LAYERDECOMPOSE: Exploring weight sharing for Large Language Model
Compression

Anonymous ACL submission

Abstract

Recent advances in large language model
(LLM) compression have predominantly fo-
cused on pruning and low-rank factorization,
leaving weight sharing—despite its success in
classical neural network compression—Ilargely
unexplored. We introduce LAYERDECOM-
POSE, a novel framework that reduces parame-
ter redundancy by sharing a core weight matrix
across transformer layers and augmenting each
layer with lightweight, low-rank adapters. Un-
like prior SVD- and pruning-based methods,
our joint optimization of shared weights and
residual adapters achieves a 30% model size
reduction while retaining 89% of the original
performance on seven standard benchmarks.
Experiments on LLaMA-7B and three other
7B-parameter models demonstrate that LAY-
ERDECOMPOSE consistently outperforms state-
of-the-art baselines. These results highlight
the promise of combining weight sharing with
low-rank adaptation for efficient, scalable LLM
deployment.

1 Introduction

Transformers underpin virtually every state-of-the-
art large language model (LLM) today, deliver-
ing remarkable capabilities in tasks ranging from
question answering and commonsense reasoning to
code generation and dialogue. As model capacities
have grown—from millions to hundreds of billions
of parameters—the computational and memory de-
mands for both training and inference have skyrock-
eted. Such scaling presents a formidable barrier
to deploying these models in real-world settings,
especially on resource-constrained hardware or at
low latency. To bridge this gap, a rich body of
work has explored post-training compression tech-
niques—quantization, pruning, and low-rank fac-
torization—that reduce model size and accelerate
inference while striving to preserve performance.

~

MLPi*9

Self
Attention

-

~

MLP|+1

Self
Attention

N (7

MLP!

Self
Attention

2

Figure 1: Schematic overview of the proposed approach.
Within a group of size g weights of each type (e.g. up
and down projections in MLP) are shared between trans-
former blocks, but have a unique low-rank residuals,
which are optimized to match the original weights. This
decomposition is also applied to the self attention layer,
omitted for brevity.

Quantization methods (Lin et al., 2024; Fran-
tar et al., 2022) map high-precision weights to

Compression Method ‘ OBQA PIQA HellaS. WinoG. ARC-e ARC-c MathQA ‘ AVG RP (%)
0% Uncompressed ‘ 0.44 0.79 0.76 0.70 0.73 0.46 0.27 ‘ 0.59 100.0
30 % SVD-LLM 0.20 0.65 0.37 0.59 0.48 0.26 0.22 0.40 66.7
27.2% LLM-Pruner 0.39 0.75 0.63 0.61 0.48 0.35 0.23 0.49 82.7
30 % SliceGPT 0.29 0.68 0.43 0.58 0.56 0.35 0.23 0.44 74.8
30 % LAYERDECOMPOSE (ours) | 0.39 0.75 0.67 0.64 0.62 0.37 0.24 0.53 88.9

Table 1: Accuracy of LLaMA-7B after 30 % compression (27.2 % for LLM-Pruner) on seven benchmarks. AVG
is the mean accuracy; RP is the average accuracy expressed as a percentage of the uncompressed baseline. Best
compressed results are in bold. LAYERDECOMPOSE retains nearly 89 % of the original model’s performance and

surpasses all compared methods.

lower-bit representations, offering dramatic mem-
ory savings but often requiring hardware support
for efficient low-bit arithmetic. Unstructured prun-
ing (Frantar and Alistarh, 2023; Li et al., 2023)
discards individual parameters based on some im-
portance criterion, yet its resulting sparsity pat-
terns can be difficult to exploit without special-
ized sparse-compute kernels. Structured prun-
ing (Zhang et al., 2024; Wei et al., 2024) re-
moves entire neurons or attention heads to main-
tain dense linear algebra, but aggressiveness can
quickly degrade model quality. Low-rank adap-
tation approaches—exemplified by LoRA and its
variants—reparameterize pretrained weights with
rank-constrained updates, reducing fine-tuning cost
but typically leaving the bulk of the original dense
weights intact. Each of these strategies trades off
ease of deployment, hardware compatibility, and
final model accuracy.

In contrast to the extensive exploration of prun-
ing and low-rank methods, weight sharing—one
of the oldest and most general compression ideas
in neural networks—has received surprisingly lit-
tle attention for LLMs. Classic works such as the
Universal Transformer (Dehghani et al., 2019) and
ALBERT (Lan et al., 2020) have shown that sharing
the same parameters across all layers can dramati-
cally cut model size with only a modest hit to ac-
curacy, yet naively tying weights across dozens of
transformer blocks often yields unsatisfactory per-
formance. A more nuanced form of weight sharing,
combined with layer-specific lightweight adapta-
tions, promises to balance redundancy elimination
with expressive power, but has not been system-
atically studied in the context of large pretrained
transformers.

In this paper, we introduce LAYERDECOMPOSE,
a novel compression framework that leverages
weight sharing across groups of transformer lay-
ers together with low-rank residual adapters to re-

duce parameter redundancy. Our core observation
is that key transformer blocks express similar lin-
ear transformations up to permutation invariances.
By learning a single shared “base” weight matrix
for each group of layers and modeling inter-layer
differences via trainable low-rank adapters, LAY-
ERDECOMPOSE achieves up to 30% reduction in
model size while retaining over 89% of original per-
formance on seven standard benchmarks. Crucially,
we jointly optimize both the shared weights and the
residual factors in a two-stage procedure—closed-
form initialization via truncated SVD followed by
gradient-based refinement.

Contributions. Our main contributions are:

* We propose a hybrid weight-sharing and low-
rank decomposition that represents a group of
m corresponding linear layers with a single
shared matrix W plus layer-specific residual
factors { A;B;}!" |, reducing parameters from
mn? to n? 4+ 2mnr with minimal extra com-
pute.

* We characterize and exploit permutation in-
variances in both MLP and self-attention mod-
ules, using assignment solvers to optimally
permute and align layer weights before de-
composition, thereby lowering reconstruction
error.

* We validate LAYERDECOMPOSE on LLaMA-
7B and three additional 7B-parameter models,
showing that it consistently outperforms state-
of-the-art SVD- and pruning-based baselines,
retaining nearly 89% of uncompressed per-
formance at 30% size reduction across seven
diverse benchmarks.

2 Preliminaries

2.1 Low-Rank Adaptation

LoRA (Hu et al., 2022) replaces the standard linear
layer
Y=XW+5b (1)

with
Y=XW+AB)+b=XW + XAB+b, (2)

where rank(AB) < rank(W). This reparame-
terization permits fine-tuning only the low-rank
matrices A and B, greatly reducing memory us-
age. Subsequent works have explored modified
initializations (Meng et al., 2024), alternative repa-
rameterizations (Liu et al., 2024b; Kopiczko et al.,
2024; Lingam et al., 2024; Liu et al., 2024a), and
revised optimization strategies (Hayou et al., 2024;
Zhang et al., 2023).

2.2 SVD-based Model Compression

Large language models require a significant
amount of memory and computational power to
operate. To reduce these resource demands, vari-
ous model compression techniques have been de-
veloped. One approach to reducing the parameter
count is to factorize the weight matrix W € R™*"
into a product of two matrices with fewer total pa-
rameters, AB, where A, BT € R™*" and 71 < n,
while striving to retain as much model performance
as possible. A substantial body of work applies Sin-
gular Value Decomposition (SVD) to address this
problem.

An early work (Winata et al., 2019) applies SVD
for the LSTM cell and explores the effectiveness
on different NLP tasks. FWSVD (Hsu et al., 2022)
utilizes Fisher information to assign importance
weights to the model parameters. However, com-
puting the Fisher information matrix involves com-
putationally expensive gradient calculations. To
mitigate these costs, ASVD (Yuan et al., 2023) pro-
poses an activation-aware decomposition method,
which incorporates the distribution of activations
into the weight decomposition process. In this ap-
proach, the scaling matrix is designed based on
the distribution patterns observed across input ac-
tivation channels. SVD-LLM (Wang et al., 2025)
extends this idea further by whitening the input ma-
trix to reduce its impact on SVD truncation, with
proven guarantees of achieving an optimal theoret-
ical truncation loss. Unlike previous works, (Gao

et al., 2024b) developed an approach to automati-
cally allocate various ranks to different layers using
a differential hypernetwork.

2.3 Weight Sharing in Neural Networks

One fundamental application of weight sharing in
language models is embedding weight tying, where
the input and output embeddings share the same
weight matrix (Press and Wolf, 2017; Raffel et al.,
2020). Another significant aspect is weight sharing
across layers in deep networks. Instead of assign-
ing each layer its own parameters, a common set of
weights is employed across multiple layers, thereby
reducing redundancy and lowering the overall pa-
rameter count.

This concept was initially explored in the Uni-
versal Transformer (Dehghani et al., 2019), which
introduced a recurrent inductive bias into the Trans-
former architecture by reusing the same layer
weights at every depth. ALBERT (Lan et al.,
2020) further demonstrated that, with appropri-
ate hyperparameters tuning, full weight sharing in
BERT (Devlin et al., 2019) results in only a minor
reduction in accuracy while achieving faster train-
ing, enhanced memory efficiency, and improved
regularization.

More recent work has investigated weight shar-
ing strategies tailored for resource-constrained en-
vironments. For example, Subformer (Reid et al.,
2021) and MobileLLM (Liu et al., 2024c) explored
various methods for sharing transformer blocks to
optimize performance on mobile devices. Similarly,
Residualformer (Xie et al., 2023) employed LoRA
reparameterization with shared base weights for
training speech recognition models from scratch,
in contrast to our focus on compressing existing
pretrained models.

3 Method

3.1 Layer decomposition

Transformers consist of a stack of identical layers,
each containing self-attention and MLP submod-
ules. Both submodules are composed of linear
transformations whose parameters are stored in
weight matrices.

Figure 1 illustrates our approach. Let GG be a set
of m corresponding linear layers (for example, the
“up” projections of the MLP in layers 17 through
23). For each layer ¢ € G, the original computation
is

Y = XW,; + b,

We replace this with a shared base weight W plus
a low-rank residual for each layer:

Y = XW + XA;B; + b, i1€G.
Omitting biases for simplicity, if W € R"*™,
|G| = m, and each A;, B € R™" withr < n,
then the total parameters drop from m n? to

n? + m- 2nr,

at the cost of a small extra compute for the adapters.
To initialize W, {A;, B;}, we minimize the
Frobenius-norm reconstruction loss

LW, A,B)=>|Wi— (W +AB)|, 3
i€
- ZH(WZ - W) - AiBiHF'
1€G

This loss can be viewed as seeking a rank-r ap-
proximation of each difference W; — W. Hence,
by the Eckart—Young—Mirsky theorem (Eckart and
Young, 1936), for a fixed base W the optimal low-
rank factors (A;, B;) are given by the truncated
SVD of (W; — W). Conversely, when {A;, B;}
are held fixed, the optimal shared weight is simply
the element-wise mean

W = LZ(Wi—AiB,»).
ol &2

After initializing via these two closed-form updates,
we perform a final joint refinement of W and all
{4;, B;} using Adam (Diederik, 2014). The full
procedure is outlined in Algorithm 1.

3.2 How to Choose Groups?

To apply our decomposition, we must partition the
L transformer layers into groups that will share the
same base weight matrix. A natural baseline is to
form consecutive groups of fixed size, but ideally
we would group layers whose weights are most
alike so as to minimize the reconstruction loss in
Eq. 3.

We first measured pairwise Frobenius distances

d(Li, L) = [|[W; = Wj|r

between corresponding weight matrices across lay-
ers. Figure 2 shows both the distance matrix and
its histogram for the MLP up-projection weights of
LLaMA. The heat-map reveals no clear block struc-
ture, and the histogram is tightly centered around

Algorithm 1 Alternating Shared W Optimization

Require: Weight group {W;};c, rank r, alterna-
tion steps 7', Adam steps Tydam
Ensure: Optimal shared weight W, low-rank fac-
tors {AZ, Bi}ieG
W LS oW > W initialization
for eachi € G do > A;, B; initialization
(Ai, B;) < TruncSVD(W; — W, r)
end for
fort =1toT do > Alternating optimization
W o Yiec(Wi — AiB;)
for cachi € G do
(Ai, B;) < TruncSVD(W; — W, r)
end for
end for
for t = 1 to T,qam do > Adam Optimization
Compute L(W, A, B) as in Eq. 3
Update W, {4;, B;} via Adam
end for

its mean, indicating that all layers are roughly
equally dissimilar. Clustering on these distances
failed to produce consistent, meaningful groups.

Given the limitations of a purely weight-space
metric, we next define a functional similarity mea-
sure:

p(Li, L;) = d(Li(Xy), Li(X3)), (@)

where L; and L; denote the ith and jth layers, X;
is the actual input to L; collected during a forward
pass, and d(z,y) = ||z — y||3. This quantity cap-
tures how closely layer j can mimic layer ¢ on
its native inputs. Note that p is not symmetric in
general.

Figure 3 shows the resulting similarity matrix for
the MLP blocks in LLaMA. We observe a banded
structure along the diagonal, indicating that adja-
cent layers produce more similar outputs. Further-
more, the first half of the network exhibits larger
approximation errors than the second half. Moti-
vated by these observations and for implementation
simplicity, we form groups of consecutive layers
for weight sharing in this work.

3.3 Optimal Parameter Budget Allocation

Even with consecutive grouping, our framework
has three key hyperparameters under a fixed pa-
rameter budget: the span of affected layers, the
size of each group, and the adapter rank. With a
fixed parameter budget, one can either apply strong

x1073
— 1.0459

Layer index
3028262422201816141210 8 6 4 2 0

0 2 4 6 810121416 1820 22 24 26 28 30 0.8525

Layer index

120

100

80

Count

60

40

20

0
0.850 0.875 0.900 0.925 0.950 0.975 1.000 1.025 1.050
Distance value x1073

Figure 2: Pairwise Frobenius distance matrix and his-
togram for the MLP up-projection weights in LLaMA.
The lack of visible structure and the narrow distribution
of distances suggest that fixed-size consecutive group-
ing is as reasonable as any clustering based on these
metrics.

= 0.2670

o
[\
<

b ©
O
=
—
5 S
2 <
g -
— ©
i
©
o =
58
T oo
o N
.o
-
©

(o]

)

(9]

o

3]

0 2 4 6 8101214161820 22242628 30 0.0678

j, applied layer index

Figure 3: Functional similarity matrix for MLP blocks
in the LLaMA model, where each entry (3, j) is given
by p(L;, L;). Lower values along the diagonal indicate
that nearby layers are more functionally similar.

compression to a few layers or perform milder com-
pression across a larger number of layers.

To identify which regions of the network toler-
ate compression best, we first compressed a single
block of ten consecutive layers at a time. Figure 4
shows that compressing the earliest or latest layers
incurs large perplexity increases, whereas targeting
the final third of layers yields the smallest degrada-
tion. These findings corroborate prior analyses of
layer sensitivity (Gromov et al., 2025; Men et al.,
2024; Wang et al., 2024).

T

104 ?. H

10° = ° :

Perplexity

—
(=)
©
1
1

0 3 [§ 9 12 ‘ 15 18 21
First Affected Layer Index

Figure 4: Perplexity after decomposition (before heal-
ing) for a single group of 10 layers. Each x-value de-
notes the index of the first layer in the compressed block
(e.g., 19 covers layers 19-29).

We then performed an exhaustive search over
hyperparameters under a fixed budget. For a 30%
compression of LLaMA-7B (4.7 B parameters),
we fixed the final layer at index 30 and varied the
starting layer and group size. Given each choice of
start and group, we computed the adapter rank to
exactly match the remaining parameter budget (see
section 3.4 for more details).

Figure 5 presents the results of this exhaus-
tive search. The performance varies substantially
across configurations. One clear trend is that ap-
plying milder compression over a wider range of
layers—using larger residual ranks—yields better
perplexity than more aggressive compression on a
smaller subset of layers.

3.4 Rank Computation

During the exhaustive search with fixed hyperpa-
rameters, the adapter rank could be computed in a
single way as follows:

PB—<Pnb‘|‘(LT—LA)'PZ+G'Pl)

Ly- (d] + do) ’
5

r =

where:

40 -

35 -

Perplexity

30 - —

25 -

12 15 18 21 24 27

Layer Groups

Figure 5: Perplexity after decomposition for various
compression configurations. Each line corresponds to
a different group of layers. Slight compression over a
broader layer span—with higher adapter rank—yields
better perplexity than aggressive compression on a
smaller subset.

* r is the adapter rank,
* Ppis the fixed total parameter budget,

* P,; denotes the number of parameters that are
not subject to compression (e.g. embedding
and LM head layers),

e L7 is the total number of layers in the model,

* L4 is the number of affected layers, i.e. se-
lected for compression,

* P, represents the number of parameters in one
layer,

* (5 is the number of groups within the affected
layers,

* d; and dp are the sum of input and output
dimensions of a layer, respectively.

3.5 Transformer Permutation Invariance

Permutation invariance in transformer modules al-
lows multiple weight configurations to produce
identical outputs by appropriately reordering in-
termediate dimensions.

Multi-Layer Perceptron A gated transformer
MLP block computes

y = Wy(c(Wyz) © W, z),

where o is applied element-wise. By permuting
the intermediate hidden dimensions via an n X n
permutation matrix P (and its inverse PT), one can
rearrange the rows of W, and W, without affecting
the final output. Concretely, we exploit PP = I
as follows:

y=WaP"(o(PWy) © PW,2)
= WaPT(Po(Wya) © Wy)
=Wy (c(Wyz) © Wy),

since PT(P o(W,x)) = o(W,z). Hence one can
absorb P into the weights by defining

Wi =PW,, W,=PW, W,=W,P",

yielding the same output y. Because there are n!
permutation matrices of size n, this gives n! equiv-
alent MLLP configurations.

Query and Key Projections In self-attention,
the query and key projections satisfy a similar in-
variance: permuting their shared intermediate di-
mensions does not alter the attention scores. Recall

Q=XWq, K=XWgk, V=XWy,
and
Attn(Q, K, V) = softmax(QKT) V.

Inserting a permutation P with P7 P = [into the
score computation gives

softmax(QKT) = softmax (X Wo) (XWK)T)
= softmax(XWq P PT Wi X7).
so that defining
Wo=WoP, Wi =P Wk

leaves softmax(QK ™) unchanged.

Value and Output projections Previously, we
showed that permuting the dimensions of) and K
does not alter the attention score matrix. We now
demonstrate a similar invariance for the Value and
subsequent Output projections.

In multi-head self-attention, for each head 1 =
1,..., h we define

v = xwl

HY = softmax(Q(i) (K(Z))T) v,

where W‘(,i) € R¥% s the value-projection for
head i. We then concatenate the head outputs and
apply the final output projection:

V=[HY, .. HM] Wy, WoeRIdI*d

Any permutation of the h head-blocks and of the
d,, channels within each head can be absorbed into
the weight matrices {W‘(/Z)} and Wo. Concretely,
let

Pblocks e {0,1}(hdo)x(hdv)

dy Xdy s (7)
€ {0,1} (i=1,...,h),

1ntra

and form

P = Pilocks (@ szt)ra>7

where € denotes the block-diagonal direct sum
(so the ith diagonal block is pY

intra
all the per-head projections into

). If we collect

Wy =[] e riO),
H=[HY, . HM],

then one checks
Y = HWp = softmax(QKT)V Wo
= softmax(QK ™) (XWy PPT)Wo (9)
= softmax(QK™T) (XW{,) W}
with

Wi, == Wy P, W, .= PT W,

and PT P = I guarantees the same output. Since
there are h! ways to permute the head-blocks
and (d,!)" ways to permute channels within each
head, the total number of distinct permutations of
(Wy, Wo) yielding identical outputs is h! x (d,!)".

3.5.1 Finding Optimal Permutations

We leverage these permutation symmetries to re-
order layer weights so that they align more closely
within each group. Formally, for two weight matri-
ces W; and W;, we seek

P = ang uin [, ~ PW .

where S, is the set of n X n permutation matri-
ces. Here, P minimizes the difference between an
anchor weight and another weight in the group.

We perform this procedure separately for three
components: the MLP block, the Query—Key
(QK) projections, and the Value—Output (VO)
projections. Note that for QK we restrict intra-
head permutations to the identity (Piptyra =
I)—permuting channels would conflict with RoPE
embeddings (Su et al., 2021)—and only reorder
entire heads.

MLP block Compute a cost matrix D € R"*"
whose (i, j) entry is

Dyj =||Wii,] = WP +

Wt 1 = Wil All; +

Wil i) = WL,)5

(10)

where W,,, Wy, and W denote the up-projection,
gate, and down-projection weight matrices. Each
D;; aggregates via sum the squared /3 distances
between row ¢ of one layer and row j of another
for W, and Wy, plus the column differences in
W,4. We formulate the search for the optimal
permutation as a linear sum assignment problem
(LSAP) (Burkard and Cela, 1999) and solve it with
an efficient solver (Crouse, 2016) to obtain the op-
timal permutation P.

QK and VO projections Here the permutation
must respect the block structure of h attention
heads, so channels cannot be exchanged across
heads. We use a two-stage approach:

1. Intra-head alignment: For each pair of cor-
responding heads, find the best channel per-
mutation Pl(nt)ra by solving an LSAP on the

per-head weight differences.

2. Inter-head alignment: Compute aggregated
costs between entire heads using the intra-
head-aligned weights, then solve a second
LSAP to determine the head-reordering per-
mutation Ppjocks-

Finally, we combine these into a block-diagonal
permutation

P = Pblocks (@ szt)ra)’

which aligns both head order and internal channels
while preserving the attention outputs.

3.6 Healing with Distillation

Because our weight-sharing and low-rank decom-
position substantially alter the original parameters,
a dedicated “healing” step is required to recover
performance. Following Muralidharan et al. (2024),
we apply both logit-level and hidden-state distil-
lation (Hinton et al., 2015; Sanh et al., 2019) to
encourage the compressed model to mimic the
teacher’s behavior while reducing reliance on the
specific healing dataset.

Concretely, we augment the standard language
modeling loss £,3; with two distillation terms:

L= £LM + a KL (p || pteacher)
+ 08 MSE(h, hteacher)a

where - KL(p || preacher) is the Kullback-Leibler
divergence between the student’s output distri-
bution p and the teacher’s distribution pieacher, -
MSE(h, hieacher) is the mean squared error be-
tween their hidden-state activations, and «,
weight these distillation terms relative to Lz,a.

1D

4 [Experiments

We now evaluate the effectiveness of LAYERDE-
COMPOSE. Our first set of experiments compares
it with three state-of-the-art compression baselines
applied to the LLaMA-7B (Touvron et al., 2023)
model at a fixed compression ratio of 30 %. SVD-
LLM Wang et al. (2025) compresses weights by
applying singular-value decomposition with an in-
jected whitening transformation matrix and has
so far yielded the strongest results among SVD-
based schemes. LLM-Pruner (Ma et al., 2023)
performs structural pruning, discarding non-critical
coupled components on the basis of gradient im-
portance. SliceGPT (Ashkboos et al., 2024) mul-
tiplies weight matrices by orthogonal projection
matrices before eliminating less important rows
and columns; the authors exploit a form of trans-
former invariance that differs from the permutation
invariance introduced in our work. All baselines,
like our method, perform a post-compression heal-
ing step to recover accuracy. Hyperparameters and
other healing details for LAYERDECOMPOSE are
provided in Appendix A.

We retain the original evaluation protocol of
LM-Evaluation-Harness (Gao et al., 2024a) and
report accuracy on seven benchmarks covering
question-answering and commonsense reasoning:
OpenBookQA (OBQA) (Mihaylov et al., 2018),
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,

2019), WinoGrande (Sakaguchi et al., 2019), ARC-
Easy and ARC-Challenge (Clark et al., 2018), and
MathQA (Valentino et al., 2024). In addition to ab-
solute accuracy, we compute Relative Performance
(RP), the ratio of a compressed model’s average
accuracy to that of the uncompressed model.

Table 1 demonstrates that LAYERDECOMPOSE
achieves the highest average accuracy and relative
performance, retaining approximately 89% of the
uncompressed model’s quality while matching or
surpassing each baseline on all individual bench-
marks. These findings underscore the effectiveness
of weight sharing in compressing large language
models.

To verify the generality of our method, we also
applied LAYERDECOMPOSE to three other 7B-
parameter models—Qwen-7B (Bai et al., 2023),
DeepSeek-7B (DeepSeek-Al et al., 2024), and
OLMo-7B (Groeneveld et al., 2024). The result-
ing average accuracies and relative performance
scores appear in Table 2.

Model AVG RP (%)
Qwen-7B 0.50 83.0
DeepSeek-7B | 0.52 88.2
OLMo-7B 0.48 84.0

Table 2: Average accuracy (AVG) and relative perfor-
mance (RP) of LAYERDECOMPOSE on additional 7B
models.

5 Conclusion

We introduced LAYERDECOMPOSE, a compres-
sion framework that represents blocks of consecu-
tive transformer weights with a single shared ma-
trix plus lightweight, layer-specific adapters. By
formalizing permutation invariances in both MLP
and self-attention components, we revealed a vast
family of equivalent weight configurations and
leveraged these symmetries to further reduce re-
dundancy. Empirical results on LLaMA-7B and
three additional 7B-parameter models show that
our weight-sharing approach matches or exceeds
state-of-the-art compression baselines across di-
verse benchmarks. We believe that our findings
will inspire further exploration of weight sharing
as a systematic strategy for efficient LLM compres-
sion and scaling.

Limitations

Although we focus on language models, LAY-
ERDECOMPOSE is not intrinsically tied to the text
modality. Transformer architectures now underpin
models for images, audio, and graphs; extending
our weight-sharing scheme to those domains re-
mains an open direction. Because any linear layer
can, in principle, share parameters and have low-
rank residuals, similar decompositions may prove
useful beyond transformers as well.

In the present work we distribute the adapter
parameter budget uniformly across all layer types
and blocks. This heuristic simplifies implementa-
tion but is unlikely to be optimal. A data-driven or
sensitivity-based allocation strategy could improve
the accuracy—compression trade-off.

Our experiments group adjacent layers. While
early results are encouraging, a more principled
grouping criterion might unlock further gains.

Potential Risks While LAYERDECOMPOSE
boosts efficiency, it could also lower the barrier
to misuse—enabling more convincing disinforma-
tion or fake profiles—and may amplify existing
biases, further marginalizing underrepresented lan-
guages or groups. Weight-sharing might also ex-
pose new vectors for model-stealing or adversarial
attacks, and its upfront symmetry analysis carries
non-trivial compute costs, highlighting the need
for energy-efficient methods and gated releases to
guard against dual-use harms.

References

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gen-
nari Do Nascimento, Torsten Hoefler, and James
Hensman. 2024. Slicegpt: Compress large language
models by deleting rows and columns. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chenggiang Lu,
Keming Lu, and 29 others. 2023. Qwen technical
report. arXiv preprint arXiv: 2309.16609.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piga: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Rainer E Burkard and Eranda Cela. 1999. Linear as-
signment problems and extensions. In Handbook of

combinatorial optimization: Supplement volume A,

pages 75-149. Springer.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

David F. Crouse. 2016. On implementing 2d rectan-
gular assignment algorithms. IEEE Transactions on
Aerospace and Electronic Systems, 52(4):1679-1696.

DeepSeek-Al, :, Xiao Bi, Deli Chen, Guanting
Chen, Shanhuang Chen, Damai Dai, Chengqi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu,
Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge,
Kang Guan, Daya Guo, Jianzhong Guo, and 69 oth-
ers. 2024. Deepseek llm: Scaling open-source lan-
guage models with longtermism. arXiv preprint
arXiv: 2401.02954.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Universal
transformers. In International Conference on Learn-
ing Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kingma Diederik. 2014. Adam: A method for stochas-
tic optimization. (No Title).

Carl Eckart and Gale Young. 1936. The approximation
of one matrix by another of lower rank. Psychome-
trika, 1(3):211-218.

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Mas-
sive language models can be accurately pruned in
one-shot. arXiv preprint arXiv:2301.00774.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv: 2210.17323.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024a. The language model evaluation har-
ness.

Shanggian Gao, Ting Hua, Yen-Chang Hsu, Yilin Shen,
and Hongxia Jin. 2024b. Adaptive rank selections
for low-rank approximation of language models. In
Proceedings of the 2024 Conference of the North

https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1109/TAES.2016.140952
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/BF02288367
https://doi.org/10.1007/BF02288367
https://doi.org/10.1007/BF02288367
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.18653/v1/2024.naacl-long.13
https://doi.org/10.18653/v1/2024.naacl-long.13
https://doi.org/10.18653/v1/2024.naacl-long.13

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 227-241, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita
Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
Shane Arora, David Atkinson, Russell Authur, Khy-
athi Chandu, Arman Cohan, Jennifer Dumas, Yanai
Elazar, Yuling Gu, Jack Hessel, and 24 others. 2024.
OLMo: Accelerating the science of language mod-
els. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15789-15809, Bangkok,
Thailand. Association for Computational Linguistics.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian,
Paolo Glorioso, and Daniel A. Roberts. 2025. The
unreasonable ineffectiveness of the deeper layers.
Preprint, arXiv:2403.17887.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024.
Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv: 2402.12354.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv: 1503.02531.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou,
Yilin Shen, and Hongxia Jin. 2022. Language model
compression with weighted low-rank factorization.
In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-
29, 2022. OpenReview.net.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M.
Asano. 2024. Vera: Vector-based random matrix
adaptation. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang
Li, Ankit Singh Rawat, Sashank J. Reddi, Ke Ye,
Felix Chern, Felix Yu, Ruiqi Guo, and Sanjiv Ku-
mar. 2023. The lazy neuron phenomenon: On emer-
gence of activation sparsity in transformers. In The
Eleventh International Conference on Learning Rep-
resentations.

10

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
Awq: Activation-aware weight quantization for 1lm
compression and acceleration. In MLSys.

Vijay Lingam, Atula Tejaswi, Aditya Vavre, Aneesh
Shetty, Gautham Krishna Gudur, Joydeep Ghosh,
Alex Dimakis, Eunsol Choi, Aleksandar Bojchevski,
and Sujay Sanghavi. 2024. Svft: Parameter-efficient
fine-tuning with singular vectors. arXiv preprint
arXiv: 2405.19597.

Shih-Yang Liu, Maksim Khadkevich, Nai Chit Fung,
Charbel Sakr, Chao-Han Huck Yang, Chien-Yi Wang,
Saurav Muralidharan, Hongxu Yin, Kwang-Ting
Cheng, Jan Kautz, Yu-Chiang Frank Wang, Pavlo
Molchanov, and Min-Hung Chen. 2024a. Eora:
Training-free compensation for compressed 1lm with
eigenspace low-rank approximation. arXiv preprint
arXiv: 2410.21271.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024b. Dora: Weight-
decomposed low-rank adaptation. In Forty-first In-
ternational Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenRe-
view.net.

Zechun Liu, Changsheng Zhao, Forrest N. landola,
Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman
Krishnamoorthi, Liangzhen Lai, and Vikas Chandra.
2024c. Mobilellm: Optimizing sub-billion parameter
language models for on-device use cases. Interna-
tional Conference on Machine Learning.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. In Advances in Neural Information
Processing Systems.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language
models are more redundant than you expect. arXiv
preprint arXiv: 2403.03853.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.
Pissa: Principal singular values and singular vectors
adaptation of large language models. In Advances in
Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Sys-
tems 2024, NeurlPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In EMNLP.

Saurav Muralidharan, Sharath Turuvekere Sreenivas,
Raviraj Joshi, Marcin Chochowski, Mostofa Patwary,
Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz,

https://doi.org/10.18653/v1/2024.acl-long.841
https://doi.org/10.18653/v1/2024.acl-long.841
https://doi.org/10.18653/v1/2024.acl-long.841
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=NjNfLdxr3A
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=TJ2nxciYCk-
https://openreview.net/forum?id=TJ2nxciYCk-
https://openreview.net/forum?id=TJ2nxciYCk-
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
http://papers.nips.cc/paper_files/paper/2024/hash/db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/db36f4d603cc9e3a2a5e10b93e6428f2-Abstract-Conference.html

and Pavlo Molchanov. 2024. Compact language mod-
els via pruning and knowledge distillation. Advances
in Neural Information Processing Systems, 37:41076—
41102.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 2, Short Papers, pages 157-163, Valencia, Spain.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Machel Reid, Edison Marrese-Taylor, and Yutaka Mat-
suo. 2021. Subformer: Exploring weight sharing
for parameter efficiency in generative transformers.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 4081-4090, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2019. Winogrande: An ad-
versarial winograd schema challenge at scale. arXiv
preprint arXiv:1907.10641.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. Neurips.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng
Liu. 2021. Roformer: Enhanced transformer with
rotary position embedding. NEUROCOMPUTING.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. arXiv
preprint arXiv: 2302.13971.

Marco Valentino, Deborah Ferreira, Mokanarangan
Thayaparan, and Andre Freitas, editors. 2024. Pro-
ceedings of the 2nd Workshop on Mathematical Nat-
ural Language Processing @ LREC-COLING 2024.
ELRA and ICCL, Torino, Italia.

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long,
Zhengkai Lin, Liye Zhang, Binbin Lin, Deng Cai,
and Xiaofei He. 2024. Model compression and effi-
cient inference for large language models: A survey.
arXiv preprint arXiv: 2402.09748.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang.
2025. Svd-llm: Truncation-aware singular value de-

composition for large language model compression.
Preprint, arXiv:2403.07378.

11

Jiateng Wei, Quan Lu, Ning Jiang, Siqi Li, Jingyang
Xiang, Jun Chen, and Yong Liu. 2024. Structured
optimal brain pruning for large language models.
In Proceedings of the 2024 Conference on Empir-
ical Methods in Natural Language Processing, pages
13991-14007, Miami, Florida, USA. Association for
Computational Linguistics.

Genta Indra Winata, Andrea Madotto, Jamin Shin,
Elham J Barezi, and Pascale Fung. 2019. On
the effectiveness of low-rank matrix factorization

for Istm model compression. arXiv preprint
arXiv:1908.09982.

Shufang Xie, Huishuai Zhang, Junliang Guo, Xu Tan,
Jiang Bian, Hany Hassan Awadalla, Arul Menezes,
Tao Qin, and Rui Yan. 2023. Residual: Transformer
with dual residual connections. arXiv preprint arXiv:
2304.14802.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu,
Yan Yan, and Guangyu Sun. 2023. Asvd: Activation-
aware singular value decomposition for compressing
large language models. Preprint, arXiv:2312.05821.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791-4800, Florence,
Italy. Association for Computational Linguistics.

Honghe Zhang, XiaolongShi XiaolongShi, Jingwei Sun,
and Guangzhong Sun. 2024. Structured pruning for
large language models using coupled components
elimination and minor fine-tuning. In Findings of the
Association for Computational Linguistics: NAACL
2024, pages 1-12, Mexico City, Mexico. Association
for Computational Linguistics.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. 2023. Adalora: Adap-
tive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv: 2303.10512.

A Healing Details and Hyperparameters

An exhaustive search over compression configu-
rations for the LLaMA-7B model on a subset of
the development dataset revealed that the optimal
perplexity is achieved using the groups [[10, 11,
12, 131, [14, 15, 16, 171, [18, 19, 20,
211, [22, 23, 24, 251, [26, 27, 28, 291]
with a residual rank of » = 649.

We apply healing on the C4 train corpus (Raffel
et al., 2020) for 100,000 iterations with an effective
batch size of 8, truncating all sequences to a maxi-
mum length of 1,024 tokens. The weights for the
distillation loss (Eq. 11) are set to o = 0.05 and
B8 =0.2.

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.findings-emnlp.344
https://doi.org/10.18653/v1/2021.findings-emnlp.344
https://doi.org/10.18653/v1/2021.findings-emnlp.344
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://aclanthology.org/2024.mathnlp-1.0/
https://aclanthology.org/2024.mathnlp-1.0/
https://aclanthology.org/2024.mathnlp-1.0/
https://aclanthology.org/2024.mathnlp-1.0/
https://aclanthology.org/2024.mathnlp-1.0/
https://arxiv.org/abs/2403.07378
https://arxiv.org/abs/2403.07378
https://arxiv.org/abs/2403.07378
https://doi.org/10.18653/v1/2024.emnlp-main.775
https://doi.org/10.18653/v1/2024.emnlp-main.775
https://doi.org/10.18653/v1/2024.emnlp-main.775
https://arxiv.org/abs/2312.05821
https://arxiv.org/abs/2312.05821
https://arxiv.org/abs/2312.05821
https://arxiv.org/abs/2312.05821
https://arxiv.org/abs/2312.05821
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/2024.findings-naacl.1
https://doi.org/10.18653/v1/2024.findings-naacl.1
https://doi.org/10.18653/v1/2024.findings-naacl.1
https://doi.org/10.18653/v1/2024.findings-naacl.1
https://doi.org/10.18653/v1/2024.findings-naacl.1

For optimisation we use Adam (Diederik, 2014)
with learning rate 5e-5, cosine annealing schedule
and weight decay 0.01.

Experiments were conducted using 2 NVIDIA
A100 GPUs and took approximately 14 hours in-
cluding evaluation.

B Extra Weight Distances

Pairwise Frobenius distances for all layer types in a
transformer are depicted on the Fig. 6. Later layers
tend to be less similar.

12

self attn.q proj.weight self attn.k proj.weight self attn.v_proj.weight self attn.o proj.weight

£ 20 F E E
] 8 8 8
Z 1.5 > > S
5] : 5] =]
— — = 3
e mmaz
0 3 6 912151821242730 0 3 6 912151821242730 0 3 6 912151821242730 0 3 6 912151821242730
Layer index Layer index Layer index Layer index
mlp.gate proj.weight mlp.up proj.weight mlp.down proj.weight
x x]
[5] 5]
< k] 1.0 °
g 1.0 5 5
=~ ~ 1=
e 3 e
@ « 0.8 ©
- 0.8 — =
I o - - ok
0 3 6 912151821242730 0 3 6 912151821242730 0 3 6 912151821242730
Layer index Layer index Layer index

Figure 6: Heat-maps of pair-wise distances for each of the 7 layer groups. Each subplot shows the distance matrix
for one layer type.

13

	Introduction
	Preliminaries
	Low-Rank Adaptation
	SVD-based Model Compression
	Weight Sharing in Neural Networks

	Method
	Layer decomposition
	How to Choose Groups?
	Optimal Parameter Budget Allocation
	Rank Computation
	Transformer Permutation Invariance
	Finding Optimal Permutations

	Healing with Distillation

	Experiments
	Conclusion
	Healing Details and Hyperparameters
	Extra Weight Distances

