
LAYERDECOMPOSE: Exploring weight sharing for Large Language Model
Compression

Anonymous ACL submission

Abstract001

Recent advances in large language model002
(LLM) compression have predominantly fo-003
cused on pruning and low-rank factorization,004
leaving weight sharing—despite its success in005
classical neural network compression—largely006
unexplored. We introduce LAYERDECOM-007
POSE, a novel framework that reduces parame-008
ter redundancy by sharing a core weight matrix009
across transformer layers and augmenting each010
layer with lightweight, low-rank adapters. Un-011
like prior SVD- and pruning-based methods,012
our joint optimization of shared weights and013
residual adapters achieves a 30% model size014
reduction while retaining 89% of the original015
performance on seven standard benchmarks.016
Experiments on LLaMA-7B and three other017
7B-parameter models demonstrate that LAY-018
ERDECOMPOSE consistently outperforms state-019
of-the-art baselines. These results highlight020
the promise of combining weight sharing with021
low-rank adaptation for efficient, scalable LLM022
deployment.023

1 Introduction024

Transformers underpin virtually every state-of-the-025

art large language model (LLM) today, deliver-026

ing remarkable capabilities in tasks ranging from027

question answering and commonsense reasoning to028

code generation and dialogue. As model capacities029

have grown—from millions to hundreds of billions030

of parameters—the computational and memory de-031

mands for both training and inference have skyrock-032

eted. Such scaling presents a formidable barrier033

to deploying these models in real-world settings,034

especially on resource-constrained hardware or at035

low latency. To bridge this gap, a rich body of036

work has explored post-training compression tech-037

niques—quantization, pruning, and low-rank fac-038

torization—that reduce model size and accelerate039

inference while striving to preserve performance.040

Wup

BiupAiup

Self
Attention

Wdown

BidownAidown

Wup

Bi+1upAi+1up

Self
Attention

Wdown

Bi+1downAi+1down

...

Wup

Bi+gupAi+gup

Self
Attention

Wdown

Bi+gdownAi+gdown

...

...

MLPi

MLPi+1

MLPi+g

Figure 1: Schematic overview of the proposed approach.
Within a group of size g weights of each type (e.g. up
and down projections in MLP) are shared between trans-
former blocks, but have a unique low-rank residuals,
which are optimized to match the original weights. This
decomposition is also applied to the self attention layer,
omitted for brevity.

Quantization methods (Lin et al., 2024; Fran- 041

tar et al., 2022) map high-precision weights to 042

1

Compression Method OBQA PIQA HellaS. WinoG. ARC-e ARC-c MathQA AVG RP (%)

0 % Uncompressed 0.44 0.79 0.76 0.70 0.73 0.46 0.27 0.59 100.0

30 % SVD-LLM 0.20 0.65 0.37 0.59 0.48 0.26 0.22 0.40 66.7
27.2 % LLM-Pruner 0.39 0.75 0.63 0.61 0.48 0.35 0.23 0.49 82.7
30 % SliceGPT 0.29 0.68 0.43 0.58 0.56 0.35 0.23 0.44 74.8
30 % LAYERDECOMPOSE (ours) 0.39 0.75 0.67 0.64 0.62 0.37 0.24 0.53 88.9

Table 1: Accuracy of LLaMA-7B after 30 % compression (27.2 % for LLM-Pruner) on seven benchmarks. AVG
is the mean accuracy; RP is the average accuracy expressed as a percentage of the uncompressed baseline. Best
compressed results are in bold. LAYERDECOMPOSE retains nearly 89 % of the original model’s performance and
surpasses all compared methods.

lower-bit representations, offering dramatic mem-043

ory savings but often requiring hardware support044

for efficient low-bit arithmetic. Unstructured prun-045

ing (Frantar and Alistarh, 2023; Li et al., 2023)046

discards individual parameters based on some im-047

portance criterion, yet its resulting sparsity pat-048

terns can be difficult to exploit without special-049

ized sparse-compute kernels. Structured prun-050

ing (Zhang et al., 2024; Wei et al., 2024) re-051

moves entire neurons or attention heads to main-052

tain dense linear algebra, but aggressiveness can053

quickly degrade model quality. Low-rank adap-054

tation approaches—exemplified by LoRA and its055

variants—reparameterize pretrained weights with056

rank-constrained updates, reducing fine-tuning cost057

but typically leaving the bulk of the original dense058

weights intact. Each of these strategies trades off059

ease of deployment, hardware compatibility, and060

final model accuracy.061

In contrast to the extensive exploration of prun-062

ing and low-rank methods, weight sharing—one063

of the oldest and most general compression ideas064

in neural networks—has received surprisingly lit-065

tle attention for LLMs. Classic works such as the066

Universal Transformer (Dehghani et al., 2019) and067

ALBERT (Lan et al., 2020) have shown that sharing068

the same parameters across all layers can dramati-069

cally cut model size with only a modest hit to ac-070

curacy, yet naively tying weights across dozens of071

transformer blocks often yields unsatisfactory per-072

formance. A more nuanced form of weight sharing,073

combined with layer-specific lightweight adapta-074

tions, promises to balance redundancy elimination075

with expressive power, but has not been system-076

atically studied in the context of large pretrained077

transformers.078

In this paper, we introduce LAYERDECOMPOSE,079

a novel compression framework that leverages080

weight sharing across groups of transformer lay-081

ers together with low-rank residual adapters to re-082

duce parameter redundancy. Our core observation 083

is that key transformer blocks express similar lin- 084

ear transformations up to permutation invariances. 085

By learning a single shared “base” weight matrix 086

for each group of layers and modeling inter-layer 087

differences via trainable low-rank adapters, LAY- 088

ERDECOMPOSE achieves up to 30% reduction in 089

model size while retaining over 89% of original per- 090

formance on seven standard benchmarks. Crucially, 091

we jointly optimize both the shared weights and the 092

residual factors in a two-stage procedure—closed- 093

form initialization via truncated SVD followed by 094

gradient-based refinement. 095

Contributions. Our main contributions are: 096

• We propose a hybrid weight-sharing and low- 097

rank decomposition that represents a group of 098

m corresponding linear layers with a single 099

shared matrix W plus layer-specific residual 100

factors {AiBi}mi=1, reducing parameters from 101

mn2 to n2 + 2mnr with minimal extra com- 102

pute. 103

• We characterize and exploit permutation in- 104

variances in both MLP and self-attention mod- 105

ules, using assignment solvers to optimally 106

permute and align layer weights before de- 107

composition, thereby lowering reconstruction 108

error. 109

• We validate LAYERDECOMPOSE on LLaMA- 110

7B and three additional 7B-parameter models, 111

showing that it consistently outperforms state- 112

of-the-art SVD- and pruning-based baselines, 113

retaining nearly 89% of uncompressed per- 114

formance at 30% size reduction across seven 115

diverse benchmarks. 116

2

2 Preliminaries117

2.1 Low-Rank Adaptation118

LoRA (Hu et al., 2022) replaces the standard linear119

layer120

Y = XW + b (1)121

with122

Y = X(W +AB) + b = XW +XAB+ b, (2)123

where rank(AB) < rank(W). This reparame-124

terization permits fine-tuning only the low-rank125

matrices A and B, greatly reducing memory us-126

age. Subsequent works have explored modified127

initializations (Meng et al., 2024), alternative repa-128

rameterizations (Liu et al., 2024b; Kopiczko et al.,129

2024; Lingam et al., 2024; Liu et al., 2024a), and130

revised optimization strategies (Hayou et al., 2024;131

Zhang et al., 2023).132

2.2 SVD-based Model Compression133

Large language models require a significant134

amount of memory and computational power to135

operate. To reduce these resource demands, vari-136

ous model compression techniques have been de-137

veloped. One approach to reducing the parameter138

count is to factorize the weight matrix W ∈ Rm×n139

into a product of two matrices with fewer total pa-140

rameters, AB, where A,BT ∈ Rm×ñ and ñ < n,141

while striving to retain as much model performance142

as possible. A substantial body of work applies Sin-143

gular Value Decomposition (SVD) to address this144

problem.145

An early work (Winata et al., 2019) applies SVD146

for the LSTM cell and explores the effectiveness147

on different NLP tasks. FWSVD (Hsu et al., 2022)148

utilizes Fisher information to assign importance149

weights to the model parameters. However, com-150

puting the Fisher information matrix involves com-151

putationally expensive gradient calculations. To152

mitigate these costs, ASVD (Yuan et al., 2023) pro-153

poses an activation-aware decomposition method,154

which incorporates the distribution of activations155

into the weight decomposition process. In this ap-156

proach, the scaling matrix is designed based on157

the distribution patterns observed across input ac-158

tivation channels. SVD-LLM (Wang et al., 2025)159

extends this idea further by whitening the input ma-160

trix to reduce its impact on SVD truncation, with161

proven guarantees of achieving an optimal theoret-162

ical truncation loss. Unlike previous works, (Gao163

et al., 2024b) developed an approach to automati- 164

cally allocate various ranks to different layers using 165

a differential hypernetwork. 166

2.3 Weight Sharing in Neural Networks 167

One fundamental application of weight sharing in 168

language models is embedding weight tying, where 169

the input and output embeddings share the same 170

weight matrix (Press and Wolf, 2017; Raffel et al., 171

2020). Another significant aspect is weight sharing 172

across layers in deep networks. Instead of assign- 173

ing each layer its own parameters, a common set of 174

weights is employed across multiple layers, thereby 175

reducing redundancy and lowering the overall pa- 176

rameter count. 177

This concept was initially explored in the Uni- 178

versal Transformer (Dehghani et al., 2019), which 179

introduced a recurrent inductive bias into the Trans- 180

former architecture by reusing the same layer 181

weights at every depth. ALBERT (Lan et al., 182

2020) further demonstrated that, with appropri- 183

ate hyperparameters tuning, full weight sharing in 184

BERT (Devlin et al., 2019) results in only a minor 185

reduction in accuracy while achieving faster train- 186

ing, enhanced memory efficiency, and improved 187

regularization. 188

More recent work has investigated weight shar- 189

ing strategies tailored for resource-constrained en- 190

vironments. For example, Subformer (Reid et al., 191

2021) and MobileLLM (Liu et al., 2024c) explored 192

various methods for sharing transformer blocks to 193

optimize performance on mobile devices. Similarly, 194

Residualformer (Xie et al., 2023) employed LoRA 195

reparameterization with shared base weights for 196

training speech recognition models from scratch, 197

in contrast to our focus on compressing existing 198

pretrained models. 199

3 Method 200

3.1 Layer decomposition 201

Transformers consist of a stack of identical layers, 202

each containing self-attention and MLP submod- 203

ules. Both submodules are composed of linear 204

transformations whose parameters are stored in 205

weight matrices. 206

Figure 1 illustrates our approach. Let G be a set 207

of m corresponding linear layers (for example, the 208

“up” projections of the MLP in layers 17 through 209

23). For each layer i ∈ G, the original computation 210

is 211

Y = XWi + bi. 212

3

We replace this with a shared base weight W plus213

a low-rank residual for each layer:214

Y = XW + XAiBi + bi, i ∈ G.215

Omitting biases for simplicity, if W ∈ Rn×n,216

|G| = m, and each Ai, B
T
i ∈ Rn×r with r < n,217

then the total parameters drop from mn2 to218

n2 + m · 2nr,219

at the cost of a small extra compute for the adapters.220

To initialize W, {Ai, Bi}, we minimize the221

Frobenius-norm reconstruction loss222

L(W,A,B) =
∑
i∈G

∥∥Wi − (W +AiBi)
∥∥
F

(3)223

=
∑
i∈G

∥∥(Wi −W)−AiBi

∥∥
F
.224

This loss can be viewed as seeking a rank-r ap-225

proximation of each difference Wi −W . Hence,226

by the Eckart–Young–Mirsky theorem (Eckart and227

Young, 1936), for a fixed base W the optimal low-228

rank factors (Ai, Bi) are given by the truncated229

SVD of (Wi −W). Conversely, when {Ai, Bi}230

are held fixed, the optimal shared weight is simply231

the element-wise mean232

W =
1

|G|
∑
i∈G

(
Wi −AiBi

)
.233

After initializing via these two closed-form updates,234

we perform a final joint refinement of W and all235

{Ai, Bi} using Adam (Diederik, 2014). The full236

procedure is outlined in Algorithm 1.237

3.2 How to Choose Groups?238

To apply our decomposition, we must partition the239

L transformer layers into groups that will share the240

same base weight matrix. A natural baseline is to241

form consecutive groups of fixed size, but ideally242

we would group layers whose weights are most243

alike so as to minimize the reconstruction loss in244

Eq. 3.245

We first measured pairwise Frobenius distances246

d(Li, Lj) = ∥Wi −Wj∥F247

between corresponding weight matrices across lay-248

ers. Figure 2 shows both the distance matrix and249

its histogram for the MLP up-projection weights of250

LLaMA. The heat-map reveals no clear block struc-251

ture, and the histogram is tightly centered around252

Algorithm 1 Alternating Shared W Optimization

Require: Weight group {Wi}i∈G, rank r, alterna-
tion steps T , Adam steps Tadam

Ensure: Optimal shared weight W , low-rank fac-
tors {Ai, Bi}i∈G
W ← 1

m

∑
i∈GWi ▷ W initialization

for each i ∈ G do ▷ Ai, Bi initialization
(Ai, Bi)← TruncSVD(Wi −W, r)

end for
for t = 1 to T do ▷ Alternating optimization

W ← 1
m

∑
i∈G(Wi −AiBi)

for each i ∈ G do
(Ai, Bi)← TruncSVD(Wi −W, r)

end for
end for
for t = 1 to Tadam do ▷ Adam Optimization

Compute L(W,A,B) as in Eq. 3
Update W, {Ai, Bi} via Adam

end for

its mean, indicating that all layers are roughly 253

equally dissimilar. Clustering on these distances 254

failed to produce consistent, meaningful groups. 255

Given the limitations of a purely weight-space 256

metric, we next define a functional similarity mea- 257

sure: 258

ρ(Li, Lj) = d
(
Li(Xi), Lj(Xi)

)
, (4) 259

where Li and Lj denote the ith and jth layers, Xi 260

is the actual input to Li collected during a forward 261

pass, and d(x, y) = ∥x − y∥22. This quantity cap- 262

tures how closely layer j can mimic layer i on 263

its native inputs. Note that ρ is not symmetric in 264

general. 265

Figure 3 shows the resulting similarity matrix for 266

the MLP blocks in LLaMA. We observe a banded 267

structure along the diagonal, indicating that adja- 268

cent layers produce more similar outputs. Further- 269

more, the first half of the network exhibits larger 270

approximation errors than the second half. Moti- 271

vated by these observations and for implementation 272

simplicity, we form groups of consecutive layers 273

for weight sharing in this work. 274

3.3 Optimal Parameter Budget Allocation 275

Even with consecutive grouping, our framework 276

has three key hyperparameters under a fixed pa- 277

rameter budget: the span of affected layers, the 278

size of each group, and the adapter rank. With a 279

fixed parameter budget, one can either apply strong 280

4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Layer index

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

La
ye

r
in

de
x

1.0459

0.8525

×10 3

0.850 0.875 0.900 0.925 0.950 0.975 1.000 1.025 1.050

Distance value ×10 3

0

20

40

60

80

100

120

C
ou

nt

Figure 2: Pairwise Frobenius distance matrix and his-
togram for the MLP up-projection weights in LLaMA.
The lack of visible structure and the narrow distribution
of distances suggest that fixed-size consecutive group-
ing is as reasonable as any clustering based on these
metrics.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

j, applied layer index

0
2

4
6

8
10

12
14

16
18

20
22

24
26

28
30

i,
or

ig
in

al
 la

ye
r

in
de

x

0.2670

0.0678

Figure 3: Functional similarity matrix for MLP blocks
in the LLaMA model, where each entry (i, j) is given
by ρ(Li, Lj). Lower values along the diagonal indicate
that nearby layers are more functionally similar.

compression to a few layers or perform milder com- 281

pression across a larger number of layers. 282

To identify which regions of the network toler- 283

ate compression best, we first compressed a single 284

block of ten consecutive layers at a time. Figure 4 285

shows that compressing the earliest or latest layers 286

incurs large perplexity increases, whereas targeting 287

the final third of layers yields the smallest degrada- 288

tion. These findings corroborate prior analyses of 289

layer sensitivity (Gromov et al., 2025; Men et al., 290

2024; Wang et al., 2024). 291

0 3 6 9 12 15 18 21

First Affected Layer Index

102

103

104

P
er

p
le

x
it
y

Figure 4: Perplexity after decomposition (before heal-
ing) for a single group of 10 layers. Each x-value de-
notes the index of the first layer in the compressed block
(e.g., 19 covers layers 19–29).

We then performed an exhaustive search over 292

hyperparameters under a fixed budget. For a 30% 293

compression of LLaMA-7B (4.7 B parameters), 294

we fixed the final layer at index 30 and varied the 295

starting layer and group size. Given each choice of 296

start and group, we computed the adapter rank to 297

exactly match the remaining parameter budget (see 298

section 3.4 for more details). 299

Figure 5 presents the results of this exhaus- 300

tive search. The performance varies substantially 301

across configurations. One clear trend is that ap- 302

plying milder compression over a wider range of 303

layers—using larger residual ranks—yields better 304

perplexity than more aggressive compression on a 305

smaller subset of layers. 306

3.4 Rank Computation 307

During the exhaustive search with fixed hyperpa- 308

rameters, the adapter rank could be computed in a 309

single way as follows: 310

r =
PB −

(
Pnb + (LT − LA) · Pl +G · Pl

)
LA · (dI + dO)

,

(5) 311

where: 312

5

12 15 18 21 24 27

Layer Groups

20

25

30

35

40

45

P
er

p
le

x
it
y

Figure 5: Perplexity after decomposition for various
compression configurations. Each line corresponds to
a different group of layers. Slight compression over a
broader layer span—with higher adapter rank—yields
better perplexity than aggressive compression on a
smaller subset.

• r is the adapter rank,313

• PB is the fixed total parameter budget,314

• Pnb denotes the number of parameters that are315

not subject to compression (e.g. embedding316

and LM head layers),317

• LT is the total number of layers in the model,318

• LA is the number of affected layers, i.e. se-319

lected for compression,320

• Pl represents the number of parameters in one321

layer,322

• G is the number of groups within the affected323

layers,324

• dI and dO are the sum of input and output325

dimensions of a layer, respectively.326

3.5 Transformer Permutation Invariance327

Permutation invariance in transformer modules al-328

lows multiple weight configurations to produce329

identical outputs by appropriately reordering in-330

termediate dimensions.331

Multi-Layer Perceptron A gated transformer 332

MLP block computes 333

y = Wd

(
σ(Wg x) ⊙ Wu x

)
, 334

where σ is applied element-wise. By permuting 335

the intermediate hidden dimensions via an n× n 336

permutation matrix P (and its inverse P T), one can 337

rearrange the rows of Wg and Wu without affecting 338

the final output. Concretely, we exploit P TP = I 339

as follows: 340

y = Wd P
T
(
σ
(
P Wg x

)
⊙ P Wu x

)
341

= Wd P
T
(
P σ(Wg x) ⊙ Wu x

)
342

= Wd

(
σ(Wg x) ⊙ Wu x

)
, 343

since P T (P σ(Wgx)) = σ(Wgx). Hence one can 344

absorb P into the weights by defining 345

W ′
u = P Wu, W ′

g = P Wg, W ′
d = Wd P

T , 346

yielding the same output y. Because there are n! 347

permutation matrices of size n, this gives n! equiv- 348

alent MLP configurations. 349

Query and Key Projections In self-attention, 350

the query and key projections satisfy a similar in- 351

variance: permuting their shared intermediate di- 352

mensions does not alter the attention scores. Recall 353

Q = XWQ, K = XWK , V = XWV , 354

and 355

Attn(Q,K, V) = softmax
(
QKT

)
V. 356

Inserting a permutation P with P TP = I into the 357

score computation gives 358

softmax(QKT) = softmax
(
(XWQ)(XWK)T

)
359

= softmax
(
XWQ P P T W T

K XT
)
. 360

so that defining 361

W ′
Q = WQ P, W ′

K = P T WK 362

leaves softmax(QKT) unchanged. 363

Value and Output projections Previously, we 364

showed that permuting the dimensions of Q and K 365

does not alter the attention score matrix. We now 366

demonstrate a similar invariance for the Value and 367

subsequent Output projections. 368

6

In multi-head self-attention, for each head i =369

1, . . . , h we define370

V (i) = XW
(i)
V ,

H(i) = softmax
(
Q(i)(K(i))T

)
V (i),

(6)371

where W
(i)
V ∈ Rd×dv is the value-projection for372

head i. We then concatenate the head outputs and373

apply the final output projection:374

Y =
[
H(1), . . . ,H(h)

]
WO, WO ∈ R(h dv)×d.375

Any permutation of the h head-blocks and of the376

dv channels within each head can be absorbed into377

the weight matrices {W (i)
V } and WO. Concretely,378

let379

Pblocks ∈ {0, 1}(h dv)×(h dv),

P
(i)
intra ∈ {0, 1}

dv×dv (i = 1, . . . , h),
(7)380

and form381

P = Pblocks

(h⊕
i=1

P
(i)
intra

)
,382

where
⊕

denotes the block-diagonal direct sum383

(so the ith diagonal block is P (i)
intra). If we collect384

all the per-head projections into385

WV =
[
W

(1)
V , . . . ,W

(h)
V

]
∈ Rd×(h dv),

H =
[
H(1), . . . ,H(h)

]
,

(8)386

then one checks387

Y = HWO = softmax(QKT)V WO

= softmax(QKT) (XWV P P T)WO

= softmax(QKT) (XW ′
V)W

′
O

(9)388

with389

W ′
V := WV P, W ′

O := P T WO,390

and P TP = I guarantees the same output. Since391

there are h! ways to permute the head-blocks392

and (dv!)
h ways to permute channels within each393

head, the total number of distinct permutations of394

(WV ,WO) yielding identical outputs is h!×(dv!)
h.395

3.5.1 Finding Optimal Permutations396

We leverage these permutation symmetries to re-397

order layer weights so that they align more closely398

within each group. Formally, for two weight matri-399

ces Wi and Wj , we seek400

P = arg min
P∈Sn

∥∥Wi − P Wj

∥∥
F
,401

where Sn is the set of n × n permutation matri- 402

ces. Here, P minimizes the difference between an 403

anchor weight and another weight in the group. 404

We perform this procedure separately for three 405

components: the MLP block, the Query–Key 406

(QK) projections, and the Value–Output (VO) 407

projections. Note that for QK we restrict intra- 408

head permutations to the identity (Pintra = 409

I)—permuting channels would conflict with RoPE 410

embeddings (Su et al., 2021)—and only reorder 411

entire heads. 412

MLP block Compute a cost matrix D ∈ Rn×n 413

whose (i, j) entry is 414

Dij =
∥∥WA

u [i, :]−WB
u [j, :]

∥∥2
2
+∥∥WA

g [i, :]−WB
g [j, :]

∥∥2
2
+∥∥WA

d [:, i]−WB
d [:, j]

∥∥2
2
.

(10) 415

where Wu, Wg, and Wd denote the up-projection, 416

gate, and down-projection weight matrices. Each 417

Dij aggregates via sum the squared ℓ2 distances 418

between row i of one layer and row j of another 419

for Wu and Wg, plus the column differences in 420

Wd. We formulate the search for the optimal 421

permutation as a linear sum assignment problem 422

(LSAP) (Burkard and Cela, 1999) and solve it with 423

an efficient solver (Crouse, 2016) to obtain the op- 424

timal permutation P . 425

QK and VO projections Here the permutation 426

must respect the block structure of h attention 427

heads, so channels cannot be exchanged across 428

heads. We use a two-stage approach: 429

1. Intra-head alignment: For each pair of cor- 430

responding heads, find the best channel per- 431

mutation P
(i)
intra by solving an LSAP on the 432

per-head weight differences. 433

2. Inter-head alignment: Compute aggregated 434

costs between entire heads using the intra- 435

head-aligned weights, then solve a second 436

LSAP to determine the head-reordering per- 437

mutation Pblocks. 438

Finally, we combine these into a block-diagonal 439

permutation 440

P = Pblocks

(h⊕
i=1

P
(i)
intra

)
, 441

which aligns both head order and internal channels 442

while preserving the attention outputs. 443

7

3.6 Healing with Distillation444

Because our weight-sharing and low-rank decom-445

position substantially alter the original parameters,446

a dedicated “healing” step is required to recover447

performance. Following Muralidharan et al. (2024),448

we apply both logit-level and hidden-state distil-449

lation (Hinton et al., 2015; Sanh et al., 2019) to450

encourage the compressed model to mimic the451

teacher’s behavior while reducing reliance on the452

specific healing dataset.453

Concretely, we augment the standard language454

modeling loss LLM with two distillation terms:455

L = LLM + αKL
(
p ∥ pteacher

)
+ βMSE

(
h, hteacher

)
,

(11)456

where - KL(p ∥ pteacher) is the Kullback–Leibler457

divergence between the student’s output distri-458

bution p and the teacher’s distribution pteacher, -459

MSE(h, hteacher) is the mean squared error be-460

tween their hidden-state activations, and α, β461

weight these distillation terms relative to LLM .462

4 Experiments463

We now evaluate the effectiveness of LAYERDE-464

COMPOSE. Our first set of experiments compares465

it with three state-of-the-art compression baselines466

applied to the LLaMA-7B (Touvron et al., 2023)467

model at a fixed compression ratio of 30 %. SVD-468

LLM Wang et al. (2025) compresses weights by469

applying singular-value decomposition with an in-470

jected whitening transformation matrix and has471

so far yielded the strongest results among SVD-472

based schemes. LLM-Pruner (Ma et al., 2023)473

performs structural pruning, discarding non-critical474

coupled components on the basis of gradient im-475

portance. SliceGPT (Ashkboos et al., 2024) mul-476

tiplies weight matrices by orthogonal projection477

matrices before eliminating less important rows478

and columns; the authors exploit a form of trans-479

former invariance that differs from the permutation480

invariance introduced in our work. All baselines,481

like our method, perform a post-compression heal-482

ing step to recover accuracy. Hyperparameters and483

other healing details for LAYERDECOMPOSE are484

provided in Appendix A.485

We retain the original evaluation protocol of486

LM-Evaluation-Harness (Gao et al., 2024a) and487

report accuracy on seven benchmarks covering488

question-answering and commonsense reasoning:489

OpenBookQA (OBQA) (Mihaylov et al., 2018),490

PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,491

2019), WinoGrande (Sakaguchi et al., 2019), ARC- 492

Easy and ARC-Challenge (Clark et al., 2018), and 493

MathQA (Valentino et al., 2024). In addition to ab- 494

solute accuracy, we compute Relative Performance 495

(RP), the ratio of a compressed model’s average 496

accuracy to that of the uncompressed model. 497

Table 1 demonstrates that LAYERDECOMPOSE 498

achieves the highest average accuracy and relative 499

performance, retaining approximately 89% of the 500

uncompressed model’s quality while matching or 501

surpassing each baseline on all individual bench- 502

marks. These findings underscore the effectiveness 503

of weight sharing in compressing large language 504

models. 505

To verify the generality of our method, we also 506

applied LAYERDECOMPOSE to three other 7B- 507

parameter models—Qwen-7B (Bai et al., 2023), 508

DeepSeek-7B (DeepSeek-AI et al., 2024), and 509

OLMo-7B (Groeneveld et al., 2024). The result- 510

ing average accuracies and relative performance 511

scores appear in Table 2. 512

Model AVG RP (%)

Qwen-7B 0.50 83.0
DeepSeek-7B 0.52 88.2
OLMo-7B 0.48 84.0

Table 2: Average accuracy (AVG) and relative perfor-
mance (RP) of LAYERDECOMPOSE on additional 7B
models.

5 Conclusion 513

We introduced LAYERDECOMPOSE, a compres- 514

sion framework that represents blocks of consecu- 515

tive transformer weights with a single shared ma- 516

trix plus lightweight, layer-specific adapters. By 517

formalizing permutation invariances in both MLP 518

and self-attention components, we revealed a vast 519

family of equivalent weight configurations and 520

leveraged these symmetries to further reduce re- 521

dundancy. Empirical results on LLaMA-7B and 522

three additional 7B-parameter models show that 523

our weight-sharing approach matches or exceeds 524

state-of-the-art compression baselines across di- 525

verse benchmarks. We believe that our findings 526

will inspire further exploration of weight sharing 527

as a systematic strategy for efficient LLM compres- 528

sion and scaling. 529

8

Limitations530

Although we focus on language models, LAY-531

ERDECOMPOSE is not intrinsically tied to the text532

modality. Transformer architectures now underpin533

models for images, audio, and graphs; extending534

our weight-sharing scheme to those domains re-535

mains an open direction. Because any linear layer536

can, in principle, share parameters and have low-537

rank residuals, similar decompositions may prove538

useful beyond transformers as well.539

In the present work we distribute the adapter540

parameter budget uniformly across all layer types541

and blocks. This heuristic simplifies implementa-542

tion but is unlikely to be optimal. A data-driven or543

sensitivity-based allocation strategy could improve544

the accuracy–compression trade-off.545

Our experiments group adjacent layers. While546

early results are encouraging, a more principled547

grouping criterion might unlock further gains.548

Potential Risks While LAYERDECOMPOSE549

boosts efficiency, it could also lower the barrier550

to misuse—enabling more convincing disinforma-551

tion or fake profiles—and may amplify existing552

biases, further marginalizing underrepresented lan-553

guages or groups. Weight-sharing might also ex-554

pose new vectors for model-stealing or adversarial555

attacks, and its upfront symmetry analysis carries556

non-trivial compute costs, highlighting the need557

for energy-efficient methods and gated releases to558

guard against dual-use harms.559

References560

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gen-561
nari Do Nascimento, Torsten Hoefler, and James562
Hensman. 2024. Slicegpt: Compress large language563
models by deleting rows and columns. In The Twelfth564
International Conference on Learning Representa-565
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.566
OpenReview.net.567

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,568
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei569
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,570
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,571
Keming Lu, and 29 others. 2023. Qwen technical572
report. arXiv preprint arXiv: 2309.16609.573

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng574
Gao, and Yejin Choi. 2020. Piqa: Reasoning about575
physical commonsense in natural language. In Thirty-576
Fourth AAAI Conference on Artificial Intelligence.577

Rainer E Burkard and Eranda Cela. 1999. Linear as-578
signment problems and extensions. In Handbook of579

combinatorial optimization: Supplement volume A, 580
pages 75–149. Springer. 581

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 582
Ashish Sabharwal, Carissa Schoenick, and Oyvind 583
Tafjord. 2018. Think you have solved question 584
answering? try arc, the ai2 reasoning challenge. 585
arXiv:1803.05457v1. 586

David F. Crouse. 2016. On implementing 2d rectan- 587
gular assignment algorithms. IEEE Transactions on 588
Aerospace and Electronic Systems, 52(4):1679–1696. 589

DeepSeek-AI, :, Xiao Bi, Deli Chen, Guanting 590
Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, 591
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, 592
Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge, 593
Kang Guan, Daya Guo, Jianzhong Guo, and 69 oth- 594
ers. 2024. Deepseek llm: Scaling open-source lan- 595
guage models with longtermism. arXiv preprint 596
arXiv: 2401.02954. 597

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, 598
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Universal 599
transformers. In International Conference on Learn- 600
ing Representations. 601

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 602
Kristina Toutanova. 2019. BERT: Pre-training of 603
deep bidirectional transformers for language under- 604
standing. In Proceedings of the 2019 Conference of 605
the North American Chapter of the Association for 606
Computational Linguistics: Human Language Tech- 607
nologies, Volume 1 (Long and Short Papers), pages 608
4171–4186, Minneapolis, Minnesota. Association for 609
Computational Linguistics. 610

Kingma Diederik. 2014. Adam: A method for stochas- 611
tic optimization. (No Title). 612

Carl Eckart and Gale Young. 1936. The approximation 613
of one matrix by another of lower rank. Psychome- 614
trika, 1(3):211–218. 615

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Mas- 616
sive language models can be accurately pruned in 617
one-shot. arXiv preprint arXiv:2301.00774. 618

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 619
Dan Alistarh. 2022. Gptq: Accurate post-training 620
quantization for generative pre-trained transformers. 621
arXiv preprint arXiv: 2210.17323. 622

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider- 623
man, Sid Black, Anthony DiPofi, Charles Foster, 624
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, 625
Haonan Li, Kyle McDonell, Niklas Muennighoff, 626
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey 627
Schoelkopf, Aviya Skowron, Lintang Sutawika, and 628
5 others. 2024a. The language model evaluation har- 629
ness. 630

Shangqian Gao, Ting Hua, Yen-Chang Hsu, Yilin Shen, 631
and Hongxia Jin. 2024b. Adaptive rank selections 632
for low-rank approximation of language models. In 633
Proceedings of the 2024 Conference of the North 634

9

https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1109/TAES.2016.140952
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/BF02288367
https://doi.org/10.1007/BF02288367
https://doi.org/10.1007/BF02288367
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.18653/v1/2024.naacl-long.13
https://doi.org/10.18653/v1/2024.naacl-long.13
https://doi.org/10.18653/v1/2024.naacl-long.13

American Chapter of the Association for Computa-635
tional Linguistics: Human Language Technologies636
(Volume 1: Long Papers), pages 227–241, Mexico637
City, Mexico. Association for Computational Lin-638
guistics.639

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita640
Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya641
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,642
Shane Arora, David Atkinson, Russell Authur, Khy-643
athi Chandu, Arman Cohan, Jennifer Dumas, Yanai644
Elazar, Yuling Gu, Jack Hessel, and 24 others. 2024.645
OLMo: Accelerating the science of language mod-646
els. In Proceedings of the 62nd Annual Meeting of647
the Association for Computational Linguistics (Vol-648
ume 1: Long Papers), pages 15789–15809, Bangkok,649
Thailand. Association for Computational Linguistics.650

Andrey Gromov, Kushal Tirumala, Hassan Shapourian,651
Paolo Glorioso, and Daniel A. Roberts. 2025. The652
unreasonable ineffectiveness of the deeper layers.653
Preprint, arXiv:2403.17887.654

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024.655
Lora+: Efficient low rank adaptation of large models.656
arXiv preprint arXiv: 2402.12354.657

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.658
Distilling the knowledge in a neural network. arXiv659
preprint arXiv: 1503.02531.660

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou,661
Yilin Shen, and Hongxia Jin. 2022. Language model662
compression with weighted low-rank factorization.663
In The Tenth International Conference on Learning664
Representations, ICLR 2022, Virtual Event, April 25-665
29, 2022. OpenReview.net.666

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan667
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and668
Weizhu Chen. 2022. LoRA: Low-rank adaptation of669
large language models. In International Conference670
on Learning Representations.671

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M.672
Asano. 2024. Vera: Vector-based random matrix673
adaptation. In The Twelfth International Conference674
on Learning Representations, ICLR 2024, Vienna,675
Austria, May 7-11, 2024. OpenReview.net.676

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,677
Kevin Gimpel, Piyush Sharma, and Radu Soricut.678
2020. ALBERT: A lite BERT for self-supervised679
learning of language representations. In 8th Inter-680
national Conference on Learning Representations,681
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,682
2020. OpenReview.net.683

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang684
Li, Ankit Singh Rawat, Sashank J. Reddi, Ke Ye,685
Felix Chern, Felix Yu, Ruiqi Guo, and Sanjiv Ku-686
mar. 2023. The lazy neuron phenomenon: On emer-687
gence of activation sparsity in transformers. In The688
Eleventh International Conference on Learning Rep-689
resentations.690

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei- 691
Ming Chen, Wei-Chen Wang, Guangxuan Xiao, 692
Xingyu Dang, Chuang Gan, and Song Han. 2024. 693
Awq: Activation-aware weight quantization for llm 694
compression and acceleration. In MLSys. 695

Vijay Lingam, Atula Tejaswi, Aditya Vavre, Aneesh 696
Shetty, Gautham Krishna Gudur, Joydeep Ghosh, 697
Alex Dimakis, Eunsol Choi, Aleksandar Bojchevski, 698
and Sujay Sanghavi. 2024. Svft: Parameter-efficient 699
fine-tuning with singular vectors. arXiv preprint 700
arXiv: 2405.19597. 701

Shih-Yang Liu, Maksim Khadkevich, Nai Chit Fung, 702
Charbel Sakr, Chao-Han Huck Yang, Chien-Yi Wang, 703
Saurav Muralidharan, Hongxu Yin, Kwang-Ting 704
Cheng, Jan Kautz, Yu-Chiang Frank Wang, Pavlo 705
Molchanov, and Min-Hung Chen. 2024a. Eora: 706
Training-free compensation for compressed llm with 707
eigenspace low-rank approximation. arXiv preprint 708
arXiv: 2410.21271. 709

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo 710
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting 711
Cheng, and Min-Hung Chen. 2024b. Dora: Weight- 712
decomposed low-rank adaptation. In Forty-first In- 713
ternational Conference on Machine Learning, ICML 714
2024, Vienna, Austria, July 21-27, 2024. OpenRe- 715
view.net. 716

Zechun Liu, Changsheng Zhao, Forrest N. Iandola, 717
Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang 718
Xiong, Ernie Chang, Yangyang Shi, Raghuraman 719
Krishnamoorthi, Liangzhen Lai, and Vikas Chandra. 720
2024c. Mobilellm: Optimizing sub-billion parameter 721
language models for on-device use cases. Interna- 722
tional Conference on Machine Learning. 723

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. 724
Llm-pruner: On the structural pruning of large lan- 725
guage models. In Advances in Neural Information 726
Processing Systems. 727

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, 728
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng 729
Chen. 2024. Shortgpt: Layers in large language 730
models are more redundant than you expect. arXiv 731
preprint arXiv: 2403.03853. 732

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024. 733
Pissa: Principal singular values and singular vectors 734
adaptation of large language models. In Advances in 735
Neural Information Processing Systems 38: Annual 736
Conference on Neural Information Processing Sys- 737
tems 2024, NeurIPS 2024, Vancouver, BC, Canada, 738
December 10 - 15, 2024. 739

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 740
Sabharwal. 2018. Can a suit of armor conduct elec- 741
tricity? a new dataset for open book question answer- 742
ing. In EMNLP. 743

Saurav Muralidharan, Sharath Turuvekere Sreenivas, 744
Raviraj Joshi, Marcin Chochowski, Mostofa Patwary, 745
Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, 746

10

https://doi.org/10.18653/v1/2024.acl-long.841
https://doi.org/10.18653/v1/2024.acl-long.841
https://doi.org/10.18653/v1/2024.acl-long.841
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=TJ2nxciYCk-
https://openreview.net/forum?id=TJ2nxciYCk-
https://openreview.net/forum?id=TJ2nxciYCk-
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
http://papers.nips.cc/paper_files/paper/2024/hash/db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html

and Pavlo Molchanov. 2024. Compact language mod-747
els via pruning and knowledge distillation. Advances748
in Neural Information Processing Systems, 37:41076–749
41102.750

Ofir Press and Lior Wolf. 2017. Using the output em-751
bedding to improve language models. In Proceedings752
of the 15th Conference of the European Chapter of753
the Association for Computational Linguistics: Vol-754
ume 2, Short Papers, pages 157–163, Valencia, Spain.755
Association for Computational Linguistics.756

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-757
ine Lee, Sharan Narang, Michael Matena, Yanqi758
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the759
limits of transfer learning with a unified text-to-text760
transformer. Journal of Machine Learning Research,761
21(140):1–67.762

Machel Reid, Edison Marrese-Taylor, and Yutaka Mat-763
suo. 2021. Subformer: Exploring weight sharing764
for parameter efficiency in generative transformers.765
In Findings of the Association for Computational766
Linguistics: EMNLP 2021, pages 4081–4090, Punta767
Cana, Dominican Republic. Association for Compu-768
tational Linguistics.769

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-770
vatula, and Yejin Choi. 2019. Winogrande: An ad-771
versarial winograd schema challenge at scale. arXiv772
preprint arXiv:1907.10641.773

Victor Sanh, Lysandre Debut, Julien Chaumond, and774
Thomas Wolf. 2019. Distilbert, a distilled version of775
bert: smaller, faster, cheaper and lighter. Neurips.776

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng777
Liu. 2021. Roformer: Enhanced transformer with778
rotary position embedding. NEUROCOMPUTING.779

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier780
Martinet, Marie-Anne Lachaux, Timothée Lacroix,781
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal782
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard783
Grave, and Guillaume Lample. 2023. Llama: Open784
and efficient foundation language models. arXiv785
preprint arXiv: 2302.13971.786

Marco Valentino, Deborah Ferreira, Mokanarangan787
Thayaparan, and Andre Freitas, editors. 2024. Pro-788
ceedings of the 2nd Workshop on Mathematical Nat-789
ural Language Processing @ LREC-COLING 2024.790
ELRA and ICCL, Torino, Italia.791

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long,792
Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai,793
and Xiaofei He. 2024. Model compression and effi-794
cient inference for large language models: A survey.795
arXiv preprint arXiv: 2402.09748.796

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang.797
2025. Svd-llm: Truncation-aware singular value de-798
composition for large language model compression.799
Preprint, arXiv:2403.07378.800

Jiateng Wei, Quan Lu, Ning Jiang, Siqi Li, Jingyang 801
Xiang, Jun Chen, and Yong Liu. 2024. Structured 802
optimal brain pruning for large language models. 803
In Proceedings of the 2024 Conference on Empir- 804
ical Methods in Natural Language Processing, pages 805
13991–14007, Miami, Florida, USA. Association for 806
Computational Linguistics. 807

Genta Indra Winata, Andrea Madotto, Jamin Shin, 808
Elham J Barezi, and Pascale Fung. 2019. On 809
the effectiveness of low-rank matrix factorization 810
for lstm model compression. arXiv preprint 811
arXiv:1908.09982. 812

Shufang Xie, Huishuai Zhang, Junliang Guo, Xu Tan, 813
Jiang Bian, Hany Hassan Awadalla, Arul Menezes, 814
Tao Qin, and Rui Yan. 2023. Residual: Transformer 815
with dual residual connections. arXiv preprint arXiv: 816
2304.14802. 817

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, 818
Yan Yan, and Guangyu Sun. 2023. Asvd: Activation- 819
aware singular value decomposition for compressing 820
large language models. Preprint, arXiv:2312.05821. 821

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 822
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma- 823
chine really finish your sentence? In Proceedings of 824
the 57th Annual Meeting of the Association for Com- 825
putational Linguistics, pages 4791–4800, Florence, 826
Italy. Association for Computational Linguistics. 827

Honghe Zhang, XiaolongShi XiaolongShi, Jingwei Sun, 828
and Guangzhong Sun. 2024. Structured pruning for 829
large language models using coupled components 830
elimination and minor fine-tuning. In Findings of the 831
Association for Computational Linguistics: NAACL 832
2024, pages 1–12, Mexico City, Mexico. Association 833
for Computational Linguistics. 834

Qingru Zhang, Minshuo Chen, Alexander Bukharin, 835
Nikos Karampatziakis, Pengcheng He, Yu Cheng, 836
Weizhu Chen, and Tuo Zhao. 2023. Adalora: Adap- 837
tive budget allocation for parameter-efficient fine- 838
tuning. arXiv preprint arXiv: 2303.10512. 839

A Healing Details and Hyperparameters 840

An exhaustive search over compression configu- 841

rations for the LLaMA-7B model on a subset of 842

the development dataset revealed that the optimal 843

perplexity is achieved using the groups [[10, 11, 844

12, 13], [14, 15, 16, 17], [18, 19, 20, 845

21], [22, 23, 24, 25], [26, 27, 28, 29]] 846

with a residual rank of r = 649. 847

We apply healing on the C4 train corpus (Raffel 848

et al., 2020) for 100,000 iterations with an effective 849

batch size of 8, truncating all sequences to a maxi- 850

mum length of 1,024 tokens. The weights for the 851

distillation loss (Eq. 11) are set to α = 0.05 and 852

β = 0.2. 853

11

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.findings-emnlp.344
https://doi.org/10.18653/v1/2021.findings-emnlp.344
https://doi.org/10.18653/v1/2021.findings-emnlp.344
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://aclanthology.org/2024.mathnlp-1.0/
https://aclanthology.org/2024.mathnlp-1.0/
https://aclanthology.org/2024.mathnlp-1.0/
https://aclanthology.org/2024.mathnlp-1.0/
https://aclanthology.org/2024.mathnlp-1.0/
https://arxiv.org/abs/2403.07378
https://arxiv.org/abs/2403.07378
https://arxiv.org/abs/2403.07378
https://doi.org/10.18653/v1/2024.emnlp-main.775
https://doi.org/10.18653/v1/2024.emnlp-main.775
https://doi.org/10.18653/v1/2024.emnlp-main.775
https://arxiv.org/abs/2312.05821
https://arxiv.org/abs/2312.05821
https://arxiv.org/abs/2312.05821
https://arxiv.org/abs/2312.05821
https://arxiv.org/abs/2312.05821
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/2024.findings-naacl.1
https://doi.org/10.18653/v1/2024.findings-naacl.1
https://doi.org/10.18653/v1/2024.findings-naacl.1
https://doi.org/10.18653/v1/2024.findings-naacl.1
https://doi.org/10.18653/v1/2024.findings-naacl.1

For optimisation we use Adam (Diederik, 2014)854

with learning rate 5e-5, cosine annealing schedule855

and weight decay 0.01.856

Experiments were conducted using 2 NVIDIA857

A100 GPUs and took approximately 14 hours in-858

cluding evaluation.859

B Extra Weight Distances860

Pairwise Frobenius distances for all layer types in a861

transformer are depicted on the Fig. 6. Later layers862

tend to be less similar.863

12

0 3 6 9 12151821242730
Layer index

La
ye

r
in

de
x

self_attn.q_proj.weight

0 3 6 9 12151821242730
Layer index

La
ye

r
in

de
x

self_attn.k_proj.weight

0 3 6 9 12151821242730
Layer index

La
ye

r
in

de
x

self_attn.v_proj.weight

0 3 6 9 12151821242730
Layer index

La
ye

r
in

de
x

self_attn.o_proj.weight

0 3 6 9 12151821242730
Layer index

La
ye

r
in

de
x

mlp.gate_proj.weight

0 3 6 9 12151821242730
Layer index

La
ye

r
in

de
x

mlp.up_proj.weight

0 3 6 9 12151821242730
Layer index

La
ye

r
in

de
x

mlp.down_proj.weight

1.5

2.0

×10 3

1.5

2.0

2.5
×10 3

0.50

0.75

1.00

1.25
×10 3

0.5

1.0

×10 3

0.8

1.0

×10 3

0.8

1.0

×10 3

0.90

0.95

1.00

×10 3

Figure 6: Heat-maps of pair-wise distances for each of the 7 layer groups. Each subplot shows the distance matrix
for one layer type.

13

	Introduction
	Preliminaries
	Low-Rank Adaptation
	SVD-based Model Compression
	Weight Sharing in Neural Networks

	Method
	Layer decomposition
	How to Choose Groups?
	Optimal Parameter Budget Allocation
	Rank Computation
	Transformer Permutation Invariance
	Finding Optimal Permutations

	Healing with Distillation

	Experiments
	Conclusion
	Healing Details and Hyperparameters
	Extra Weight Distances

