vulnerabilities were also discovered in67

object detection and semantic segmentation [30, 56]. Moreover, DPatch [30] proposes transferable68

patch-based attacks by compositing a small patch to the input image. However, perturbing image69

pixels alone does not guarantee that adversarial examples can be created in the physical world. To70

address this issue, several works have performed physical attacks [3, 8, 18, 23, 46, 52, 58, 61] and71

exposed real-world threats. For example, Athalye et al. [2] generated robust 3D adversarial objects72

by introducing the Expectation Over Transformation (EOT) method. Cheng et al. [11] developed an73

adversarial patch with physical-oriented transformations to attack a depth estimation network. In our74

work, we mainly aim to generate 3D adversarial examples for 3D object detection in driving scenarios.75

2.2 Robustness in Autonomous Driving76

With the safety-critical nature, it is necessary to pay special attention to robustness in autonomous77

driving systems [47]. LiDAR-Adv [6] proposes to learn input-specific adversarial point clouds to78

fool LiDAR detectors. Tu et al. [44] produces generalizable point clouds that can be placed on a79
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vehicle roof to hide it. Furthermore, several work [1, 5, 43] try to attack a multi-sensor fusion system80

by optimizing 3D mesh through differentiable rendering. We compare our method with prior works81

in Tab. 1. Our method demonstrates stronger transferability and fewer requirements than prior works.82

2.3 Image Synthesis using NeRF83

NeRF [35] enables photorealistic synthesis in a 3D-aware manner. Recent advances [45, 60] in NeRF84

allow for control over materials, illumination, and 6D pose of objects. Additionally, NeRF’s rendering85

comes directly from real-world reconstruction, providing more physically accurate and photorealistic86

synthesis than previous mesh-based methods that relied on human handicrafts. Moreover, volumetric87

rendering [19] enables NeRF to perform accurate and efficient gradient computation compared with88

dedicated renderers in mesh-based differentiable rendering [9, 21, 29].89

Recently, there has been tremendous progress in driving scene simulation using NeRF. Block-90

NeRF [42] achieves city-scale reconstruction by modeling the blocks of cities with several isolated91

NeRFs to increase capacity. FEGR [51] learns to intrinsically decompose the driving scene for92

applications such as relighting. Lift3D [26] use NeRF to generate new objects and augment them to93

driving datasets, demonstrating the capability of NeRF to improve downstream task performance. The94

driving scene simulation provides a perfect test bed to evaluate the effectiveness of self-driving cars.95

Our method is related to Lift3D, but aims to understand and improve the robustness of 3D detectors.96

3 Preliminary97

3.1 Camera-based 3D Object Detection in Autonomous Driving98

Camera-based 3D object detection is the fundamental task in autonomous driving. Without loss of99

generality, we focus on evaluating the robustness of camera-based 3D detectors.100

The 3D detectors process image data and aim to predict 3D bounding boxes of all surrounding objects.101

The parameterization of a 3D bounding box can be written as b = {R, t, s, c}, where R ∈ SO(3) is102

the rotation of the box, t = (x, y, z) indicate translation of the box center, s = (l, w, h) represent the103

size (length, width, and height) of the box, and c is the confidence of the predicted box.104

The network structure of camera-based 3D object detectors can be roughly categorized into FoV-105

based (front of view) and BEV-based (bird’s eye view). FoV-based methods [48, 49, 50] can be easily106

built by adding 3D attribute branches to 2D detectors. BEV-based methods [38, 39] typically convert107

2D image feature to BEV feature using camera parameters, then directly detect objects on BEV108

planes. We refer readers to recent surveys [25, 31] for more detail.109

3.2 Differentiable Rendering using NeRF110

Our method leverages the differentiable rendering scheme proposed by NeRF [35]. NeRF parame-111

terizes the volumetric density and color as a function of input coordinates. NeRF uses multi-layer112

perceptron (MLP) or hybrid neural representations [7, 14, 36] to represent this function. For each113

pixel on an image, a ray r(t) = ro + rd · t is cast from the camera’s origin ro and passes through the114

direction of the pixel rd at distance t. In a ray, we uniformly sample K points from the near plane115

tnear to the far plane tfar, the kth distance is thus calculated as tk = tnear + (tfar − tnear) · k/K.116

For any queried point r(tk) on the ray, the network takes its position r (tk) and predicts the per-point117

color ck and density τk with:118

(ck, τk) = Network (r (tk)) . (1)
Note that we omit the direction term as suggested by [16]. The final predicted color of each pixel119

C(r) is computed by approximating the volume rendering integral using numerical quadrature [34]:120

C(r) =

K−1∑
k=0

Tk (1− exp (−τk (tk+1 − tk))) ck,

with Tk = exp

(
−
∑
k′<k

τk′ (tk′+1 − tk′)

)
.

(2)

We build our NeRF upon Lift3D [26]. Lift3D is a 3D generation framework that generates photoreal-121

istic objects by fitting multi-view images synthesized by 2D generative modes [20] using NeRF. The122

network of Lift3D is a conditional NeRF with additional latent code input, which controls the shape123
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Figure 1: Adv3D aims to generate 3D adversarial examples that consistently perform attacks under
different poses during rendering. We initialize adversarial examples from Lift3D [26]. During
training, we optimize the texture latent codes of NeRF to minimize the detection confidence of
all surrounding objects. During inference, we evaluate the performance reduction of pasting the
adversarial patch rendered using randomly sampled poses on the validation set.

and texture of the rendered object. The conditional NeRF in Lift3D is a tri-plane parameterized [7]124

generator. With its realistic generation and 3D controllability, Lift3D has demonstrated that the train-125

ing data generated by NeRF can help to improve downstream task performance. To further explore126

and exploit the satisfactory property of NeRF, we present a valuable and important application in127

this work: we leverage the NeRF-generated data to investigate and improve the robustness of the128

perception system in self-driving cars.129

4 Method130

We illustrate the pipeline of Adv3D in Fig. 1. We aim to learn a transferable adversarial example in 3D131

detection that, when rendered in any pose (i.e., location and rotation), can effectively hide surrounding132

objects from 3D detectors in any scenes by lowering their confidence. In Sec. 4.1, to improve the133

physical realizability of adversarial examples, we propose (1) Primitive-aware sampling to enable134

3D patch attacks. (2) Disentangle NeRF that provides feasible geometry, and (3) Semantic-guided135

regularization that enables camouflage adversarial texture. To enhance the transferability across poses136

and scenes, we formulate the learning paradigm of Adv3D within the EOT framework [2] in Sec. 4.3.137

4.1 3D Adversarial Example Generation138

We use a gradient-based method to train our adversarial examples. The training pipeline involves 4139

steps: (i) randomly sampling the pose of an adversarial example, (ii) rendering the example in the140

sampled pose, (iii) pasting the rendered patch into the original image of the training set, and finally,141

(iv) computing the loss and optimizing the latent codes. During inference, we discard the (iv) step.142

4.1.1 Pose Sampling143

To achieve adversarial attack in arbitrary object poses, we apply Expectation of Transformation144

(EOT) [2] by randomly sampling object poses. The poses of adversarial examples are parameterized145

as 3D boxes b that are restricted to a predefined ground plane in front of the camera. We model the146

ground plane as a uniform distribution B in a specific range that is detailed in the supplement. During147

training, we independently sample the rendering poses of adversarial examples, and approximate the148

expectation by taking the average loss over the whole batch.149

4.1.2 Primitive-aware Sampling150

We model the primitive of adversarial examples as NeRF tightly bound by 3D boxes, in order to enable151

non-contact and physically realizable attacks. During volume rendering, we compute the intersection152

of rays r(t) with the sampled pose b = {R, t, s} ∈ B, finding the first hit point and the last hit point153

of box (tnear, tfar) by the AABB-ray intersection algorithm [33]. We then sample our points inside154
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the range (tnear, tfar) to reduce large unnecessary samples and avoid contact with the environment.155

(tnear, tfar) = Intersect(r,b), (3)

r′(tk) = r̃(tnear) + (r̃(tfar)− r̃(tnear)) · k/K, (4)
r̃(t) = Transform(r(t),b), (5)

where r̃(t) is the sampled points with additional global to local transformation. Specifically, we use a156

3D affine transformation to map original sampled points r(t) = ro + rd · t into a canonical space157

r̃ = {x, y, z} ∈ [−1, 1]. This ensures that all the sampled points regardless of their distance from the158

origin, are transformed to the range [−1, 1], thus providing a compact input representation for NeRF159

network. The transformation is given by:160

Transform(r,b) = s−1 · (R−1 · r− t), (6)
where b = {R, t, s}, R ∈ SO(3) is rotation matrix of the box, t, s ∈ R3 indicate translation and161

scale vector that move and scale the unit cube to desired location and size. The parameters of b are162

sampled from a pre-defined distribution B detailed in the supplement.163

Then, the points lied in [−1, 1] are projected to exactly cover the tri-plane features z for interpolation.164

Finally, a small MLP takes the interpolated features as input and predicts RGB and density:165

(ck, τk) = MLP(Interpolate(z, r′ (tk))). (7)
The primitive-aware sampling enables patch attacks [40] in a 3D-aware manner by lifting the 2D166

patch to a 3D box, enhancing the physical realizability by ensuring that the adversarial example only167

has a small modification to the original 3D environment.168

4.1.3 Disentangled NeRF Parameterization169

The original parameterization of NeRF combines the shape and texture into a single MLP, resulting in170

an entangled shape and texture generation. Since shape variation is challenging to reproduce in the real171

world, we disentangle shape and texture generation and only set the texture as adversarial examples.172

We obtain texture latents ztex. and shape latents zshape from the Lift3D. During volume rendering,173

we disentangle shape and texture generation by separately predicting RGB and density:174

ck = Network(ztex., r
′ (tk)), τk = Network(zshape, r

′ (tk)), (8)
where zshape is fixed and ztexture is being optimized. Our disentangled parametrization can also175

be seen as a geometry regularization in [43, 44] but keeps geometry unchanged as a usual vehicle,176

leading to a more realizable adversarial example.177

4.1.4 Semantic-guided Regularization178

Setting the full part of the vehicle as adversarial textures is straightforward, but not always feasible in179

the real world. To improve the physical realizability, we propose to optimize individual semantic parts,180

such as doors and windows of a vehicle. Specifically, as shown in Fig. 2 (d, e)), we only set a specific181

part of the vehicle as adversarial texture while maintaining others unchanged. This semantic-guided182

regularization leads to a camouflage adversarial texture that is less likely spotted in the real world.183

To achieve this, we add a semantic branch to Lift3d [26] to predict semantic part labels of the184

sampled points. We re-train Lift3d by fitting multi-view images and semantic labels generated by185

editGAN [28]. Using semantic-guided regularization, we maintain the original texture and adversarial186

part texture at the same time but only optimize the adversarial part texture while leaving the original187

texture unchanged. This approach allows us to preserve a large majority of parts as usual, but to alter188

only the specific parts that are adversarial (see Fig. 2 (b, c)). Potential attackers can easily print the189

adversarial sticker and stick it on the semantic part of vehicles to hide surrounding objects.190

In our implementation, we query the NeRF network twice, one for the adversarial texture and the191

other for the original texture. Then, we replace the part of original texture with the adversarial texture192

indexed by semantic labels in the point space.193

4.2 Gradient Propagation194

After rendering the adversarial examples, we paste the adversarial patch into the original image195

through image composition. The attacked image can be expressed as I1 ×M + I2 × (1−M) where196

I1 and I2 are the patch and original image, M is foreground mask predicted by NeRF. Next, the197

attacked images are fed to pretrained and fixed 3D detectors to compute the objective and back-198

propagate the gradients. Since both the rendering and detection pipelines are differentiable, Adv3D199

allows gradients from the objective to flow into the texture latent codes during optimization.200
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(a) (b) (c) (d) (e)

Figure 2: Rendered results of our adversarial examples. (a) Image and semantic label of an instance
predicted by NeRF. (b) Top: our example without semantic-guided regularization. Bottom: our
example with semantic-guided regularization. (c) Multi-view consistent synthesis of our examples.
(d,e) The texture transfer results of side and back part adversary to other vehicles.

4.3 Learning Paradigm201

We formulate our learning paradigm as EOT [2] that finds adversarial texture latent codes by202

minimizing the expectation of a binary cross-entropy loss over sampled poses and original images:203

ztex. = arg min
ztex.

Eb∼BEx∼X [− log(1− P (I(x,b, ztex.))], (9)

where b is the rendering pose sampled from the predefined distribution of ground plane B, x is the204

original image sampled from the training set X , I(x,b, ztex.) is the attacked image that composited205

by the original image x and the adversarial patch rendered using pose b and texture latent code206

ztex., and P (I(·)) represents the confidence of all proposals predicted by detectors. We approximate207

the expectation by averaging the objective of the independently sampled batch. The objective is a208

binary cross-entropy loss that minimizes the confidence of all predicted bounding boxes, including209

adversarial objects and normal objects.210

Built within the framework of EOT, Adv3D helps to improve the transferability and robustness of211

adversarial examples over the sampling parameters (poses and scenes here). This means that the212

attack can be performed without prior knowledge of the scene and are able to disrupt models across213

different poses and times in a non-contact manner.214

4.4 Adversarial Defense by Data Augmentation215

Toward defenses against our adversarial attack, we also study adversarial training to improve the216

robustness of 3D detectors. Adversarial training is typically performed by adding image perturbations217

using a few PGD steps [32, 55] during the training of networks. However, our adversarial example is218

too expensive to generate for the bi-level loop of the min-max optimization objective. Thus, instead of219

generating adversarial examples from scratch at every iteration, we directly leverage the transferable220

adversarial examples to augment the training set. We use the trained adversarial example to locally221

store a large number of rendered images to avoid repeated computation. During adversarial training,222

we randomly paste the rendered adversarial patch into the training images with a probability of 30%,223

while remaining others unchanged. We provide experimental results in Sec. 5.4.224

Models Backbone Type Clean NDS Adv NDS Clean mAP Adv mAP
FCOS3D [48] ResNet101 FoV 0.3770 0.2674 0.2980 0.1272
PGD-Det [49] ResNet101 FoV 0.3934 0.2694 0.3174 0.1321
DETR3D [50] ResNet101 FoV 0.4220 0.2755 0.3470 0.1336
BEVDet [17] ResNet50 BEV 0.3822 0.2247 0.3076 0.1325
BEVFormer-Tiny [27] ResNet50 BEV 0.3540 0.2264 0.2524 0.1217
BEVFormer-Base [27] ResNet101 BEV 0.5176 0.3800 0.4167 0.2376

Table 2: Comparison of different detectors under our attack. Clean NDS and mAP denote evaluation
using original validation data. Adv NDS and mAP denote evaluation using attacked data.
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Figure 3: Visualization of BEVDet [17] prediction on nuScenes validation set under our attacks.
The visualization threshold is set at 0.6. The adversarial NeRF can hide surrounding objects by
minimizing their predicted confidence in a non-contact manner (making the yellow boxes disappear).

5 Experiments225

In this section, we first describe the training detail of our adversarial attacks. Then we present the226

experiments of semantic-guided regularization in Sec. 5.1, the analysis of 3D attack in Sec. 5.2, the227

transferability across detectors in Sec. 5.3, and our adversarial defense method in Sec. 5.4.228

Dataset We conduct our experiments on the widely used nuScenes dataset [4]. This dataset is229

collected using 6 surrounded-view cameras that cover the full 360° field of view around the ego-230

vehicle. The dataset contains 700 scenes for training and 150 scenes for validation. In our work, we231

train our adversarial examples on the training set and evaluate performance drop on the validation set.232

Training We implement our methods using PyTorch [37] and MMDetection3D [12]. All detectors233

are resumed from checkpoints available on their open-source repositories to match the original234

performance exactly. We only select one instance from Lift3D [26] as the initialization of examples.235

We conduct our experiments using 8 NVIDIA A100 80G GPUs. We use the Adam optimizer [22] with236

a learning rate of 1e-3 for texture latents. In practice, we optimize texture latents on the training set for237

five epochs with the same batch size as used during training detectors. We do not use any regularization238

except for semantic-guided regularization. In all experiments without specified, we render two239

adversarial examples per image. We ablate the number of rendered adversaries in the supplement.240

Target Detectors and Metrics We evaluate the robustness of six representative detectors. Three are241

FoV-based, and three are BEV-based. The FoV-based methods are FCOS3D [48], PGD-Det [49] and242

DETR3D [50]. The BEV-based methods are BEVDet [17], BEVFormer-Tiny [27] and BEVFormer-243

Base. Following prior work [57], we evaluate the performance drop on the validation set after the244

attack. Specifically, we use the Mean Average Precision (mAP) and nuScenes Detection Score245

(NDS) [4] to evaluate the performance of 3D detectors.246

Quantitative Results We provide the experimental results of adversarial attacks in Tab. 2. The247

attacks are conducted in a full-part manner without semantic-guided regularization to investigate the248

upper limit of attack performance. We found that, in spite of FoV-based or BEV-based, they display249

similar robustness. Meanwhile, we see a huge improvement of robustness by utilizing a stronger250

backbone (ResNet101 versus ResNet50) when comparing BEVFormer-Base with BEVFormer-Tiny.251

We hope these results will inspire researchers to develop 3D detectors with enhanced robustness.252

Visualization Results We visualize our attack results with semantic-guided regularization in Fig. 3253

(a,b), and without regularization in Fig. 3 (c). The disappearance of detected objects is caused by their254

lower confidence scores. For example, the confidence predicted by detectors in Fig. 3 (a) have declined255

7



Semantic Part NDS mAP
Clean 0.382 0.307
No Part 0.302 0.234
Full Parts 0.224 0.132
Part of Front 0.267 0.148
Part of Side 0.265 0.149
Part of Rear 0.268 0.151

Table 3: Attack results of different se-
mantic parts.

Data Adv train NDS mAP
Clean val ✗ 0.304 0.248
Clean val ✓ 0.311 0.255
Adv val † ✗ 0.224 0.132
Adv val † ✓ 0.264 0.181
Adv val § ✓ 0.228 0.130

Table 4: Results of adversarial training.

from 0.6 to 0.4, and are therefore filtered out by the visualization threshold of 0.6. In Fig. 3 (a), we256

find that our adversarial NeRF is realistic enough to be detected by a 3D detector if it doesn’t display257

much of the adversarial texture. However, once the vehicle shows a larger area of the adversarial258

texture as seen in Fig. 3 (b), it will hide all objects including itself due to our untargeted objective.259

5.1 Semantic Parts Analysis260

In Tab. 3, we provide experiments on the impact of different semantic parts on attack performance.261

Specifically, we focused on three salient parts of the vehicle: the front, side, and rear. Our results262

show that compared with adversarial attacks using full parts, the semantic-guided regularization263

leads to a slightly lower performance drop, but remains a realistic appearance and less likely spotted264

adversarial texture as illustrated in Fig. 2 (b).265

Since we do not have access to annotation during training, we additionally conduct "No Part"266

experiment that no part of the texture is adversarial, to evaluate the impact of the collision and267

occlusion. We acknowledge that part of performance degradation can be attributed to the occlusion to268

original objects and the false positive prediction of adversarial objects (see Fig. 3 (a)), since we do269

not update the ground truth of adversarial objects to the validation set.270

5.2 Effectiveness of 3D-aware attack271

To validate the effectiveness of our 3D attacks, we ablate the impact of different poses on the attack272

performance. In Fig. 4 (a), we divide the BEV plane into 10× 10 bins ranging from x ∈ [−5m, 5m]273

and z ∈ [10m, 15m]. We then evaluate the relative mAP drop (percentage) of BEVDet [17] by274

sampling one adversarial example inside the bin per image, while keeping rotation randomly sampled.275

Similarly, we conduct experiments of 30 uniform rotation bins ranging from [0, 2π] in Fig. 4 (b).276

The experimental results demonstrate that all aspects of location and rotation achieve a valid attack277

(performance drop > 30%), thereby proving the transferability of poses in our 3D-aware attack.278

A finding that contrasts with prior work [44] is the impact of near and far locations in z axis. Our279

adversarial example is more effective in the near region compared with the far region, while Tu280

et al. [44] display a roughly uniform distribution in all regions. We hypothesize that the attack281

performance is proportional to the area of the rendered patch, which is highly related to the location282
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Figure 4: To examine the 3D-aware property of our adversarial examples, we ablate the relative
performance drop by sampling adversarial examples within different bins of location and rotation.
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XXXXXXXXXTarget
Source Clean FCOS3D PGD-Det DETR3D BEVDet BEVFormer

FCOS3D [48] 0.298 0.124 0.141 0.144 0.176 0.158
PGD-Det [49] 0.317 0.172 0.131 0.150 0.186 0.172
DETR3D [50] 0.347 0.188 0.170 0.133 0.212 0.198
BEVDet [17] 0.307 0.148 0.145 0.140 0.132 0.140
BEVFormer [27] 0.252 0.175 0.155 0.136 0.177 0.124

Table 5: Transferability of our attack to unseen detectors. We evaluate the robustness of target
detectors using an adversarial example trained on source detectors. Reported in mAP.

of objects. Similar findings are also displayed in rotation. The vehicle that poses vertically to the ego283

vehicle results in a larger rendered area, thus better attack performance.284

5.3 Transferability Across Different Detectors285

In Tab. 5, we evaluate the transferability of adversarial examples across different detectors. To286

this end, we train a single adversarial example of each detector separately, then use the example to287

evaluate the performance drop of other detectors. We show that there is a high degree of transferability288

between different models. Among them, we observe that DETR3D [50] appears to be more resilient289

to adversarial attacks than other detectors. We hypothesize this can be attributed to the sparsity of the290

query-based method. During the projection of 3D query to the 2D image plane, only a single point of291

the feature is indexed by interpolation, thus fewer areas of adversarial features will be sampled. This292

finding may have insightful implications for the development of more robust 3D detectors in the future.293

5.4 Adversarial Defense by Data Augmentation294

We present the results of adversarial training in Tab. 4. The symbol † indicates attacks using the same295

adversarial example used in adversarial training, while § indicates a different example. We observe296

that incorporating adversarial training improves not only the robustness against the seen adversarial297

examples, but also the clean performance. However, we also note that our adversarial training is298

not capable of transferring to unseen adversarial examples trained in the same way, mainly due to299

the fixed adversarial example during adversarial training. Furthermore, we hope that future work300

can conduct in-depth investigations and consider handling the bi-level loop of adversarial training in301

order to better defend against adversarial attacks.302

6 Limitation and Future Work303

Learning to Sample and Attack As we do not have access to the dataset annotations, we can not304

model the explicit relationship between adversarial and normal objects to avoid collision, and the305

collision itself can cause a performance drop ("No Parts" in Tab. 3). Future work can apply geometry-306

aware composition [10] to mitigate this problem. Additionally, future research can explore learning307

to predict optimal poses of adversarial objects to maximize the effectiveness of attacks.308

Potential Harmful Consequences The trained adversarial examples have the potential to induce309

serious traffic accidents in driving scenarios. However, our work is not intended to cause disruptions in310

autonomous driving systems. Instead, our goal is to use the examples to gain a deeper understanding311

of the systems and improve their robustness. We hope our work will draw more attention of the312

community to further verify and enhance the robustness of autonomous driving systems.313

7 Conclusion314

In this paper, we propose Adv3D, the first attempt to model adversarial examples as NeRF. Adv3D315

enhances the physical realizability of attacks through our proposed primitive-aware sampling and316

semantic-guided regularization. Compared with prior works of adversarial examples in autonomous317

driving, our examples are more threatening in practice as we carry non-contact attacks, have feasible318

3D shapes as usual vehicles, and display camouflage adversarial texture. Extensive experimental319

results also demonstrate that Adv3d transfers well to different poses, scenes, and detectors. We hope320

our work provides valuable insights for creating more realistic evaluations to investigate and improve321

the robustness of autonomous driving systems.322
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