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ABSTRACT

Recent advancements in 3D motion capture technology are emerging as a crucial
catalyst for future developments in healthcare. With obesity increasingly recog-
nized as a significant health concern stemming from poor dietary habits, our re-
search focuses on identifying early indicators of obesity-inducing dietary patterns
using 3D time-series skeleton data. Initially, we gathered 3D time-series skeletons
from mouse models with diet-induced obesity. Subsequently, we explored the ef-
fectiveness of different viewpoints for analyzing 3D skeleton data: allocentric
versus egocentric perspectives. Finally, we sought to develop efficient deep recur-
rent network architectures. Our findings demonstrate that integrating the concept
of an egocentric viewpoint into 3D skeleton data analysis, coupled with training
deep LSTM networks to accurately classify identities, can effectively distinguish
motion differences induced by diet between control and high-fat diet groups. This
research offers a viable approach to leveraging deep learning for early detection of
health risks, facilitating timely interventions and broadening the scope of health-
care technology.

1 INTRODUCTION

Recent advancements in deep learning for motion capture systems show promise in medical health-
care by accurately capturing 3D skeleton data over time (Redmon et al., 2016; Lee et al., 2021; Wang
et al., 2021; Lam et al., 2023). These data are valuable for early diagnosis and remote monitoring,
particularly for conditions related to motor movements (Monje et al., 2021; Delrobaei et al., 2018;
Tian et al., 2024; Bruce et al., 2021). However, their potential for understanding health conditions
not directly related to motor movements remains unclear.

Although 3D skeleton data offer spatiotemporal insights into dynamic movements, their complexity
makes extracting meaningful information challenging (Kwon et al., 2023; Su et al., 2021). Employ-
ing allocentric and egocentric perspectives in time-series analysis enhances our understanding of
behavioral patterns (Dhamanaskar et al., 2023; Grauman et al., 2022).

Obesity, a prevalent lifestyle disease, is primarily linked to poor dietary habits (Liberali et al., 2020;
San-Cristobal et al., 2020). While the transition from an unhealthy diet to obesity diagnosis can take
considerable time, the traditional Body Mass Index (BMI) system, which bases obesity diagnosis on
weight and height, falls short in accuracy by failing to differentiate between muscle mass and body
fat (Collazo-Clavell et al., 2008). Predicting the risk of diet-induced obesity (DIO) through early
behavioral pattern observation presents a promising avenue for healthcare systems.

This study aims to detect early signs of obesity-like motion representations using time-series 3D
skeleton data from DIO mouse models. Since diet tracking on a daily basis in clinical settings is
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challenging, we explore the potential of deep recurrent networks (DRNs) to capture motion repre-
sentations for obese-like motion representations without dietary information. Inspired by previous
works on deep convolutional networks (DCNs) (Kim et al., 2024; Zhou et al., 2022), we lever-
age DRNs to predict the identity of DIO models based on their motion data. This approach offers
a promising way to identify obesity-related motion characteristics without invasive or continuous
dietary monitoring.
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Figure 1: Schematic illustration of our experimental design (a) Mouse model: chow diet (top)
and high-fat diet (bottom). (b) 3D skeleton data, collected from the AVATAR system, is processed
into different viewpoints: allocentric (top) or egocentric (bottom) data. (c) FFN (top) and DRNs
(bottom) were trained to perform identity classification tasks. (d) The latent vectors from the last
hidden layer were used to test the separability of diet types(chow vs HFD) with a linear SVC.

2 METHODS

DIO Animal Model The Diet-Induced Obesity (DIO) mouse model a widely utilized approach
in obesity research, designed to mimic the metabolic and physiological characteristics of human
obesity (Sa et al., 2023). Male C57BL/6J mice are fed with a a standard chow diet or high-fat diet
(HFD) (Fig. 1a), typically consisting of 60% of total calories from fat, over a period of 6 to 15 weeks
(See Appendix 5).

Time-Series Data For the acquisition of 3D obesity skeleton dataset, we used AVATAR sys-
tem (Kim et al., 2022), a YOLO-based 3D pose estimation with multi-view images that extracts
D 1 × V 2 time series data from multiple joint movements from freely moving mice. Both the
chow group (12 mice) and the HFD group (12 mice) are subjected to weekly measurements at the
same time for 9 weeks, including body weight measurements, and recorded for 10 minutes (20 FPS;
12,000 frames per session).

For generation of allocentric dataset (object view), the skeletons were adjusted on spatiotemporal
centroid offset. For generation of egocentric dataset (subject view), the skeletons were adjusted on
anus node offset (Fig. 1b). Each traces were randomly split with a chunk size of T . Then the dataset
was randomly grouped into train, valid, and test datasets with 8:1:1 ratio, with different sequence
lengths 3.

Model Training To address time series 3D skeleton data, we have explored the potential of DRNs
(Fig. 1c): we compared feed-forward network (FFN), recurrent neural network (RNN (Bengio et al.,
1994)), gated recurrent unit (GRU) (Cho et al., 2014) and long-short term memory (LSTM) (Hochre-
iter & Schmidhuber, 1997). With batch size of N , the inputs for FFN is given by 2D tensor
(N, T ×D×V ), and for DRNs are given by 3D tensor (N, T, D×V ). Both FFN and DRNs were
consist of L = [1, 2, 3] number of hidden layers with 256 units per layer. The objective of these

1D: Number of dimensions (x, y and z). Here, D = 3
2V : Number of joints (head, limbs, tail and etc). Here, V = 9
3T : Number of frames (consecutive number of skeletons). Here, T = [10, 20, 30, 40, 50]
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models is to predict the accurate identity (finding the source animal) from provided 3D skeleton
sequences. During this phase, train and valid datasets were used.

Model Evaluation After training models, the last layer hidden activations (or latent vectors) were
extracted to detect obese-like motion representations, similar to previous approach using support
vector classifier (SVC)(Fig. 1d) (Zhou et al., 2022). The objective of SVC is to find a linear hyper-
plane that discriminates the diet group (chow vs HFD). During this phase, valid datasets were used
to train and test datasets were used to evaluate.

3 RESULTS

3.1 OBESE-LIKE MOTION REPRESENTATIONS EMERGE WITH IDENTITY CLASSIFICATION

(c) Linear regression fitting(b) Egocentric (a) Allocentric 

Figure 2: Effect of allocentric and egocentric viewpoint differences (a, b) Scatter plots of top-1
identity classification accuracy trained with (a) allocentric or (b) egocentric 3D skeletons and their
diet group prediction accuracy from linear SVC; Each color represent FFN (blue), RNN (orange),
GRU (green) or LSTM (red); Each dots represent a different number of hidden layers, sequences,
and trials (Total 75 = 3 × 5 × 5). (c) Summary bar graphs for the slopes from linear regression
(y = αx+ β) on scatter plots for each network.

In clinical settings, it is a complex task to monitor a patient’s daily diet and simultaneously capture
their motion data. Creating a comprehensive dataset for training models to identify dietary habits
is challenging due to the intricacy and diversity of food intake. On the other hand, identifying
which individual a particular motion belongs to—essentially, capturing the identity linked to each
motion—is comparatively easier. Based on this premise, we explored the potential of deep learning
models to match motion data with individual identities. This approach aimed to uncover motion
representations induced by different diets.

In our study, we took advantage of SVC’s ability to find optimal hyperplane that differentiates HFD
and chow diet model. We show that deep neural networks, when models were trained to the task of
identity classification, significantly enhance the ability to differentiate between two dietary groups,
chow vs HFD (Fig. 2). These positive correlations (Pearson’s correlation analysis, Top-1 Acc. vs
SVC acc.; allocentric, r=0.94, p < 0.001; egocentric, r = 0.78, p < 0.001) imply that shared la-
tent feature vectors encode both identity and dietary information necessary for differentiating data.
Moreover, egocentric viewpoints of 3D skeletons consistently outperformed compared to allocen-
tric ones, suggesting that subject viewpoint is beneficial in capturing underlying data structure of
3D skeletons. This finding can be seen with previous studies, supporting the idea that egocentric
motion representations can contain effective information for understanding and classifying complex
behaviors and traits (Dhamanaskar et al., 2023).

Next, we sought to explore the impact of viewpoint difference on the effectiveness of DRNs in time
series data analysis. Through linear regression analysis, we demonstrated that allocentric data con-
sistently exhibited strong linear relationships regardless of the model architecture used, with high
goodness of fit values across different architectures (FFN, r2 = 0.85; RNN, r2 = 0.84; GRU,
r2 = 0.96; LSTM, r2 = 0.97). In contrast, egocentric data generally showed a decreased effective-
ness (FFN, r2 = 0.70; RNN, r2 = 0.65; GRU, r2 = 0.22; LSTM, r2 = 0.74), with a significantly
larger variance in the slope values across models (Fig. 2c). These findings suggest that the choice of
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model architecture plays a more pronounced role when learning from egocentric 3D motion data. In
summary, combining egocentric 3D skeleton data with modern DRNs can be effective in construct-
ing a shared latent feature space for both identity and dietary classification, highlighting the delicate
interplay between viewpoint and model architecture in analyzing time series data.

3.2 IDENTITY-AWARE DEEP LSTM ENCODES OBESE-LIKE MOTION REPRESENTATIONS

(a) (b) (c)

Figure 3: Evaluation of various architectures with three hidden layers Top-1 accuracy of iden-
tity classification task (a) or SVC accuracy of dietary classification task (b) in allocentric (top) or
egocentric (bottom) viewpoints. (c) SVC to Top-1 accuracy ratio. Error bar, standard deviation of 5
trials.

While we found that an egocentric viewpoint plays a significant role in capturing shared features of
both identity and dietary information with a combination of DRNs, it remains unclear how architec-
tural difference affects the dietary classification. To investigate this, we have compared the dietary
classification accuracy across models with different numbers of hidden layers and sequence lengths
(Fig. 3, sFig. 6 and 7, See Appendix A.2 and A.3).

The most significant impact on identity accuracy was observed to be due to differences in view-
point (Fig. 3a). Regarding sequence length, we noted a general trend where increasing lengths
tended to decrease accuracy for both identity and dietary classifications. However, deep LSTM
networks demonstrated a remarkable resilience to this performance degradation compared to other
networks(Fig. 3b and c). In addition, this identity-aware LSTM was effective compared to end-to-
end diet-aware LSTM (sFig. 4). These results collectively suggest that the memory cells in deep
LSTM networks trained with identity may play a key role in capturing the underlying data structure
which is beneficial for accurately predicting both identity and dietary habits.

Another intriguing observation is that the performance of the identity-aware LSTM, utilizing an-
imals’ 3D behavioral data, was more accurate than when using the animals’ weight and period
information (sFig. 5 and 8). This suggests that group distinctions based on behavioral changes in-
duced by dietary habits manifest more quickly than changes in weight over time. This implies that
in the progression of diet-induced obesity, behavioral changes may precede physical changes.

4 CONCLUSION

In this study, our focus centered on the detection and prediction of obesity, a growing concern in
modern society. Employing novel methods, we aimed to uncover motion features indicative of di-
etary information through the process of identity classification. By developing a 3D skeleton identity
classification network for both chow and HFD models, we extracted latent vectors and utilized an
SVC to evaluate the representation of dietary features within these vectors. Our findings under-
score the potential of identity-aware deep LSTM networks in identifying obese-like features from
time-series 3D skeleton data, shedding light on the previously elusive association between dietary
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Figure 4: Comparison with diet-aware LSTM Diet-prediction with LSTM with 3 hidden layers
trained with identity (I.D.) or diet. As shown in the figure, SVC accuracy of I.D.-trained LSTM
outperforms the SVC accuracy of diet-trained LSTM or end-to-end test accuracy.

habits and skeletal movement. We foresee these models transforming clinical practice, fostering
deep-learning solutions for obesity prevention and enhancing healthcare outcomes, thus promoting
societal well-being.

Despite the remarkable performances demonstrated by deep LSTM networks in both identity and
dietary classification tasks, our study acknowledges some limitations. Firstly, the absence of cross-
subject validation. While our results showcase the LSTM’s proficiency, questions persist regarding
its reliance on memorization versus genuine generalization capabilities. Additionally, our dataset
and task formulation have not yet been compared across various structures such as graph-based, con-
volutional, or transformer-based networks. Future research endeavors should prioritize investigating
the LSTM’s ability to generalize across subjects, or the potential of different model architectures,
thus providing further validation of its effectiveness in discerning dietary-related motion patterns
beyond the confines of our study’s experimental scope.

Shorter sequences better represent obese-like activities In this study, we identified a notable
trend in which the effectiveness of dietary predictions through Support Vector Classification (SVC)
diminished as sequence lengths extended, a phenomenon consistent across several architectural
frameworks. This observation indicates that short-term behavioral patterns offer a clearer reflec-
tion of dietary-induced changes than their long-term counterparts. However, the potential presence
of additional interpretable aspects, such as cyclic behaviors within these patterns, remains an open
question for further exploration. This area of inquiry holds promise for enriching our understand-
ing of dietary impacts on behavior and underscores the need for future studies to delve into these
complex dynamics.

Translational insights to human clinical applications Controlling genetic diversity, living en-
vironments, and dietary habits in clinical human studies is challenging, and within this context,
simultaneously tracking 3D motion and dietary data to study diet-induced obesity’s effects adds
a significant layer of complexity. In contrast, animal models enable the acquisition of tightly con-
trolled datasets for studying long-term obesity progression. In the context of human clinical settings,
obtaining personal identity information is far simpler than accurately documenting dietary composi-
tion. This reality emphasizes the effectiveness of an identity-aware deep LSTM model in accurately
identifying dietary patterns without directly specifying diet group classifications, laying a crucial
groundwork for translating findings to human clinical practices.
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A APPENDIX

A.1 WEIGHT PROGRESS OF ANIMAL MODEL THROUGH OBSERVED WEEKS

Figure 5: Weekly weight changes in different animal groups Comparison of weight between 12
mice in the chow diet (blue) and 12 mice in the HFD diet (orange) for duration of 9 weeks
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A.2 IDENTITY CLASSIFICATION TOP-1 ACCURACY

Table 1: Allocentric identity classification top-1 accuracy (Mean±std)
Sequence Number of
Length Layers FFN RNN GRU LSTM

10
layer1 23.7±0.15 37.7±0.24 48.7±0.29 53.2±0.24
layer2 37.3±0.35 39.2±0.65 58.2±0.10 61.8±0.17
layer3 42.9±0.40 30.3±0.50 61.6±0.07 64.4±0.14

20
layer1 20.1±0.18 30.6±0.25 38.9±0.23 40.3±0.15
layer2 29.9±0.21 27.1±0.76 44.0±0.21 46.0±0.17
layer3 34.4±0.28 26.5±0.75 46.4±0.11 47.8±0.16

30
layer1 18.3±0.24 27.2±0.42 33.5±0.32 33.9±0.29
layer2 25.6±0.32 28.5±0.86 38.0±0.15 38.1±0.26
layer3 29.3±0.25 24.2±2.07 39.1±0.43 39.0±0.22

40
layer1 17.7±0.17 25.6±0.38 31.7±0.26 32.1±0.21
layer2 23.8±0.28 27.2±0.46 36.2±0.23 35.0±0.45
layer3 27.3±0.14 26.7±4.14 37.3±0.22 35.7±0.40

50
layer1 16.6±0.27 23.6±0.50 30.0±0.45 29.4±0.20
layer2 22.0±0.38 25.4±0.65 36.4±0.71 32.0±0.36
layer3 24.9±0.23 20.3±6.57 35.1±0.29 32.1±0.21

Table 2: Egoocentric identity classification top-1 accuracy (Mean±std)
Sequence Number of
Length Layers FFN RNN GRU LSTM

10
layer1 88.9±0.58 99.4±0.14 99.8±0.02 99.7±0.02
layer2 99.6±0.07 99.0±0.22 99.7±0.04 99.7±0.02
layer3 99.8±0.03 98.2±0.45 99.7±0.04 99.8±0.03

20
layer1 78.8±0.95 98.7±0.14 99.7±0.03 99.4±0.02
layer2 98.3±0.25 96.5±1.18 99.5±0.06 99.6±0.06
layer3 99.7±0.06 94.5±2.44 99.3±0.04 99.7±0.03

30
layer1 68.6±1.84 97.5±0.71 99.5±0.07 98.9±0.12
layer2 95.5±0.34 89.5±13.23 99.1±0.08 99.3±0.10
layer3 97.9±0.19 86.9±5.39 99.1±0.13 99.5±0.05

40
layer1 62.8±2.33 82.4±14.05 99.5±0.10 99.0±0.08
layer2 94.4±0.46 68.7±13.51 99.5±0.22 99.5±0.09
layer3 97.5±0.19 79.9±6.44 99.0±0.16 99.7±0.08

50
layer1 55.0±1.24 47.8±10.41 99.5±0.10 98.9±0.10
layer2 92.5±0.79 57.4±16.86 99.7±0.12 99.5±0.07
layer3 96.7±0.15 60.6±19.15 98.9±0.16 99.7±0.05
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A.3 SVC OBESE-LIKE BEHAVIOR CLASSIFICATION ACCURACY

Table 3: Allocentric SVC Accuracy (Mean±std)

Sequence Number of
Length Layers FFN RNN GRU LSTM

10
layer1 61.2±0.34 63.7±0.47 67.5±0.25 66.7±0.40
layer2 64.5±0.17 63.9±1.08 69.8±0.09 68.7±0.13
layer3 65.3±0.22 61.8±0.38 71.4±0.68 69.4±0.13

20
layer1 59.1±0.37 61.5±0.65 63.7±0.35 63.9±0.28
layer2 62.6±0.43 60.3±0.64 65.4±0.40 65.0±0.44
layer3 62.5±0.45 60.2±0.26 67.0±0.45 65.6±0.27

30
layer1 58.6±0.22 59.5±0.21 63.1±0.33 62.6±0.54
layer2 61.4±0.33 59.7±0.40 63.1±0.39 64.0±0.38
layer3 61.2±0.62 59.0±0.82 64.7±0.66 64.1±0.34

40
layer1 57.8±0.46 58.5±0.53 61.1±0.56 61.2±0.49
layer2 60.4±0.52 58.3±0.48 61.6±0.53 61.9±0.28
layer3 60.1±0.55 57.2±1.65 62.5±0.56 62.8±0.59

50
layer1 57.5±0.84 56.7±0.76 60.3±0.53 60.7±0.55
layer2 59.4±0.25 56.5±0.53 60.6±0.45 62.9±0.64
layer3 59.3±0.61 55.4±2.10 61.1±0.55 62.4±0.52

Table 4: Egocentric SVC Accuracy (Mean±std)
Sequence Number of
Length Layers FFN RNN GRU LSTM

10
layer1 73.8±1.66 99.0±0.15 98.7±0.14 98.6±0.40
layer2 85.8±1.62 97.2±3.92 99.3±0.16 98.7±0.11
layer3 98.5±0.82 93.4±6.79 99.8±0.01 99.3±0.12

20
layer1 69.8±0.60 95.1±2.63 97.7±0.17 97.9±0.20
layer2 82.4±0.68 86.2±6.59 99.4±0.09 97.1±0.28
layer3 97.0±1.79 89.3±5.73 99.8±0.08 98.5±0.39

30
layer1 67.6±1.10 91.9±4.97 97.1±0.49 96.5±0.37
layer2 79.2±1.01 83.6±10.52 99.5±0.10 96.2±0.66
layer3 88.0±1.84 90.1±4.32 99.7±0.03 97.8±0.15

40
layer1 66.9±1.09 83.6±10.83 96.6±0.44 95.0±0.61
layer2 78.1±0.60 82.3±3.62 99.4±0.24 97.0±1.56
layer3 86.3±1.62 89.1±2.15 99.7±0.04 96.6±1.12

50
layer1 64.6±1.41 69.5±5.24 95.8±1.36 94.8±1.49
layer2 77.3±0.89 77.4±6.39 99.5±0.05 99.4±0.16
layer3 84.9±1.20 81.5±5.91 99.6±0.10 96.4±1.27
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A.4 IDENTITY TOP-1 & SVC OBESE-LIKE BEHAVIOR CLASSIFICATION ACCURACY RATIO

(a) (b) (c)

Figure 6: Evaluation of various architectures with one hidden layer Top-1 accuracy of identity
classification task (a) or SVC accuracy of dietary classification task (b) in allocentric (top) or ego-
centric (bottom) viewpoints. (c) SVC to Top-1 accuracy ratio. Error bar, standard deviation of 5
trials.

(a) (b) (c)

Figure 7: Evaluation of various architectures with two hidden layers Top-1 accuracy of identity
classification task (a) or SVC accuracy of dietary classification task (b) in allocentric (top) or ego-
centric (bottom) viewpoints. (c) SVC to Top-1 accuracy ratio. Error bar, standard deviation of 5
trials.
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A.5 COMPARISON OF OBESE-LIKE BEHAVIOR SVC CLASSIFICATION ACCURACY

Figure 8: LSTM effectively distinguish different dietary groups with linear SVC Identity trained
LSTM with 3 hidden layers (red) outperforms dietary group prediction when using only weight
information (black) or weight and period information (grey).
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