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Abstract

Recent advances in large language model
(LLM) compression have predominantly fo-
cused on pruning and low-rank factorization,
leaving weight sharing—despite its success in
classical neural network compression—Ilargely
unexplored. We introduce LAYERDECOM-
POSE, a novel framework that reduces parame-
ter redundancy by sharing a core weight matrix
across transformer layers and augmenting each
layer with lightweight, low-rank adapters. Un-
like prior SVD- and pruning-based methods,
our joint optimization of shared weights and
residual adapters achieves a 30% model size
reduction while retaining 89% of the original
performance on seven standard benchmarks.
Experiments on LLaMA-7B and three other
7B-parameter models demonstrate that LAY-
ERDECOMPOSE consistently outperforms state-
of-the-art baselines. These results highlight
the promise of combining weight sharing with
low-rank adaptation for efficient, scalable LLM
deployment.

1 Introduction

Transformers underpin virtually every state-of-the-
art large language model (LLM) today, deliver-
ing remarkable capabilities in tasks ranging from
question answering and commonsense reasoning to
code generation and dialogue. As model capacities
have grown—from millions to hundreds of billions
of parameters—the computational and memory de-
mands for both training and inference have skyrock-
eted. Such scaling presents a formidable barrier
to deploying these models in real-world settings,
especially on resource-constrained hardware or at
low latency. To bridge this gap, a rich body of
work has explored post-training compression tech-
niques—quantization, pruning, and low-rank fac-
torization—that reduce model size and accelerate
inference while striving to preserve performance.
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Figure 1: Schematic overview of the proposed approach.
Within a group of size g weights of each type (e.g. up
and down projections in MLP) are shared between trans-
former blocks, but have a unique low-rank residuals,
which are optimized to match the original weights. This
decomposition is also applied to the self attention layer,
omitted for brevity.

Quantization methods (Lin et al., 2024; Fran-
tar et al., 2022) map high-precision weights to



Compression Method ‘ OBQA PIQA HellaS. WinoG. ARC-e ARC-c MathQA ‘ AVG RP (%)
0% Uncompressed ‘ 0.44 0.79 0.76 0.70 0.73 0.46 0.27 ‘ 0.59  100.0
30 % SVD-LLM 0.20 0.65 0.37 0.59 0.48 0.26 0.22 0.40 66.7
27.2% LLM-Pruner 0.39 0.75 0.63 0.61 0.48 0.35 0.23 0.49 82.7
30 % SliceGPT 0.29 0.68 0.43 0.58 0.56 0.35 0.23 0.44 74.8
30 % LAYERDECOMPOSE (ours) | 0.39 0.75 0.67 0.64 0.62 0.37 0.24 0.53 88.9

Table 1: Accuracy of LLaMA-7B after 30 % compression (27.2 % for LLM-Pruner) on seven benchmarks. AVG
is the mean accuracy; RP is the average accuracy expressed as a percentage of the uncompressed baseline. Best
compressed results are in bold. LAYERDECOMPOSE retains nearly 89 % of the original model’s performance and

surpasses all compared methods.

lower-bit representations, offering dramatic mem-
ory savings but often requiring hardware support
for efficient low-bit arithmetic. Unstructured prun-
ing (Frantar and Alistarh, 2023; Li et al., 2023)
discards individual parameters based on some im-
portance criterion, yet its resulting sparsity pat-
terns can be difficult to exploit without special-
ized sparse-compute kernels. Structured prun-
ing (Zhang et al., 2024; Wei et al., 2024) re-
moves entire neurons or attention heads to main-
tain dense linear algebra, but aggressiveness can
quickly degrade model quality. Low-rank adap-
tation approaches—exemplified by LoRA and its
variants—reparameterize pretrained weights with
rank-constrained updates, reducing fine-tuning cost
but typically leaving the bulk of the original dense
weights intact. Each of these strategies trades off
ease of deployment, hardware compatibility, and
final model accuracy.

In contrast to the extensive exploration of prun-
ing and low-rank methods, weight sharing—one
of the oldest and most general compression ideas
in neural networks—has received surprisingly lit-
tle attention for LLMs. Classic works such as the
Universal Transformer (Dehghani et al., 2019) and
ALBERT (Lan et al., 2020) have shown that sharing
the same parameters across all layers can dramati-
cally cut model size with only a modest hit to ac-
curacy, yet naively tying weights across dozens of
transformer blocks often yields unsatisfactory per-
formance. A more nuanced form of weight sharing,
combined with layer-specific lightweight adapta-
tions, promises to balance redundancy elimination
with expressive power, but has not been system-
atically studied in the context of large pretrained
transformers.

In this paper, we introduce LAYERDECOMPOSE,
a novel compression framework that leverages
weight sharing across groups of transformer lay-
ers together with low-rank residual adapters to re-

duce parameter redundancy. Our core observation
is that key transformer blocks express similar lin-
ear transformations up to permutation invariances.
By learning a single shared “base” weight matrix
for each group of layers and modeling inter-layer
differences via trainable low-rank adapters, LAY-
ERDECOMPOSE achieves up to 30% reduction in
model size while retaining over 89% of original per-
formance on seven standard benchmarks. Crucially,
we jointly optimize both the shared weights and the
residual factors in a two-stage procedure—closed-
form initialization via truncated SVD followed by
gradient-based refinement.

Contributions. Our main contributions are:

* We propose a hybrid weight-sharing and low-
rank decomposition that represents a group of
m corresponding linear layers with a single
shared matrix W plus layer-specific residual
factors { A;B;}!" |, reducing parameters from
mn? to n? 4+ 2mnr with minimal extra com-
pute.

* We characterize and exploit permutation in-
variances in both MLP and self-attention mod-
ules, using assignment solvers to optimally
permute and align layer weights before de-
composition, thereby lowering reconstruction
error.

* We validate LAYERDECOMPOSE on LLaMA-
7B and three additional 7B-parameter models,
showing that it consistently outperforms state-
of-the-art SVD- and pruning-based baselines,
retaining nearly 89% of uncompressed per-
formance at 30% size reduction across seven
diverse benchmarks.



2 Preliminaries

2.1 Low-Rank Adaptation

LoRA (Hu et al., 2022) replaces the standard linear
layer
Y=XW+5b (1)

with
Y=XW+AB)+b=XW + XAB+b, (2)

where rank(AB) < rank(W). This reparame-
terization permits fine-tuning only the low-rank
matrices A and B, greatly reducing memory us-
age. Subsequent works have explored modified
initializations (Meng et al., 2024), alternative repa-
rameterizations (Liu et al., 2024b; Kopiczko et al.,
2024; Lingam et al., 2024; Liu et al., 2024a), and
revised optimization strategies (Hayou et al., 2024;
Zhang et al., 2023).

2.2 SVD-based Model Compression

Large language models require a significant
amount of memory and computational power to
operate. To reduce these resource demands, vari-
ous model compression techniques have been de-
veloped. One approach to reducing the parameter
count is to factorize the weight matrix W € R™*"
into a product of two matrices with fewer total pa-
rameters, AB, where A, BT € R™*" and 71 < n,
while striving to retain as much model performance
as possible. A substantial body of work applies Sin-
gular Value Decomposition (SVD) to address this
problem.

An early work (Winata et al., 2019) applies SVD
for the LSTM cell and explores the effectiveness
on different NLP tasks. FWSVD (Hsu et al., 2022)
utilizes Fisher information to assign importance
weights to the model parameters. However, com-
puting the Fisher information matrix involves com-
putationally expensive gradient calculations. To
mitigate these costs, ASVD (Yuan et al., 2023) pro-
poses an activation-aware decomposition method,
which incorporates the distribution of activations
into the weight decomposition process. In this ap-
proach, the scaling matrix is designed based on
the distribution patterns observed across input ac-
tivation channels. SVD-LLM (Wang et al., 2025)
extends this idea further by whitening the input ma-
trix to reduce its impact on SVD truncation, with
proven guarantees of achieving an optimal theoret-
ical truncation loss. Unlike previous works, (Gao

et al., 2024b) developed an approach to automati-
cally allocate various ranks to different layers using
a differential hypernetwork.

2.3 Weight Sharing in Neural Networks

One fundamental application of weight sharing in
language models is embedding weight tying, where
the input and output embeddings share the same
weight matrix (Press and Wolf, 2017; Raffel et al.,
2020). Another significant aspect is weight sharing
across layers in deep networks. Instead of assign-
ing each layer its own parameters, a common set of
weights is employed across multiple layers, thereby
reducing redundancy and lowering the overall pa-
rameter count.

This concept was initially explored in the Uni-
versal Transformer (Dehghani et al., 2019), which
introduced a recurrent inductive bias into the Trans-
former architecture by reusing the same layer
weights at every depth. ALBERT (Lan et al.,
2020) further demonstrated that, with appropri-
ate hyperparameters tuning, full weight sharing in
BERT (Devlin et al., 2019) results in only a minor
reduction in accuracy while achieving faster train-
ing, enhanced memory efficiency, and improved
regularization.

More recent work has investigated weight shar-
ing strategies tailored for resource-constrained en-
vironments. For example, Subformer (Reid et al.,
2021) and MobileLLM (Liu et al., 2024c) explored
various methods for sharing transformer blocks to
optimize performance on mobile devices. Similarly,
Residualformer (Xie et al., 2023) employed LoRA
reparameterization with shared base weights for
training speech recognition models from scratch,
in contrast to our focus on compressing existing
pretrained models.

3 Method

3.1 Layer decomposition

Transformers consist of a stack of identical layers,
each containing self-attention and MLP submod-
ules. Both submodules are composed of linear
transformations whose parameters are stored in
weight matrices.

Figure 1 illustrates our approach. Let GG be a set
of m corresponding linear layers (for example, the
“up” projections of the MLP in layers 17 through
23). For each layer ¢ € G, the original computation
is

Y = XW,; + b,



We replace this with a shared base weight W plus
a low-rank residual for each layer:

Y = XW + XA;B; + b, i1€G.
Omitting biases for simplicity, if W € R"*™,
|G| = m, and each A;, B € R™" withr < n,
then the total parameters drop from m n? to

n? + m- 2nr,

at the cost of a small extra compute for the adapters.
To initialize W, {A;, B;}, we minimize the
Frobenius-norm reconstruction loss

LW, A,B)=>|Wi— (W +AB)|, 3
i€
- ZH(WZ - W) - AiBiHF'
1€G

This loss can be viewed as seeking a rank-r ap-
proximation of each difference W; — W. Hence,
by the Eckart—Young—Mirsky theorem (Eckart and
Young, 1936), for a fixed base W the optimal low-
rank factors (A;, B;) are given by the truncated
SVD of (W; — W). Conversely, when {A;, B;}
are held fixed, the optimal shared weight is simply
the element-wise mean

W = LZ(Wi—AiB,»).
ol &2

After initializing via these two closed-form updates,
we perform a final joint refinement of W and all
{4;, B;} using Adam (Diederik, 2014). The full
procedure is outlined in Algorithm 1.

3.2 How to Choose Groups?

To apply our decomposition, we must partition the
L transformer layers into groups that will share the
same base weight matrix. A natural baseline is to
form consecutive groups of fixed size, but ideally
we would group layers whose weights are most
alike so as to minimize the reconstruction loss in
Eq. 3.

We first measured pairwise Frobenius distances

d(Li, L) = [|[W; = Wj|r

between corresponding weight matrices across lay-
ers. Figure 2 shows both the distance matrix and
its histogram for the MLP up-projection weights of
LLaMA. The heat-map reveals no clear block struc-
ture, and the histogram is tightly centered around

Algorithm 1 Alternating Shared W Optimization

Require: Weight group {W;};c, rank r, alterna-
tion steps 7', Adam steps Tydam
Ensure: Optimal shared weight W, low-rank fac-
tors {AZ, Bi}ieG
W LS oW > W initialization
for eachi € G do > A;, B; initialization
(Ai, B;) < TruncSVD(W; — W, r)
end for
fort =1toT do > Alternating optimization
W o Yiec(Wi — AiB;)
for cachi € G do
(Ai, B;) < TruncSVD(W; — W, r)
end for
end for
for t = 1 to T,qam do > Adam Optimization
Compute L(W, A, B) as in Eq. 3
Update W, {4;, B;} via Adam
end for

its mean, indicating that all layers are roughly
equally dissimilar. Clustering on these distances
failed to produce consistent, meaningful groups.

Given the limitations of a purely weight-space
metric, we next define a functional similarity mea-
sure:

p(Li, L;) = d(Li(Xy), Li(X3)), (@)

where L; and L; denote the ith and jth layers, X;
is the actual input to L; collected during a forward
pass, and d(z,y) = ||z — y||3. This quantity cap-
tures how closely layer j can mimic layer ¢ on
its native inputs. Note that p is not symmetric in
general.

Figure 3 shows the resulting similarity matrix for
the MLP blocks in LLaMA. We observe a banded
structure along the diagonal, indicating that adja-
cent layers produce more similar outputs. Further-
more, the first half of the network exhibits larger
approximation errors than the second half. Moti-
vated by these observations and for implementation
simplicity, we form groups of consecutive layers
for weight sharing in this work.

3.3 Optimal Parameter Budget Allocation

Even with consecutive grouping, our framework
has three key hyperparameters under a fixed pa-
rameter budget: the span of affected layers, the
size of each group, and the adapter rank. With a
fixed parameter budget, one can either apply strong
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Figure 2: Pairwise Frobenius distance matrix and his-
togram for the MLP up-projection weights in LLaMA.
The lack of visible structure and the narrow distribution
of distances suggest that fixed-size consecutive group-
ing is as reasonable as any clustering based on these
metrics.

= 0.2670

o
[\
<

b ©
O
=
—
5 S
2 <
g -
— ©
i
©
o =
58
T oo
o N
.o
-
©

(o]

)

(9]

o

3]

0 2 4 6 8101214161820 22242628 30 0.0678

j, applied layer index

Figure 3: Functional similarity matrix for MLP blocks
in the LLaMA model, where each entry (3, j) is given
by p(L;, L;). Lower values along the diagonal indicate
that nearby layers are more functionally similar.

compression to a few layers or perform milder com-
pression across a larger number of layers.

To identify which regions of the network toler-
ate compression best, we first compressed a single
block of ten consecutive layers at a time. Figure 4
shows that compressing the earliest or latest layers
incurs large perplexity increases, whereas targeting
the final third of layers yields the smallest degrada-
tion. These findings corroborate prior analyses of
layer sensitivity (Gromov et al., 2025; Men et al.,
2024; Wang et al., 2024).
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Figure 4: Perplexity after decomposition (before heal-
ing) for a single group of 10 layers. Each x-value de-
notes the index of the first layer in the compressed block
(e.g., 19 covers layers 19-29).

We then performed an exhaustive search over
hyperparameters under a fixed budget. For a 30%
compression of LLaMA-7B (4.7 B parameters),
we fixed the final layer at index 30 and varied the
starting layer and group size. Given each choice of
start and group, we computed the adapter rank to
exactly match the remaining parameter budget (see
section 3.4 for more details).

Figure 5 presents the results of this exhaus-
tive search. The performance varies substantially
across configurations. One clear trend is that ap-
plying milder compression over a wider range of
layers—using larger residual ranks—yields better
perplexity than more aggressive compression on a
smaller subset of layers.

3.4 Rank Computation

During the exhaustive search with fixed hyperpa-
rameters, the adapter rank could be computed in a
single way as follows:

PB—<Pnb‘|‘(LT—LA)'PZ+G'Pl)

Ly- (d] + do) ’
5

r =

where:
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Figure 5: Perplexity after decomposition for various
compression configurations. Each line corresponds to
a different group of layers. Slight compression over a
broader layer span—with higher adapter rank—yields
better perplexity than aggressive compression on a
smaller subset.

* r is the adapter rank,
* Ppis the fixed total parameter budget,

* P,; denotes the number of parameters that are
not subject to compression (e.g. embedding
and LM head layers),

e L7 is the total number of layers in the model,

* L4 is the number of affected layers, i.e. se-
lected for compression,

* P, represents the number of parameters in one
layer,

* (5 is the number of groups within the affected
layers,

* d; and dp are the sum of input and output
dimensions of a layer, respectively.

3.5 Transformer Permutation Invariance

Permutation invariance in transformer modules al-
lows multiple weight configurations to produce
identical outputs by appropriately reordering in-
termediate dimensions.

Multi-Layer Perceptron A gated transformer
MLP block computes

y = Wy(c(Wyz) © W, z),

where o is applied element-wise. By permuting
the intermediate hidden dimensions via an n X n
permutation matrix P (and its inverse PT), one can
rearrange the rows of W, and W, without affecting
the final output. Concretely, we exploit PP = I
as follows:

y=WaP"(o(PWy) © PW,2)
= WaPT(Po(Wya) © Wy )
=Wy (c(Wyz) © Wy ),

since PT(P o(W,x)) = o(W,z). Hence one can
absorb P into the weights by defining

Wi =PW,, W,=PW, W,=W,P",

yielding the same output y. Because there are n!
permutation matrices of size n, this gives n! equiv-
alent MLLP configurations.

Query and Key Projections In self-attention,
the query and key projections satisfy a similar in-
variance: permuting their shared intermediate di-
mensions does not alter the attention scores. Recall

Q=XWq, K=XWgk, V=XWy,
and
Attn(Q, K, V) = softmax(QKT) V.

Inserting a permutation P with P7 P = [ into the
score computation gives

softmax(QKT) = softmax (X Wo) (XWK)T)
= softmax(XWq P PT Wi X7).
so that defining
Wo=WoP, Wi =P Wk

leaves softmax(QK ™) unchanged.

Value and Output projections Previously, we
showed that permuting the dimensions of ) and K
does not alter the attention score matrix. We now
demonstrate a similar invariance for the Value and
subsequent Output projections.



In multi-head self-attention, for each head 1 =
1,..., h we define

v = xwl

HY = softmax(Q(i) (K(Z))T) v,

where W‘(,i) € R¥% s the value-projection for
head i. We then concatenate the head outputs and
apply the final output projection:

V=[HY, .. HM] Wy, WoeRIdI*d

Any permutation of the h head-blocks and of the
d,, channels within each head can be absorbed into
the weight matrices {W‘(/Z )} and Wo. Concretely,
let

Pblocks e {0,1}(hdo)x(hdv)

dy Xdy s (7)
€ {0,1} (i=1,...,h),

1ntra

and form

P = Pilocks (@ szt)ra>7

where € denotes the block-diagonal direct sum
(so the ith diagonal block is pY

intra
all the per-head projections into

). If we collect

Wy =[] e riO),
H=[HY, . HM],

then one checks
Y = HWp = softmax(QKT)V Wo
= softmax(QK ™) (XWy PPT)Wo  (9)
= softmax(QK™T) (XW{,) W}
with

Wi, == Wy P, W, .= PT W,

and PT P = I guarantees the same output. Since
there are h! ways to permute the head-blocks
and (d,!)" ways to permute channels within each
head, the total number of distinct permutations of
(Wy, Wo) yielding identical outputs is h! x (d,!)".

3.5.1 Finding Optimal Permutations

We leverage these permutation symmetries to re-
order layer weights so that they align more closely
within each group. Formally, for two weight matri-
ces W; and W;, we seek

P = ang uin [, ~ PW .

where S, is the set of n X n permutation matri-
ces. Here, P minimizes the difference between an
anchor weight and another weight in the group.

We perform this procedure separately for three
components: the MLP block, the Query—Key
(QK) projections, and the Value—Output (VO)
projections. Note that for QK we restrict intra-
head permutations to the identity (Piptyra =
I)—permuting channels would conflict with RoPE
embeddings (Su et al., 2021)—and only reorder
entire heads.

MLP block Compute a cost matrix D € R"*"
whose (i, j) entry is

Dyj =||Wii, ] = WP +

Wt 1 = Wil All; +

Wil i) = WL, )5

(10)

where W,,, Wy, and W denote the up-projection,
gate, and down-projection weight matrices. Each
D;; aggregates via sum the squared /3 distances
between row ¢ of one layer and row j of another
for W, and Wy, plus the column differences in
W,4. We formulate the search for the optimal
permutation as a linear sum assignment problem
(LSAP) (Burkard and Cela, 1999) and solve it with
an efficient solver (Crouse, 2016) to obtain the op-
timal permutation P.

QK and VO projections Here the permutation
must respect the block structure of h attention
heads, so channels cannot be exchanged across
heads. We use a two-stage approach:

1. Intra-head alignment: For each pair of cor-
responding heads, find the best channel per-
mutation Pl(nt)ra by solving an LSAP on the

per-head weight differences.

2. Inter-head alignment: Compute aggregated
costs between entire heads using the intra-
head-aligned weights, then solve a second
LSAP to determine the head-reordering per-
mutation Ppjocks-

Finally, we combine these into a block-diagonal
permutation

P = Pblocks (@ szt)ra)’

which aligns both head order and internal channels
while preserving the attention outputs.



3.6 Healing with Distillation

Because our weight-sharing and low-rank decom-
position substantially alter the original parameters,
a dedicated “healing” step is required to recover
performance. Following Muralidharan et al. (2024),
we apply both logit-level and hidden-state distil-
lation (Hinton et al., 2015; Sanh et al., 2019) to
encourage the compressed model to mimic the
teacher’s behavior while reducing reliance on the
specific healing dataset.

Concretely, we augment the standard language
modeling loss £,3; with two distillation terms:

L= £LM + a KL (p || pteacher)
+ 08 MSE(h, hteacher)a

where - KL(p || preacher) is the Kullback-Leibler
divergence between the student’s output distri-
bution p and the teacher’s distribution pieacher, -
MSE(h, hieacher) is the mean squared error be-
tween their hidden-state activations, and «,
weight these distillation terms relative to Lz,a.

1D

4 [Experiments

We now evaluate the effectiveness of LAYERDE-
COMPOSE. Our first set of experiments compares
it with three state-of-the-art compression baselines
applied to the LLaMA-7B (Touvron et al., 2023)
model at a fixed compression ratio of 30 %. SVD-
LLM Wang et al. (2025) compresses weights by
applying singular-value decomposition with an in-
jected whitening transformation matrix and has
so far yielded the strongest results among SVD-
based schemes. LLM-Pruner (Ma et al., 2023)
performs structural pruning, discarding non-critical
coupled components on the basis of gradient im-
portance. SliceGPT (Ashkboos et al., 2024) mul-
tiplies weight matrices by orthogonal projection
matrices before eliminating less important rows
and columns; the authors exploit a form of trans-
former invariance that differs from the permutation
invariance introduced in our work. All baselines,
like our method, perform a post-compression heal-
ing step to recover accuracy. Hyperparameters and
other healing details for LAYERDECOMPOSE are
provided in Appendix A.

We retain the original evaluation protocol of
LM-Evaluation-Harness (Gao et al., 2024a) and
report accuracy on seven benchmarks covering
question-answering and commonsense reasoning:
OpenBookQA (OBQA) (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,

2019), WinoGrande (Sakaguchi et al., 2019), ARC-
Easy and ARC-Challenge (Clark et al., 2018), and
MathQA (Valentino et al., 2024). In addition to ab-
solute accuracy, we compute Relative Performance
(RP), the ratio of a compressed model’s average
accuracy to that of the uncompressed model.

Table 1 demonstrates that LAYERDECOMPOSE
achieves the highest average accuracy and relative
performance, retaining approximately 89% of the
uncompressed model’s quality while matching or
surpassing each baseline on all individual bench-
marks. These findings underscore the effectiveness
of weight sharing in compressing large language
models.

To verify the generality of our method, we also
applied LAYERDECOMPOSE to three other 7B-
parameter models—Qwen-7B (Bai et al., 2023),
DeepSeek-7B (DeepSeek-Al et al., 2024), and
OLMo-7B (Groeneveld et al., 2024). The result-
ing average accuracies and relative performance
scores appear in Table 2.

Model AVG RP (%)
Qwen-7B 0.50 83.0
DeepSeek-7B | 0.52 88.2
OLMo-7B 0.48 84.0

Table 2: Average accuracy (AVG) and relative perfor-
mance (RP) of LAYERDECOMPOSE on additional 7B
models.

5 Conclusion

We introduced LAYERDECOMPOSE, a compres-
sion framework that represents blocks of consecu-
tive transformer weights with a single shared ma-
trix plus lightweight, layer-specific adapters. By
formalizing permutation invariances in both MLP
and self-attention components, we revealed a vast
family of equivalent weight configurations and
leveraged these symmetries to further reduce re-
dundancy. Empirical results on LLaMA-7B and
three additional 7B-parameter models show that
our weight-sharing approach matches or exceeds
state-of-the-art compression baselines across di-
verse benchmarks. We believe that our findings
will inspire further exploration of weight sharing
as a systematic strategy for efficient LLM compres-
sion and scaling.



Limitations

Although we focus on language models, LAY-
ERDECOMPOSE is not intrinsically tied to the text
modality. Transformer architectures now underpin
models for images, audio, and graphs; extending
our weight-sharing scheme to those domains re-
mains an open direction. Because any linear layer
can, in principle, share parameters and have low-
rank residuals, similar decompositions may prove
useful beyond transformers as well.

In the present work we distribute the adapter
parameter budget uniformly across all layer types
and blocks. This heuristic simplifies implementa-
tion but is unlikely to be optimal. A data-driven or
sensitivity-based allocation strategy could improve
the accuracy—compression trade-off.

Our experiments group adjacent layers. While
early results are encouraging, a more principled
grouping criterion might unlock further gains.

Potential Risks While LAYERDECOMPOSE
boosts efficiency, it could also lower the barrier
to misuse—enabling more convincing disinforma-
tion or fake profiles—and may amplify existing
biases, further marginalizing underrepresented lan-
guages or groups. Weight-sharing might also ex-
pose new vectors for model-stealing or adversarial
attacks, and its upfront symmetry analysis carries
non-trivial compute costs, highlighting the need
for energy-efficient methods and gated releases to
guard against dual-use harms.
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A Healing Details and Hyperparameters

An exhaustive search over compression configu-
rations for the LLaMA-7B model on a subset of
the development dataset revealed that the optimal
perplexity is achieved using the groups [[10, 11,
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with a residual rank of » = 649.

We apply healing on the C4 train corpus (Raffel
et al., 2020) for 100,000 iterations with an effective
batch size of 8, truncating all sequences to a maxi-
mum length of 1,024 tokens. The weights for the
distillation loss (Eq. 11) are set to o = 0.05 and
B8 =0.2.
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For optimisation we use Adam (Diederik, 2014)
with learning rate 5e-5, cosine annealing schedule
and weight decay 0.01.

Experiments were conducted using 2 NVIDIA
A100 GPUs and took approximately 14 hours in-
cluding evaluation.

B Extra Weight Distances

Pairwise Frobenius distances for all layer types in a
transformer are depicted on the Fig. 6. Later layers
tend to be less similar.
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Figure 6: Heat-maps of pair-wise distances for each of the 7 layer groups. Each subplot shows the distance matrix
for one layer type.
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