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ABSTRACT

A growing literature in computational neuroscience leverages gradient descent and
learning algorithms that approximate it to study synaptic plasticity in the brain.
However, the vast majority of this work ignores a critical underlying assumption:
the choice of distance for synaptic changes – i.e. the geometry of synaptic plas-
ticity. Gradient descent assumes that the distance is Euclidean, but many other
distances are possible, and there is no reason that biology necessarily uses Eu-
clidean geometry. Here, using the theoretical tools provided by mirror descent,
we show that the distribution of synaptic weights will depend on the geometry
of synaptic plasticity. We use these results to show that experimentally-observed
log-normal weight distributions found in several brain areas are not consistent
with standard gradient descent (i.e. a Euclidean geometry), but rather with non-
Euclidean distances. Finally, we show that it should be possible to experimentally
test for different synaptic geometries by comparing synaptic weight distributions
before and after learning. Overall, our work shows that the current paradigm in
theoretical work on synaptic plasticity that assumes Euclidean synaptic geometry
may be misguided and that it should be possible to experimentally determine the
true geometry of synaptic plasticity in the brain.

1 INTRODUCTION

Many computational neuroscience studies use gradient descent to train models that are then com-
pared to the brain Schrimpf et al. (2018); Nayebi et al. (2018); Yamins et al. (2014); Bakhtiari et al.
(2021); Flesch et al. (2022), and many others explore how synaptic plasticity could approximate
gradient descent Richards et al. (2019). One aspect of this framework that is often not explicitly
considered is that in order to follow the gradient of a loss in the synaptic weight space, one must
have a means of measuring distance in the synaptic space, i.e. of determining what constitutes a
large versus a small change in the weights Carlo Surace et al. (2018). In other words, whenever we
build a neural network model we are committing to a synaptic geometry. Standard gradient descent
assumes Euclidean geometry, meaning that distance in synaptic space is equivalent to the L2-norm
of weight changes.

There are however other distances that can be used. For example, in natural gradient descent the
Kullback-Leibler divergence of the network’s output distributions is used as the distance Martens
(2020). More broadly, the theory of mirror descent provides tools for analyzing and building algo-
rithms that use different distances in parameter space Nemirovskij & Yudin (1983); Beck & Teboulle
(2003), which has proven useful in a variety of applications Shalev-Shwartz et al. (2012); Bubeck
et al. (2015); Lattimore & Gyorgy (2021). However, within computational neuroscience the question
of synaptic geometry is often overlooked: most models use Euclidean geometry without considering
other options Carlo Surace et al. (2018). This assumption has no basis in neuroscience data, so how
could we possibly determine the synaptic geometry used by the brain?
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Here, using tools from mirror descent Nemirovskij & Yudin (1983); Beck & Teboulle (2003), we
show that synaptic geometry can be determined by observing the distribution of synaptic weight
changes during learning. Specifically, we prove that in situations where synaptic changes are rel-
atively small the distribution of synaptic weights depends on the synaptic geometry (with mild as-
sumptions about the loss function and the dataset). We use this result to show that the geometry
defines a dual space in which the total synaptic changes are Gaussian. As a result, if one can find
a dual space in which experimentally observed synaptic changes are Gaussian, then one knows the
synaptic geometry. Applying this framework to existing neural data, which suggests that synap-
tic weights are log-normally distributed Song et al. (2005); Loewenstein et al. (2011); Melander
et al. (2021); Buzsáki & Mizuseki (2014), we conclude that the brain is unlikely to use a Euclidean
synaptic geometry. Moreover, we show how to use our findings to make experimental predictions.
In particular, we show that it should be possible to use experimentally observed weight distributions
before and after learning to rule out different candidate geometries. Altogether, our work provides a
novel theoretical insight for reasoning about the learning algorithms of the brain.

1.1 RELATED WORK

There is a large and growing literature on approximating gradient-based learning in the brain
Lillicrap et al. (2016); Liao et al. (2016); Akrout et al. (2019); Podlaski & Machens (2020); Clark
et al. (2021). The vast majority of this work assumes Euclidean synaptic geometry Carlo Surace
et al. (2018). Notably, even if the brain does not estimate gradients directly, as long as synaptic
weight updates are relatively small, then the brain’s learning algorithm must be non-orthogonal
to some gradient in expectation Richards & Kording (2023). As such, our work is relevant to
neuroscience regardless of the specific learning algorithm used by the brain.

Our work draws strongly from the rich and long-standing literature on mirror descent, which was
originally introduced 40 years ago for convex optimization Nemirovskij & Yudin (1983). Recent
years have seen a lot of work in this area Beck & Teboulle (2003); Duchi et al. (2010); Bubeck
et al. (2015); Ghai et al. (2020); Lattimore & Gyorgy (2021), especially in online optimization
settings such as bandit algorithms Shalev-Shwartz et al. (2012); Lattimore & Szepesvári (2020).
More recently, researchers have started to apply mirror descent to deep networks and have used it to
try to develop better performing algorithms than gradient descent Azizan & Hassibi (2018); Azizan
et al. (2021). This work is related to natural gradient descent which also explores non-Euclidean
geometries Amari (1985; 1998); Ollivier et al. (2017).

Finally, our work is relevant to experimental neuroscience literature on synaptic weight distributions.
Using a variety of techniques, including patch clamping Song et al. (2005) and fluorescent imaging
Melander et al. (2021); Loewenstein et al. (2011); Vardalaki et al. (2022), neuroscientists have ex-
plored the distributions of synaptic strengths across a variety of brain regions and species. This work
has generally reported log-normal distributions in synaptic weights Song et al. (2005); Loewenstein
et al. (2011); Melander et al. (2021), though, a recent study observed a more complicated bimodal
distribution in log-space Dorkenwald et al. (2022). Moreover, the parameters of log-normal dis-
tributions observed in primary auditory cortex Levy & Reyes (2012) are close to optimal in terms
of perceptron capacity Zhong et al. (2022). Our work connects this experimental literature to our
theoretical understanding of learning in the brain – it makes it possible to test theories of synaptic
geometry using weight distribution data.

2 MIRROR DESCENT FRAMEWORK

In order to derive our core results we will rely on tools from mirror descent. To introduce it, we
first revisit gradient descent. Assume we have a loss function l(w). In gradient descent, we choose
the next point in weight space wt+1 from the current point wt by minimizing a linearized version
of l(w) with a penalty for taking large steps in weight space (where the strength of the penalty is
controlled by the learning rate η). Importantly, penalizing large steps in weight space necessitates a
distance function. If we choose the squared L2-norm as our distance function we obtain:

wt+1 = argmin
w

g(w,wt) , g(w,wt) = l(wt) +∇l(wt)⊤(w −wt) +
1

2 η
∥w −wt∥22 . (1)

2



Published as a conference paper at ICLR 2024

This choice of distance function results in the standard gradient descent update when we solve the
unconstrained optimization problem in Eq. (1):

wt+1 = wt − η∇l(wt) . (2)

In mirror descent, we consider a more general set of distance functions provided by the Bregman
divergence Dϕ(w, w̃) Bregman (1967). For a strictly convex function, called a potential, ϕ(w):

Dϕ(w, w̃) = ϕ(w)− ϕ(w̃)−∇ϕ(w̃)⊤(w − w̃) . (3)

Re-writing Eq. (1) into this more general form we get:

wt+1 = argmin
w

gϕ(w,wt) , gϕ(w,wt) = l(wt) +∇l(wt)⊤(w −wt) +
1

η
Dϕ(w,wt) . (4)

dual spaceprimal space

normal gradient 
update

 : gradient
  : learning rate

 : potential
mirror descent 

update

Figure 1: Mirror descent dynamics.

We can express the update in closed form using the gradient
of the potential:

∇ϕ(wt+1) = ∇ϕ(wt)− η∇l(wt) . (5)

As ϕ is strictly convex, ∇ϕ is invertible, so:

wt+1 = ∇ϕ−1
(
∇ϕ(wt)− η∇l(wt)

)
. (6)

The update moves w from the “primal” space to the “dual”
via ∇ϕ(w), performs a regular gradient descent update in the
dual space, and then projects back to the primal space (Fig. 1).
We consider p-norms ϕ(w) = 1

p∥w∥pp and negative entropy
ϕ(w)=

∑
i|wi| log |wi|. The former for p=2 recovers standard gradient descent. The latter leads to

the exponentiated gradient algorithm Kivinen & Warmuth (1997) (⊙ denotes element-wise product):

wt+1 = wt ⊙ e(−η∇l(wt)⊙ signwt) , (7)

Fig. 2 shows how different potentials change problem geometry and, therefore, solutions.

Equation (5) already predicts our main result: if updates in the dual space are approximately inde-
pendent, or contain noise, over time the sum of the updates will look Gaussian by the central limit
theorem (since they sum linearly in the dual space). In fact, Loewenstein et al. (2011) showed that
synaptic weights (of rodent auditory cortex) stay log-normal over time (implying Gaussian changes
in the log space) and follow multiplicative dynamics in synaptic weight space. This is consistent
with the negative entropy potential and in particular Eq. (7). This data, however, wasn’t collected
when training mice on a specific task. It is not clear if learning-driven dynamics follows the same
update geometry. Here, we develop a theory for distinguishing synaptic geometries during training.
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Figure 2: Eq. (4) dynamics for l(w1, w2)=( 12w1+

w2 − 1)e
1
2w1+w2 . Blue: negative entropy (NE,

Eq. (7)); green: gradient descent/2-norm (Eq. (2));
orange: 3-norm. Left: loss surface (and level
sets shown below it) and dynamics in the regu-
lar (w1, w2) coordinates. Right: same, but in the
(∇ϕNE(w1),∇ϕNE(w2)) coordinates.

Eq. (6) allows us to understand synaptic weight
updates via two independent terms: a credit sig-
nal and an intrinsic synaptic geometry. The
credit signal is the gradient ∇l(wt) – or
a more biologically plausible approximation.
The synaptic geometry is determined by the
potential ϕ; it captures how the credit signal
∇l(wt) is used to update synaptic weights.
Note however, we are not necessarily propos-
ing that this separation is reflected in underly-
ing neurobiological processes, just that it can
be used as a model for understanding weight
updates. Most studies of biologically plausi-
ble deep learning Lillicrap et al. (2016); Liao
et al. (2016); Akrout et al. (2019); Podlaski &
Machens (2020); Clark et al. (2021) use Eu-
clidean distance by default, effectively ignoring
the second term (although see Carlo Surace et al. (2018) and Schwarz et al. (2021)). Here we con-
centrate on the second term, and derive results that are independent of the first term. Therefore, and
crucially, previous theoretical studies that derive biologically plausible estimates of credit signals
are fully compatible with our work.
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2.1 IMPLICIT BIAS IN MIRROR DESCENT

Gradient descent in overparametrized linear regression finds the minimum norm solution: a set
of weights w closest to the initial weights w0, according to the 2-norm distance Gunasekar et al.
(2017); Zhang et al. (2021). This bias towards small changes is referred to as the implicit bias of the
algorithm. Recently, a similar result was obtained for mirror descent, wherein the implicit bias will
depend on the potential ϕ Gunasekar et al. (2018). Here we discuss this result and its applicability
to gradient-based learning in deep networks.

Linear regression. To begin, consider a linear problem: predict yn from xn as ŷ n=(xn)⊤w. For
N points and D-dimensional weights, we write this as y =Xw. Gunasekar et al. (2018) showed
that for losses l(ŷ, y) with a unique finite root (l(ŷ, y)→ 0 iff ŷ → y), the mirror descent solution
w∞ (assuming it exists) is the closest w to the initial weights w0 w.r.t. the Bregman divergence Dϕ:

w∞ = argmin
w: y=X⊤w

Dϕ(w,w0) . (8)

An example of such a setup is the MSE loss l(ŷ, y) = (ŷ − y)2/2 and an overparametrized model
with D ≥ N . For a fixed y, this gives rise to an anti-Hebbian gradient −(ŷ − y)x.

Deep networks. A crucial condition is hidden in the proof of the above result: the gradient updates
∇l(ŷ n, yn) have to span the space of xn. For a linear model ŷ = x⊤w, this is naturally satisfied
as ∇l(ŷ n, yn) = ∂ l(ŷ n,yn)

∂ ŷ n xn. For deep networks, Azizan et al. (2021) showed a similar to Eq. (8)
result for solutions close to the initial weights, and empirically noted that different potentials result
in different final weights. Thus, we can make a similar assumption: if the solution is close to the
initial weights, then we can linearize a given deep network f(w,x) around the initial weights w0:

f lin(w,x,w0) = f(w0,x) +∇f(w0,x)⊤(w −w0) . (9)

This function is linear in the weights w, but not in the inputs x. Intuitively, if w doesn’t change a
lot from w0, a linearized network should behave similarly to the original one with respect to weight
changes. The linear approximation moves us back to a setting akin to linear regression except that
the gradients now span ∇f(w0,xi) rather than xi. Thus, for linearized networks, Eq. (8) becomes:

w∞ = argmin
w: y=f lin(w,x,w0)

Dϕ(w,w0) . (10)

One may wonder whether it is appropriate to assume that a solution exists near the initial weights
when considering real brains. There are two reasons that we argue this is appropriate in our context.
First, in biology, animals are never true “blank slates”, they instead come with both life experience
and evolutionary priors. As such, it is not unreasonable to think that in real brains the solution in
synaptic weight space often sits close to the initial weights, and moreover, there would be strong
evolutionary pressure for this to be so. Second, neural tangent kernel (NTK; Jacot et al. (2018))
theory shows that, with some assumptions, infinite width networks are identical to their linearized
versions, and for finite width networks, the linear approximation gets better as width increases Lee
et al. (2019) (although learning dynamics don’t always follow NTK theory, see e.g. Bordelon &
Pehlevan (2022)). Thus, for very large networks (such as the mammalian brain) it is not unreason-
able to think that a linear approximation may be appropriate.

Below, we will develop theory for Eq. (8) (linear regression), and then experimentally show that the
results hold for fine-tuning of deep networks (which are close to linearized networks in Eq. (10)).

3 WEIGHT DISTRIBUTIONS IN MIRROR DESCENT

Our goal in this section is to derive a solution for the distribution of the final synaptic weights w∞

as a function of the potential ϕ. To do this, we begin by noting that Eq. (8) can be solved using
Lagrange multipliers λ ∈ RN that enforce y = Xw; the Lagrangian is:

L(w, λ) = Dϕ(w,w0) + (y −Xw)⊤λ . (11)

Solve for the minimum of L by differentiating it w.r.t. w and setting it to 0:

∂ L(w, λ)

∂w
= ∇ϕ(w)−∇ϕ(w0)−X⊤λ = 0 . (12)
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Since ∇ϕ−1 is the inverse of ∇ϕ, we obtain:

w∞ = ∇ϕ−1
(
∇ϕ(w0) +X⊤λ

)
, (13)

where λ will be chosen to satisfy y = Xw∞.

To obtain a closed-form solution, we can linearize Eq. (13) around ∇ϕ(w0) using the fact that the
mapping with the potential is invertible, so ∇ϕ−1

(
∇ϕ(w0)

)
= w0:

w∞ ≈ ∇ϕ−1
(
∇ϕ(w0)

)
+∇2ϕ−1

(
∇ϕ(w0)

)
X⊤λ = w0 +Hϕ−1X⊤λ , (14)

where we denoted Hϕ−1 = ∇2ϕ−1
(
∇ϕ(w0)

)
. For potentials that couple weights together, the

Hessian will be non-diagonal. However, we use “local” potentials in which each entry i of ∇ϕ(w)
depends only on wi (i.e. ϕ(w) =

∑
i f(wi) for some function f ). For such potentials, the Hessian

becomes diagonal. Since the mapping w.r.t. the potential is invertible, we can use the inverse
function theorem to compute the Hessian Hϕ−1 : Hϕ−1 = ∇2ϕ−1 (z) =

(
∇2ϕ(w0)

)−1
for z =

∇ϕ(w0), assuming ϕ is twice continuously differentiable and Hϕ−1 is non-singular.

Since Hϕ−1 is ultimately a function of ϕ, we have the structure of our solution. However, we need
to solve for λ in order to satisfy y = Xw∞. Assuming that Hϕ−1 is positive-definite and that
X ∈ RN×D is rank N (D ≥ N ) for the sake of invertibility, λ can be approximated by λ̂ as:

λ ≈ λ̂ =
(
XHϕ−1X⊤)−1

(y −Xw0) . (15)

With Eq. (15), we can now state the main result. Intuitively, what this result will show is that (1) we
can know the shape of the distribution of the final weights, (2) that shape is independent of the loss
function and the dataset, but not the initial weights. More formally, this is stated as:
Theorem 1 (Informal). Consider N i.i.d. samples yn,xn, such that: xn ∈ RD are zero-mean
and bounded; pairwise correlations cij =Exn

i x
n
j and c′ij =Cov((xn

i )
2, (xn

j )
2) between entries of

a single xn decay quickly enough so
∑∞

j=1 |cij | ≤ const and
∑∞

j=1 |c′ij | ≤ const for all i; yn =

(xn)⊤w∗; the teacher weights w∗ and the initial weights w0 have zero-mean, O(1/D) variance,
i.i.d. entries, and finite 8th moment; ∇2ϕ−1(w0

i ) has finite 1st and 2nd moments.

Then for λ̂ =
(
XHϕ−1X⊤)−1

(y −Xw0), individual entries of X⊤λ̂ converge (in distribution) to
a Gaussian with a constant variance σ2

λ as D, N → ∞ with N = o(D1/(5+δ)) (for any δ > 0):

Dh√
N

(
X⊤λ̂

)
i
−→d N (0, σ2

λ) , (16)

where h = E
[
∇2ϕ−1(w0

i )
]

(a scaling factor that is identical for all entries, which is not equivalent
to Hϕ−1 ), and σ2

λ depends on the distributions of inputs and initial weights. The whole vector X⊤λ
converges to a Gaussian process (over discrete indices) with weak correlations for distant points.

Proof sketch. First, we show that scaled
(
XHϕ−1X⊤)−1

behaves like an identity for large N,D.
Then, we show that (X⊤(y −Xw0))i is a sum of N exchangeable variables (i.e. any permutation
of these points has the same distribution) that satisfy conditions for a central limit theorem for such
variables. Finally, we convert this result into a convergence to a Gaussian process.

We postpone the full proof, along with a version of the theorem for generic labels (without the
teacher weights w∗), to Appendix A. To unpack this theorem a bit more for the reader, combined
with Eq. (13), the theorem shows that given some initial weights, w0, the distribution of w∞ will
depend on that initial distribution plus a term that converges to a Gaussian (in the dual space), as
long as the loss has a unique finite root (defined before Eq. (8)) and the dataset correlations are small
(cij , c′ij in Theorem 1). As such, the distribution of the solution weights will depend on the initial
weights and the potential, but not on the loss or data. To clarify the assumptions used, we need the
pairwise correlations cij , c′ij between distant inputs to be small. This is a common feature in natural
sensory data Ruderman (1994) and neural activity Schulz et al. (2015). Finally, we note that the N
scaling with D results from a generic large deviations bound and could likely be improved under
some assumptions. In Section 4, we experimentally verify that N = D0.5 and N = D0.75 result in
Gaussian behavior in the tested settings.
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Practical usage of our result. Since we expect the weight change in the dual space to look Gaus-
sian, we also expect the weight change in the dual space of a wrong potential to not be Gaussian.
If we denote the true potential ∇ϕ = f and another potential ∇ϕ′ = f ′, our result states that the
change in the dual space is Gaussian: f(w∞)−f(w0)=ξ, where ξ is Gaussian. If we use the wrong
potential, i.e. f ′, we get f ′(w∞)=f ′(f−1(f(w0)+ξ)). If f and f ′ are similar, then we f ′(f−1(·))
is approximately an identity, so we would see a (slightly less than for f ) Gaussian change. If not, the
change will be non-Gaussian due to the nonlinear f ′(f−1(·)) transformation. Therefore we will be
able to determine the potential used for training by finding the one with the most Gaussian change.

Applicability to other learning rules. Our result in Theorem 1 is made possible by two compo-
nents: the structure of mirror descent solutions (see Eq. (8)) and the Gaussian behavior of large sums.
However, the mirror descent framework can be applied to any learning rule, if we replace the gradi-
ent w.r.t. the loss in Eq. (5) with a generic error term gt: ∇ϕ(wt+1) = ∇ϕ(wt)−η gt. This way, for
small and approximately independent (e.g. exchangeable) error terms gt their total contribution to
the weight change would also follow the central limit theorem, resulting in a small Gaussian weight
change. However, for generic error terms we cannot rely on Eq. (8) and can only provide generic
conditions for Guassian behavior. Therefore, while our work leverages gradient-based optimization,
the intuition we present applies more broadly.

Theorem applicability in lazy and rich regimes. The variance of the Gaussian term in Theorem 1
depends on the choice of the potential (via h). This means that the magnitude of the change from w0

to w∞ will depend on ϕ. Moreover, if the “learned” term X⊤λ in Eq. (13) is not small compared to
∇ϕ(w0), our theory will not be applicable since the linearization will not be valid. Therefore, the
applicability of our theorem is related to the question of “rich” versus “lazy” regimes of learning.
Our theory is valid only in the lazy regime, in which learning is mostly linear Chizat et al. (2019).

However, whether we are in the rich or lazy regime turns out to depend on the potential. Assume for
simplicity that all initial weights are the same and positive: w0

d =w0 =α/
√
D. The standard lazy

regime corresponds to large weights with α=1, and the standard rich regime corresponds to small
weights with α=1/

√
D. We can show (see Appendix A.1 for a derivation) that for p-norms, the dual

weights are asymptotically larger than the weight changes as long as α≫
√

N/D (for N data points
and D weights). For negative entropy, this bound is more loose: α≫

√
N/(D logD). Therefore,

for the same weight initialization and dataset size, negative entropy would typically produce smaller
updates. For the standard for deep networks initialization with α≈1, our theory should be applicable
to datasets with N≪D (e.g. N=D0.5).

4 EXPERIMENTS

Here we empirically verify our theory under conditions relevant for neuroscientific experiments. We
use PyTorch Paszke et al. (2019) and FFCV library for fast data loading Leclerc et al. (2022). The
experiments were performed on a local cluster with A100 NVIDIA GPUs. Experimental details are
provided in Appendix B. Code is available at github.com/romanpogodin/synaptic-weight-distr.

4.1 LINEAR REGRESSION

We begin by testing whether the theorem holds in the case of linear regression, where we know
that Eq. (8) holds. However, for experimental applicability, we want to verify that the histogram
of ξi over entries i is Gaussian even when we draw it from a single network (rather than several
initializations of a network), which would be the condition that holds in real neural experiments. As
well, we want to verify that the change of weights ξi=∇ϕ(w∞

i )−∇ϕ(w0
i ) is smaller than ∇ϕ(w0

i ).

For each potential, we draw xi ∼ N (0, 1) + U(−0.5, 0.5) such that the correlation structure is as
follows: Exi xj = (−1)|i−j|/(1+ |i−j|c) for c = 1, 2. Note that c = 1 is a more relaxed condition
than the correlation assumption used in proving Theorem 1. This is, therefore, a test of whether the
theorem applies more broadly. In our experiments here, the initial weights are drawn from wi ∼
N (0, 1/D) for width D, and labels are drawn as y = ±1 (equal probability). We then optimize (y−∑

i xiwi)
2 for networks of different widths D and N = D0.5, D0.75. Strictly speaking only N =

o(D1/(5+δ)) satisfies Theorem 1, so again, we are testing whether the theorem holds empirically
when we relax our assumptions. We measure two things: the magnitude of weight changes in the

6
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Figure 3: A. Linear regression solutions for negative entropy (NE) and fast correlation decay (c=2).
Left: integral of absolute CDF difference (∆CDF) between normalized uncentered weights and
N (0, 1). Right: magnitude of weight changes relative to the initial weights in the dual space (∆ϕ).
Solid line: median over 30 seeds; shaded area: 5/95% percentiles; pink: N=D0.5; blue: N=D0.75.
B. ∆CDF for Gaussian (left) and log-normal (right) weight initializations and a Gaussian addition
w.r.t. ϕ, evaluated on another potential ϕ′ (e.g. blue lines are sampled for NE but evaluated on every
potential). Solid line: mean over 30 seeds; shaded areas: mean ± standard deviation.

dual space ∆ϕ(w) = ∥ξ∥2 / ∥∇ϕ(w0)∥2 (i.e. ξ normalized relative to the initial weights) and
∆CDF =

∫
dt |eCDF(t)− CDF(t)| (i.e. the difference between the empirical cumulative density

function, eCDF(t) and the standard normal CDF(t))1.

First, we find that ∆CDF is always relatively small (≤ 0.2) and converges towards zero as the
number of weights increases (Fig. 3A for negative entropy with c = 2. The full results are postponed
to the appendix; see Fig. 6). Hence, we find that the weight changes in the dual space behave like a
Gaussian when we know what potential was used for training, confirming Theorem 1. Second, we
find that the magnitude of weight changes in the dual space ∆ϕ(w) is much smaller than 1 for large
widths, justifying the linearization in Eq. (14).

4.2 ROBUSTNESS TO POTENTIAL CHANGE

We also need to test what happens if we don’t know the true potential used for training, here denoted
ϕ, which is the case for neural data. As discussed after Theorem 1, for ϕ′ close to the true potential
we should see Gaussian changes, and for ϕ′ far from ϕ – non-Gaussian ones. We test negative
entropy and 2/3-norms as ϕ, and p-norm with p ∈ [1.1, 3] and negative entropy as ϕ′; w0 is drawn
from either Gaussian or log-normal distributions with approximately the same variance. We draw a
Gaussian ξϕ to compute w∞ using ϕ from ξϕ=∇ϕ(w∞)−∇ϕ(w0). We find that the “empirical”
change for ϕ′, ξϕ′ =∇ϕ′(w∞)−∇′ϕ(w0), is indeed Gaussian only for small variations from the
true potential ϕ (Fig. 3B). In particular, the distinction between negative entropy and other, non-
multiplicative updates, is very pronounced.2 For ϕ= 3-norm and log-normal initialization, the range
for a Gaussian ξϕ′ almost reached p = 2.3 (Fig. 3B, bottom, orange line). Thus, if we hypothesize
a potential, ϕ′, that is similar to the true potential ϕ, we get a nearly Gaussian ξϕ′ . In contrast, if we
have the wrong form for the potential (e.g. the potential is the negative entropy but we hypothesize
a 3-norm potential), then we get a clearly non-Gaussian distribution. As such, we can use the
distribution of ξϕ′ to test hypotheses about synaptic geometry.

4.3 FINETUNING OF DEEP NETWORKS

We expect our theory to work for networks that behave similarly to their linearization during learn-
ing. One such example is a pretrained trained network that’s being finetuned on new data. If the new
data comes from a similar distribution as the pretraining data, then the linearized network should
approximate its non-linearized counterpart well with respect to weight changes Mohamadi et al.
(2022); Ren et al. (2023). This is also the scenario we expect to see in neural data if we are train-
ing an animal on an ethologically relevant task that matches its prior life experience and innate
capabilities to a reasonable degree.

1We use normalized but uncentered weight distributions, since we predict the change ξ to be zero-mean.
2Negative entropy is placed at p = 1, as for weights that sum to 1, p−norms are equivalent to the shifted

and scaled negative Tsallis entropy, which tends to negative entropy as p → 1.
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Figure 4: Finetuning on 10 randomly sampled ImageNet validation subsets (N = D0.5 data
points). A. Integral of absolute CDF difference (∆CDF) between normalized uncentered weights
and N (0, 1) for networks trained with different potentials. Circle: individual value; bar: mean
over seeds. Pink box (bottom right): examples of weight change histograms (pink) plotted against
N (0, 1) (black). B. Same as A., but ∆CDF is calculated w.r.t. other potentials.

Finetuning deep networks still breaks several assumption of Theorem 1: the initial weights are not
i.i.d., the network is not linearized (although potentially close to it), and the data correlations are
unknown. Moreover, the cross-entropy loss we use is technically not a loss with a unique finite root.
However, the readout layers in the deep networks that we test have fewer units than the number of
ImageNet Deng et al. (2009) classes, so the activity in the readout layer is not linearly separable and
the weights do not tend to infinity. Yet, they are still large and change significantly during training, so
we exclude the readout layer when assessing weight distributions (along with biases and BatchNorm
parameters). We use networks pretrained on ImageNet, and finetune them to 100% accuracy on a
subset of ImageNet validation set. The pretrained networks have not seen the validation data, but
they already perform reasonably well on it, so there’s no distribution shift in the data that would
force the networks to change their weights a lot. We used N = D0.5 data points for D weights
(N = D0.75 exceeded dataset size) and four architecture types: ShuffleNet v2 Ma et al. (2018)
(x0.5/x1), EfficientNet Tan & Le (2019) (b0-b3), ResNet He et al. (2016) (18/34), and CORnet
Kubilius et al. (2019) (S/RT) chosen to span a wide range of parameter counts (0.3M to 53.4M).
CORnets were also chosen since they mimic the primate ventral stream and its recurrent connections.

For all three tested potentials, weight changes are close to a Gaussian distribution (∆CDF < 0.2;
Fig. 4A). ShuffleNet v2s and ResNets reach consistently more Gaussian solutions than EfficientNets
and CORnets, despite ShuffleNet v2s having fewer parameters. This suggests that some trained ar-
chitectures are more “linear”, which may be due to the architecture itself, or the way the networks
were trained. The magnitude of changes in the dual space was typically smaller than 0.2 (see Ap-
pendix B). Just like for the toy task in Fig. 3B, if we trained with a specific potential, ϕ, we only
observed Gaussian changes when the hypothesized potential, ϕ′, was close to ϕ (Fig. 4B). The only
exceptions were 3-norm-trained EfficientNets 0,1,3 and CORnet-S, for which the 2-norm solution
was slightly more Gaussian than the 3-norm solution even when ϕ was a 3-norm. However, this dif-
ference was small, and the networks had overall worse fit than other architectures. In all cases, using
negative entropy as ϕ′ provided the best fit for negative entropy-trained networks and the worst fit
for other potentials. This is important because negative entropy results in multiplicative weights up-
dates, while p-norms result in additive updates, which represent very distinct hypotheses for synaptic
plasticity mechanisms. Taken together, these empirical results suggest that Theorem 1 holds more
generally and can be used to infer the distribution of weight changes beyond linear regression.

4.4 ESTIMATING SYNAPTIC GEOMETRY EXPERIMENTALLY

Previously we showed that Theorem 1 holds when finetuning pretrained deep networks, despite
non-i.i.d. initial weights and an unknown input correlation structure. As such, these finetuning
experiments indicate our theory is applicable to neuroscience experiments when we measure the
distribution of weights before and after learning, and use the histogram of weight changes to estimate
the synaptic geometry. In this section we apply this technique to experimental neuroscience data.
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Specifically, we find that if one knows the initial weights, w0, then it is possible to distinguish be-
tween different potentials. But if the initial weights are unknown, then multiple potential functions
can fit the data. To show this, we use data from a recent experimental study that measured an ana-
logue of synaptic weights (synaptic spine size) using electron microscopy Dorkenwald et al. (2022)
(pink histogram in Fig. 5). In the log space, Dorkenwald et al. (2022) found that the distribution was
well modelled by a mixture of two Gaussians with approximately the same variance (pink histogram
in Fig. 5) – instead of one Gaussian as has been previously reported Loewenstein et al. (2011). First,
we show that the experimental data is consistent with the negative entropy potential (Fig. 5A), when
using the following initialization: consider elements of w0 equal to a constant µ1 with probability p,
and to µ2 with probability 1−p. Then, ∇ϕ(w∞) = ∇ϕ(w0)+ξ will be a mixture of two Gaussians
with the same variance but different means, and Fig. 5A shows the ξ that fits the experimental data
(parameters from Dorkenwald et al. (2022) with equalized variance, see Appendix B.4). However,
the data is also consistent with the 3-norm potential for a different initialization: if w0 is a mixture
of a constant and a log-normal, then adding an appropriate ξ in the dual space also results in a weight
distribution that resemble a mixture of two log-normals and appears to fit the experimental data well
(Fig. 5B). Thus, if our goal is to determine the synaptic geometry of the brain, then it is important to
estimate the synaptic weight distributions before and after training. Nevertheless, with this data we
can rule out a Euclidean synaptic geometry, and if we do have access to w0, then our results show
that it is indeed possible to experimentally estimate the potential function.

5 DISCUSSION

We presented a mirror descent-based theory of what synaptic weight distributions can tell us about
the underlying synaptic geometry of a network. For a range of loss functions and under mild as-
sumptions on the data, we showed that weight distributions depend on the synaptic geometry, but
not on the loss or the training data. Experimentally, we showed that our theory applies to finetuned
deep networks across different architectures (including recurrent ones) and network sizes. Thus, our
theory would likely apply as well to the hierarchical, recurrent architectures seen in the brain. Our
work predicts that if we know synaptic weights before and after learning, we can find the underlying
synaptic geometry by finding a transformation in which the weight change is Gaussian.

It is important to note that by adopting the mirror descent framework we made the assumption that
the brain would seek to achieve the best performance increases for the least amount of synaptic
change possible. But, these results could be extended to learning algorithms that are not explicitly
derived from that principle, such as three-factor Hebbian learning Frémaux & Gerstner (2016);
Kuśmierz et al. (2017); Pogodin & Latham (2020). For a single layer, three-factor updates between
y and x follow ϵ y x for some error signal ϵ. As long as ϵ dynamics leads to a solution, the analysis
should be similar to the general mirror descent one since weights will span x (as required by the
theory). For multi-layered networks, all we would need to assume is that the input to each layer
does not change too much over time, similar to the linearization argument made for deep networks.

More broadly, our work opens new experimental avenues for understanding synaptic plasticity in
the brain. Our approach isolates synaptic geometry from other components of learning, such as
losses, error signals, error pathways, etc. Therefore, our findings make it practical to experimentally
determine the brain’s synaptic geometry.
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APPENDICES

A WEIGHT DISTRIBUTION CONVERGENCE

We start by giving an intuitive outline of our proof of Gaussian convergence of weight changes. As
for any Gaussian convergence, we’ll end up using the central limit theorem (although an unusual
version of it) w.r.t. the dataset size. With this in mind, the steps are:

Setup First, we decide how we take the large data and network limits. We have a vector of weight
changes whose size grows to infinity. To discuss what it converges to, we consider this
vector to be a part of a stochastic process (so, an already infinite-dimensional vector). We
then consider the convergence of this stochastic process to some limiting process (in our
case, to a Gaussian process). This allows us to approximate a sample of weight changes as
a sample from that limiting process.

Lemma 1 Next, we show that the inverse matrix in Eq. (15) used in the weight change expression
behaves like an identity matrix. If we just took the limit w.r.t. the network size, this lemma
would be trivial since off-diagonal elements are products of independent vectors. But we
also increase the dataset size (and hence the matrix itself), so we need to be more careful.
This is where we get (most of) the requirements for how the dataset size should scale with
network size.

Lemma 2 shows that the deviations from identity resulting from Lemma 1 don’t affect the final weight
change expression when we take the limits.

Lemma 3 shows that if you replace that inverse matrix with an identity, you can apply the exchange-
able central limit theorem to the weight change expression. At this point, it’s applied for
any finite slice of the stochastic process we defined. The exchangeable central limit theo-
rem has much more restrictive moment conditions than the standard CLT, since it doesn’t
require independence, so we have to carefully check all of them.

Theorem 1 Finally, we combine the lemmas and show that any finite slice of that stochastic process
converges to a Gaussian random variable. Due to the properties of Gaussian processes, we
can conclude that the whole process converges to a Gaussian process.

Setup We want to show that the weight change looks Gaussian in the large width limit. Since the
number of weights goes to infinity, “looks Gaussian” should translate to convergence to a Gaussian
process. Our approach will be similar to Matthews et al. (2018), which showed convergence of wide
networks to Gaussian processes. However, they worked with finite-dimensional inputs and multiple
hidden layers; for our purposes we’ll need to have an infinite-dimensional input and a single layer.

We’ll be working with countable stochastic processes defined over Z>0. We need three stochastic
processes: the input data X , the initial weights W 0 and the “teacher” weights W ∗.

For width D, the label yD and the model at initialization ŷ0D are defined as

yD =

D∑
d=1

1√
D
Xd W

∗
d , ŷ0D =

D∑
d=1

1√
D
Xd W

0
d . (17)

For N sample points of dimension D, we stack them into an N × D matrix XD, and denote the
D-dimensional samples of weights as w∗D, w0D. The weight change we’re interested in is then

ξD =
1√
D

(
XD

)⊤ (
XD HD (XD)⊤

)−1
XD(w∗D −w0D) (18)

=
(
XD

)⊤ (
XD HD (XD)⊤

)−1
(yD − y0

D) . (19)

Note the explicit 1/
√
D scaling we omitted in the main text for convenience and N -dimensional

vectors of labels yD, y0
D. Here HD is a diagonal matrix with hdd = ∇2ϕ−1(W 0

d /
√
D) (we dropped

the ϕ−1 subscript used in the main text for readability).

Invertibility assumption. Throughout the proofs we assume that XD HD (XD)⊤ is almost surely
invertible. This is a very mild assumption, although it can break if Xi

d are sampled from a discrete
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distribution, if Xd have strong correlations along d or if the initial weights are not almost surely
non-zero.

ξD is a D-dimensional vector, but we understand it as a subset of the following stochastic process:

ΞD = (X)
⊤ (

XD HD (XD)⊤
)−1

(yD − y0
D) . (20)

This infinite-width expansion is similar to the one used in Matthews et al. (2018). It’s a well-
defined stochastic process since N is finite, meaning that ΞD is a weighted sum of N stochas-
tic processes. However, it formalizes convergence of a finite-dimensional vector ξD to something
infinite-dimensional. That is, we’ll work with convergence of the process ΞD to a limit process Ξ in
distribution.3

First, we show that an appropriately scaled matrix inside the inverse behaves like an identity:
Lemma 1. Assume that the input data points Xd have zero mean and unit variance. Additionally
assume that uniformly for any d, there exists a constant c such that

∞∑
d′=1

(EXd Xd′)
2 ≤ c ,

∞∑
d′=1

∣∣Cov (X2
d , X

2
d′

)∣∣ ≤ c . (21)

Also for i.i.d. initial weights, define moments (assuming they exist) of hdd = ϕ−1(W 0
d /

√
D) as

h1(D) = E∇2ϕ−1(W 0
d /

√
D) , h2(D) = Var

(
∇2ϕ−1(W 0

d /
√
D)
)
. (22)

Then for N,D large enough (so the r.h.s. is smaller than 4),∥∥∥∥∥
(

1

Dh1(D)
XD HD (XD)⊤

)−1

− IN

∥∥∥∥∥
2

≤ 8

√
N4

D

c+ 1

p

(
1 +

h2

h2
1

)
(23)

with probability at least 1− p.

Proof. Denote

A ≡ 1

Dh1
XD HD (XD)⊤ , Aij =

1

Dh1

D∑
d=1

Xi
d X

j
d hdd , (24)

dropping the explicit D-dependence in h1 and h2 for convenience.

Since all Xd are independent from W 0
d , EAij = δij . Variance can be bounded. For i = j,

Var(Aii) =
1

D2 h2
1

D∑
d=1

Var((Xi
d)

2 hdd) +
1

D2 h2
1

D∑
d,d′ ̸=d

Cov((Xi
d)

2 hdd, (X
i
d′)2 hd′d′) (25)

=

D∑
d=1

h2 + (h2
1 + h2)Var((Xi

d)
2)

D2 h2
1

+

D∑
d,d′ ̸=d

h2
1 Cov

(
(Xi

d)
2, (Xi

d′)2
)

D2 h2
1

(26)

≤ h2(1 + Var((Xi
d)

2))

Dh2
1

+
c

D
≤ c

D

(
1 +

h2

h2
1

)
+

h2

Dh2
1

≤ c+ 1

D

(
1 +

h2

h2
1

)
, (27)

where in the last line we used the second part of Eq. (21).

For i ̸= j,

Var(Aij) =
1

D2 h2
1

D∑
d=1

Var(Xi
dX

j
d hdd) +

1

D2 h2
1

D∑
d,d′ ̸=d

Cov(Xi
d X

j
d hdd, X

i
d′ X

j
d′ hd′d′) (28)

=

D∑
d=1

(h2
1 + h2)

(
Var(Xi

d)
)2

D2 h2
1

+

D∑
d,d′ ̸=d

h2
1

(
Cov(Xi

d, X
i
d′)
)2

D2 h2
1

≤ c

D

(
1 +

h2

h2
1

)
, (29)

3See Eq. 10 in Matthews et al. (2018) for the discussion on what ”in distribution” means for stochastic
processes.
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now using the first part of Eq. (21) for the last inequality.

Using Chebyshev’s inequality and the union bound, we can bound

P
(
max
ij

|Aij − δij | ≥ ϵ

)
≤ N2

ϵ2
c+ 1

D

(
1 +

h2

h2
1

)
≡ p . (30)

Therefore,

∥A− IN∥2 ≤ ∥A− IN∥F ≤ ϵN =

√
N4

D

c+ 1

p

(
1 +

h2

h2
1

)
(31)

with probability at least 1− p.

By Lemma 4.1.5 of Vershynin (2018), if ∥A − IN∥2 ≤ ϵN then all singular values σi of A lie
between (1 − ϵN)2 and (1 + ϵN)2 for N large enough so ϵN < 1. Therefore, we also have a
bound on the singular values of A−1. Additionally taking parameters big enough for ϵN ≤ 0.5, we
have

∥A−1 − IN∥2 = max
i

(
1

σi
− 1

)
≤ 1

(1− ϵN)2
− 1 =

2ϵN − ϵ2N2

(1− ϵN)2
≤ 8 ϵN , (32)

which completes the proof.

Now we need to show that the inverse behaves like an identity in the overall expression as well:

Lemma 2. In the assumptions of Lemma 1, additionally assume that W ∗
d and W 0

d have fi-
nite mean and variance independent of d and D, that h2(D)/h1(D)2 is independent of D, and∑∞

d′=1 EXd Xd′ ≤ c uniformly over d. Then for any scalar weights αi and a finite index set
A ⊂ Z>0, as D, N → ∞ with N = o(D1/(5+δ)) for any δ > 0,

1√
N

∑
p∈A

αp (X: p)
⊤ (

A−1 − IN
)
(yD − y0

D) →p 0 . (33)

Remark. For both cross-entropy and p-norm potentials, ∇2ϕ−1(W/
√
D) is a power of W/

√
D,

and so h2(D)/h1(D)2 depends only on the moments of W , but not on D, therefore satisfying the
assumption.

Proof. Again denoting the matrix inside the inverse as A (see Eq. (24)), we first bound the following
via Cauchy-Schwarz:∣∣∣∣∣∑

i∈A
αi (X: i)

⊤ (
A−1 − IN

)
(yD − y0

D)

∣∣∣∣∣
2

≤

∥∥∥∥∥∑
i∈A

αi (X: i)

∥∥∥∥∥
2

2

∥∥yD − y0
D

∥∥2
2

∥∥A−1 − IN
∥∥2
2
.

(34)

First term. Using Cauchy-Schwarz and that Xp variances are one, and also that α, A are fixed,

E

∥∥∥∥∥∥
∑
p∈A

αp (X: p)

∥∥∥∥∥∥
2

2

= N E

∑
p∈A

αp X
1
p

2

≤ N E

∑
p∈A

α2
p

∑
p∈A

(X1
p)

2

 = O(N) . (35)

Second term. Using that weights and inputs are independent, and that the sum of input data covari-
ances is bounded by c by our assumption,
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E
∥∥yD − y0

D

∥∥2
2
=

N

D
E

(
D∑

d=1

X1
d (W

∗
d −W 0

d )

)2

(36)

=
N

D

D∑
d,d′ ̸=d

(E (W ∗
d −W 0

d ))
2 E (X1

d X
1
d′) (37)

+
N

D

D∑
d=1

(
(E (W ∗

d −W 0
d ))

2 + Var((W ∗
d −W 0

d ))
)
E (X1

d)
2 (38)

≤ N c (E (W ∗
d −W 0

d ))
2 +N Var((W ∗

d −W 0
d )) = O(N) . (39)

Third term. Here we will use the probabilistic bound from Lemma 1.

Overall, for any δ > 0,

P

 1

N

∣∣∣∣∣∑
i∈A

αi (X: i)
⊤ (

A−1 − IN
)
(yD − y0

D)

∣∣∣∣∣
2

> ϵ

 (40)

≤ P

∥∥∥∥∥∑
i∈A

αi (X: i)

∥∥∥∥∥
2

2

> N1+ δ
2 ;
∥∥yD − y0

D

∥∥2
2
> N1+ δ

2 ;
∥∥A−1 − IN

∥∥2
2
>

ϵ

N1+δ

 (41)

≤
E
∥∥∥∑p∈A αp (X: p)

∥∥∥2
2

N1+ δ
2

+
E
∥∥yD − y0

D

∥∥2
2

N1+ δ
2

+ P
(∥∥A−1 − IN

∥∥2
2
>

ϵ

N1+δ

)
(42)

≤ O

(
1

Nδ/2

)
+ 64

N5+δ

D

c+ 1

ϵ

(
1 +

h2

h2
1

)
(43)

where we used Eq. (34) in the first line, the union bound with Markov’s inequality in the second and
the bounds on all terms in the third one (for N large enough so ϵ/N1+δ < 2).

As long as N5+δ = o(D) and h2/h
2
1 is constant, the probability goes to zero with N,D.

The previous result suggests we can replace the inverse matrix in ΞD (Eq. (20)) with an identity.
This will require an additional step, but now we can show that with the identity, for any finite index
set A of points in ΞD and arbitrary weights α, the A, α-projection of ΞD solution converges to a
Gaussian.

Lemma 3. Consider a finite index set A and an associated vector of weights α. If in addition
to condition of Lemmas 1 and 2 we assume weights have a finite 8th moment, Xi

p are uniformly
bounded, and that Xi

p(yD − y0
D)i (for point i and index p) converges in probability to a random

variable. Then the A, α-projection defined as,

1√
N

N∑
i=1

RNi, RNi =
∑
p∈A

αp X
i
p(yD − y0

D)i , (44)

converges to N (0, σ2
W α⊤ΣAα) in distribution, where (ΣA)pp′ = EXi

pX
i
p′ and σ2

W = E (W ∗
d −

W 0
d )

2, as long as D increases monotonically with N such that N/D = o(1).

Proof. We assumed that D is a monotonically increasing function of N . Therefore, we get a trian-
gular array of RNi with infinitely exchangeable rows. That is, for each N we have a process RNi

with i = 1, . . . , such that any permutation of indices i doesn’t change the joint distribution. This
is due to joint weight dependence among labels. Sums of infinitely exchangeable sequences behave
similarly to sums of independent sequences when it comes to limiting distributions. In particular,
we will use the classic central limit theorem result of Blum et al. (1958).

To apply it, we need to compute several moments of RNi.
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First moment. Since E(W ∗
d −W 0

d ) = 0, we have ERNi = 0.

Second moment. Again using E (W ∗
d −W 0

d ) = 0 and the fact that all weights are i.i.d., so E (W ∗
d −

W 0
d )(W

∗
d′ −W 0

d′) = δij , we get

σ2
R = ER2

Ni =
1

D

∑
pp′dd′

αp αp′ E Xi
pX

i
p′Xi

dX
i
d′(W ∗

d −W 0
d )(W

∗
d′ −W 0

d′) (45)

=
1

D

∑
pp′d

αp αp′ E Xi
pX

i
p′(Xi

d)
2(W ∗

d −W 0
d )

2 . (46)

This term is O(1) due to the 1/D scaling. Denoting σ2
W = E (W ∗

d − W 0
d )

2 and γD
pp′ =∑

d E Xi
pX

i
p′(Xi

d)
2/D (and the corresponding matrix ΓD), we can re-write the variance as

σ2
R(D) = σ2

W α⊤ΓDα . (47)

Absolute 3rd and 4th moments. For convenience, we first find the 4th moment. Since the inputs
are bounded and independent from the weights, and dropping the summation over all pi and di for
readability,

ER4
Nj =

1

D2

∑(
4∏

i=1

αpi

)
E

(
4∏

i=1

Xj
pi
Xj

di

)
E

(
4∏

i=1

(W ∗
di

−W 0
di
)

)
= O(1) . (48)

This follows from E
(∏4

i=1 X
j
pi
Xj

di

)
= O(1) due to bounded inputs, and due to centered and i.i.d.

weights E
(∏4

i=1(W
∗
di

−W 0
di
)
)
= 0 if any di differs from the rest (i.e. only O(D2) out of D4 are

non-zero; these are the ones with d1 = d2 and d3 = d4 and permutations of those conditions).

For the absolute 3rd moment, we can use Cauchy-Schwarz to find its scaling:

E |RNj |3 = E |RNj | · |RNj |2 ≤
√
E |RNj |2 E |RNj |4 = O(1) , (49)

since both terms in the square root are O(1).

Covariance. For two different points i and j, defining the covariance σpd = EXi
pX

i
d,

ERNiRNj =
1

D

∑
pp′dd′

αp αp′ E Xi
pX

j
p′X

i
dX

j
d′(W

∗
d −W 0

d )(W
∗
d′ −W 0

d′) (50)

=
1

D

∑
pp′d

αp αp′ E Xi
pX

j
p′X

i
dX

j
d(W

∗
d −W 0

d )
2 =

σ2
W

D

∑
pp′d

αpαp′σpdσp′d . (51)

Since we required
∑

d σ
2
pd ≤ c,

∑
d σpdσp′d ≤

√
(
∑

d σ
2
pd)(

∑
d σ

2
p′d) ≤ c by Cauchy-Schwarz.

Thus, ERNiRNj = O(1/D) = o(1/N).

Covariance of R2
Ni. Again, take i ̸= j and adapt the calculation of the 4th moment:

ER2
NiR

2
Nj=

1

D2

∑(
4∏

k=1

αpk

)
E

(
2∏

k=1

Xi
pk

Xi
dk

)(
4∏

k=3

Xj
pk

Xj
dk

)(
4∏

k=1

(W ∗
dk

−W 0
dk
)

)
.

(52)

Due to i.i.d. weights the whole sum has only O(D2) terms and therefore the whole expression is
O(1). However, we require a more precise control over the sum.

The summands split up into three cases (with a potential O(D) overlap): (1) d1 = d2 = d3 = d4,
(2) d1 = d3, d2 = d4 or d1 = d4, d2 = d3, and (3) d1 = d2, d3 = d4. The first case has only
D terms, each O(1), in the sum over dk. The second case is a bit more tricky. Assuming d1 = d3
w.l.o.g., by Cauchy-Schwarz and by the assumptions on correlations (note that the weights are i.i.d.,
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so we can take the expectation w.r.t. the weights out of the sum),∑
d1,d2

E
(
Xi

p1
Xi

p2
Xi

d1
Xi

d2

) (
Xj

p3
Xj

p4
Xj

d1
Xj

d2

)
E
(
(W ∗

d1
−W 0

d1
)2(W ∗

d2
−W 0

d2
)2
)

(53)

≤
∑
d1,d2

√
E
(
Xi

p1
Xi

p2

)2√E
(
Xi

p3
Xi

p4

)2E (Xi
d1
Xi

d2

)2 E ((W ∗
d1

−W 0
d1
)2(W ∗

d2
−W 0

d2
)2
)

(54)

≤ cD

√
E
(
Xi

p1
Xi

p2

)2√E
(
Xi

p3
Xi

p4

)2E ((W ∗
1 −W 0

1 )
2(W ∗

2 −W 0
2 )

2
)
. (55)

Since other terms in the full sum are O(1), the contribution of the second case is O(D).

The last case is what we had for covariance. Since d1 = d2 and d3 = d4,∑
d1,d3

E
(
Xi

p1
Xi

p2
(Xi

d1
)2
) (

Xj
p3
Xj

p4
(Xd3

)2
)
E
(
(W ∗

d1
−W 0

d1
)2(W ∗

d3
−W 0

d3
)2
)

(56)

= D(D − 1)γD
p1p2

γD
p3p4

σ4
W +DγD

p1p2
γD
p3p4

E
(
W ∗

1 −W 0
1

)4
. (57)

Now we can combine all three terms, using that the weights have finite second and 4th moments.
We will also use that for d1 = d2 and d3 = d4, we can ignore the second term with E

(
W ∗

1 −W 0
1

)4
since it’s an O(D) contribution to an O(D2) sum. Therefore,

ER2
NiR

2
Nj =

1

D2

∑
pk

(
4∏

k=1

αpk

)(
σ4
WD(D − 1)γD

p1p2
γD
p3p4

+O(D)
)

(58)

=
(
σ2
W α⊤ΓDα

)2
+O

(
1

D

)
= σ4

R(D) +O

(
1

D

)
. (59)

Asymptotic of the second moment. To find the limit of the variances, we need to compute

E R̃2
Ni =

1

D
E
∑
pp′d

αpαp′ Xi
pX

i
p′(Xi

d)
2(W ∗

d −W 0
d )

2 . (60)

This variable is uniformly integrable since its 4th moment exists (almost identical computation to
R2

Ni) and is uniformly bounded for all N (using Billingsley (1999), immediately after Theorem 3.5
for ϵ = 2). Therefore, limN E R̃2

Ni = E limN R̃2
Ni (Theorem 3.5 in Billingsley (1999)). The latter

is easy to compute, since

E
∑
d

(Xi
d)

2(W ∗
d −W 0

d )
2 = Dσ2

W , (61)

Var

(
E
∑
d

(Xi
d)

2(W ∗
d −W 0

d )
2

)
=
∑
d,d′

Cov
(
(Xi

d)
2(W ∗

d −W 0
d )

2, (Xi
d′)2(W ∗

d′ −W 0
d′)2
)

(62)

= O(D)+
∑

d,d′ ̸=d

Cov
(
(Xi

d)
2(W ∗

d −W 0
d )

2, (Xi
d′)2(W ∗

d′ −W 0
d′)2
)

(63)

= O(D)+σ2
W

∑
d,d′ ̸=d

Cov
(
(Xi

d)
2, (Xi

d′)2
)
= O(D) , (64)

where in the last line we again used the assumption on summable covariances of (Xi
d)

2.

Therefore, by Chebyshev’s inequality 1
D

∑
d(X

i
d)

2(W ∗
d −W 0

d )
2 (note the returned 1/D) converges

to σ2
W in probability. Therefore, by Slutsky’s theorem R̃2

Ni converges to σ2
W

∑
pp′ αpαp′ Xi

pX
i
p′ .

Since the expectation of Xi
pX

i
p′ is σpp′ , we can denote ΣA as a matrix with entries σ2

pp′ , such that

E R̃2
Ni = σ2

W α⊤ΓDα → σ2
W α⊤ΣAα . (65)

Since we assumed that RNi converges to a random variable, and R2
Ni is uniformly integrable (since

its 2nd moment exists), we can claim that ER2
Ni → σ2

W α⊤ΣAα = ER2.
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For R2
NiR

2
Nj , we can repeat the calculation. It’s also uniformly integrable since its 8th moment

exists: E
∏8

k=1(W
∗
dk

−W 0
dk
) leaves out D4 terms out of D8, the weights have a finite 8th moment,

and the inputs are bounded. Therefore,

ER2
NiR

2
Nj → σ4

W

(
α⊤ΣAα

)2
. (66)

CLT for exchangeable arrays. Assume that σ2
R(D) = O(1) (defined in Eq. (47)) has a non-zero

limit, and D is large enough for σ2
R(D) > 0. Then GNi = RNi/σR(D) is zero mean, unit variance

and has a finite third moment. It also satisfies the following:

EGN1GN2 = O

(
1

D

)
= o

(
1

N

)
, (67)

lim
N

EG2
N1G

2
N2 = 1 , (68)

E |GN1|3 = O(1) = o(
√
N) . (69)

Therefore, GNi satisfies all conditions of Theorem 2 in Blum et al. (1958), and

1√
N

N∑
i=1

GNi −→d N (0, 1). (70)

Therefore, we also have
1√
N

N∑
i=1

RNi −→d N (0, σ2
W α⊤ΣAα). (71)

(Note that in the case α⊤ΣAα = 0, we don’t need to apply CLT since the sum converges to zero in
probability by Chebyshev’s inequality.)

Now we’re ready to prove the main result (see the more informal statement in the main text, Theo-
rem 1).
Theorem 1. In the assumptions of Lemmas 1 to 3, the scaled sequence of stochastic processes
ΞD = (X)

⊤ (
XD HD (XD)⊤

)−1
(yD − y0

D) converges to a Gaussian process:

Ξ̃D =
DE∇2ϕ−1(W 0

d /
√
D)√

N
ΞD →d GP(0, σ2

WΣ) , (72)

where Σ is the covariance matrix over Xd and σ2
W = E (W ∗

d −W 0
d )

2.

Remark. Lemma 1 used the following correlation assumptions:
∑∞

d′=1 (EXd Xd′)
2 ≤ c and∑∞

d′=1

∣∣Cov (X2
d , X

2
d′

)∣∣ ≤ c. Lemma 2 also used
∑∞

d′=1 EXd Xd′ ≤ c. In terms of Theorem 1 in
the main text, the second condition corresponds to c′ij . The first and the third conditions are joined
into the cij condition for convenience since it implies both conditions used here.

Proof. First, for an A, α-projection of the scaled stochastic process, we split the solution into two
terms (A is defined in Eq. (24)):∑

p∈A
αp Ξ̃

D
p =

1√
N

∑
p∈A

αp (X: p)
⊤
A−1(yD − y0

D) (73)

=
1√
N

∑
p∈A

αp (X: p)
⊤
(yD − y0

D) +
1√
N

∑
p∈A

αp (X: p)
⊤ (

A−1 − IN
)
(yD − y0

D) . (74)

We proved convergence of the first term to a Gaussian in Lemma 3. By Lemma 2, the second term
converges to zero in probability. By Slutsky’s theorem, since the first term converges to a Gaussian in
distribution, and the second one to zero in probability, the whole expression converges to a Gaussian.

Convergence to a Gaussian process. We’ve shown that for any scalar weights α and a finite
index set A ⊂ Z>0, the projection of the sequence of the scaled stochastic processes Ξ̃D w.r.t.
A , α converges to a Gaussian in distribution (with parameters found in Lemma 3). Therefore, Ξ̃D

converges to a Gaussian process in distribution by Lemma 6 of Matthews et al. (2018).
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The teacher weights setup with yD =
∑D

d=1
1√
D
Xd W

∗
d simplifies the proofs, but it is not necessary.

Here we provide a similar result for a generic y without a detailed proof:
Theorem 2. In the assumptions of Lemmas 1 to 3, additionally assume that labels yi are zero-
mean, bounded, and independent of D, Xi

d and W 0
d , and also that W 0

d are zero-mean. Then the
scaled sequence of stochastic processes ΞD = (X)

⊤ (
XD HD (XD)⊤

)−1
(y− y0

D) converges to a
Gaussian process:

DE∇2ϕ−1(W 0
d /

√
D)√

N
ΞD →d GP(0, (σ2

y + σ2
W 0)Σ) , (75)

where Σ is the covariance matrix over Xd and σ2
W 0 = E (W 0

d )
2, σ2

y = E y2.

Proof. The label setup doesn’t affect Lemma 1. For Lemmas 2 and 3, due to the independence
assumption for the labels and the weights, the proofs of the lemmas split into moment calculations
for W 0

d and y. The former is identical to the original calculation for W ∗
d − W 0

d , since the weights
are zero-mean. The latter doesn’t involve sums over repeating coordinates, simplifying moment
computations. The overlap is similar to the computation for W 0

d . With this change in the lemmas,
the rest of the proofs is the same as for Theorem 1.

A.1 RICH AND LAZY REGIMES

Assuming for simplicity that all initial weights are the same and positive (w0
d = w0 = α/

√
D) and

that σ2
λ is equal to 1, then for ξ ∼ N (0, 1), Eq. (13) becomes

∇ϕ(w∞) ≈ ∇ϕ(w0) +

√
N

D∇2ϕ−1(w0)
ξ . (76)

For p-norms, ϕ(w) = 1
pw

p;∇ϕ(w0) = (w0)p−1;∇2ϕ−1(w0) = 1
p−1 (w

0)2−p. Therefore,

∇ϕ(w∞) ≈ αp−1

D(p−1)/2
+

(p− 1)
√
Nαp−2

Dp/2
ξ =

αp−2

Dp/2

(
α
√
D + (p− 1)

√
N ξ
)
. (77)

As long as α ≫
√
N/D, the initial weights (first term) will be much larger than the weight change

(second term), and we will be in the lazy regime. This additionally sets a limit on the dataset size. Put
another way, for α = 1 and the standard “lazy” initialization with O(

√
1/D) weights, the number

of data points N has to be much smaller than D for the linearization to make sense (in addition to
the more technical assumption on the N scaling in Theorem 1).

For negative entropy, ϕ(w) = w logw;∇ϕ(w0) = 1 + logw0;∇2ϕ−1(w0) = w0. Therefore,

∇ϕ(w∞) ≈ 1 + logα− 1

2
logD +

√
N

α
√
D

ξ . (78)

Unlike for p-norms, the initial weights’ contribution grows to infinity even as α tends to zero. As
a result, we require only α ≫

√
N/(D logD) to keep learning in the lazy regime. However, for

α = 1/
√
D (i.e. O(1/D) weights, the standard rich regime scaling) negative entropy still results in

large weight changes since N grows with D.

Overall, different potentials result in different asymptotic boundaries of the lazy regime. Negative
entropy allows smaller initialization schemes while maintaining the lazy regime.

B EXPERIMENTAL DETAILS

B.1 LINEAR REGRESSION

For experiments in Section 4.1, we optimized models using mirror descent, where the gradients
were computed in the standard SGD way with momentum of 0.9 and no weight decay (with mixed
precision). Learning rate was changed during learning according to the cosine annealing schedule.
The initial learning rate was chosen on a single seed via grid search over 16 points (log10-space
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Figure 6: Linear regression solutions for negative entropy, 2-norm and 3-norm potentials. First
and third columns: integral of absolute CDF difference (∆CDF) between normalized uncentered
weights and N (0, 1); second and third columns: magnitude of weight changes relative to the initial
weights in the dual space (∆ϕ). First two columns: quickly decaying correlation between xi (c = 2);
last two columns: slowly decaying correlation (c = 1). All plots: 30 seeds, median value (solid line)
and 5/95% percentiles (shaded area), N = D0.5 (orange) and N = D0.75 (blue).

from 1e-7 to 1e-1) and 100 epochs. If the minimum MSE loss was larger than 1e-3, we increased
the number of epochs by 100 and repeated the grid search (up to 500 epochs; all grid searches
converged to MSE smaller than 1e-3). The widths were chosen as 10 points in a log10-space from
1e2 to 2e4. The full results are shown in Fig. 6.

B.2 POTENTIAL ROBUSTNESS

In Section 4.2, both figures in Fig. 3B were obtained in the following way. For D = 100 and 30
seeds, we sampled a 1000-dimensional weight sample w0 from either N (0, 1/D) or a log-normal
with µ = − log

√
2D, σ2 = log 2 multiplied by a ±1 with equal probability (so it has the ap-

proximately the same variance as the Gaussian). We then computed the final weights w for the
potential ϕ as w = ∇ϕ−1

(
∇ϕ(w0) + 0.1∇ϕ(1/

√
D)N (0, 1)

)
, so the Gaussian change had a

smaller magnitude than a weight with a standard deviation of 1/
√
D.

B.3 FINETUNING

In Section 4.3, for N chosen datapoints, the dataset was randomly sampled from the 50k available
points for each seed (out of 10). Networks were trained on the cross-entropy loss using stochastic
mirror descent; the gradients had momentum of 0.9 but no weight decay, batch size of 256. Learning
rate was changed during learning according to the cosine annealing schedule. The initial learning
rate was chosen on a log10 grid of 5 points from 1e-5 to 1e-1. The initial number of epochs was 30,
but increased by 30 up to 4 times if the accuracy was less than 100%. All resulting accuracies from
this search were ≥ 99%. (Note that this is the desired behavior, since we’re testing the models that
fully learned the train set.) The dataset was not augmented; all images were center cropped to have
a resolution of 224 pixels and normalized by the standard ImageNet mean/variance. We trained
networks with mixed precision and FFCV Leclerc et al. (2022); for the latter we had to convert
ImageNet to the FFCV format (see the accompanying code).

The magnitude of weight changes was usually smaller than 0.2, although for 2-norm for
ResNet18/34 and CORnet-S, and 3-norm for EfficientNets b0,1,3 it reached 0.3-0.5. For negative
entropy, the magnitude always stayed smaller than 0.02.
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Figure 7: Same setup as Fig. 4B. A. Recurrent neural networks (RNNs) with 100/1000 hidden units
trained and then finetuned on row-wise sequential MNIST. B. SimSiam ResNet50 finetuned with
the same self-supervised loss.

We have conducted experiments with recurrent neural networks trained on row-wise sequential
MNIST LeCun et al. (2010). The networks were trained on the train set, and then finetuned on
a subset of the test set (same procedure as for deep networks) for N = D0.5 (the number of weights
scales quadratically with the hidden size, so N equals the number of hidden units). The Gaussian
fits, and non-Gaussianity of weight changes measured with a wrong potential were remarkably sim-
ilar to our theoretical predictions and behavior of deep networks (Fig. 7A). Note that for networks
trained with p-norms but evaluated with negative entropy, if the weight flips its sign during training
we can immediately conclude that negative entropy was not used for training. Because we’re fine-
tuning already trained networks, most weights don’t flip signs. We plot the distribution of changes
in the dual space for all weights for simplicity (we can do it in the code since the dual weights are
signed).

We also evaluated a self-supervised loss from SimSiam Chen & He (2021): for a pre-trained
ResNet50 (see the full architecture in Chen & He (2021)), we finetuned it with the same self-
supervised loss l = 0.5 z⊤1 p2 + 0.5 z⊤2 p1 for positive pairs 1/2 passed through decoders with or
without stop-gradient (z and p). We trained the network for 50 epochs and used the learning rate
that minimized the loss the best, since we don’t evaluate accuracy. We evaluated weight changes in
the encoder (a ResNet50). The results were very similar to networks finetuned with a supervised
loss, confirming our results for supervised experiments (Fig. 7B).

B.4 COMPARISON TO SYNAPTIC DATA

In Section 4.4, we used the data from Dorkenwald et al. (2022). We used the the accompanying
dataset, specifically the “spine vol um3” data available here. The dataset contained 1961 spine
volume recordings.

For negative entropy fitting (Fig. 5A), we sampled the initial weights as 10−1.42 with probability
p = 0.77 and 10−0.77 with p = 0.23. In the dual space, we added a centered Gaussian with
σ = 10−0.23. The means and probabilities exactly match the ones fitted in Dorkenwald et al. (2022)
(Table 2); the standard deviations were fitted as 10−0.24 and 10−0.22; we used a log-average since
the standard deviations were very similar and we expect the Gaussian parameters to be the same
across weights.

For 3-norm (Fig. 5B), we obtained a qualitative fit. With equal probability, the initial weights were
either 1e-2 or log-normal with µ = −2.7 and σ = 0.9. In the dual space, the Gaussian change
was zero-mean with σ = 0.0012. A small part of the final weights became negative with this
sampling procedure, which we treated as synapses that were reduced to zero weight during learning
and therefore we excluded them from the plots.

The 3-norm approximately fits the data because for a small constant initial weight c, the final weight
will be approximately log-normal: log

(
∇ϕ−1(∇ϕ(c) + ξ)

)
≈ log

(
c+ ξ/∇2ϕ(c)

)
≈ ξ/∇2ϕ(c).

The second part of the mixture is already log-normal and is barely changed by the Gaussian change,
resulting in a mixture of two (approximately) log-normals.
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C NOTES ON MIRROR DESCENT

For negative entropy, we assumed that the weights do not change signs. This way, |w| log |w| is
strictly convex for either w > 0 or w < 0 and the gradient of potential is invertible. This is implied
by the exponentiated gradient update Eq. (7), which indeed preserves the signs of the weights.

Powerpropagation Schwarz et al. (2021) reparametrized network’s weights w as w = θ |θ|α−1,
such that gradient descent is done over θ. The original weights are therefore updated for a loss L as
(assuming all terms remain positive for simplicity):

wt+1 =

(
θt − η

∂ L

∂wt

∂wt

∂ θt

)α

≈ (θt)α − α (θt)α−1 η
∂ L

∂wt

∂wt

∂ θt
(79)

= (θt)α − α2 (θt)2α−2 η
∂ L

∂wt
= wt − α2 η (wt)

2(α−1)
α

∂ L

∂wt
, (80)

where we linearized the update in the first line and then used the relation between θ and w. If we
treat (wt)

2(α−1)
α as the Hessian of ϕ−1 in mirror descent (see Eq. (14)), powerpropagation can be

viewed as an approximation to mirror descent with p-norms, where p = 2/α. For α = 2, we can
also treat powerpropagation as an approximation to exponentiated gradient (Eq. (7)).
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