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Abstract001

Recent advances in large language model002
(LLM) compression have predominantly fo-003
cused on pruning and low-rank factorization,004
leaving weight sharing—despite its success in005
classical neural network compression—largely006
unexplored. We introduce LAYERDECOM-007
POSE, a novel framework that reduces parame-008
ter redundancy by sharing a core weight matrix009
across transformer layers and augmenting each010
layer with lightweight, low-rank adapters. Un-011
like prior SVD- and pruning-based methods,012
our joint optimization of shared weights and013
residual adapters achieves a 30% model size014
reduction while retaining 89% of the original015
performance on seven standard benchmarks.016
Experiments on LLaMA-7B and three other017
7B-parameter models demonstrate that LAY-018
ERDECOMPOSE consistently outperforms state-019
of-the-art baselines. These results highlight020
the promise of combining weight sharing with021
low-rank adaptation for efficient, scalable LLM022
deployment.023

1 Introduction024

Transformers underpin virtually every state-of-the-025

art large language model (LLM) today, deliver-026

ing remarkable capabilities in tasks ranging from027

question answering and commonsense reasoning to028

code generation and dialogue. As model capacities029

have grown—from millions to hundreds of billions030

of parameters—the computational and memory de-031

mands for both training and inference have skyrock-032

eted. Such scaling presents a formidable barrier033

to deploying these models in real-world settings,034

especially on resource-constrained hardware or at035

low latency. To bridge this gap, a rich body of036

work has explored post-training compression tech-037

niques—quantization, pruning, and low-rank fac-038

torization—that reduce model size and accelerate039

inference while striving to preserve performance.040
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Figure 1: Schematic overview of the proposed approach.
Within a group of size g weights of each type (e.g. up
and down projections in MLP) are shared between trans-
former blocks, but have a unique low-rank residuals,
which are optimized to match the original weights. This
decomposition is also applied to the self attention layer,
omitted for brevity.

Quantization methods (Lin et al., 2024; Fran- 041

tar et al., 2022) map high-precision weights to 042
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Compression Method OBQA PIQA HellaS. WinoG. ARC-e ARC-c MathQA AVG RP (%)

0 % Uncompressed 0.44 0.79 0.76 0.70 0.73 0.46 0.27 0.59 100.0

30 % SVD-LLM 0.20 0.65 0.37 0.59 0.48 0.26 0.22 0.40 66.7
27.2 % LLM-Pruner 0.39 0.75 0.63 0.61 0.48 0.35 0.23 0.49 82.7
30 % SliceGPT 0.29 0.68 0.43 0.58 0.56 0.35 0.23 0.44 74.8
30 % LAYERDECOMPOSE (ours) 0.39 0.75 0.67 0.64 0.62 0.37 0.24 0.53 88.9

Table 1: Accuracy of LLaMA-7B after 30 % compression (27.2 % for LLM-Pruner) on seven benchmarks. AVG
is the mean accuracy; RP is the average accuracy expressed as a percentage of the uncompressed baseline. Best
compressed results are in bold. LAYERDECOMPOSE retains nearly 89 % of the original model’s performance and
surpasses all compared methods.

lower-bit representations, offering dramatic mem-043

ory savings but often requiring hardware support044

for efficient low-bit arithmetic. Unstructured prun-045

ing (Frantar and Alistarh, 2023; Li et al., 2023)046

discards individual parameters based on some im-047

portance criterion, yet its resulting sparsity pat-048

terns can be difficult to exploit without special-049

ized sparse-compute kernels. Structured prun-050

ing (Zhang et al., 2024; Wei et al., 2024) re-051

moves entire neurons or attention heads to main-052

tain dense linear algebra, but aggressiveness can053

quickly degrade model quality. Low-rank adap-054

tation approaches—exemplified by LoRA and its055

variants—reparameterize pretrained weights with056

rank-constrained updates, reducing fine-tuning cost057

but typically leaving the bulk of the original dense058

weights intact. Each of these strategies trades off059

ease of deployment, hardware compatibility, and060

final model accuracy.061

In contrast to the extensive exploration of prun-062

ing and low-rank methods, weight sharing—one063

of the oldest and most general compression ideas064

in neural networks—has received surprisingly lit-065

tle attention for LLMs. Classic works such as the066

Universal Transformer (Dehghani et al., 2019) and067

ALBERT (Lan et al., 2020) have shown that sharing068

the same parameters across all layers can dramati-069

cally cut model size with only a modest hit to ac-070

curacy, yet naively tying weights across dozens of071

transformer blocks often yields unsatisfactory per-072

formance. A more nuanced form of weight sharing,073

combined with layer-specific lightweight adapta-074

tions, promises to balance redundancy elimination075

with expressive power, but has not been system-076

atically studied in the context of large pretrained077

transformers.078

In this paper, we introduce LAYERDECOMPOSE,079

a novel compression framework that leverages080

weight sharing across groups of transformer lay-081

ers together with low-rank residual adapters to re-082

duce parameter redundancy. Our core observation 083

is that key transformer blocks express similar lin- 084

ear transformations up to permutation invariances. 085

By learning a single shared “base” weight matrix 086

for each group of layers and modeling inter-layer 087

differences via trainable low-rank adapters, LAY- 088

ERDECOMPOSE achieves up to 30% reduction in 089

model size while retaining over 89% of original per- 090

formance on seven standard benchmarks. Crucially, 091

we jointly optimize both the shared weights and the 092

residual factors in a two-stage procedure—closed- 093

form initialization via truncated SVD followed by 094

gradient-based refinement. 095

Contributions. Our main contributions are: 096

• We propose a hybrid weight-sharing and low- 097

rank decomposition that represents a group of 098

m corresponding linear layers with a single 099

shared matrix W plus layer-specific residual 100

factors {AiBi}mi=1, reducing parameters from 101

mn2 to n2 + 2mnr with minimal extra com- 102

pute. 103

• We characterize and exploit permutation in- 104

variances in both MLP and self-attention mod- 105

ules, using assignment solvers to optimally 106

permute and align layer weights before de- 107

composition, thereby lowering reconstruction 108

error. 109

• We validate LAYERDECOMPOSE on LLaMA- 110

7B and three additional 7B-parameter models, 111

showing that it consistently outperforms state- 112

of-the-art SVD- and pruning-based baselines, 113

retaining nearly 89% of uncompressed per- 114

formance at 30% size reduction across seven 115

diverse benchmarks. 116
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2 Preliminaries117

2.1 Low-Rank Adaptation118

LoRA (Hu et al., 2022) replaces the standard linear119

layer120

Y = XW + b (1)121

with122

Y = X(W +AB) + b = XW +XAB+ b, (2)123

where rank(AB) < rank(W ). This reparame-124

terization permits fine-tuning only the low-rank125

matrices A and B, greatly reducing memory us-126

age. Subsequent works have explored modified127

initializations (Meng et al., 2024), alternative repa-128

rameterizations (Liu et al., 2024b; Kopiczko et al.,129

2024; Lingam et al., 2024; Liu et al., 2024a), and130

revised optimization strategies (Hayou et al., 2024;131

Zhang et al., 2023).132

2.2 SVD-based Model Compression133

Large language models require a significant134

amount of memory and computational power to135

operate. To reduce these resource demands, vari-136

ous model compression techniques have been de-137

veloped. One approach to reducing the parameter138

count is to factorize the weight matrix W ∈ Rm×n139

into a product of two matrices with fewer total pa-140

rameters, AB, where A,BT ∈ Rm×ñ and ñ < n,141

while striving to retain as much model performance142

as possible. A substantial body of work applies Sin-143

gular Value Decomposition (SVD) to address this144

problem.145

An early work (Winata et al., 2019) applies SVD146

for the LSTM cell and explores the effectiveness147

on different NLP tasks. FWSVD (Hsu et al., 2022)148

utilizes Fisher information to assign importance149

weights to the model parameters. However, com-150

puting the Fisher information matrix involves com-151

putationally expensive gradient calculations. To152

mitigate these costs, ASVD (Yuan et al., 2023) pro-153

poses an activation-aware decomposition method,154

which incorporates the distribution of activations155

into the weight decomposition process. In this ap-156

proach, the scaling matrix is designed based on157

the distribution patterns observed across input ac-158

tivation channels. SVD-LLM (Wang et al., 2025)159

extends this idea further by whitening the input ma-160

trix to reduce its impact on SVD truncation, with161

proven guarantees of achieving an optimal theoret-162

ical truncation loss. Unlike previous works, (Gao163

et al., 2024b) developed an approach to automati- 164

cally allocate various ranks to different layers using 165

a differential hypernetwork. 166

2.3 Weight Sharing in Neural Networks 167

One fundamental application of weight sharing in 168

language models is embedding weight tying, where 169

the input and output embeddings share the same 170

weight matrix (Press and Wolf, 2017; Raffel et al., 171

2020). Another significant aspect is weight sharing 172

across layers in deep networks. Instead of assign- 173

ing each layer its own parameters, a common set of 174

weights is employed across multiple layers, thereby 175

reducing redundancy and lowering the overall pa- 176

rameter count. 177

This concept was initially explored in the Uni- 178

versal Transformer (Dehghani et al., 2019), which 179

introduced a recurrent inductive bias into the Trans- 180

former architecture by reusing the same layer 181

weights at every depth. ALBERT (Lan et al., 182

2020) further demonstrated that, with appropri- 183

ate hyperparameters tuning, full weight sharing in 184

BERT (Devlin et al., 2019) results in only a minor 185

reduction in accuracy while achieving faster train- 186

ing, enhanced memory efficiency, and improved 187

regularization. 188

More recent work has investigated weight shar- 189

ing strategies tailored for resource-constrained en- 190

vironments. For example, Subformer (Reid et al., 191

2021) and MobileLLM (Liu et al., 2024c) explored 192

various methods for sharing transformer blocks to 193

optimize performance on mobile devices. Similarly, 194

Residualformer (Xie et al., 2023) employed LoRA 195

reparameterization with shared base weights for 196

training speech recognition models from scratch, 197

in contrast to our focus on compressing existing 198

pretrained models. 199

3 Method 200

3.1 Layer decomposition 201

Transformers consist of a stack of identical layers, 202

each containing self-attention and MLP submod- 203

ules. Both submodules are composed of linear 204

transformations whose parameters are stored in 205

weight matrices. 206

Figure 1 illustrates our approach. Let G be a set 207

of m corresponding linear layers (for example, the 208

“up” projections of the MLP in layers 17 through 209

23). For each layer i ∈ G, the original computation 210

is 211

Y = XWi + bi. 212
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We replace this with a shared base weight W plus213

a low-rank residual for each layer:214

Y = XW + XAiBi + bi, i ∈ G.215

Omitting biases for simplicity, if W ∈ Rn×n,216

|G| = m, and each Ai, B
T
i ∈ Rn×r with r < n,217

then the total parameters drop from mn2 to218

n2 + m · 2nr,219

at the cost of a small extra compute for the adapters.220

To initialize W, {Ai, Bi}, we minimize the221

Frobenius-norm reconstruction loss222

L(W,A,B) =
∑
i∈G

∥∥Wi − (W +AiBi)
∥∥
F

(3)223

=
∑
i∈G

∥∥(Wi −W )−AiBi

∥∥
F
.224

This loss can be viewed as seeking a rank-r ap-225

proximation of each difference Wi −W . Hence,226

by the Eckart–Young–Mirsky theorem (Eckart and227

Young, 1936), for a fixed base W the optimal low-228

rank factors (Ai, Bi) are given by the truncated229

SVD of (Wi −W ). Conversely, when {Ai, Bi}230

are held fixed, the optimal shared weight is simply231

the element-wise mean232

W =
1

|G|
∑
i∈G

(
Wi −AiBi

)
.233

After initializing via these two closed-form updates,234

we perform a final joint refinement of W and all235

{Ai, Bi} using Adam (Diederik, 2014). The full236

procedure is outlined in Algorithm 1.237

3.2 How to Choose Groups?238

To apply our decomposition, we must partition the239

L transformer layers into groups that will share the240

same base weight matrix. A natural baseline is to241

form consecutive groups of fixed size, but ideally242

we would group layers whose weights are most243

alike so as to minimize the reconstruction loss in244

Eq. 3.245

We first measured pairwise Frobenius distances246

d(Li, Lj) = ∥Wi −Wj∥F247

between corresponding weight matrices across lay-248

ers. Figure 2 shows both the distance matrix and249

its histogram for the MLP up-projection weights of250

LLaMA. The heat-map reveals no clear block struc-251

ture, and the histogram is tightly centered around252

Algorithm 1 Alternating Shared W Optimization

Require: Weight group {Wi}i∈G, rank r, alterna-
tion steps T , Adam steps Tadam

Ensure: Optimal shared weight W , low-rank fac-
tors {Ai, Bi}i∈G
W ← 1

m

∑
i∈GWi ▷ W initialization

for each i ∈ G do ▷ Ai, Bi initialization
(Ai, Bi)← TruncSVD(Wi −W, r)

end for
for t = 1 to T do ▷ Alternating optimization

W ← 1
m

∑
i∈G(Wi −AiBi)

for each i ∈ G do
(Ai, Bi)← TruncSVD(Wi −W, r)

end for
end for
for t = 1 to Tadam do ▷ Adam Optimization

Compute L(W,A,B) as in Eq. 3
Update W, {Ai, Bi} via Adam

end for

its mean, indicating that all layers are roughly 253

equally dissimilar. Clustering on these distances 254

failed to produce consistent, meaningful groups. 255

Given the limitations of a purely weight-space 256

metric, we next define a functional similarity mea- 257

sure: 258

ρ(Li, Lj) = d
(
Li(Xi), Lj(Xi)

)
, (4) 259

where Li and Lj denote the ith and jth layers, Xi 260

is the actual input to Li collected during a forward 261

pass, and d(x, y) = ∥x − y∥22. This quantity cap- 262

tures how closely layer j can mimic layer i on 263

its native inputs. Note that ρ is not symmetric in 264

general. 265

Figure 3 shows the resulting similarity matrix for 266

the MLP blocks in LLaMA. We observe a banded 267

structure along the diagonal, indicating that adja- 268

cent layers produce more similar outputs. Further- 269

more, the first half of the network exhibits larger 270

approximation errors than the second half. Moti- 271

vated by these observations and for implementation 272

simplicity, we form groups of consecutive layers 273

for weight sharing in this work. 274

3.3 Optimal Parameter Budget Allocation 275

Even with consecutive grouping, our framework 276

has three key hyperparameters under a fixed pa- 277

rameter budget: the span of affected layers, the 278

size of each group, and the adapter rank. With a 279

fixed parameter budget, one can either apply strong 280
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Figure 2: Pairwise Frobenius distance matrix and his-
togram for the MLP up-projection weights in LLaMA.
The lack of visible structure and the narrow distribution
of distances suggest that fixed-size consecutive group-
ing is as reasonable as any clustering based on these
metrics.
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Figure 3: Functional similarity matrix for MLP blocks
in the LLaMA model, where each entry (i, j) is given
by ρ(Li, Lj). Lower values along the diagonal indicate
that nearby layers are more functionally similar.

compression to a few layers or perform milder com- 281

pression across a larger number of layers. 282

To identify which regions of the network toler- 283

ate compression best, we first compressed a single 284

block of ten consecutive layers at a time. Figure 4 285

shows that compressing the earliest or latest layers 286

incurs large perplexity increases, whereas targeting 287

the final third of layers yields the smallest degrada- 288

tion. These findings corroborate prior analyses of 289

layer sensitivity (Gromov et al., 2025; Men et al., 290

2024; Wang et al., 2024). 291
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Figure 4: Perplexity after decomposition (before heal-
ing) for a single group of 10 layers. Each x-value de-
notes the index of the first layer in the compressed block
(e.g., 19 covers layers 19–29).

We then performed an exhaustive search over 292

hyperparameters under a fixed budget. For a 30% 293

compression of LLaMA-7B (4.7 B parameters), 294

we fixed the final layer at index 30 and varied the 295

starting layer and group size. Given each choice of 296

start and group, we computed the adapter rank to 297

exactly match the remaining parameter budget (see 298

section 3.4 for more details). 299

Figure 5 presents the results of this exhaus- 300

tive search. The performance varies substantially 301

across configurations. One clear trend is that ap- 302

plying milder compression over a wider range of 303

layers—using larger residual ranks—yields better 304

perplexity than more aggressive compression on a 305

smaller subset of layers. 306

3.4 Rank Computation 307

During the exhaustive search with fixed hyperpa- 308

rameters, the adapter rank could be computed in a 309

single way as follows: 310

r =
PB −

(
Pnb + (LT − LA) · Pl +G · Pl

)
LA · (dI + dO)

,

(5) 311

where: 312
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Figure 5: Perplexity after decomposition for various
compression configurations. Each line corresponds to
a different group of layers. Slight compression over a
broader layer span—with higher adapter rank—yields
better perplexity than aggressive compression on a
smaller subset.

• r is the adapter rank,313

• PB is the fixed total parameter budget,314

• Pnb denotes the number of parameters that are315

not subject to compression (e.g. embedding316

and LM head layers),317

• LT is the total number of layers in the model,318

• LA is the number of affected layers, i.e. se-319

lected for compression,320

• Pl represents the number of parameters in one321

layer,322

• G is the number of groups within the affected323

layers,324

• dI and dO are the sum of input and output325

dimensions of a layer, respectively.326

3.5 Transformer Permutation Invariance327

Permutation invariance in transformer modules al-328

lows multiple weight configurations to produce329

identical outputs by appropriately reordering in-330

termediate dimensions.331

Multi-Layer Perceptron A gated transformer 332

MLP block computes 333

y = Wd

(
σ(Wg x) ⊙ Wu x

)
, 334

where σ is applied element-wise. By permuting 335

the intermediate hidden dimensions via an n× n 336

permutation matrix P (and its inverse P T ), one can 337

rearrange the rows of Wg and Wu without affecting 338

the final output. Concretely, we exploit P TP = I 339

as follows: 340

y = Wd P
T
(
σ
(
P Wg x

)
⊙ P Wu x

)
341

= Wd P
T
(
P σ(Wg x) ⊙ Wu x

)
342

= Wd

(
σ(Wg x) ⊙ Wu x

)
, 343

since P T (P σ(Wgx)) = σ(Wgx). Hence one can 344

absorb P into the weights by defining 345

W ′
u = P Wu, W ′

g = P Wg, W ′
d = Wd P

T , 346

yielding the same output y. Because there are n! 347

permutation matrices of size n, this gives n! equiv- 348

alent MLP configurations. 349

Query and Key Projections In self-attention, 350

the query and key projections satisfy a similar in- 351

variance: permuting their shared intermediate di- 352

mensions does not alter the attention scores. Recall 353

Q = XWQ, K = XWK , V = XWV , 354

and 355

Attn(Q,K, V ) = softmax
(
QKT

)
V. 356

Inserting a permutation P with P TP = I into the 357

score computation gives 358

softmax(QKT ) = softmax
(
(XWQ)(XWK)T

)
359

= softmax
(
XWQ P P T W T

K XT
)
. 360

so that defining 361

W ′
Q = WQ P, W ′

K = P T WK 362

leaves softmax(QKT ) unchanged. 363

Value and Output projections Previously, we 364

showed that permuting the dimensions of Q and K 365

does not alter the attention score matrix. We now 366

demonstrate a similar invariance for the Value and 367

subsequent Output projections. 368
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In multi-head self-attention, for each head i =369

1, . . . , h we define370

V (i) = XW
(i)
V ,

H(i) = softmax
(
Q(i)(K(i))T

)
V (i),

(6)371

where W
(i)
V ∈ Rd×dv is the value-projection for372

head i. We then concatenate the head outputs and373

apply the final output projection:374

Y =
[
H(1), . . . ,H(h)

]
WO, WO ∈ R(h dv)×d.375

Any permutation of the h head-blocks and of the376

dv channels within each head can be absorbed into377

the weight matrices {W (i)
V } and WO. Concretely,378

let379

Pblocks ∈ {0, 1}(h dv)×(h dv),

P
(i)
intra ∈ {0, 1}

dv×dv (i = 1, . . . , h),
(7)380

and form381

P = Pblocks

( h⊕
i=1

P
(i)
intra

)
,382

where
⊕

denotes the block-diagonal direct sum383

(so the ith diagonal block is P (i)
intra). If we collect384

all the per-head projections into385

WV =
[
W

(1)
V , . . . ,W

(h)
V

]
∈ Rd×(h dv),

H =
[
H(1), . . . ,H(h)

]
,

(8)386

then one checks387

Y = HWO = softmax(QKT )V WO

= softmax(QKT ) (XWV P P T )WO

= softmax(QKT ) (XW ′
V )W

′
O

(9)388

with389

W ′
V := WV P, W ′

O := P T WO,390

and P TP = I guarantees the same output. Since391

there are h! ways to permute the head-blocks392

and (dv!)
h ways to permute channels within each393

head, the total number of distinct permutations of394

(WV ,WO) yielding identical outputs is h!×(dv!)
h.395

3.5.1 Finding Optimal Permutations396

We leverage these permutation symmetries to re-397

order layer weights so that they align more closely398

within each group. Formally, for two weight matri-399

ces Wi and Wj , we seek400

P = arg min
P∈Sn

∥∥Wi − P Wj

∥∥
F
,401

where Sn is the set of n × n permutation matri- 402

ces. Here, P minimizes the difference between an 403

anchor weight and another weight in the group. 404

We perform this procedure separately for three 405

components: the MLP block, the Query–Key 406

(QK) projections, and the Value–Output (VO) 407

projections. Note that for QK we restrict intra- 408

head permutations to the identity (Pintra = 409

I)—permuting channels would conflict with RoPE 410

embeddings (Su et al., 2021)—and only reorder 411

entire heads. 412

MLP block Compute a cost matrix D ∈ Rn×n 413

whose (i, j) entry is 414

Dij =
∥∥WA

u [i, :]−WB
u [j, :]

∥∥2
2
+∥∥WA

g [i, :]−WB
g [j, :]

∥∥2
2
+∥∥WA

d [:, i]−WB
d [:, j]

∥∥2
2
.

(10) 415

where Wu, Wg, and Wd denote the up-projection, 416

gate, and down-projection weight matrices. Each 417

Dij aggregates via sum the squared ℓ2 distances 418

between row i of one layer and row j of another 419

for Wu and Wg, plus the column differences in 420

Wd. We formulate the search for the optimal 421

permutation as a linear sum assignment problem 422

(LSAP) (Burkard and Cela, 1999) and solve it with 423

an efficient solver (Crouse, 2016) to obtain the op- 424

timal permutation P . 425

QK and VO projections Here the permutation 426

must respect the block structure of h attention 427

heads, so channels cannot be exchanged across 428

heads. We use a two-stage approach: 429

1. Intra-head alignment: For each pair of cor- 430

responding heads, find the best channel per- 431

mutation P
(i)
intra by solving an LSAP on the 432

per-head weight differences. 433

2. Inter-head alignment: Compute aggregated 434

costs between entire heads using the intra- 435

head-aligned weights, then solve a second 436

LSAP to determine the head-reordering per- 437

mutation Pblocks. 438

Finally, we combine these into a block-diagonal 439

permutation 440

P = Pblocks

( h⊕
i=1

P
(i)
intra

)
, 441

which aligns both head order and internal channels 442

while preserving the attention outputs. 443
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3.6 Healing with Distillation444

Because our weight-sharing and low-rank decom-445

position substantially alter the original parameters,446

a dedicated “healing” step is required to recover447

performance. Following Muralidharan et al. (2024),448

we apply both logit-level and hidden-state distil-449

lation (Hinton et al., 2015; Sanh et al., 2019) to450

encourage the compressed model to mimic the451

teacher’s behavior while reducing reliance on the452

specific healing dataset.453

Concretely, we augment the standard language454

modeling loss LLM with two distillation terms:455

L = LLM + αKL
(
p ∥ pteacher

)
+ βMSE

(
h, hteacher

)
,

(11)456

where - KL(p ∥ pteacher) is the Kullback–Leibler457

divergence between the student’s output distri-458

bution p and the teacher’s distribution pteacher, -459

MSE(h, hteacher) is the mean squared error be-460

tween their hidden-state activations, and α, β461

weight these distillation terms relative to LLM .462

4 Experiments463

We now evaluate the effectiveness of LAYERDE-464

COMPOSE. Our first set of experiments compares465

it with three state-of-the-art compression baselines466

applied to the LLaMA-7B (Touvron et al., 2023)467

model at a fixed compression ratio of 30 %. SVD-468

LLM Wang et al. (2025) compresses weights by469

applying singular-value decomposition with an in-470

jected whitening transformation matrix and has471

so far yielded the strongest results among SVD-472

based schemes. LLM-Pruner (Ma et al., 2023)473

performs structural pruning, discarding non-critical474

coupled components on the basis of gradient im-475

portance. SliceGPT (Ashkboos et al., 2024) mul-476

tiplies weight matrices by orthogonal projection477

matrices before eliminating less important rows478

and columns; the authors exploit a form of trans-479

former invariance that differs from the permutation480

invariance introduced in our work. All baselines,481

like our method, perform a post-compression heal-482

ing step to recover accuracy. Hyperparameters and483

other healing details for LAYERDECOMPOSE are484

provided in Appendix A.485

We retain the original evaluation protocol of486

LM-Evaluation-Harness (Gao et al., 2024a) and487

report accuracy on seven benchmarks covering488

question-answering and commonsense reasoning:489

OpenBookQA (OBQA) (Mihaylov et al., 2018),490

PIQA (Bisk et al., 2020), HellaSwag (Zellers et al.,491

2019), WinoGrande (Sakaguchi et al., 2019), ARC- 492

Easy and ARC-Challenge (Clark et al., 2018), and 493

MathQA (Valentino et al., 2024). In addition to ab- 494

solute accuracy, we compute Relative Performance 495

(RP), the ratio of a compressed model’s average 496

accuracy to that of the uncompressed model. 497

Table 1 demonstrates that LAYERDECOMPOSE 498

achieves the highest average accuracy and relative 499

performance, retaining approximately 89% of the 500

uncompressed model’s quality while matching or 501

surpassing each baseline on all individual bench- 502

marks. These findings underscore the effectiveness 503

of weight sharing in compressing large language 504

models. 505

To verify the generality of our method, we also 506

applied LAYERDECOMPOSE to three other 7B- 507

parameter models—Qwen-7B (Bai et al., 2023), 508

DeepSeek-7B (DeepSeek-AI et al., 2024), and 509

OLMo-7B (Groeneveld et al., 2024). The result- 510

ing average accuracies and relative performance 511

scores appear in Table 2. 512

Model AVG RP (%)

Qwen-7B 0.50 83.0
DeepSeek-7B 0.52 88.2
OLMo-7B 0.48 84.0

Table 2: Average accuracy (AVG) and relative perfor-
mance (RP) of LAYERDECOMPOSE on additional 7B
models.

5 Conclusion 513

We introduced LAYERDECOMPOSE, a compres- 514

sion framework that represents blocks of consecu- 515

tive transformer weights with a single shared ma- 516

trix plus lightweight, layer-specific adapters. By 517

formalizing permutation invariances in both MLP 518

and self-attention components, we revealed a vast 519

family of equivalent weight configurations and 520

leveraged these symmetries to further reduce re- 521

dundancy. Empirical results on LLaMA-7B and 522

three additional 7B-parameter models show that 523

our weight-sharing approach matches or exceeds 524

state-of-the-art compression baselines across di- 525

verse benchmarks. We believe that our findings 526

will inspire further exploration of weight sharing 527

as a systematic strategy for efficient LLM compres- 528

sion and scaling. 529
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Limitations530

Although we focus on language models, LAY-531

ERDECOMPOSE is not intrinsically tied to the text532

modality. Transformer architectures now underpin533

models for images, audio, and graphs; extending534

our weight-sharing scheme to those domains re-535

mains an open direction. Because any linear layer536

can, in principle, share parameters and have low-537

rank residuals, similar decompositions may prove538

useful beyond transformers as well.539

In the present work we distribute the adapter540

parameter budget uniformly across all layer types541

and blocks. This heuristic simplifies implementa-542

tion but is unlikely to be optimal. A data-driven or543

sensitivity-based allocation strategy could improve544

the accuracy–compression trade-off.545

Our experiments group adjacent layers. While546

early results are encouraging, a more principled547

grouping criterion might unlock further gains.548

Potential Risks While LAYERDECOMPOSE549

boosts efficiency, it could also lower the barrier550

to misuse—enabling more convincing disinforma-551

tion or fake profiles—and may amplify existing552

biases, further marginalizing underrepresented lan-553

guages or groups. Weight-sharing might also ex-554

pose new vectors for model-stealing or adversarial555

attacks, and its upfront symmetry analysis carries556

non-trivial compute costs, highlighting the need557

for energy-efficient methods and gated releases to558

guard against dual-use harms.559
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For optimisation we use Adam (Diederik, 2014)854

with learning rate 5e-5, cosine annealing schedule855

and weight decay 0.01.856

Experiments were conducted using 2 NVIDIA857

A100 GPUs and took approximately 14 hours in-858

cluding evaluation.859

B Extra Weight Distances860

Pairwise Frobenius distances for all layer types in a861

transformer are depicted on the Fig. 6. Later layers862

tend to be less similar.863
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Figure 6: Heat-maps of pair-wise distances for each of the 7 layer groups. Each subplot shows the distance matrix
for one layer type.
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