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Abstract001

In recent years, the quality of medical image data,002

such as computed tomography or magnetic reso-003

nance tomography, has continued to improve and the004

resolution and detection of the smallest structures005

has become increasingly accurate. Along with these006

developments, new techniques for three-dimensional007

visualization using volume rendering techniques are008

emerging, enabling extremely realistic visualization009

of medical images. This helps to improve patient010

communication, diagnosis, and treatment planning.011

An extremely critical step in the development of a012

realistic rendering is the design of a suitable transfer013

function. However, this requires a high level of ex-014

perience and manual fine-tuning to the given image015

data. To automatize this process, we propose to016

train a reinforcement learning agent that extracts017

a two-dimensional transfer function from the given018

joint histograms of the image data. The focus of this019

study is primarily on the development of a suitable020

reward model, which is critical for the reinforcement021

learning framework, incorporating human feedback.022

1 Introduction023

Today, medical image data, with its extremely high024

quality, are playing an increasingly crucial part in025

the diagnosis and treatment planning of various dis-026

eases. Volumetric data sets can be acquired from027

different imaging modalities, such as computed to-028

mography (CT), magnetic resonance imaging (MRI),029

positron emission tomography (PET), or ultrasound030

(US). Particularly, CT and MRI offer high image031

resolution with a high amount of anatomical de-032

tails. These high-quality medical images allow the033

creation of renderings with exceptional detail and re-034

alism. First 3D visualizations of different structures,035

such as bones or organs, were obtained using iso-036

surface extraction based on previous segmentation.037

However, these methods, known as indirect volume038

rendering (iDVR), have the disadvantage that it is039

difficult to differentiate between adjacent structures040

based on a singular isovalue. Hence, many small041

sub-volumes, including the neighboring anatomical042

surroundings, would have to be segmented and vi-043

sualized in order to represent adjacent structures.044

On the other hand, direct volume rendering (DVR)045

offers a flexible and detailed representation of vol-046

ume data based on the direct mapping of the entire 047

data volume without prior surface extraction us- 048

ing a transfer function (TF). The design of the TF 049

plays a crucial role in generating DVR images with 050

high quality and focusing on different regions of in- 051

terest. An interactive design of the TF allows the 052

user to define which anatomical structures are to 053

be emphasized and how they are displayed in the 054

subsequent DVR image in terms of their optical 055

properties (opacity and color). However, this man- 056

ual TF design is often not intuitive, repetitive, and 057

time-consuming [1]. This is due to the fact that this 058

design process is implemented on an intermediate 059

level in two-dimensional feature spaces represent- 060

ing certain image characteristics, such as intensity 061

and gradients, in the so-called joint histogram (JH). 062

Selecting suitable features and the subsequent ex- 063

traction of the TF are not trivial and require a high 064

level of experience. In addition, a manual design 065

of the TF requires adaptation to new image data 066

and different visualization scenarios. To simplify 067

this design process, alternative iterative procedures 068

were developed, starting from an initial TF, to im- 069

prove it towards an optimal solution which satisfies 070

a pre-defined objective metric [2–4]. However, these 071

approaches were only capable of optimizing regions 072

along the same ray and could not include neighbor- 073

ing information from other rays. Further, the TF 074

parameters to be optimized were concentrated only 075

on opacity. The color, which is also necessary to de- 076

termine the visual attention of different anatomical 077

structures was not considered [5]. Another disad- 078

vantage of defining a dedicated optimization metric 079

is that it is often non-trivial, and a good visualiza- 080

tion result is difficult for humans to achieve based 081

on certain defined mathematical properties. Many 082

approaches that use learning based techniques, such 083

as CNNs, to automate the rendering design have the 084

same difficulties. In addition, labeled data are usu- 085

ally required to train the networks [6]. As a result, 086

new methods are becoming increasingly popular that 087

make the design of an objective function based on 088

predefined criteria obsolete. One such approach is re- 089

inforcement learning from human feedback (RLHF), 090

which has gained increased attention in recent years. 091

Instead of directly formulating an objective function, 092

RLHF uses collections of preferences provided by 093

a human judge or inspector to train an RL agent, 094

as suggested by Christiano et al. [7]. We want to 095
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Figure 1. Schematic representation of the offline reward model training concept for an RL framework to
automatically generate 2D TFs. The same JH, which is previously calculated from the image data, and two
randomly drawn actions, in our case defined by vertices of a polygon, are used to calculate two 3D renderings,
which will be presented to a human inspector. The reward model receives as input the JH, which is passed through
three convolution layers each with a dropout probability of p = 50% to extract the image features. These are
then concatenated with the up-scaled features of the actions, which are processed together and finally classified by
a linear activation to predict a scalar reward. The reward model update is performed based on the preference
collection of the human inspector rating the two generated 3D renderings.

adopt this approach here as well, to generate an au-096

tomated 2D TF with the help of an RL agent, which097

is trained based on user feedback on the generated098

volume renderings from the learned TF.099

2 Methods100

We follow the RLHF pipeline proposed by Ziegler101

et al. [8], which typically includes three phases: the102

supervised fine-tuning of an agent, the preference103

collection for a subsequent reward model training,104

and the RL fine-tuning using proximal policy opti-105

mization (PPO) [9]. In this work, we focus on the106

second stage of this pipeline and present a suitable107

reward model, which is critical for the successful108

training of the RL agent.109

In our RL framework, we define the state of the110

environment to111

s = IJH, (1)112

with IJH as the previously calculated image of the113

JH. It represents the intensities and gradients of the114

original 2D slices of the input images. The task of115

the agent is now to estimate suitable vertices of a116

polygon in this JH, which is used to calculate the117

2D TF, in order to align the resulting 3D rendering118

with the visual imagination of the human inspector.119

The agent’s action can thus be formulated as120

a = [(x1, y1), (x2, y2), . . . , (xn, yn)]
T
, (2)121

with x and y being the coordinates of the polygon’s122

vertices inside the JH. The RL framework is imple-123

mented as a one-shot learning method allowing the124

agent to find the vertices of the polygon in one time125

step per episode. Therefore the polygon must be 126

as representative as possible for the later represen- 127

tation of the desired anatomical features with the 128

corresponding color and opacity values. In order to 129

keep the possible action space as simple and small 130

as possible with regard to the degree of freedom, the 131

agent’s initial task is to determine four corner points. 132

However, the number of points can be increased af- 133

ter the first successful application to enable an even 134

more precise TF definitions. Finally, the reward r 135

for the agent is provided by the reward model, which 136

indicates the quality of the action given the state. 137

Figure 1 shows the general structure for the train- 138

ing as well as the reward model’s architecture. For 139

the offline training of the reward model we exclude 140

the agent. However, we provide pre-defined human 141

labeled and random generated actions, which are 142

stored in a static dataset D. The reward model re- 143

ceives as input the image of the JH together with an 144

action representing the four vertices of the polygon. 145

The image of the JH is propagated through three 146

convolutional layers each with a dropout probability 147

of p = 50% to extract the image features. These 148

are then concatenated with the up-scaled features of 149

the action in order to maintain a balance between 150

the action and images features. In the last layers, 151

both the image and the action features are processed 152

together and finally classified by a linear activation 153

to predict the scalar reward r. The update of the 154

reward model is performed based on the preference 155

signal by a human inspector rating two 3D render- 156

ings. This is achieved by generating two 2D TFs 157

based on two randomly drawn actions from D for the 158

same scene. This comparison is conducted within a 159
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preference interface in which both renderings of the160

associated actions can be visualized and compared.161

Here, human inspectors can choose the preferred162

visualization, resulting in ac ≻ ar, where ac and ar163

represent the chosen and rejected actions. By fol-164

lowing the Bradley-Terry model [10] for estimating165

score functions from pairwise preferences, the pref-166

erence signal, which the reward model rψ receives,167

is formulated as168

pψ(ac ≻ ar|s) =
exp(rψ(s, ac))

exp(rψ(s, ac)) + exp(rψ(s, ar))

= σ(rψ(s, ac)− rψ(s, ar)),
(3)169

where σ is the sigmoid function. For the training170

of the reward model we decided to compare the171

loss function introduced by Christiano et. al. [7]172

with the loss function used by Ouyang et. al. [11],173

Bai et. al. [12] and others. The main difference174

between these two loss functions lies in the inclusion175

or exclusion of equal preferences. Including these176

equal preferences, the cross-entropy loss function is177

defined as178

LC = −ED [µc log pψ(ac ≻ ar) + µr log pψ(ar ≻ ac)] ,
(4)

179

where µ is a distribution over {c, r} indicating which180

rendering the human inspector preferred. If both181

renderings are treated equally, µ is uniform. Treat-182

ing the problem as a binary classification task yields183

the negative log-likelihood loss function184

LL = −ED [log pψ(ac ≻ ar)] . (5)185

3 Training186

In this study, we utilized a proprietary dataset,187

which offers unique attributes to our domain of inter-188

est. Our complete dataset contains 16 CBCT head189

images with a size of 547 × 421 × 547 and a pixel190

spacing of 0.2mm. The individuals in the data set191

analyzed were primarily female, most of whom were192

in the 40-50 age range. The dental data are captured193

in the cranial region, extending from the chin to the194

zygomatic arch area. The data were acquired with a195

tube power of 83.7 kW (0.9A·93 kV) for an exposure196

time of 16.4 s or 117.6 kW (1.2A · 98 kV) for 11 s,197

respectively, and finally available in an anonymized198

DICOM format. Each image represents an individ-199

ual scene for the RL framework. In the beginning,200

we tested our reward model only on one scene for201

which we collected 50 random actions and ten pre-202

defined actions based on a manual 2D TF design203

with a high-quality rendering result. From these ten204

pre-defined actions, an additional 40 actions were205

collected by data augmentations using small random206

shifts in the polygon vertices. From these actions, a207

total of 4000 preferences were collected by one hu- 208

man observer, in which different renderings resulting 209

from those actions were compared with each other 210

based on a specifically designed priority list. Out 211

of the 4000 preferences collected, a total of 613 are 212

ambiguous, while 3387 are unambiguous. 213

The reward models are implemented in the Py- 214

Torch [13] framework. We trained the models for 215

a total of 75 epochs on a batch size of 128, using 216

the Adam optimizer [14] with the default learning 217

rate. We observe that 75 epochs are sufficient for 218

the training to converge. The training is repeated 219

for each reward model three times, and we present 220

the results from the runs with the highest value of 221

LC and LL. Although a higher loss at the end of a 222

training would suggest worse performance, we found 223

that these models achieve better results using our 224

own evaluation methods. This behaviour was also 225

previously discussed by Stiennon et al. [15]. 226

4 Results 227

To evaluate our models, we calculated the distribu- 228

tions of the rewards for 20 000 uniformly distributed 229

random actions on the scene and created corner plots 230

for each vertex of the polygon. For each corner plot, 231

only one vertex was modified, while the others were 232

fixed based on a predefined polygon representing a 233

high-quality rendering. These plots show the cal- 234

culated reward of the trained model for each pixel 235

position of the vertex in the JH. Ideally, the number 236

of actions with a low reward should be very high and 237

decrease significantly towards high rewards. Hence, 238

the reward model would have learned to favor only 239

the chosen actions and to punish rejected actions. 240

Figure 2 shows the distributions of the rewards for 241

the two loss functions LC and LL tested in this work. 242

All distributions show a higher frequency towards 243

the lower rewards. Nevertheless, a comparably high 244

occurrence towards medium rewards can be observed 245

for the negative log-likelihood function from equa- 246

tion 5, as illustrated in Figure 2(b). In contrast, a 247

very sharp decline in the distribution of rewards can 248

be observed in Figure 2(a) for the cross-entropy loss 249

function. Figure 3 also confirms these results in the 250

corner point plots. While a range for all four ver- 251

tices can be identified for both loss functions where a 252

high reward is obtained representing greater human 253

alignment, the drop in rewards for the cross-entropy 254

loss function in figure 3(a) is significantly higher. 255

This means that the range of high rewards for the 256

individual corner points is smaller, and more posi- 257

tions can be excluded in the resulting calculation of 258

the 2D TF compared to the negative log-likelihood 259

loss function in Figure 3(b). An example with the 260

corresponding rendering results for the fourth cor- 261

ner point is shown in the last row of Figure 3. In 262

this example, for the cross-entropy loss, it is clearly 263
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Figure 2. Distribution of the calculated rewards by the trained reward model for both tested loss functions.
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Figure 3. Distribution of the calculated rewards by the trained reward model plotted for each pixel position in
the 2D JH for each vertices of the polygon from the calculated 2D TF. For corner point four, the corresponding
renderings are exemplary shown at three pixel positions for both loss functions.

shown that the pixel positions with a low reward264

also result in a worse visual rendering result. An265

improvement in the rendering results with increas-266

ing reward can also be observed for the negative267

log-likelihood function, even if the differences are268

less pronounced here and refer more to the dental269

area and the reduction of artifacts in this region.270

Figure 4 shows the predicted rewards based on 12271

additional labeled evaluation TFs for both loss func-272

tions applied in this work. In particular, very poor273

rendering results receive a very low reward for both274

loss functions, whereas the reward is typically higher275

for renderings with a clearer visual representation276

of the jaw. Despite the generally good assignments277

of the rewards, there are still individual outliers278

in both cases. For example, the rendering for the279

cross entropy loss in Figure 4(a) still receives a com-280

paratively high reward in the second row and first 281

column, despite some artifacts in the dental area. 282

On the other hand, for the negative log-likelihood 283

loss in Figure 4(b), particularly the still relatively 284

high reward for the rendering of the third row and 285

second column stands out. Here, hardly any anatom- 286

ical structures are recognizable, so that the reward 287

should be considerably lower. 288

5 Discussion 289

The results of the work already show that it is pos- 290

sible to train a reward model based on human feed- 291

back, which can later be used to train an RL agent to 292

automatically generate 2D TFs for rendering results. 293

However, the visual results from Figure 3 suggest 294

4



NLDL
#15

NLDL
#15

NLDL 2025 Full Paper Submission #15. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

10.40 5.26 3.98

3.62 3.43 3.31

3.17 2.78 0.66

-0.62 -1.51 -1.60

(a) Cross Entropy

24.16 16.98 15.43

14.15 13.73 13.26

11.04 10.41 9.37

6.18 -0.72 -4.74

(b) Negative Log-likelihood

Figure 4. Example results from the reward model with scores from highest to lowest from both investigated loss
functions.

that an even more precise reward allocation should295

be applied for rendering results that are more similar296

to each other. The slightly better results of the cross297

entropy loss function could be due to the fact that298

the equal preferences are included in the evaluation,299

resulting in a better distribution of rewards for the300

current number of collected preferences. This effect301

could decrease with a higher number of collected302

preferences. Overall, the results could be improved303

if an even larger number of actions with a smaller304

deviation in the critical range of the JH were used305

to train the reward model. Consequently, more pref-306

erences could be collected, which would make the307

distinction between renderings even more accurate308

for the reward model. To identify this critical area,309

the already trained reward model can be used since,310

as shown in the corner point plot in Figure 3(a), it311

is already able to distinguish between areas with312

good and poor rendering results.313

In addition to the action space per scene, the314

number of different scenes in total should also be315

increased so that the reward model does not over316

fit on one single example image. By increasing the317

number of scenes together with the corresponding318

actions per scene, however, the number of prefer-319

ences to be collected would also rise accordingly,320

ensuring that the model has seen every combination321

per scene at least once if possible. Since preferences322

can also be collected from several users, creating323

an even higher level of objectivity, this effort would324

also be reduced per person. This is particularly325

advisable for pre-training, so that individualization326

should only take place when fine-tuning the model.327

A further important aspect is to integrate an as- 328

signment of color values to specific anatomical re- 329

gions in addition to the already assigned opacity. 330

For this purpose, it could also be useful to integrate 331

a pre-segmentation of certain anatomical structures, 332

such as the teeth in our case, into the framework. 333

Since this can already be generated fully automat- 334

ically using AI models, this should not require a 335

great amount of time in the processing pipeline. 336

6 Conclusion 337

With the development of a suitable reward model, 338

which was trained from human feedback, a first im- 339

portant step has been taken towards the automated 340

generation of a 2D TF for an optimized rendering 341

adapted to the individual user. 342

In the future, we aim to train the reward model on 343

even more scenes and corresponding actions, so that 344

a RL agent can be developed, thus complementing 345

the RLHF pipeline. Forthcoming work also involves 346

evaluating the performance of the reward model 347

using more complex feature extractors such as varia- 348

tional autoencoders [16] and vision transformers [17]. 349

In addition to that, we aim to adapt and validate 350

our method for other medical imaging systems, such 351

as MRI and US, ensuring broader diagnostic tools. 352
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