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Abstract

Reinforcement learning, such as PPO and GRPO, has powered recent breakthroughs
in LLM reasoning. Scaling rollout to sample more prompts enables models to
selectively use higher-quality data for training, which can stabilize RL training and
improve model performance, but at the cost of significant computational overhead.
In this paper, we first show that a substantial portion of this overhead can be
avoided by skipping uninformative prompts before rollout. Our analysis of reward
dynamics reveals a strong temporal consistency in prompt value: prompts that
are uninformative in one epoch of training are likely to remain uninformative in
near future epochs. Based on these insights, we propose GRESO (GRPO with
Efficient Selective Rollout), an online, lightweight pre-rollout filtering algorithm
that predicts and skips uninformative prompts using reward training dynamics. By
evaluating GRESO on a broad range of math reasoning benchmarks and models,
like Qwen2.5-Math-1.5B, DeepSeek-R1-Distill-Qwen-1.5B, Qwen2.5-Math-7B,
Qwen2.5-14B, and Qwen2.5-32B, we show that GRESO achieves up to 2.4×
wall-clock time speedup in rollout and up to 2.0× speedup in total training time
without accuracy degradation. We make our code publicly available at GitHub1.

4.3M fewer rollouts 6.7 M fewer rollouts

Figure 1: We train Qwen2.5-Math-1.5B/7B on the DAPO + MATH dataset and evaluate them on five
math reasoning benchmarks: MATH500, AMC, Gaokao, Minerva, and Olympiad Bench. Compared
to the baseline method (Dynamic Sampling), our approach (GRESO) reduces rollout overhead by up
to 2× while achieving comparable training performance, improving the efficiency of rollout scaling.

1https://github.com/Infini-AI-Lab/GRESO/

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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1 Introduction

Recent reasoning models [9, 34, 40], such as OpenAI’s o1 and DeepSeek’s R1, leverage Chain-
of-Thought as a form of test-time scaling to significantly enhance the reasoning capabilities of
large language models (LLMs). Reinforcement Learning (RL) techniques, including PPO [35]
and GRPO [9], have emerged as key drivers of this progress. By generating data online during
each training iteration (i.e., rollout), reinforcement learning enables models to iteratively refine
their reasoning strategies through self-exploration, often achieving or even surpassing human-level
performance [34, 38, 39]. Notably, scaling computational resources to sample responses for more
prompts at this rollout stage can further enhance training, which allows models to selectively utilize
higher-quality data and thus train models with better converged performance [46, 49]. However,
scaling up rollouts introduces significant computational overhead, as rollout remains a major bottle-
neck in RL training [33, 37, 42, 58]. For instance, as shown in Figure 2, filtering out uninformative
examples2 and resampling to fill the batch with effective data (also known as Dynamic Sampling
in [49]) can improve model performance, but it comes at the cost of significantly increased rollout
overhead. Motivated by this challenge, we aim to investigate the following research question:

How can we perform more selective rollouts—focusing on sampling more valuable
prompts—to make this rollout scaling more efficient?

Figure 2: Left: GRPO training with more effec-
tive data through Dynamic Sampling (DS) leads
to improved final model performance. Right:
However, DS requires additional rollouts to
maintain the same training batch size.

Existing methods face several limitations in ad-
dressing this question. First, some approaches [24,
43] attempt to improve data efficiency by prun-
ing datasets before training. These methods typ-
ically rely on training a model to identify valuable
data points; however, there is no conclusive ev-
idence that such strategies improve the overall
efficiency of RL training as well. Second, these
static pruning methods overlook the fact that the
value of a data point can vary across models and
training stages, limiting their ability to support
adaptive data selection. Finally, online selection
approaches such as Dynamic Sampling [49] per-
form oversampling and filter out uninformative
data only after rollout, leading to substantial addi-
tional rollout cost. Estimating data quality accu-
rately and efficiently before rollout remains a challenging and underexplored problem.

Consequently, an ideal selective rollout algorithm for efficient LLM RL should have the following
properties: 1) Online data selection. Instead of relying on an auxiliary model trained offline to
pre-prune the dataset, an ideal method should perform data selection online during training. This
avoids the additional overhead of training a separate model and enables decisions to be made based
on the current training states. 2) Model-based data value estimation. Data values evolve throughout
training and vary across different models, requiring a selective rollout strategy to adapt dynamically
to different models and training stages. 3) Low computational overhead. To ensure scalability, the
selective rollout strategy should introduce minimal additional cost during training.

In this paper, we aim to design an efficient selective rollout strategy for LLM RL to make rollout
scaling more efficient. We begin by analyzing the training dynamics of prompts across epochs and
observe a strong temporal consistency across different training epochs (Section 3). In particular,
prompts that yield zero advantage for all sampled responses in one epoch are more likely to do so
in future epochs as well. This temporal correlation suggests that historical reward dynamics can be
leveraged to predict and preemptively skip those uninformative prompts before rollout. Building
on these observations, we propose GRESO (GRPO with Efficient Selective Rollout) in Section 4,
depicted in Figure 4b, an online efficient pre-rollout filtering algorithm that reduces rollout cost by
selectively skipping prompts predicted to be uninformative. Instead of performing filtering after
rollout, GRESO estimates a skipping probability for each prompt based on its reward dynamics

2In GRPO, many examples yield identical rewards across all responses, resulting in zero advantage and thus
contributing no learning signal during training.
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during training prior to the rollout stage, significantly reducing prompt selection overhead and making
the rollout scaling more efficient.

In Section 5, we empirically verify the efficiency of GRESO on six math reasoning benchmarks
and five models: Qwen2.5-Math-1.5B [47], DeepSeek-R1-Distill-Qwen-1.5B [9], Qwen2.5-Math-
7B [47], Qwen2.5-14B [47], and Qwen2.5-32B [47]. Our evaluation results show that GRESO
achieves up to 2.4× speedup in rollout and 2.0× speedup in total training time while maintaining
comparable accuracy (Section 5.2). We also conduct a more detailed study on how GRESO reduces
training overhead by performing selective rollout and ablation study on different components of
GRESO in Section 5.3.

2 Related Work
RL for LLM Reasoning. Reinforcement learning (RL) was initially used to align model outputs with
human preferences [7, 35]. Since then, RL has become a commonly used technique for fine-tuning
LLMs, enabling them to generate more helpful, harmless, and honest responses by incorporating
reward signals from human feedback [3, 6]. Recent advances [9, 12, 40, 49] in LLM reasoning
show that Reinforcement Learning with Verifiable Reward (RLVR), which relies on verifiable reward
signals instead of model-generated scoress, can effectively improve model reasoning ability. These
gains are achieved using various policy optimization methods such as PPO [35] and GRPO [36].
Encouraged by the success of RLVR, a growing body of work [15, 19, 27, 30, 45, 49–52] has emerged
to further improve reinforcement learning methods for LLM reasoning. For instance, methods such as
VinePPO [19], VC-PPO [51], and VAPO [50] aim to enhance LLM reasoning by optimizing the value
function Meanwhile, DAPO [49] introduces several techniques to improve GRPO, including Dynamic
Sampling, which filters out zero-variance prompts and refills the training batch with effective training
data through resampling.

Data Selection for LLM. In addition to improving training algorithms, another line of work [17,
31, 44, 48] seeks to enhance the efficiency and effectiveness of LLM training through data selection
strategies. Several approaches [5, 16, 44] focus on pruning data used for supervised fine-tuning. For
example, S1 [31] reduces a large set of 59k examples to just 1k high-quality samples. In parallel,
another thread of research [8, 11, 24, 28, 32, 43] targets improving data efficiency in reinforcement
learning for LLMs. For instance, recent research [24, 43] shows that only a small subset of the
original training dataset is necessary for GRPO to improve the model’s reasoning ability. However,
those methods rely on training models with the full dataset first to identify important samples and do
not offer clear improvements in end-to-end RL training efficiency.

3 Observation

In this section, we study the impact of uninformative prompts—specifically, zero-variance
prompts—on GRPO training. We empirically show that a high zero-variance ratio can hurt the
training performance (Section 3.2). Our analysis reveals a strong temporal consistency in prompt
value: prompts that are uninformative in one training epoch tend to remain uninformative in future
epochs, which inspires the design of GRESO (Section 3.3).

3.1 Background: Group Relative Policy Optimization (GRPO)

Group Relative Policy Optimization (GRPO)[36] is a variant of Proximal Policy Optimiza-
tion (PPO) [35] tailored for language model fine-tuning. Instead of computing advantages using a
value function, GRPO normalizes reward scores within groups of responses sampled for the same
prompt, which largely improves the training efficiency. GRPO has shown superior performance
in recent advances [9, 24, 43, 49] in RL for LLMs, especially for reasoning tasks. GRPO aims to
maximize the following objective:

JGRPO(θ) = E[q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)]

1

G

G∑
i=1

(
min

(
πθ(oi|q)
πθold(oi|q)

Ai, clip
(

πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1 + ϵ

)
Ai

)
− βDKL (πθ||πref )

)
,

(1)
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where Ai is the advantage, computed using a group of rewards {r1, r2, . . . , rG} corresponding to the
outputs within each group:

Ai,t =
ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
. (2)

The advantage of each response is computed as a normalized reward within a group of repeated
rollouts. When all responses in a group receive the same reward, regardless of whether they are all
correct or all incorrect, the resulting reward variance is zero, and the computed advantages for those
responses are all zero. As a result, these examples provide no learning signal during training. In this
paper, we refer to such prompts as zero-variance prompts, while prompts that yield non-identical
rewards across responses are termed effective prompts.

3.2 Reduction of Effective Prompts in GRPO Training
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Figure 3: Dynamics of effec-
tive prompts ratio in each step in
GRPO training. The ratio keeps
decreasing as the training pro-
ceeds.

The existence of zero-advantage prompts can largely reduce the
effective prompt ratio in a training batch. As shown in Figure 3,
during GRPO training on Qwen2.5-Math-7B [47], the ratio of
effective prompts keeps decreasing as the training proceeds: at
the late stage of training, this ratio can be around only 20%. A
varying ratio of effective prompts can potentially hurt training
stability and final model performance [49].

A potential way to address this instability issue is to oversample
and select a batch only containing effective prompts, which is
also known as Dynamic sampling (DS) [49]. As shown in Fig-
ure 2 Left, GRPO with DS consistently outperforms the vanilla
GRPO, particularly on datasets such as AMC and AIME24, also
with a higher average accuracy. This performance gain stems
from DS’s ability to filter out zero-variance prompts, thereby
stabilizing training. While DS leads to better performance, it
incurs significantly higher computational cost due to its need to
oversample more data to maintain the training batch size of effective prompts (as shown in Figure 2
Right). For instance, if the zero-variance prompt ratio is 80%, DS needs to perform around five times
rollouts to maintain the training batch size. However, a substantial amount of rollout computation is
wasted on prompts that ultimately result in zero-variance prompts. Identifying such prompts prior to
rollout can significantly reduce computational overhead.

3.3 Temporal Correlation of Prompts across Epochs

Training data typically exhibits strong temporal correlations across epochs [24, 41, 55–57]. We
hypothesize that zero-variance prompts in GRPO training similarly have such strong correlations
in their training dynamics, enabling opportunities for more efficient identification of these prompts
prior to the rollout stage. To test this hypothesis, we conduct a study on the temporal correla-
tion of zero-variance prompts in GRPO training. Specifically, we train Qwen2.5-Math-7B with
GRPO and measure two probabilities to study the temporal correlation of zero-variance prompts:
1) P(Previous|Current): The probability that a prompt identified as zero-variance in the current
epoch was also zero-variance in any previous epoch. 2) P(Current|Previous): The probability
that a prompt identified as zero-variance in any previous epoch remains zero-variance in the current
epoch.

The results shown in Figure 4a indicate that zero-variance prompts exhibit strong temporal correlations
throughout training. We have two key observations: 1) Prompts previously identified as zero-
variance are likely to remain zero-variance. P(Previous|Current) curve shows that the majority
of zero-variance prompts in a given epoch (e.g., over 90%) were also identified as zero-variance
in earlier epochs. 2) Some zero-variance prompts can become effective again in future epochs.
P(Current|Previous) curve shows that approximately 20% of prompts previously labeled as zero-
variance become effective prompts that contribute to training again. This suggests that, rather than
statically pruning zero-variance prompts, it is beneficial to retain some degree of exploration helps
retain potentially valuable prompts.
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Figure 4: (a) Temporal correlation of examples across epochs. Prompts previously identified as
zero-variance are likely to remain zero-variance. (b) Pipeline comparison between Dynamic Sampling
and our GRESO method. Unlike Dynamic Sampling, which filters out zero-variance prompts after
rollout, GRESO efficiently predicts and filters them based on training dynamics before rollout, which
improves rollout efficiency. The probabilistic filtering also allows zero-variance prompts to still be
occasionally sampled, enabling the model to revisit potentially valuable prompts.

4 Methodology: GRESO

In this section, building on the two observations discussed in Section 3.2, we design GRESO (GRPO
with Efficient Selective Rollout), a novel, online, efficient selective rollout algorithm that predicts
and skips zero-variance prompts using reward training dynamics before the rollout stage. The overall
algorithm is illustrated in Algorithm1.

4.1 Detection and Filtering with Reward Training Dynamics

SOTA method [49] selects effective training data by first oversampling and then filtering out zero-
variance prompts after rollout, which incurs expensive rollout overhead. Building on our observation
in Section 3.3 that zero-variance prompts tend to remain uninformative in future epochs, we propose
to leverage reward training dynamics to detect and filter these prompts before rollout to save rollout
computation (as shown in Figure 4b).

More specifically, we formalize the problem of zero-variance prompt detection as follows. During
training, each prompt xi is associated with a training dynamics trace:

Ti = (ei,1, Ri,1), . . . , (ei,n, Ri,n),

where ei,j denotes the epoch number of the j-th sampling for example xi, and Ri,1 = {r(k)i,1 }Gk=1
represents the set of response rewards obtained in that epoch. The goal of our algorithm is to predict
whether xi is a zero-variance prompt—i.e., one that yields identical rewards for all responses – based
on its reward dynamics Ti prior to rollout.

4.2 Probabilistic Pre-rollout Prompt Filtering

Probabilistic Filtering. To utilize the reward training dynamics, we propose a probabilistic filtering
strategy: each prompt is calculated with a filtering probability based on its current training dynamics.
As observed in Section 3.3, some zero-variance prompts can become effective again in later epochs.
A key advantage of this probabilistic-based approach is that it naturally balances exploitation and
exploration, allowing zero-variance prompts to still be occasionally sampled, rather than being deter-
ministically discarded too early. This enables the model to revisit potentially valuable prompts. More
specifically, given a prompt xi whose training dynamics trace is Ti = (ei,1, Ri,1), . . . , (ei,n, Ri,n),
we calculated the filtering probability by:

pf (xi) = 1− pzie , (3)
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Algorithm 1: Training Iteration in GRESO

Input: Dataset D; Default rollout batch size Bdefault
r ; Training batch size Bt; Probability step

size ∆p;
Base exploration probability: peasy , phard; Targeted zero-variance percentage: αeasy , αhard.

1 B ← ∅; Br ← Bdefault
r ; neasy, nhard, ntotal ← 0, 0, 0;

/* Rollout Stage. */
2 repeat
3 {xi}Br

i=1← Sample prompts from D and filter with Eq. 3 until batch size = Br;
4 {xi, ri}Br×G

i=1 ← Rollout generation on {xi}Br
i=1;

5 {xi, ri}Bf×G
i=1 ← filter out zero-var prompt in {xi, ri}Br×G

i=1 ;
6 neasy ← neasy+ filtered easy zero-var prompt count;
7 nhard ← nhard+ filtered hard zero-var prompt count;
8 ntotal ← ntotal +Br;
9 B ← B

⋃
{xi, ri}Bf×G

i=1 ;
/* Adaptive rollout batch size. */

10 Br ← min(Bdefault
r , Adaptive rollout batch size calculated by Eq. 6);

11 until |B| ≥ Bt;
/* Adjust Base Exploration Probability. */

12 if neasy/ntotal ≥ αeasy then peasy ← peasy −∆p ;
13 else peasy ← peasy +∆p ;
14 if nhard/ntotal ≥ αhard then phard ← phard −∆p ;
15 else phard ← phard +∆p ;

/* GRPO Training. */
16 B ← select Bt examples from B;
17 Update actor model with GRPO on B;

zi = max

k ∈ [0, n]

∣∣∣∣∣∣
n∏

j=n−k+1

Ii,j = 1

 , (4)

Ii,j =
{
1, if all rewards in Ri,j are identical,
0, otherwise,

(5)

where pe is the base exploration probability controlling how likely a prompt is selected for rollout. zi
represents the number of most recent consecutive rollouts for prompt xi that were zero-variance.

Self-adjustable Base Exploration Probability. One challenge of the above probabilistic filtering
algorithm lies in determining the base exploration probability, which can vary across models, datasets,
and even different training stages. In addition, different base probabilities may be appropriate for easy
and hard zero-variance prompts. Manually selecting the probabilities for all scenarios is impractical.

To address this challenge, GRESO employs an adaptive algorithm that automatically adjusts the base
exploration probability at each training iteration (Lines 14–18 in Algorithm 1). Rather than requiring
users to manually select the base probability, which can vary across different settings, GRESO only
requires a target zero-variance percentage. It then automatically increases or decreases the exploration
rate by a step size ∆p based on whether the observed zero-variance percentage is above or below the
target. We set ∆p to 1% in all our evaluations. Additionally, instead of using a single base exploration
probability, GRESO maintains two separate values: one for easy zero-variance prompts and another
for hard ones. When computing the filtering probability pf (xi), GRESO first determines whether xi

is an easy or hard zero-variance prompt and then applies the corresponding exploration probability3.

Adaptive Sampling Batch Size. In the current design of Dynamic Sampling [49], if the number
of valid examples is insufficient to meet the training batch size requirement, the training performs

3We set the target zero-variance ratio to 25% for all experiments and allocate it between easy and hard
prompts in an 1 : 2 ratio (i.e., 8.3% for easy and 16.7% for hard zero-variance prompts), based on the intuition
that, as models become more capable during training, more exploration on hard examples can be more beneficial.
However, a more optimal allocation scheme may exist, which we leave for our future study.
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rollout using a fixed batch size. However, this may result in wasted computation when only a small
number of additional examples are needed to complete the training batch. To further improve rollout
efficiency, GRESO adopts an adaptive rollout batch size:

Br = min(Bdefault
r ,

βB∆

(1− α)
), (6)

where Bdefault
r is the default rollout batch size, B∆ is the number of examples needed to fill the training

batch, α is the current zero-variance example ratio in this iteration (as some rollouts have already
occurred in this iteration), and β is a safety factor, which is fixed at 1.25 across all our evaluations, to
ensure sufficient valid examples are collected. We provide an ablation study in Section 5.3 to evaluate
the contribution of this adaptive batching mechanism to GRESO’s overall performance.

5 Experiment
In this section, we evaluate GRESO on multiple benchmarks using three different models. The
evaluation results show that GRESO achieves comparable performance to Dynamic Sampling while
significantly reducing rollout and training costs:

• In Section 5.2, we show that GRESO reduces up to 8M rollouts and achieves up to 2.4×
speedup in rollout and 2.0× speedup in total training time compared to Dynamic Sampling
without accuracy degradation.

• In Section 5.3, we conduct a detailed study on how GRESO reduces training cost with selective
rollout, and we also conduct an ablation study on the contribution of GRESO components.

5.1 Experimental Settings

Models & Datasets. We run our experiments on Qwen2.5-Math-1.5B [47], DeepSeek-R1-Distill-
Qwen-1.5B [9], and Qwen2.5-Math-7B [47]. For Qwen2.5-Math-1.5B/7B models, we use 4096 as
the context length, as it is the maximum context length for those two models. For DeepSeek-R1-
Distill-Qwen-1.5B, we set the context length to 8196. For Qwen2.5-14B/32B models, we use 16k as
the context length. For training datasets, we evaluate our methods on two datasets: 1) DAPO+MATH
(DM): We combine the DAPO dataset [49], which contains only integer solutions, with the MATH
dataset [14], which also contains LaTeX-formatted solutions. We find that training on DAPO alone
can degrade performance on LaTeX-based benchmarks, so we augment it with MATH to preserve
formatting diversity and improve generalization. 2) OPEN-R1 30k subset (R1): A 30,000-example
subset of the OPEN-R1 math dataset [10].

Training & Evaluation. Our method is implemented based on verl [37] pipeline and uses vLLM [22]
for rollout. We use 4xH100 for Qwen2.5-Math-1.5B training and 8xH100 for Qwen2.5-Math-7B
and DeepSeek-R1-Distill-Qwen-1.5B. For benchmark datasets, we use six widely used complex
mathematical reasoning benchmarks to evaluate the performance of trained models: Math500 [14, 26],
AIME24 [1], AMC [2], Minerva Math [23], Gaokao [53], Olympiad Bench [13]. Similar to [43], we
evaluate models on those benchmarks every 50 steps and report the performance of the checkpoint that
obtains the best average performance on six benchmarks. We also include more detailed experimental
settings in Appendix F.

5.2 End-to-end Efficiency Comparison

No performance drop with up to 3.35× fewer rollouts. To verify the effectiveness of GRESO,
we present a comprehensive evaluation of GRESO and Dynamic Sampling (DS), which filters out
zero-variance examples and resamples to fill the batch with effective data, across six math reasoning
benchmarks, using three different model settings in Table 1. The models are trained on either the
DAPO + MATH dataset (DM) or the Open R1 subset (OR1). We report both the performance
and the number of rollouts from the checkpoint that achieves the best average performance across
six benchmarks. Across all training settings, GRESO achieves comparable accuracy as DS, while
significantly reducing the number of rollout samples—achieving up to 3.35× fewer rollouts. For
example, on Qwen2.5-Math-7B trained on the DM dataset, GRESO achieves a comparable average
accuracy to DS (57.5% vs. 57.8%), while reducing the number of rollouts from 13.1M to 6.3M.
These results demonstrate that GRESO maintains performance while substantially lowering the cost
on rollouts. Similar improvements are observed across other evaluation settings.
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Table 1: Performance (%) comparison across six math reasoning benchmarks. We train three models
on DAPO + MATH (DM) and the Open R1 subset (OR1). Compared to Dynamic Sampling (DS),
GRESO achieves similar accuracy while significantly reducing the number of rollouts.

Dataset Method Math500 AIME24 AMC Gaokao Miner. Olymp. Avg. # Rollout

Qwen2.5-Math-1.5B

DM DS 77.3 16.7 61.7 64.2 31.8 38.7 48.4 7.6M
GRESO 76.6 15.0 61.4 66.2 33.3 38.5 48.5 3.3M

OR1 DS 77.1 16.7 50.3 65.5 30.9 39.7 46.7 3.8M
GRESO 76.1 20.0 50.6 65.1 30.0 39.2 46.8 1.6M

DeepSeek-R1-Distill-Qwen-1.5B

DM DS 87.9 36.7 71.7 78.7 35.3 55.9 61.0 2.4M
GRESO 87.7 36.7 71.1 78.4 33.9 55.1 60.5 1.6M

OR1 DS 84.8 25.0 68.4 74.0 34.1 54.2 56.7 2.4M
GRESO 85.9 26.7 66.9 75.2 33.6 55.5 57.3 1.5M

Qwen2.5-Math-7B

DM DS 82.9 34.2 79.2 71.7 35.4 43.6 57.8 13.1M
GRESO 82.2 32.5 80.7 70.2 35.4 44.1 57.5 6.3M

OR1 DS 82.9 34.2 63.1 67.3 34.9 46.3 54.8 11.4M
GRESO 82.3 35.0 64.5 66.8 36.5 45.7 55.1 3.4M

Table 2: Training time (hours) breakdown and com-
parison for models trained on DAPO + MATH dataset.
GRESO consistently lowers rollout cost and achieves
up to 2.4× speedup in rollout and 2.0× speedup in
total training cost over Dynamic Sampling.

Method Training Other Rollout Total

Qwen2.5-Math-1.5B

DS 8.1 3.6 41.0 (1.0×) 52.6 (1.0×)
GRESO 8.9 3.9 25.2 (1.6×) 37.9 (1.4×)

DeepSeek-R1-Distill-Qwen-1.5B

DS 6.1 3.3 92.4 (1.0×) 101.9 (1.0×)
GRESO 6.8 4.0 62.0 (1.5×) 72.7 (1.4×)

Qwen2.5-Math-7B

DS 16.1 6.1 155.9 (1.0×) 178.0 (1.0×)
GRESO 16.6 6.3 65.5 (2.4×) 88.3 (2.0×)

Up to 2.4× wall-clock time speed-up in
rollout and 2.0× speed-up in training. To
better understand the efficiency of our pro-
posed methods, we report the detailed end-
to-end training time (1000 steps) breakdown
for different stages: rollout generation, ac-
tor model update, and other overheads (e.g.,
reference model and advantage calculation).
Qwen2.5-Math-1.5B is trained on 4×H100
GPUs, while the other two models are trained
on 8×H100 GPUs. Table 2 compares the
training time breakdown between GRESO
and Dynamic Sampling for models trained
on the DAPO + MATH dataset. For all three
models, GRESO significantly reduces rollout
time—achieving up to 2.4× speedup in roll-
out and 2.0× speedup in total training time
compared to DS. For instance, on Qwen2.5-
Math-7B, GRESO reduces rollout time from
155.9 hours to 65.5 hours, cutting overall training time from 178.0 to 88.3 hours.

Figure 5: Accuracy (%) curves comparison be-
tween GRESO and DS on Qwen2.5-14B and
Qwen2.5-32B.Both methods exhibit similar con-
vergence speed with respect to training steps.

Scaling to 14B and 32B models. Besides the
models presented in Table 1, we further eval-
uate GRESO on larger models to better verify
its performance at scale. The reported accuracy
represents the average performance across the
six benchmarks listed in Table 1, along with
AIME25. Both AIME24 and AIME25 are evalu-
ated using avg@16 accuracy. Figure 5 compares
the accuracy (%) curves of GRESO and DS on
Qwen2.5-14B and Qwen2.5-32B. Both GRESO
and DS exhibit similar convergence speed with
respect to training steps, indicating that GRESO
does not compromise model accuracy and con-
vergence spped. However, GRESO requires
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Figure 6: Training dynamics analysis of Qwen-Math-1.5B trained on the DAPO + MATH dataset:
(a) Effective prompt ratio in each step. GRESO maintains a consistently higher effective prompt
ratio during training. (b) To obtain the same number of effective prompts per batch, GRESO requires
less rollout time. (c) GRESO achieves more effective rollouts for training under the same rollout
time budget compared to Dynamic Sampling. (d) Ablation study on adaptive batch size (ABS) for
sampling: Both ABS and GRESO effectively reduce the number of rollouts per training step.

fewer rollouts per training step. For instance, over a total of 800 training steps, Dynamic Sam-
pling consumes 3.45M rollouts, whereas GRESO requires only 1.74M rollouts.

Table 3: Performance (%) comparison on
coding tasks. We train DeepSeek-R1-Distill-
Qwen-1.5B on the code_contests dataset and
evaluate on LiveCodeBench.

Method GRPO DS GRESO

Acc (avg@4) 19.9 22.1 22.8
# Rollouts 0.5M 1.9M 1.07M

Performance on coding tasks. Besides math tasks,
we also verify the effectiveness of GRESO on cod-
ing tasks. Table 3 presents a performance compar-
ison on the code_contests [25] dataset using the
DeepSeek-R1-Distill-Qwen-1.5B model, evaluated
on LiveCodeBench [18]. GRESO achieves the high-
est accuracy, reaching 22.8%, slightly outperform-
ing DS (22.1%) and clearly outperforming GRPO
(19.9%). Besides, GRESO accomplishes this with a
much lower rollout cost: 1.07M compared to 1.9M
for DS, indicating that GRESO delivers better performance while using significantly fewer rollouts.
These results demonstrate that GRESO significantly improve the training effectiveness without hurt
model performance on code generation tasks.

Table 4: Performance (%) comparison by apply-
ing GRESO on RLOO (Qwen2.5-Math-7B). Besides
GRPO, GRESO also improve the efficieny of methods
suffering from zero-variance rollout issue.

Method RLOO RLOO+GRESO RLOO+DS

Acc (avg@4) 55.1 57.0 56.8
# Rollouts 0.81M 1.2M 2.56M

Apply GRESO on RLOO. Besides GRPO,
GRESO also enhances the efficiency of
methods that suffer from the zero-variance
rollout issue, like RLOO [20]. Table 4 re-
ports the performance comparison by ap-
plying GRESO to the RLOO algorithm us-
ing the Qwen2.5-Math-7B model. Similar
to applying GRESO on GRPO, when inte-
grated with RLOO, GRESO also achieves
a comparable accuracy to Dynamic Sam-
pling (57.0% v.s. 56.8%), but need much fewer rollouts. The reported accuracy represents the average
performance across the six benchmarks used in Table 1.

5.3 Analysis and Ablation Study
In this section, we use Qwen-Math-1.5B trained on the DAPO + MATH dataset to analyze in detail
how GRESO reduces training overhead by enhancing rollout quality, and we also conduct an ablation
study on the contribution of each component in GRESO.

GRESO improves effective prompt ratio and rollout efficiency. As shown in Figure 6a, compared
to Dynamic Sampling, where effective prompt ratio steadily decreases during training, since GRESO
filter out many zero-variance prompts before rollout, GRESO consistently maintains a significantly
higher effective prompt ratio. For instance, as effective prompt ratio drop to around 20% in the
late stage of training, GRESO maintains the effective prompt ratio larger than 70%. This higher
ratio directly translates into reduced rollout time per training step, as fewer zero-variance prompts
are sampled. Figure 6b shows that GRESO has significantly less rollout time per step compared to
dynamic sampling. Figure 6c compares the total number of effective rollouts used during training
under the same rollout time budget for GRESO and Dynamic Sampling. GRESO consistently
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generates more effective rollouts over time. For instance, GRESO reaches 2 million effective rollouts
in around 25 hours, while Dynamic Sampling requires over 40 hours to achieve the same, which
demonstrate the efficiency of GRESO.
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Figure 7: (a) Dynamics of base exploration prob-
abilities. (b) Dynamics of easy and hard zero-
variance prompt ratio.

Dynamics of self-adjustable base exploration
probabilities. A key parameter in GRESO is
the base exploration probability pe defined in
Equation 3. As discussed in Section 4.2, this
probability can vary depending on the model,
dataset, and training stage. Instead of manu-
ally tuning pe, GRESO employs an adaptive
mechanism to automatically adjust it during
training. Specifically, GRESO maintains sepa-
rate exploration probabilities for hard and easy
zero-variance prompts, denoted as pe,hard and
pe,easy, respectively. In Figure 7a, we plot the
dynamics of both pe,hard and pe,easy, along with
the ratio of easy and hard zero-variance prompts over time. We observe that after the first training
epoch, both exploration probabilities initially decline. However, as the model ability improves, pe,hard
begins to increase, enabling more exploration of hard examples during later stages of training. Fig-
ure 7b shows the dynamics of easy and hard zero-variance ratios. Unlike Dynamic Sampling, GRESO
effectively maintains both ratios close to their target values during training, which demonstrates the
effectiveness of its self-adjusting mechanism.

Select Skip (Easy) Skip (Hard)
Epoch

Prompt

Figure 8: Selection Dynamics of
different prompts in GRESO. Each
row is a prompt, and each column
is an epoch.

Selection Dynamics. In Figure 8, we present a case study
illustrating how GRESO selects or skips prompts over train-
ing epochs. Each row stands for a prompt, and each column
stands for an epoch. We observe that very easy prompts tend to
remain easy throughout training; although frequently skipped,
GRESO still occasionally selects them to ensure a minimal
level of exploration. For prompts of moderate difficulty, as the
model becomes stronger over time, these prompts gradually
become easier and are increasingly skipped. In contrast, some
hard prompts become solvable (i.e., effective prompts) in later
epochs or even easy prompts. However, certain hard prompts
remain unsolved throughout training.

Ablation study on adaptive batch size (ABS) for sampling.
In addition to the pre-rollout prompt selection algorithm based
on training dynamics, another key component of GRESO is the
adaptive batch size (ABS) for sampling. When only a small
number of effective prompts are needed to fill the training batch,
ABS enables rollout on a smaller batch instead of using the
default large sampling batch size, thereby reducing unnecessary computation. Figure 6d compares
the number of rollouts per training step across three methods: Dynamic Sampling (DS), DS with
Adaptive Batch Size (DS + ABS), and GRESO. DS maintains a fixed sampling batch size, leading
to consistently high sampling overhead. DS + ABS dynamically adjusts the batch size, reducing
the number of samples in earlier steps, but still shows increasing sampling as training progresses
and the effective prompt ratio decreases. In contrast, GRESO consistently maintains a much lower
number of samples per step due to its more selective rollout strategy combined with ABS, resulting
in significantly reduced rollout overhead.

6 Conclusion
In this paper, we present GRESO, a selective rollout algorithm for LLM RL. GRESO aims to improve
RL training efficiency by selecting effective prompts before rollout to save unnecessary overhead
on sampling uninformative prompts. GRESO leverages reward dynamics to efficiently filter out
zero-variance prompts before rollout and significantly improve the RL training efficiency. Our
empirical evaluation demonstrates that GRESO significantly improves end-to-end training efficiency,
achieving up to 2.4× rollout speedup and 2.0× overall training speedup. We believe that the method
and findings in our work can inspire more research on designing more efficient selective rollout
algorithms to accelerate RL for LLM.
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A Overview

We begin in Section B by discussing the limitations of our method. Section C highlights the broader
societal and practical impact of improving rollout efficiency for LLM training. Section F details our
experimental setup, and Section G presents additional empirical experiments and analysis.

B Limitations

While GRESO effectively filters out the most obvious zero-variance training prompts—those that
contribute no learning signal to the model, it does not estimate or rank the value of the remaining
prompts, which can also contain uninformative prompts that provide limited contribution to training.
A potential future work for GRESO is to extend its filtering mechanism beyond binary decisions by
incorporating a finer-grained scoring or ranking system to prioritize prompts based on their estimated
training utility. Despite that, we view GRESO as an important first step toward such an advanced data
selection algorithm for efficient rollout and believe it provides a solid foundation for more adaptive
and efficient reinforcement learning in LLM training.

C Broader Impact

This work enhances the efficiency and scalability of RL-based fine-tuning for language models by
introducing a lightweight, selective rollout mechanism that filters out uninformative prompts. By
significantly reducing redundant computation, our method lowers overall training costs. This makes it
easier for institutions with limited computational budgets to train strong models, helping democratize
access to advanced AI. Furthermore, our approach promotes more sustainable and resource-efficient
practices, encouraging future research toward greener and more inclusive large-scale training.

D Discussion

While similar temporal correlation principles have been explored in areas such as curriculum learning,
how to model and leverage temporal signals to detect and filter zero-variance prompts prior to rollout
remains underexplored and non-trivial. For instance, unlike prior works [4, 59] that operate on static
datasets, RLVR involves online data generation, where the training data can vary significantly across
iterations, making it non-trivial to apply existing approaches directly. To the best of our knowledge,
our paper is the first to propose a practical and effective solution to filter out zero-variance prompts in
RLVR, by tackling the following key challenges: 1) How to detect and filter uninformative prompts
before performing rollouts (i.e., without access to the full training data)? 2) How to perform such
detection and filtering with minimal overhead? 3) How to balance exploration and efficiency, ensuring
that potentially useful prompts can be revisited in the future training stage? Each of these challenges
is non-trivial in the RLVR setting. Our proposed method, GRESO, offers a lightweight mechanism
that effectively addresses all three and demonstrates strong empirical performance across multiple
benchmarks and RL algorithms.

E Reproductivity

We introduced our detailed experimental setting in Section F, and we also include our code in
https://github.com/Infini-AI-Lab/GRESO/.
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F Detailed Experimental Setting

Models & Datasets. We run our experiments on Qwen2.5-Math-1.5B [47], DeepSeek-R1-Distill-
Qwen-1.5B [9], and Qwen2.5-Math-7B [47]. For Qwen2.5-Math-1.5B/7B models, we use 4096 as the
context length, as it is the maximum context length for those two models. For DeepSeek-R1-Distill-
Qwen-1.5B, we set the context length to 8196. For training datasets, we train our methods on two
datasets in two settings: 1) DAPO+MATH (DM): We combine the DAPO dataset [49], which contains
only integer solutions, with the MATH dataset [14], which also contains LaTeX-formatted solutions.
We find that training on DAPO alone can degrade performance on LaTeX-based benchmarks, so we
augment it with MATH to preserve formatting diversity and improve generalization. 2) OPEN-R1
30k subset (R1): A 30,000-example subset of the OPEN-R1 math dataset [10].

Training. Our method is implemented based on verl [37] pipeline and uses vLLM [22] for rollout.
We use 4xH100 for Qwen2.5-Math-1.5B training and 8xH100 for Qwen2.5-Math-7B and DeepSeek-
R1-Distill-Qwen-1.5B. We set the rollout temperature to 1 for vLLM [22]. The training batch size is
set to 256, and the mini-batch size to 512. We sample 8 responses per prompt. We set the default
rollout sampling batch size as 384. For DeepSeek-R1-Distill-Qwen-1.5B, we set the context length
to 8196. For Qwen2.5-14B/32B and DeepSeek-R1-Distill-Qwen-1.5B for coding tasks, we set the
context length to 16k. The training batch size is set to 128, and the mini-batch size to 512. We also
sample 8 responses per prompt. We set the default rollout sampling batch size as 192. We train all
models for 1000 steps, and we optimize the actor model using the AdamW [29] optimizer with a
constant learning rate of 1e-6. We use β1 = 0.9, β2 = 0.999, and apply a weight decay of 0.01. We
use the following question template to prompt the LLM. For reward assignment, we give a score of
0.1 for successfully extracting an answer and a score of 1.0 if the extracted answer is correct. Similar
to [49], we remove the KL-divergence term. The optimization is performed on the parameters of
the actor module wrapped with Fully Sharded Data Parallel (FSDP) [54] for efficient distributed
training. We use 4 H100 for Qwen2.5-Math-1.5B training and 8 H100 for Qwen2.5-Math-7B and
DeepSeek-R1-Distill-Qwen-1.5B (as it has a longer context length.) We set the targeted zero-variance
percentage to 25% for all experiments and allocate it between easy and hard prompts in an 1 : 2
ratio (i.e., 8.3% for easy and 16.7% for hard zero-variance prompts), based on the intuition that,
as models become more capable during training, more exploration on hard examples can be more
beneficial. However, a more optimal allocation scheme may exist, which we leave for future study.
We set the initial exploration probability to 50% and base exploration probability adjustment step
size ∆p for base exploration probability to 1%. We also set a minimal base exploration probability to
5% to ensure a minimal level of exploration on zero-variance prompts throughout training.

GRESO with Fixed Parameters Across All Experiments. Although GRESO introduces a few
hyperparameters, we argue that hyperparameter tuning is not a major concern in practice. We designed
GRESO (e.g., self-adjustable base exploration probability) to be robust under default settings and
conducted all experiments using a single fixed set of hyperparameters across models and tasks. The
consistent performance observed across different models and tasks demonstrates that GRESO does
not rely on extensive hyperparameter tuning, making it both practical and easy to integrate into
existing RL fine-tuning pipelines.

Evaluation. For benchmark datasets, we use six widely used complex mathematical reasoning
benchmarks to evaluate the performance of trained models: Math500 [14, 26], AIME24 [1], AMC [2],
Minerva Math [23], Gaokao [53], Olympiad Bench [13]. Same as the training setting, For Qwen2.5-
Math-1.5B/7B models, we use 4096 as the context length. For DeepSeek-R1-Distill-Qwen-1.5B,
we set the context length to 8196. Similar to [43], we evaluate models on those benchmarks every
50 steps and report the performance of the checkpoint that obtains the best average performance on
six benchmarks. We evaluate all models with temperature = 1 and repeat the test set 4 times for
evaluation stability, i.e., pass@1(avg@4), for all benchmarks.

Question Template

Please solve the following math problem: {{Question Description}}. The assistant first thinks
about the reasoning process step by step and then provides the user with the answer. Return the
final answer in \boxed{} tags, for example \boxed{1}. Let’s solve this step by step.
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G Additional Experiments

G.1 Impact of Targeted Zero-variance Percentage
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Figure 9: Comparison of the num-
ber of rollouts across different tar-
get zero-variance ratios.

In this section, we study how varying the targeted zero-variance
percentage impacts training and rollout efficiency. In addition
to the default setting of 25% used throughout our experiments,
we also evaluate alternative values of 0, 50%, 100% (i.e., always
allow exploration). As shown in Table 5, different zero-variance
targets give us nearly identical accuracy. We also present the
number of rollouts per step in Figure 9. When we reduce the
targeted zero-variance ratio to 0, we observe that the number
of rollouts per step remains similar to that of the 25% setting.
This lack of difference can be attributed to two factors. First, we
enforce a minimum exploration rate of 5%, which ensures that
some exploration still occurs. As a result, the actual zero-variance
percentage never truly reaches 0. Second, we always oversample
some data in the first batch of rollouts in each iteration to provide
some redundancy to avoid the second batch of rollouts. With this
setting, as long as the first batch generates enough effective training data to fill the training batch,
regardless of whether the target is 0 or 25%, the total number of rollouts remains approximately the
same. In addition, as the targeted zero-variance percentage increases, more zero-variance prompts are
allowed during rollout, leading to a higher number of rollouts per step. When the targeted percentage
becomes sufficiently large, GRESO gradually approaches the behavior of dynamic sampling with
adaptive rollout batch size.

Table 5: Average accuracy across six math reasoning benchmarks under different targeted zero-
variance percentages.

Target (%) 0 25 50 100

Acc. (%) 48.1 48.5 48.5 48.4

G.2 Alternative Design: Linear Backoff
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Figure 10: Zero-variance prompt
ratio dynamic for linear backoff.

In addition to the probabilistic filtering approach introduced in
Section 4.2 of the main paper, we also explored an alternative
solution for filtering zero-variance prompts during the early stages
of this project. One such method is the backoff algorithm [21]
(e.g., linear backoff). Specifically, if a prompt is identified as
zero-variance in the most recent k rollouts, it is skipped for the
next k training epochs. However, there are several limitations to
this approach. As discussed in Section 4 of the paper, the degree
of exploration should adapt to the model, dataset, and training
stage. The linear backoff algorithm schedules the next rollout
for a zero-variance prompt k epochs into the future. As a result,
if we wish to adjust the exploration intensity dynamically based
on new observations or evolving training dynamics, the backoff
algorithm cannot directly affect prompts that have already been
deferred to future epochs. For instance, as shown in Figure 10,
unlike probabilistic filtering, filtering based on linear backoff can cause periodic fluctuations in zero-
variance prompt ratio, which differs from the smoother dynamics enabled by probabilistic filtering
This lack of flexibility limits its ability to adapt exploration strategies in a fine-grained or responsive
manner, which motivated the design of our current GRESO algorithm based on probabilistic filtering.

G.3 Case study of Filtered Examples

To better understand the behavioral patterns of our selective filtering algorithm, we present a case study
of prompts that were frequently skipped or selected during training from the MATH [14] dataset. We
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categorize the examples into three groups: Frequently Skipped Prompts (Easy), Frequently Skipped
Prompts (Hard), Frequently Selected Prompts. We observe that frequently skipped easy prompts often
involve straightforward calculations or routine applications of formulas, making them more likely
to be solved across all sampled responses. Frequently selected prompts tend to exhibit moderate
difficulty, contributing more consistently to model improvement. As for frequently skipped hard
prompts, these problems are too challenging for the model to solve, even across multiple rollouts,
resulting in zero variance among the rewards and ultimately failing to contribute to training.

Frequently Skipped Prompts (Easy)

1. Question: Johnny has 7 different colored marbles in his bag. In how many ways can he
choose three different marbles from his bag to play a game? Solution: 35.

2. Question: The number n is a prime number between 20 and 30. If you divide n by 8, the
remainder is 5. What is the value of n? Solution: 29.

3. Question: Evaluate: 10−2·50
10−3 Solution: 10.

4. Question: The Ponde family’s Powerjet pumps 420 gallons of water per hour. At this rate,
how many gallons of water will it pump in 45 minutes? Solution: 315.

5. Question: Suppose that n, n+1, n+2, n+3, n+4 are five consecutive integers. Determine
a simplified expression for the sum of these five consecutive integers. Solution: 5n+ 10.

Frequently Skipped Prompts (Hard)

1. Question: A parabola and an ellipse share a focus, and the directrix of the parabola is the
line containing the minor axis of the ellipse. The parabola and ellipse intersect at two points.
Given that the equation of the ellipse is x2

25 + y2

9 = 1, find the distance between those two
points. Solution: 4

√
14
3 .

2. Question: In triangle ABC, AB = AC = 100, and BC = 56. Circle P has radius 16 and
is tangent to AC and BC. Circle Q is externally tangent to P and is tangent to AB and BC.
No point of circle Q lies outside of △ABC. The radius of circle Q can be expressed in the
form m− n

√
k, where m, n, and k are positive integers and k is the product of distinct primes.

Find m+ nk. Solution: 254.

3. Question: Let EFGH , EFDC, and EHBC be three adjacent square faces of a cube, for
which EC = 8, and let A be the eighth vertex of the cube. Let I , J , and K, be the points
on EF , EH , and EC, respectively, so that EI = EJ = EK = 2. A solid S is obtained
by drilling a tunnel through the cube. The sides of the tunnel are planes parallel to AE, and
containing the edges IJ , JK, and KI . The surface area of S, including the walls of the tunnel,
is m+ n

√
p, where m, n, and p are positive integers and p is not divisible by the square of any

prime. Find m+ n+ p. Solution: 417.

4. Question: Let a and b be nonnegative real numbers such that

sin(ax+ b) = sin 29x

for all integers x. Find the smallest possible value of a. Solution: 10π − 29.

5. Question: Four people sit around a circular table, and each person will roll a standard
six-sided die. What is the probability that no two people sitting next to each other will roll the
same number after they each roll the die once? Express your answer as a common fraction.
Solution: 35

72 .
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Frequently Selected Prompts

1. Question: Let x, y, and z be three positive real numbers whose sum is 1. If no one of
these numbers is more than twice any other, then find the minimum value of the product xyz.
Solution: 1

32 .

2. Question: The number

e7πi/60 + e17πi/60 + e27πi/60 + e37πi/60 + e47πi/60

is expressed in the form reiθ, where 0 ≤ θ < 2π. Find θ. Solution:
9π

20
.

3. Question: For what values of x is

x− 10x2 + 25x3

8− x3

nonnegative? Answer as an interval. Solution: [0, 2).

4. Question: Determine all real numbers a such that the inequality |x2 + 2ax+ 3a| ≤ 2 has
exactly one solution in x. Solution: 1, 2.

5. Question: By starting with a million and alternatively dividing by 2 and multiplying by 5,
Anisha created a sequence of integers that starts 1000000, 500000, 2500000, 1250000, and so
on. What is the last integer in her sequence? Express your answer in the form ab, where a and
b are positive integers and a is as small as possible. Solution: 512.
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