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ABSTRACT

While preference optimization is crucial for improving visual generative models, how
to effectively scale this paradigm for visual generation remains largely unexplored.
Current open-source preference datasets typically contain substantial conflicting
preference patterns, where winners excel in some dimensions but underperform in
others. Naively optimizing on such noisy datasets fails to learn meaningful preferences,
fundamentally hindering effective scaling. To enhance the robustness of preference
algorithms against noise, we propose Poly-DPO, which extends the DPO objective
with an additional polynomial term that dynamically adjusts model confidence during
training based on dataset characteristics, enabling effective learning across diverse
data distributions from noisy to trivially simple patterns. Beyond biased patterns,
existing datasets suffer from low resolution, limited prompt diversity, and imbalanced
distributions. To facilitate large-scale visual preference optimization by tackling key
data bottlenecks, we construct ViPO, a massive-scale preference dataset with 1M
image pairs (1024px) across five categories and 300K video pairs (720p+) across three
categories. Leveraging state-of-the-art generative models and diverse prompts ensures
consistent, reliable preference signals with balanced distributions. Remarkably, when
applying Poly-DPO to our high-quality dataset, the optimal configuration converges
to standard DPO. This convergence validates both our dataset quality and Poly-DPO’s
adaptive nature: sophisticated optimization becomes unnecessary with sufficient data
quality, yet remains valuable for imperfect datasets. We comprehensively validate our
approach across various visual generation models. On noisy datasets like Pick-a-Pic V2,
Poly-DPO achieves 6.87 and 2.32 gains over Diffusion-DPO on GenEval for SD1.5 and
SDXL, respectively. For our high-quality ViPO dataset, models achieve performance
far exceeding those trained on existing open-source preference datasets. These results
confirm that addressing both algorithmic adaptability and data quality is essential for
scaling visual preference optimization. All models and datasets will be released.

1 INTRODUCTION

Preference optimization techniques, such as Reinforcement Learning from Human Feedback
(RLHF) Ouyang et al. (2022) and Direct Preference Optimization (DPO) Rafailov et al. (2023), have
proven essential for aligning large-scale models with human values. Building on this success in language
models, researchers have extended these paradigms to visual generation. Among various approaches,
off-policy methods like Diffusion-DPO Wallace et al. (2024) are particularly promising for large-scale
applications. Unlike on-policy RL approaches Xu et al. (2023); Liang et al. (2025); Liu et al. (2025a);
Xue et al. (2025); Black et al. (2024) that require costly iterative sampling, off-policy methods leverage
pre-collected preference datasets without expensive policy deployment, making them inherently more
suitable for scaling Wu et al. (2025). However, while preference optimization is crucial for improving
visual generative models, how to effectively scale this paradigm remains largely unexplored.

We argue that the primary obstacle to scaling lies in the conflicting preference patterns prevalent in current
datasets. Specifically, existing open-source preference datasets Wu et al. (2023b;a); Ma et al. (2025);
Kirstain et al. (2023) are usually constructed by early diffusion models, contain substantial conflicts
where winner images excel in certain dimensions (e.g., aesthetics) but underperform in others (e.g.,
text-image alignment). Naively optimizing on such noisy datasets fails to learn meaningful preference
patterns, fundamentally hindering effective scaling of preference optimization. Without proper handling
of these conflicting signals, models struggle to extract genuine preference pattern, leading to suboptimal
performance that fails to further improve with data scale, as demonstrated in Figure 1 (a). Beyond biased
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Figure 1: (a) Preference scaling with our Poly-DPO and ViPO-Image-1M dataset. (b) When training on a
biased preference dataset such as Pick-a-pic V2, our Poly-DPO outperforms Diffusion-DPO in all evaluation
dimensions. (c) Our proposed ViPO-Image-1M dataset can comprehensively improve the SD3.5-Medium.

preference patterns (conflict or over-simple samples), existing datasets suffer from multiple limitations:
low visual resolution (typically 512-768), limited prompt diversity, imbalanced data distributions from
random collection strategy, and constraints from outdated generation models, as shown in Table 1. These
factors collectively hinder the effective scaling of preference learning.

To better learn from biased preference datasets, we propose Poly-DPO, which extends Diffusion-DPO
with a polynomial term that dynamically adjusts sample weighting based on prediction confidence.
This mechanism enables effective learning across diverse data characteristics: for existing datasets that
contain conflicting preferences (e.g., Pick-a-pic V2), it helps models focus on informative samples
despite contradictory signals and improves the final generation quality as shown in Figure 1 (b). To
comprehensively address data quality barriers, we construct ViPO, a massive-scale and high-quality visual
preference dataset comprising 1M image pairs (1024px) across five categories and 300K video pairs
(720p+) across three categories. By leveraging state-of-the-art generative models (FLUX Labs (2024),
Qwen-Image Wu et al. (2025), WanVideo Wan et al. (2025)) and systematic categorization, we ensure
reliable, balanced preference signals that enable robust preference learning at scale.

Extensive experiments validate the synergy between our contributions. On noisy datasets like Pick-a-Pic
V2, Poly-DPO significantly outperforms standard Diffusion-DPO by handling conflicting preference
patterns. Training on our ViPO dataset, the SD1.5 model achieves state-of-the-art results far exceeding
those trained on existing datasets in Figure 1 (a) and comprehensively improves the SD3.5-Medium as
shown in Figure 1 (c). Remarkably, when applied to ViPO-Image-1M, Poly-DPO converges to standard
DPO (α→ 0) and remains robust across a neighborhood around zero, indicating it works equally well on
high-quality data without tuning. This convergence mutually validates both contributions: ViPO’s quality
enables stable optimization across different α values, while Poly-DPO adaptively simplifies through a
single hyperparameter when data quality permits. These findings show that scaling visual preference
optimization requires both algorithmic robustness for imperfect data and systematic data curation.

Our contributions are summarized as follows:
• New Insight for Visual Preference Scaling: We demonstrate that the biased preference distributions

characterized by conflicting patterns constitute a fundamental bottleneck for preference scaling.
We reveal that standard Diffusion-DPO fails to extract effective signals from such data, leading to
performance saturation despite data scaling.

• Poly-DPO Optimization Algorithm: We introduce Poly-DPO, which dynamically adjusts sample
weighting based on confidence levels, enabling effective learning from conflicting patterns in noisy
datasets while preventing over-confidence on trivially distinguishable preferences.

• Large-Scale High-Quality Dataset: We construct ViPO dataset with 1M high-resolution image pairs
and 300K video pairs using state-of-the-art models and systematic categorization, providing reliable
and balanced preference signals that establish a new benchmark for preference learning at scale.

• Mutual Validation of Approach: Our experiments demonstrate that Poly-DPO excels on biased datasets
while converging to standard DPO (α→0) with robustness across neighboring α values on high-quality
ViPO-Image-1M data, confirming that sophisticated optimization becomes unnecessary with sufficient
data quality yet remains essential for imperfect datasets.
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Figure 2: Overview of our ViPO-Image-1M and ViPO-Video-300K dataset.
Dataset Prompt Image/Video Pair Resolution Construction Generative Models

Image Dataset
HPDv1 25,205 98,807 25,205 [512-960] Random SD1.4
HPDv2 103,700 430,060 645,090 [480-640] Random SD2.0, CogView2, DALL-E 2

Pick-a-pic v1 37,523 623,694 583,747 [512-768] Random SD2.1, SDXL, Dreamlike, etc
Pick-a-pic v2 58,960 928,068 959,040 [512-768] Random SD2.1, SDXL, Dreamlike, etc

HPDv3 202,274 1,088,274 1.17M [256-1024] Random SD1.4, SDXL, FLUX.1 dev, etc
Ours 1,000,000 2,000,000 1.00M 1024 Categoried Qwen-Image, HiDream-I1, etc

Video Dataset
VideoDPO 10, 000 20, 000 10, 000 480p Random CogVideo, VideoCrafter2, etc

Ours 30, 000 60, 000 30, 000 720p, 1024p Categoried WanVideo, Veo3, Seedance, etc

Table 1: Comparison with existing open-source preference datasets.

2 RELATED WORKS
Diffusion-based Visual Generation. Building upon pioneering diffusion models Sohl-Dickstein et al.
(2015); Ho et al. (2020); Song et al. (2021a;b); Lipman et al. (2023) and their successful scaling Rombach
et al. (2022); Ho & Salimans (2022); Dhariwal & Nichol (2021), visual generation has achieved remarkable
progress. Advanced models like FLUX Labs (2024), Qwen-Image Wu et al. (2025) for images, and
HunyuanVideo Kong et al. (2024), WanVideo Wan et al. (2025) for videos, have enabled stunning visual
content creation across diverse applications Zhang et al. (2023); Mou et al. (2024); Ruiz et al. (2023);
Ye et al. (2023); Brooks et al. (2023). Despite these advances, two key challenges remain: aligning outputs
with complex user prompts and optimizing multiple quality dimensions simultaneously.

Reinforcement Learning from Human Feedback (RLHF). RLHF has demonstrated remarkable
success in aligning large language models with human values Ouyang et al. (2022); Touvron et al. (2023a);
Bai et al. (2023); Wang et al. (2024); Team et al. (2025). Current approaches fall into two categories:
on-policy methods (PPO Schulman et al. (2017), GRPO Shao et al. (2024)) that require iterative sampling
and reward model evaluation during training, and off-policy methods (DPO Rafailov et al. (2023)) that
learn directly from pre-collected preference datasets. Off-policy methods avoid the computational overhead
of online sampling, making them more efficient Touvron et al. (2023b); Rafailov et al. (2023), though
their effectiveness depends on preference dataset quality Morimura et al. (2024); Wu et al. (2025).

Reinforcement Learning for Visual Generation. Recent research extends RL success from LLMs to
visual generation. On-policy methods include ReFL-based approaches Xu et al. (2023); Clark et al. (2024);
Li et al. (2024a) that integrate reward maximization into diffusion training, and PPO-based methods Black
et al. (2024); Xue et al. (2025); Liu et al. (2025a) that model diffusion as an MDP. However, these face
scalability constraints from computational intensity and reward hacking vulnerability. Off-policy methods,
particularly DPO-based approaches Wallace et al. (2024); Yang et al. (2024); Dong et al. (2024); Liu
et al. (2025b); Karthik et al. (2025); Zhu et al. (2025); Zhang et al. (2025a), offer superior computational
scalability by training on preference pairs without online sampling, but they require high-quality preference
datasets and effective optimization algorithms.

3 DIFFUSION PREFERENCE OPTIMIZATION WITH POLY-DPO
3.1 PRELIMINARIES FOR DIFFUSION-DPO
Diffusion Models. Denoising diffusion models operate through two complementary processes: a forward
process that progressively corrupts data by introducing noise, and a reverse process that reconstructs
clean data from the corrupted versions. Specifically, during the forward process, a clean data point x
undergoes noise corruption at timestep t∈ [0,1], resulting in a conditional distribution q(xt|x) characterized
by xt = αtx+σtϵ, where ϵ∼N (0,I), αt,σt represent predefined noise scheduling parameters, and
λt = log(α2

t/σ
2
t ) denotes the logarithmic signal-to-noise ratio (SNR). With the input condition c, the

training process optimizes a weighted noise prediction objective formulated as:

LDM(x)=Et∼U(0,1),ϵ

[
−wtλ

′
t||ϵθ(xt;c,t)−ϵ||22

]
, (1)

where wt represents a weighting function and λ′t=dλ/dt. Notably, most diffusion and flow matching
training objectives can be expressed in the form of Eq. (1) through appropriate choices of wt and λt.
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Reward Models. For a given image x and input conditioning c, a reward model R(x,c) represents
a function that quantifies the quality of the generated output. A widely adopted framework for modeling
human preferences is the Bradley-Terry (BT) model, which establishes the preference probability
distribution over a triplet (c,xw,xl): P(xw ≻ xl|c) := σ

(
R(xw,c)−R(xl,c)

)
, where σ denotes the

sigmoid function, and xw, xl represent the winner and loser images, respectively. The objective of
reward fine-tuning is to optimize the diffusion model pθ such that it maximizes the expected reward
of generated outputs while incorporating KL regularization DKL to prevent reward over-optimization:
maxθ Ec,x∼pθ(x|c) [R(x,c)]− βDKL (pθ(· |c)∥pref(· |c)) where pref is a reference model and β is a
hyperparameter that controls the strength of KL regularization.
Diffusion-DPO. Following the DPO framework Rafailov et al. (2023), the training objective can be
reformulated to enable direct optimization through the conditional distribution pθ(x|c):

LDPO(θ)=−E(xw,xl)

[
log σ

(
β log

pθ(x
w)

pref(xw)
−β log

pθ
(
xl
)

pref(xl)

)]
. (2)

However, directly applying Eq. (2) to diffusion models presents a fundamental challenge, as the
log-likelihoods of diffusion models are intractable. To address this limitation, Diffusion-DPO Wallace
et al. (2024) introduces an approximation that connects the diffusion denoising process with the forward
training objective in Eq. (1). Specifically, at timestep t, the log-likelihood ratio can be approximated as:

log
pθ(x)

pref(x)
≈−wtλ

′
t

(
∥ϵθ(xt;c,t)−ϵt∥22−∥ϵref(xt;c,t)−ϵt∥22

)
. (3)

By substituting Eq. (3) into Eq. (2), we obtain the final Diffusion-DPO loss function:

LDiffusion-DPO(θ)=−E(xw,xl),ϵt,t

[
logσ

(
−βwtλ

′
t

(
(∥ϵθ(xw

t ;c,t)−ϵt∥22−∥ϵref(xw
t ;c,t)−ϵt∥22)

−(∥ϵθ(xl
t;c,t)−ϵt∥22−∥ϵref(xl

t;c,t)−ϵt∥22)
))]

.
(4)

3.2 POLY-DPO: POLYNOMIAL EXPANSION FOR PREFERENCE OPTIMIZATION

Diffusion-DPO as the Binary Classification Task. Building upon the Diffusion-DPO framework,
we propose Poly-DPO, which leverages insights from poly loss Leng et al. (2022) design to enhance
preference learning. We begin by reinterpreting the standard Diffusion-DPO objective into the standard
binary classification task. Specifically, we can define the preference probability:

pw>l=σ

(
β log

pθ(x
w)

pref(xw)
−β log

pθ(x
l)

pref(xl)

)
, (5)

which quantifies the model’s relative preference for the winner image xw over the loser image xl compared
to the reference model. This allows us to rewrite the Diffusion-DPO loss as:

LDiffusion-DPO(θ)=−E(xw,xl)∼D
[
log(pw>l)

]
. (6)

This reformulation reveals that Diffusion-DPO can be regarded a cross-entropy loss for binary classification,
where the model learns to maximize the probability of correctly ranking preferred generations.
Polynomial Expansion of Preference Learning. Inspired by poly loss Leng et al. (2022), we can get
the Taylor expansion of the standard cross-entropy loss in the context of Diffusion-DPO framework:

LDiffusion-DPO(θ)=−log
(
pw>l

)
=

∞∑
j

1

j

(
1−pw>l

)j
=1×

(
1−pw>l

)1
+
1

2
×
(
1−pw>l

)2
... (7)

The core idea of the Poly Loss is to add a perturb term αj for the Top-N polynomials that contribute the
most to the gradient and keep others, and we can obtain the Poly-N loss:

LPoly-N=(1+α1)
(
1−pw>l

)1
+...+(1+αN/N)

(
1−pw>l

)N︸ ︷︷ ︸
perturbed by αj

+1/(N+1)
(
1−pw>l

)N+1
+...︸ ︷︷ ︸

same as LCE

=−log
(
pw>l

)
+

N∑
j

αj

(
1−pw>l

)j
.

(8)
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1 hyper-parameter 2 lines of code
dpo_loss = -1 * logsigmoid(logits)
poly_loss = 1 - sigmoid(logits)
loss = dpo_loss + alpha * poly_loss

3 preference distributions
𝛼 > 0: Noisy Dataset (Hard to learn)
𝛼 < 0: Over-simple Dataset (Easy to learn)
𝛼 ≈ 0: High-Quality & Balanced Dataset

Figure 3: Summary of our Poly-DPO. By adjusting only one hyperparameter and introducing only two
new lines of code, our Poly-DPO can handle preference datasets with three different data distributions.

However, it is unrealistic to perturb and adjust parameters for all polynomials. A simple form is to modify
only the first term that contributes the most to the gradient Leng et al. (2022), thus obtaining Poly-DPO loss:

LPoly-DPO=−log
(
pw>l

)
+α
(
1−pw>l

)
. (9)

Hence, Poly-DPO rescales the DPO gradient (1−pw>l) by (1+αpw>l), where pw>l=σ(logit):
∂LPoly-DPO

∂logit
=(pw>l−1)−αpw>l(1−pw>l)=−(1−pw>l)(1+αpw>l)︸ ︷︷ ︸

Poly factor

. (10)

• α>0 (Confidence Enhancing). When datasets contain conflicting preference patterns, models struggle
to extract consistent signals. Setting α > 0 upweights uncertain samples (probability near 0.5) and
downweights extreme cases (near 0 or 1). This prevents the model from being confused by conflicting
patterns, and instead focuses learning on borderline cases where consistent improvement is possible.

• α< 0 (Confidence Reducing). When datasets contain trivially distinguishable preferences (e.g., our
synthetic dataset with shuffled losers in Section 5.2), models quickly achieve high confidence but only
learn surface-level distinctions. Setting α < 0 reduces gradient contributions from high-confidence
samples, preventing over-fitting and forcing continued exploration of winner-loser differences.

• α = 0 (Standard DPO). When datasets contain balanced, high-quality preference signals without
significant conflicts or trivial patterns, the optimal configuration of Poly-DPO converges to standard
DPO and is highly robust to the choice of α.

Remark. As shown in Figure 3, our Poly-DPO augments Diffusion-DPO with a single additive term that
makes training explicitly confidence-aware. By tuning α, it dynamically reweights samples across models
and preference datasets, pushing the learning process toward informative samples while tempering over-
and under-confidence, making the diffusion model better capture diverse preference patterns and achieve
higher generation quality. In Section 5.2 and Figure 4, we verify the effectiveness of α for these three
different preference distribution datasets.

4 LARGE-SCALE VISUAL PREFERENCE DATASET CONSTRUCTION

Motivation and Design Principles. Current open-source preference datasets suffer from three critical
limitations that fundamentally impede scaling: (i) low resolution (512-768px) and limited prompt diversity
restrict learning of fine-grained details; (ii) reliance on early-generation models produces unreliable
preference signals; and (iii) random collection creates imbalanced distributions where simple patterns
dominate while critical aspects remain underrepresented. To address these challenges, we construct a
large-scale dataset using state-of-the-art models (FLUX, Qwen-Image for images; WanVideo, Seedance
for videos) with systematic categorical organization to ensure balanced, reliable preference signals.
Specifically, we construct 1M high-resolution (1024px) image preference pairs across five categories
and 300K video pairs across three categories, as illustrated in Figure 2. Details on specific construction
pipelines, filtering procedures, and labeling strategies are provided in the Appendix.

ViPO-Image-1M. We organize image preferences into five dimensions, each with 200K pairs: (1)
Aesthetics: visual appeal and artistic merit; (2) Text-Image Alignment: semantic correspondence with
prompts; (3) Text Rendering: accuracy of rendered text elements; (4) Portrait Quality: anatomical
correctness and realism; (5) Composition: spatial arrangement and visual organization. For data
construction, we leverage publicly available prompts from HuggingFace, employ state-of-the-art generators
to create high-quality pairs, and use multiple VLMs for filtering and labeling.

ViPO-Video-300K. Video preferences span three dimensions, each with 100K pairs: (1) Motion
Quality: temporal dynamics and smoothness; (2) Video-Text Alignment: semantic correspondence
throughout temporal sequences; (3) Visual Quality: frame clarity and temporal consistency. We employ
diverse generation strategies, including I2V based on our image dataset and T2V/T2I2V with different
models to create varied preference patterns.
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5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Generation Models and Training Datasets. We conduct experiments on image generation using SD1.5,
SDXL, SD3, and FLUX models, and video generation using Wan2.1-T2V-1.3B. For SD1.5, we train on
PickaPic-v2 for fair comparison with previous methods and test on multiple datasets to evaluate resilience
to preference noise. We train all image models on our ViPO-Image-1M dataset (excluding text rendering
subset for SD1.5 due to its limited text capabilities) and train Wan2.1-T2V-1.3B on ViPO-Video-300K.
We provide more implementation details, experiments and analysis in the appendix.
Evaluation Protocol. For SD1.5, we follow established protocols using CLIP-based reward models
(ImageReward Xu et al. (2023), HPSv2.1 Wu et al. (2023a), Aesthetic Predictor Schuhmann et al. (2022))
and test datasets (HPSv2 Wu et al. (2023a), Pick-a-Pic Kirstain et al. (2023), Parti Yu et al. (2022)). For
high-resolution models (SDXL, SD3, FLUX), we adopt multi-dimensional evaluation: (1) Aesthetics:
DeQA You et al. (2025); (2) Alignment: DPG-Bench Hu et al. (2024); (3) Text Rendering: CVTG-2K Du
et al. (2025); (4) Human Quality: GPT-4o evaluation; (5) Composition: GenEval Ghosh et al. (2023).
Video generation is evaluated on VBench2.0 Huang et al. (2024).

5.2 ABLATION STUDIES FOR POLY-DPO
To comprehensively demonstrate that our proposed Poly-DPO can adapt to different preference datasets
by adjusting the single hyperparameter α, we conduct a series of ablation experiments based on the SD1.5
model. For these experiments, we randomly sampling 300 prompts from each of four sources: the test
set of the Parti dataset, the test set of Pick-a-pic V2, the test set of HPD v2, and the “Validation Unique”
set of Pick-a-pic V1. This resulted in a total of 1,200 prompts, for which a single image was generated
for each. These prompts are then used to simulate three scenarios with distinct characteristics as discussed
in Section 3.2: (1) noisy dataset with conflicting preference patterns, (2) over-simple dataset dominated
by simple preference patterns, and (3) high-quality datasets with balanced preference distributions.

(a) Noisy Preference Dataset (b) Over-simple Preference Dataset (c) Our Full Preference Dataset
Figure 4: Ablation studies with different α on datasets with varying noise properties. While only the
HPSv2.1 score is visualized for clarity, a similar trend is observed across all other evaluation metrics

Noisy Preference Dataset. As the largest publicly available preference dataset, Pick-a-Pic V2 exhibits
significant multi-dimensional conflicts in preference signals. Specifically, when we evaluate image pairs
using five different reward models (PickScore, ImageReward, HPSv2, Aesthetic Score, and CLIP Score),
only 20.79% of pairs show consistent preference rankings across all five dimensions, where one image con-
sistently scores higher than the other. This dimensional conflict prevent models from learning meaningful
preference patterns, as illustrated in Figure 4 (a). Consequently, this dataset benefits from Poly-DPO with
α>0, which enables the model to better navigate these conflicting signals by adaptively weighting samples
based on prediction confidence. In our experiments, we found α=8 has the best experimental results.

Over-simple Preference Dataset. To validate that Poly-DPO with α<0 mitigates overconfidence, we
construct a synthetic dataset where simple patterns dominate. We first perform SFT on SD1.5 using winner
images from ViPO-Image-1M, then create preference pairs by randomly shuffling losers within batches
while maintaining original winners. This setup causes a critical failure under standard DPO: the model
quickly becomes overconfident and overfits to reproducing winner images rather than learning winner-loser
distinctions. The high confidence from trivial preference patterns prevents the model from learning subtle
preferences essential for alignment. We show that Poly-DPO with α<0 can penalize overconfident predic-
tions, and forcing the model to learn more meaningful preference patterns in this scenario in Figure 4 (b).

High-quality and Balanced Preference Dataset. While Poly-DPO with α> 0 and α< 0 performs
well on noisy and imbalanced datasets respectively, we observe an interesting phenomenon when training
SFT-initialized SD1.5 on our complete ViPO-Image-1M dataset: the optimal α value converges to
approximately zero, where Poly-DPO converges to standard DPO and exhibits robust performance
across different hyperparameter settings, as demonstrated in Figure 4 (c). This convergence validates our
dataset quality—when preferences are reliable and balanced, adaptive optimization becomes unnecessary,
confirming that data quality remains the primary factor for successful and scalable preference optimization.
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5.3 RESULTS ON PICK-A-PIC V2 TRAINING DATASET

To validate Poly-DPO’s effectiveness, we conduct experiments using SD1.5 and SDXL trained on Pick-a-
Pic V2, which contains substantial conflicting preference patterns as analyzed in Section 5.2, making it an
ideal testbed for demonstrating robustness to noisy real-world data. Table 2 presents evaluation results across
four test datasets. Poly-DPO consistently outperforms both Diffusion-DPO and Diffusion-KTO across
all metrics. On Pick-a-Pic V2 test set, Poly-DPO achieves 4.4% improvement in PickScore and 13.1%
in HPSv2.1, significantly surpassing Diffusion-DPO’s gains of 1.8% and 4.4% respectively. The most sub-
stantial improvements appear in ImageReward scores (+0.594 vs. +0.212). This pattern holds across other
test sets: on HPD V2, Poly-DPO achieves 15.9% HPSv2.1 improvement versus Diffusion-DPO’s 5.3%;
on Parti, the ImageReward gain reaches +0.542 versus +0.158. These consistent improvements confirm
Poly-DPO’s ability to extract meaningful preference signals despite conflicting patterns. Table 3 evaluates
compositional understanding using GenEval benchmark. Poly-DPO achieves the highest overall scores
among off-policy methods for both SD1.5 (49.87) and SDXL (60.34), even surpassing on-policy SPO while
avoiding iterative sampling costs. Notably, Poly-DPO excels at challenging tasks: for SD1.5, it achieves
51.25 on counting (vs. Diffusion-DPO’s 38.75) and 14.00 on attribute binding (vs. 3.75); for SDXL, at-
tribute binding reaches 31.00 compared to Diffusion-DPO’s 18.50. These substantial gains demonstrate that
confidence-based reweighting enables learning nuanced preference patterns beyond simple visual attributes.

Table 2: SD1.5 comparison results when trained on the Pick-a-Pic V2 dataset and evaluated on multiple
datasets. For each prompt, we generate 4 images and report the average reward scores. Baseline results
are evaluated with official released checkpoints, and all evaluations are conducted under the same setting.

Eval Dataset Method Paradigm PickScore ↑ HPSv2.1 ↑ Aesthetic ↑ ImageReward ↑

Pick-a-Pic V2
(Test)

SD1.5 - 20.57 25.02 5.42 0.085
Diffusion-DPO Off-Policy 20.95+1.8% 26.12+4.4% 5.55+2.4% 0.297+0.212

Diffusion-KTO Off-Policy 21.06+2.4% 28.06+12.2% 5.66+4.4% 0.628+0.543

Poly-DPO (Ours) Off-Policy 21.48+4.4% 28.30+13.1% 5.67+4.6% 0.679+0.594

HPD V2
(Test)

SD1.5 - 20.86 0.246 5.58 0.139
Diffusion-DPO Off-Policy 21.31+2.2% 0.259+5.3% 5.71+2.3% 0.338+0.199

Diffusion-KTO Off-Policy 21.45+2.8% 0.284+15.4% 5.80+3.9% 0.690+0.551

Poly-DPO (Ours) Off-Policy 21.87+4.8% 0.285+15.9% 5.83+4.5% 0.716+0.577

Parti
(Test)

SD1.5 - 21.28 0.253 5.36 0.194
Diffusion-DPO Off-Policy 21.52+1.1% 0.261+3.2% 5.44+1.5% 0.352+0.158

Diffusion-KTO Off-Policy 21.59+1.5% 0.279+10.3% 5.55+3.5% 0.615+0.421

Poly-DPO (Ours) Off-Policy 21.89+2.9% 0.280+10.7% 5.56+3.7% 0.736+0.542

Pick-a-Pic V1
(Validation Unique)

SD1.5 - 20.56 24.05 5.47 0.008
DDPO On-Policy 21.06+2.4% 24.91+3.6% 5.59+2.2% 0.082+0.074

D3PO On-Policy 20.76+1.0% 23.97−0.3% 5.53+1.1% −0.124−0.132

SPO On-Policy 21.22+3.2% 25.83+7.4% 5.93+8.4% 0.168+0.160

Diffusion-DPO Off-Policy 20.99+2.1% 25.54+6.2% 5.60+2.4% 0.302+0.294

Diffusion-KTO Off-Policy 21.12+2.7% 28.19+17.2% 5.68+3.8% 0.642+0.634

Poly-DPO (Ours) Off-Policy 21.48+4.5% 28.32+17.8% 5.68+3.8% 0.671+0.663

Table 3: Evaluation results on GenEval (Ghosh et al., 2023) with Pick-a-pic V2 training dataset. The
SD1.5/SDXL/KTO/Diffusion-DPO results are evaluated with their officially released models under the
same setting as LPO Zhang et al. (2025b). The SPO/LPO/MAPO baseline results are from the LPO paper.

Model RL Single Two Counting Colors Position Attribute Overall↑Paradigm Object Object Binding

SD1.5 - 95.62 37.63 37.81 74.73 3.50 4.57 42.34
SPO On-Policy 95.63 36.62 34.83 72.34 3.75 6.50 41.53
LPO On-Policy 97.81 55.30 42.19 80.59 6.75 10.00 48.77
Diffusion-DPO Off-Policy 96.88 39.90 38.75 75.53 3.25 3.75 43.00
Diffusion-KTO Off-Policy 97.50 35.35 36.25 79.79 7.00 6.00 43.65
Poly-DPO (Ours) Off-Policy 96.25 46.46 51.25 87.23 4.00 14.00 49.87

SDXL - 98.12 75.25 43.75 89.63 11.25 15.75 55.63
SPO On-Policy 96.88 69.70 37.19 83.51 9.50 19.75 52.75
LPO On-Policy 99.69 84.34 43.13 90.43 13.75 27.75 59.85
Diffusion-DPO Off-Policy 99.38 82.58 49.06 85.11 13.05 18.50 58.02
MAPO Off-Policy 96.56 66.41 40.00 84.31 10.75 18.75 52.80
Poly-DPO (Ours) Off-Policy 98.75 82.83 46.25 87.23 16.00 31.00 60.34
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Table 4: Evaluation results on GenEval Ghosh et al. (2023) with our ViPO-Image-1M training dataset.

Model Single Two Counting Colors Position Attribute Overall↑Object Object Binding

PixArt-α 0.98 0.50 0.44 0.80 0.08 0.07 0.48
SD3.5 Large 0.98 0.89 0.73 0.83 0.34 0.47 0.71
HiDream-I1-Full 1.00 0.98 0.79 0.91 0.60 0.72 0.83

SD1.5 0.96 0.38 0.38 0.75 0.04 0.05 0.42
+ SFT 0.99 0.49 0.38 0.78 0.06 0.09 0.46
+ SFT & Poly-DPO 0.98 0.66 0.50 0.84 0.07 0.17 0.54

SDXL 0.98 0.75 0.44 0.90 0.11 0.16 0.56
+ SFT 0.98 0.77 0.43 0.88 0.13 0.21 0.57
+ SFT & Poly-DPO 1.00 0.88 0.45 0.93 0.09 0.42 0.63

SD3.5-Medium 1.00 0.87 0.68 0.80 0.20 0.57 0.69
+ SFT 1.00 0.97 0.74 0.91 0.43 0.77 0.80
+ SFT & Poly-DPO 1.00 0.97 0.75 0.91 0.47 0.86 0.83

FLUX.1 [Dev] 1.00 0.86 0.80 0.78 0.25 0.45 0.69
+ SFT 1.00 0.90 0.74 0.87 0.38 0.62 0.75
+ SFT & Poly-DPO 0.99 0.97 0.83 0.85 0.40 0.70 0.79

Table 5: Evaluation results on DPG-Bench Hu et al. (2024) with our ViPO-Image-1M training dataset.

Model Global Entity Attribute Relation Other Overall↑

Hunyuan-DiT 84.59 80.59 88.01 74.36 86.41 78.87
PixArt-Σ 86.89 82.89 88.94 86.59 87.68 80.54
DALL-E 3 90.97 89.61 88.39 90.58 89.83 83.50
SD3 Medium 87.90 91.01 88.83 80.70 88.68 84.08
HiDream-I1-Full 76.44 90.22 89.48 93.74 91.83 85.89
GPT-Image 1 88.89 88.94 89.84 92.63 90.96 85.15

SD3.5-Medium 91.70 90.59 89.49 92.21 85.12 84.24
+SFT 84.80 89.97 88.14 93.69 82.00 84.24
+SFT & Poly-DPO 84.80 92.64 90.10 94.81 89.20 87.71

FLUX.1 [Dev] 74.35 90.00 88.96 90.87 88.33 83.84
+SFT 85.41 89.21 85.17 92.72 80.40 83.59
+SFT & Poly-DPO 90.99 91.05 90.91 93.73 91.12 87.31

5.4 RESULTS ON VIPO-IMAGE-1M TRAINING DATASET

Composition. Table 4 demonstrates the effectiveness of our ViPO-Image-1M dataset across multiple
model architectures on the GenEval benchmark. All models show substantial improvements when trained
with our dataset. SD1.5 improves from 0.42 to 0.52 overall (+23.8%), with particularly strong gains
in two-object generation (0.38→0.66) and attribute binding (0.05→0.12). SDXL achieves 0.63 overall
score, surpassing many baseline models, with attribute binding improving dramatically from 0.16 to
0.42. SD3.5-Medium, already strong at 0.69, reaches 0.83 after training, approaching the performance of
HiDream-I1-Full (0.83), a model specifically designed for compositional generation. FLUX.1-dev shows
consistent improvements across all metrics, reaching 0.79 overall score.

Image-Text Alignment. Tables 5 present evaluation results on text-image alignment. On DPG-Bench,
both SD3.5-Medium and FLUX.1-dev achieve state-of-the-art performance after training, with overall
scores of 87.71 and 87.31 respectively, surpassing commercial models like GPT-Image 1 (85.15) and
approaching HiDream-I1-Full (85.89). The models excel particularly in relational understanding, with
SD3.5-Medium achieving 94.81 on relation tasks.

Aesthetics and Human Quality Evaluation. We evaluate aesthetic quality and human generation
capabilities as shown in Table 6. For aesthetic assessment using DeQA You et al. (2025), we observe
modest but consistent improvements (SD3.5-Medium: 4.27→4.31, FLUX: 4.37→4.40) on DrawBench,
demonstrating that our training maintains aesthetic quality while improving technical capabilities. For
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Table 6: SD3.5-Medium & FLUX-dev comparison results when trained on our ViPO-Image-1M dataset
and evaluated across multiple benchmarks. For each prompt, we generate 4 images and report the average
score. We provide more details about these experiments in the Supplementary Material.

Method Aesthetics Alignment Text Rendering Human Quality Composition
DeQA ↑ DPG-Bench ↑ CVTG-2K ↑ GPT-4o Acc ↑ GenEval ↑

SD3.5-Medium 4.27 84.24 0.4378 73.25 0.69
+ SFT 4.31 84.24 0.5887 77.50 0.80
+ SFT & Poly-DPO 4.31 87.71 0.6995 85.25 0.83
FLUX.1-dev 4.37 83.84 0.4878 80.00 0.69
+ SFT 4.32 83.59 0.2126 81.75 0.75
+ SFT & Poly-DPO 4.40 87.31 0.6859 88.75 0.79

Table 7: Wan2.1-T2V-1.3B Experiments on VBench-2.0 when trained with our ViPO-Video-300K dataset.

Models Human
Identity Material Thermotics Dynamic

Spatial Rel.
Dynamic
Attribute

Motion
Order Und.

Human
Interaction

Camera
Motion

Motion
Rationality

Wan2.1 62.18 69.75 72.26 24.64 53.48 35.35 74.00 31.79 43.68

+ Poly-DPO 67.99 71.57 68.53 33.82 57.00 38.62 78.00 32.49 47.70

human quality evaluation, we use GPT-4o to assess anatomical correctness on 400 human-related prompts.
The results show substantial improvements: SD3.5-Medium’s accuracy increases from 73.25% to 85.25%,
while FLUX improves from 80.00% to 88.75%. These gains address persistent challenges in human
image generation, including correct proportions, realistic poses, and proper body structure. Our proposed
ViPO-Image-1M achieves simultaneous improvements across multiple visual dimensions.

Text Rendering. Training on our dataset significantly improves performance on the challenging
CVTG-2K text rendering benchmark Du et al. (2025). As shown in Table 6, our full pipeline boosts
SD3.5-Medium’s word accuracy by 59.8% (from 0.4378 to 0.6995). Notably for FLUX.1-dev, it
overcomes an SFT-induced performance degradation to achieve a strong final score of 0.6859. A more
detailed analysis, including results on multi-region text, is available in Tabe 8 in the Appendix.

5.5 RESULTS ON VIPO-VIDEO-300K TRAINING DATASET

We evaluate the effectiveness of our ViPO-Video-300K dataset using Wan2.1-T2V-1.3B model on
VBench-2.0 benchmark Zheng et al. (2025), as shown in Table 7. Training with ViPO-Video-300K yields
consistent improvements across nearly all evaluated dimensions. Most notably, the model shows significant
gains in motion-related metrics: Dynamic Spatial Relationship improves from 24.64 to 33.82 (+37.4%),
Motion Order Understanding increases from 35.35 to 38.62, and Motion Rationality rises from 43.68
to 47.70. These improvements demonstrate that our video preference dataset effectively captures temporal
dynamics and motion quality distinctions. Human-centric metrics show substantial improvements, with
Human Identity increasing from 62.18 to 67.99 and Human Interaction from 74.00 to 78.00, validating
the quality of human motion preferences in our dataset. While Thermotics shows a slight decrease, the
overall pattern of improvements across diverse evaluation criteria confirms that ViPO-Video-300K enables
balanced enhancement of video generation capabilities, particularly in challenging aspects like motion
understanding and temporal consistency.

5.6 HUMAN EVALUATION ON VIPO DATASETS

Human Evaluation Setup. To construct the evaluation set, we randomly sampled 40 images per category
from the image datasets and 20 videos per category from the video datasets. We recruited 18 annotators to
provide human labels for the ViPO dataset. Specifically, annotators were presented with randomly paired
samples and asked to identify the superior one based on the specific instructions corresponding to each cate-
gory. In total, we collected 4,378 human preference annotations. To validate the quality of these annotations,
we analyze the rater reliability as illustrated in Figure 8 in the Supplementary. Here, we define rater accuracy
as the percentage of instances where an individual rater’s choice aligns with the majority vote (consensus
label) among human raters across all evaluated pairs. The distribution demonstrates the high reliability
of our human evaluation: notably, the minimum accuracy among all raters exceeds 70%, with a mean
accuracy of 87.2%. This strong consensus confirms that the collected human preferences are consistent and
trustworthy. We also show the UI interface used for our human evaluation in Figure 9 of the supplementary.
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Correct
81.2%

Wrong
18.8%

Correct
74.7%

Wrong
25.3%

VLM Human

(c) Comparison of VLM and Human Performance by Category

(a) Comparison of Overall Performance (b) Comparison of Performance by Modality

Figure 5: Performance Comparison between VLM and Human Raters. Accuracy (or Agreement
Rate) is defined as the frequency with which a choice aligns with the consensus label (majority vote
among human raters, excluding VLM predictions). (a) Overall: The VLM (81.2%) demonstrates higher
consistency with the consensus than the average individual human annotator (74.7%). (b) By Modality:
The VLM significantly outperforms humans on images (84.0% vs. 74.9%) but performs comparably on
video tasks (71.7% vs. 72.2%). (c) By Category: The VLM excels in most metrics like Aesthetic (95.0%)
but only struggles with temporal Motion Quality (55.0% vs. 67.2%).

Reliability of ViPO Dataset Annotations. To validate the effectiveness of our automated evaluation
pipeline, we benchmark the VLM-based rater against individual human annotators, using the majority-vote
consensus as the ground truth. As illustrated in Figure 5 (a), the VLM achieves an overall agreement
rate of 81.2% with the consensus, surpassing the average human annotator’s accuracy of 74.7%. This
result indicates that our VLM aligner successfully captures the general preference distribution of the crowd.
However, a detailed breakdown reveals modality-specific behaviors. In the image domain (Figure 5 (b)),
the VLM demonstrates a significant advantage (84.0% vs. 74.9%), driven by its exceptional performance
on static attributes such as Aesthetic (95.0%) and Alignment (92.5%) shown in Figure 5 (c). In contrast,
for the video domain, the VLM’s performance (71.7%) aligns closely with human reliability (72.2%).
Notably, the model exhibits a specific limitation in assessing Motion Quality, where its accuracy drops to
55.0%, lagging behind human performance (67.2%). This discrepancy highlights that while current VLMs
are robust spatial evaluators, they still face challenges in perceiving fine-grained temporal dynamics.

6 CONCLUSION

In this paper, we demonstrated that conflicting preference patterns in existing datasets limit visual preference
optimization scaling. We introduced Poly-DPO, which dynamically adjusts sample weighting based on
confidence levels, enabling effective learning across diverse data characteristics. We also constructed ViPO,
a large-scale dataset with 1M image and 300K video pairs, ensuring reliable preference signals across
multiple quality dimensions. Our experiments show Poly-DPO significantly improves performance on
noisy datasets like Pick-a-Pic V2 while achieving state-of-the-art results on ViPO. Remarkably, Poly-DPO
converges to standard DPO on ViPO, confirming that sophisticated optimization becomes unnecessary
with sufficient data quality. This reveals that scaling visual preference optimization requires addressing
data quality and algorithmic robustness in tandem. All models and datasets will be released.
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ETHICS STATEMENT

This work develops preference optimization methods and datasets for visual generation models. All
experiments were conducted using publicly available models and datasets, with newly generated synthetic
data created from text prompts or publicly available image datasets. Our ViPO dataset construction
involved AI-generated content from state-of-the-art models (FLUX, Qwen-Image for text-to-image;
WanVideo for image-to-video using LAION-Aesthetics images). While we use publicly available datasets
that may contain human images, we follow established practices for responsible use of such data. We
recognize that visual generation models can potentially be misused for creating misleading or harmful
content. To mitigate these risks, we emphasize responsible use guidelines, transparent documentation of
our methods, and acknowledge that generated content should be clearly labeled as AI-created. While our
work aims to improve generation quality and alignment with human preferences, we encourage ongoing
research into detection methods and ethical deployment practices for generative AI systems.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. A comprehensive description of our
dataset construction, including the entire collection and processing pipeline for our proposed ViPO datasets,
is provided in Section B. All implementation details, including models, training hyperparameters for each
experiment, and the evaluation setup, are thoroughly documented in Section D. We believe these resources
provide all the necessary components for the community to reproduce our results and build upon our work.
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A OVERVIEW OF APPENDIX

The appendix is organized into the following sections:

• Section B: Dataset Construction Details.

• Section C: More Experiments and Analysis.

• Section D: Implementation Details.

• Section E: Discussion, Limitation and Future Work.

• Section F: The Use of Large Language Models (LLMs).

B DATASET CONSTRUCTION DETAILS

B.1 VIPO-IMAGE-1M DATASET

Image-Text Alignment. To construct DPO preference pairs (win/loss) for image-text alignment while
minimizing impact on other attributes, we utilize a single image generation model conditioned on distinct
prompts to generate the corresponding image pairs.

Our data construction pipeline begins with sampling images and prompts from the open-source LAION-
Aesthetics dataset. We then use Qwen2.5-VL-32B to generate a detailed caption for each image and sub-
sequently filter out any samples containing inappropriate content. Following this, we employ Seed-VL-1.5
to perform image-grounded perturbations on these clean captions. This approach requires the model to first
comprehend the image content, ensuring that all modifications are semantically consistent with the visual in-
formation. For instance, person-related attributes are only altered if human subjects are present in the image.

Specifically, we modify one, two, or three of these dimensions in the original prompt with probabilities of
70%, 20%, and 10%, respectively. The primary dimensions include: (1) style, (2) rendering, (3) lighting, (4)
atmosphere, (5) time, (6) color-scheme, (7) saturation, (8) perspective, (9) depth-of-field, (10) composition,
(11) weather, (12) season, (13) location, (14) background, (15) detail-level, (16) texture, (17) mood, (18)
quantity, (19) size, (20) pose, (21) action, (22) interaction, (23) emotion, (24) clothing, and (25) age.

In this setup, the image generated from the original, unperturbed caption serves as the “winner”, while the
image generated from the perturbed caption is designated as the “loser”. Based on preliminary experiments
where Seedream-3.0 achieved the highest alignment scores on a small internal test set, we selected it to
generate all 200K image pairs for this task.

Text Rendering. The text prompts used for our text rendering dataset are constructed from three primary
sources. The first component consists of 208K prompts from the CoverBook subset of the TextAtlas5M
dataset. The second is a collection of 100K prompts from the ‘stzhao/movie posters 100k controlnet‘
dataset on HuggingFace. The third source comprises prompts selected from the LAION-Aesthetics dataset
that correspond to images containing visible text; we ensure these samples do not overlap with those used
for the aforementioned image-text alignment task when sampling from LAION-Aesthetics.

After aggregating these text-centric prompts, we filter them by character count to exclude excessively
long or short text strings and perform an additional step to remove inappropriate content. This process
yields a final set of 200K prompts dedicated to text rendering. To construct the corresponding image pairs
for these prompts, we exclusively employ Qwen-Image, HiDream-I1, Seedream-3.0, and FLUX.1-dev,
as other generative models exhibit inferior text rendering capabilities.

To annotate the preference pairs for the text rendering task, we implement a two-stage evaluation process
involving PaddleOCR-3.0 and Seed-VL-1.5. First, we use PaddleOCR-3.0 for an initial assessment. If one
image in a pair accurately renders the text specified in the prompt while the other contains character-level
errors, the former is automatically labeled as the “winner”. However, if both images succeed or both fail
in rendering the correct text, we proceed to the second stage. In this stage, we employ Seed-VL-1.5 to
perform the comparison. The model determines the winner based on a holistic evaluation of several criteria,
including the clarity of the rendered text, the precision of character formation, and the degree to which
the text’s position and shape align with the prompt’s description.
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Aesthetics Alignment

Human
Quality

Text
Rendering

Text Rendering: A vibrant display of the word 
'luminous' spelled out in colorful Lego bricks.

Composition: Peaceful beach scene with vibrant 
umbrellas, towels, a person under an umbrella.

Human Quality: A close-up portrait of a blonde 
woman, focusing on her expression and attire.

Aesthetics: A wolf-headed figure donning 
heavy, armored attire wields a torch and sword 
amidst an ominously misty library environment.

Aesthetics: Armored skeletal warriors 
and dogs under a threatening, cloudy sky.

Composition: A restroom with a 
green chair, mirror, sink and toilet.

Alignment: A unicorn with black & white 
stripes holding a piece of mozzarella with its 
two front hooves, placing it in front of its mouth.

Image
Composition Human Quality: A girl in purple animal-print 

pajamas sits cross-legged, touching her hair.
ViPO-Image-1M

(a) Image-1M dataset visualization

Motion
Quality

Visual
Quality

Video-Text
Alignment

Motion Quality: Shrek is showing his muscle..

Spatial Alignment: A couple walks hand in hand
through a meadow. The man is wearing a dark blue suit
and the woman is wearing a white wedding dress.

Visual Quality: A heavily armed warrior holding a
futuristic gun cautiously enters the cyberpunk arena from a
smoky industrial area with a skull in the background.

Motion Alignment: People desperately run away from the giant spider chasing them.

ViPO-Video-300K

(b) Video-300K dataset visualization

Figure 6: ViPO-Image-1M and ViPO-Video-300K dataset visualization.
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Human Quality. To construct human-centric DPO dataset, we first gathered 100K images from existing
open-source datasets. We began by filtering the ProGamerGov/synthetic-dataset-1m-dalle3-high-quality-
captions dataset on HuggingFace with Seed-VL-1.5, selecting 44,501 images with exhibited human
anatomical flaws. We augmented this dataset with 2,009 images from the gaunernst/flux-dev-portrait
dataset on HuggingFace and 56,444 images from the HumanRefiner dataset on HuggingFace. This
aggregated pool was then filtered for inappropriate content (e.g., violence or nudity) using Seed-VL-1.5,
and finally we randomly sampled 80K images from the filtered pool.

To further diversify our dataset, we generated another 120K images. We used Seed-1.6-Lite to select 120K
new human-centric prompts from the ProGamerGov/synthetic-dataset-1m-dalle3-high-quality-captions
dataset, ensuring they were distinct from those used in the first step. We then prompted a suite of ten differ-
ent open-source models to generate around 10K 1024x1024 images for each model (including CogView4,
FLUX.1-dev, HiDream-I1-Full, Hunyuan-DiT, Kolors, PixArt-Σ, Playground-v2.5-1024px-Aesthetic,
SANA1.5-4.8B-1024px, SD3.5-Medium, SDXL). In addition, we also deploy Qwen-Image to generate
20K 1024x1024 images. This resulted in a collection of 200K human-centric images sourced from a wide
variety of generative models.

To create the paired preference data, we generated a counterpart for each of the 200K images using the
Seedream-3.0 model with the identical prompt. Finally, Seed-VL-1.5 was employed as an automated
judge to assign the final preference labels (i.e., identifying the “winner” and “loser” image in each pair)
based on which image rendered the human subject more accurately. This comprehensive pipeline yielded
our final dataset of 200K unique, high-resolution DPO image pairs.

Image Composition. We constructed our dataset by sourcing 200K unique prompts from two primary
HuggingFace datasets: jackyhate/text-to-image-2M and peteromallet/high-quality-midjouney-srefs. For
prompts from jackyhate/text-to-image-2M, we generated one image using Seedream-3.0 and a second,
paired image using the same prompt with a randomly selected model from either Qwen-Image or
HiDream-Dev. For prompts from peteromallet/high-quality-midjouney-srefs, we utilized the original
MidJourney-V7 image and generated its counterpart with Seedream-3.0. Acknowledging the subjective
and complex nature of evaluating image composition, we employed a multi-VLM voting system for
robust preference labeling. Specifically, a panel of three diverse VLMs—Qwen2.5-VL-32B-Instruct,
Seed-VL-1.5, and Q-Insight—was used to judge which image in each pair exhibited superior composition.
The final preference was then determined by a majority vote from these three judges.

Aesthetics. To construct our aesthetics DPO dataset, we first sampled 200K prompts and corresponding
images from the ProGamerGov/synthetic-dataset-1m-dalle3-high-quality-captions dataset on HuggingFace,
ensuring there was no overlap with the samples previously used for the other DPO datasets. For each prompt,
we generated another image using Seedream-3.0. To establish preference pairs based on aesthetics, we
utilized three VLMs, i.e., Qwen2.5-VL-32B-Instruct, Seed-VL-1.5, and Q-Insight—to judge which of the
two images was more aesthetically pleasing. The final preference was then determined by a majority vote.

B.2 VIPO-VIDEO-300K

Motion Quality. For our Motion Quality task, we construct all video pairs using an Image-to-Video (I2V)
pipeline to ensure that the spatial information between the two videos in each pair remains as consistent
as possible. Our data generation process integrates samples from four distinct datasets, all sourced from
HuggingFace: (1) We collect 6,763 videos and prompts from the WenhaoWang/ShareVeo3 dataset,
originally generated by Veo3, extract the first frame of each, and use Seedance-1.0-Pro to synthesize
720p video pairs. (2) We take 11K prompts from LanguageBind/Open-Sora-Plan-v1.3.0, generate initial
videos with HunyuanVideo-T2V-13B, extract their first frames, and then use Seedance-1.0-Lite to create
the corresponding pairs. (3) We gather 32K videos from the FastVideo/Wan2.2-Syn-121x704x1280 32k
dataset, generated by the WanVideo2.2 TI2V-5B model, extract the first frame and prompt for each,
and use Seedance-1.0-Lite to generate the paired videos. (4) We select 50K image-text pairs from the
LAION-Aesthetics dataset, augment the prompts with motion details using Seed-VL-1.5, and then
generate video pairs using both Seedance-1.0-Pro and Seedance-1.0-Lite. After generating all pairs, we use
Seed-VL-1.5 to score the motion quality of each video, designating the higher-scoring one as the ’winner’.
We then filter the dataset by removing pairs with the largest and smallest score differences to discard trivial
or ambiguous examples, resulting in a final dataset of 100K preference pairs for this task.
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Visual Quality. To construct the Visual Quality subset of our ViPO-Video-300K dataset, we first sample
100K image pairs from ViPO-Image-1M. We specifically select samples for which all participating VLMs
(Qwen2.5-VL-32B, Seed-1.5-VL, and Q-Insight) unanimously assigned the same preference label. Subse-
quently, for each selected pair, the images are fed into Seed-VL-1.5 to generate a single motion prompt that
is semantically suitable for both. This motion prompt is then integrated with the shared image description to
form the final video generation prompt. Using this prompt and the two source images, we employ Seedance-
1.0-Lite to perform an image-to-video synthesis task, generating the corresponding video preference pair.
The preference label for each resulting video pair is directly inherited from its source image pair.

Video-Text Alignment. For the Video-Text Alignment task, we construct preference data by addressing
two key aspects: spatial alignment and temporal alignment. To generate data for spatial alignment, we
first select 50K image-text alignment pairs from ViPO-Image-1M, which feature subtle visual differences.
We then employ Seed-VL-1.5 to generate a single, common motion prompt suitable for the main subject
in both images. Subsequently, Seedance-1.0-Lite executes an I2V task for each image using this shared
prompt, creating video pairs where preference is determined by the inherited spatial characteristics. For
temporal alignment, we select 50K images from the LAION-Aesthetics dataset. For each image, we use
Seed-VL-1.5 to generate two distinct motion prompts (e.g., “a person running” vs. “a person walking”).
Seedance-1.0-Lite then generates two videos from the same source image, each conditioned on one of the
different motion prompts. In both scenarios, the winner-loser designation is based on the correspondence
between a video and its prompt; the video that accurately reflects its conditioning prompt is the winner.

C MORE EXPERIMENTS AND ANALYSIS

Detailed Text Rendering Results. A distinctive advantage of our dataset is the significant improvement
in text rendering on CVTG-2K benchmark Du et al. (2025), which is a historically challenging task for
diffusion models. As shown in Table 8, SD3.5-Medium’s average word accuracy improves from 0.4378
to 0.6995 (+59.8%), with the NED score reaching 0.8853. FLUX.1-dev demonstrates even more dramatic
gains, improving from 0.4878 to 0.6859 in word accuracy despite SFT alone causing degradation (0.2126).
These improvements are particularly notable for multi-region text rendering, where SD3.5-Medium
achieves 0.6252 accuracy on 5-region text compared to the baseline’s 0.3933.

Table 8: Quantitative evaluation results of English text rendering on CVTG-2K Du et al. (2025).

Model Word Accuracy↑ NED↑ CLIPScore↑
2 regions 3 regions 4 regions 5 regions average

SD3.5 Large 0.7293 0.6825 0.6574 0.5940 0.6548 0.8470 0.7797
AnyText 0.0513 0.1739 0.1948 0.2249 0.1804 0.4675 0.7432
TextDiffuser-2 0.5322 0.3255 0.1787 0.0809 0.2326 0.4353 0.6765
RAG-Diffusion 0.4388 0.3316 0.2116 0.1910 0.2648 0.4498 0.7797
3DIS 0.4495 0.3959 0.3880 0.3303 0.3813 0.6505 0.7767
TextCrafter 0.7628 0.7628 0.7406 0.6977 0.7370 0.8679 0.7868

SD3.5-Medium 0.5104 0.4788 0.4197 0.3933 0.4378 0.7325 0.7548
+SFT 0.7474 0.6485 0.5625 0.5027 0.5887 0.8228 0.8107
+SFT & Poly-DPO 0.8188 0.7422 0.6900 0.6252 0.6995 0.8853 0.8287
FLUX.1 [dev] 0.6532 0.5273 0.4491 0.4312 0.4878 0.6727 0.7265
+SFT 0.3530 0.2462 0.1962 0.1459 0.2126 0.4623 0.7303
+SFT & Poly-DPO 0.7733 0.7203 0.6893 0.6169 0.6859 0.8489 0.7939

Supervised Fine-Tuning on ViPO-Image-1M. The results presented in Table 9 highlight the optimal
strategy for integrating Supervised Fine-Tuning (SFT) with our Poly-DPO method. All models in this
ablation are evaluated on the same 1,200-prompt test set detailed in Section 5.2. We first observe that
an initial SFT stage is crucial for achieving the best performance. Applying Poly-DPO directly to the
SD1.5 baseline yields only modest improvements, whereas models that first undergo SFT before DPO
training demonstrate substantially higher scores across all evaluation metrics.

Furthermore, our experiments reveal that the composition of the SFT dataset is critical. By comparing
models trained with SFT on the full winner-loser pairs versus only the winner images, we consistently find
that the latter approach is superior. This is evidenced by our top-performing model, ”+ SFT (Winner Only)
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& Poly-DPO,” which surpasses all other configurations. This demonstrates that fine-tuning exclusively
on high-preference (winner) data provides a more effective foundation for the subsequent preference
alignment with Poly-DPO.

Table 9: Ablation study on the integration of Supervised Fine-Tuning (SFT) and Poly-DPO for the SD1.5
model. The results demonstrate that an initial SFT stage using only winner images is the optimal strategy
to achieve the best performance. We utilize this optimal setting for all experiments in the main paper.

Method PickScore ↑ HPSv2.1 ↑ Aesthetic ↑ ImageReward ↑
SD1.5 20.89 25.04 5.46 0.1757
+ Poly-DPO 21.51 26.40 5.60 0.6391
+ SFT (Winner-Loser) 21.74 28.75 5.71 0.7671
+ SFT (Winner Only) 21.92 29.00 5.72 0.8355
+ SFT (Winner-Loser) & Poly-DPO 22.06 29.57 5.76 0.9955
+ SFT (Winner Only) & Poly-DPO 22.19 29.69 5.78 1.0161

Gradient Analysis on α of Our Poly-DPO. Figure 7 visualizes how the gradient magnitude |∂L∂z |=
|−(1−p)(1+αp)| of Poly-DPO adapts to different data characteristics through the α parameter, where
p=σ(z) represents the model’s confidence in preferring the chosen response. The visualization reveals
three distinct optimization regimes that directly correspond to our experimental findings. When α> 0
(blue and purple curves), the gradient is amplified in the region p ∈ [0.5,0.8], maintaining substantial
parameter updates even for moderately confident predictions. This enhancement proves crucial for noisy
datasets like Pick-a-Pic V2, where only 20.79% of samples show consistent preferences across evaluation
dimensions—the sustained gradient (approximately 2-3× stronger than standard DPO at p≈0.6 when α=
8) prevents premature convergence on spurious patterns and encourages continued exploration to identify
genuine preference signals amidst dimensional conflicts. Conversely, when α<0 (red and orange curves),
the gradient decays more rapidly as confidence increases, actively penalizing overconfident predictions. This
mechanism addresses the overconfidence problem in our synthetic dataset experiment, where negative α
values enforce faster gradient decay beyond p>0.6, maintaining the model in a ”humble” learning state that
prevents memorization of superficial patterns. Remarkably, when training on our high-quality ViPO-Image-
1M dataset, the optimal α converges to approximately zero (green curve), where Poly-DPO reduces to
standard DPO with linear gradient decay |−(1−p)|. This convergence serves as an empirical validation of
dataset quality—when preference labels are reliable and balanced, additional gradient modulation becomes
unnecessary, confirming that data quality remains fundamental for successful preference optimization. The
visualization also provides practical insights: the optimal α value serves as a diagnostic tool for dataset
quality (large positive values suggest noisy labels, negative values indicate oversimplified patterns, while
α≈ 0 validates well-balanced data), and explains why different datasets achieve different convergence
points. This adaptive gradient mechanism enables Poly-DPO to achieve robust performance across diverse
dataset characteristics without requiring dataset-specific algorithmic modifications.
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Figure 7: Gradient magnitude of Poly-DPO loss with respect to logits under differentα values. The gradient
|−(1−p)(1+αp)| adaptively controls learning dynamics based on confidence p. α>0 enhances gradients
for medium-confidence predictions to combat noisy labels, α<0 suppresses overconfident predictions
to prevent overfitting, while α=0 (standard DPO) proves optimal for high-quality balanced datasets.
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Human Evaluation Details To ensure the rigorous quality
standards of the ViPO dataset, we conducted a large-scale
evaluation by recruiting 18 annotators. This scale significantly
exceeds that of related visual generation works, such as
ControlNet (12), thereby offering higher statistical confidence
and mitigating individual bias. Figure 8 details the rater
reliability, defined as the consistency between an individual’s
choices and the majority vote consensus. The empirical
results highlight exceptional agreement: every rater surpassed
70% accuracy, with 14 out of 18 exceeding 80% (Mean:
87.2%, Median: 87.6%). This distribution confirms that our
collected preference labels are stable and trustworthy. Such
high inter-rater agreement further evidences that the ViPO
tasks are well-posed and the instructions are unambiguous,
effectively minimizing the noise often inherent in subjective
visual assessments. Consequently, the derived consensus
labels provide a robust ground truth for benchmarking. Finally,
Figure 9 illustrates the annotation interface; rater IDs are
utilized strictly for tracking and resuming management to
guarantee a fully anonymous evaluation process.
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Figure 8: Distribution of human rater
accuracy on our ViPO datasets.

Figure 9: The UI inferface used for our human evaluation.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

SD1.5 & SDXL Experiments on DPG-Bench. Table 10 presents the comparative results on the
DPG-Bench benchmark. As shown, our proposed Poly-DPO consistently outperforms existing baselines
across both SD1.5 and SDXL backbones, achieving the highest Overall scores of 67.02 and 75.67,
respectively. This demonstrates the superior capability of our Poly-DPO in aligning diffusion models
with human preferences. regarding the baseline selection, it is worth noting that we report results for
Diffusion-KTO exclusively on SD1.5 and MAPO on SDXL, as their respective official repositories have
only released model weights for these specific architectures.

Table 10: Evaluation results on DPG-Bench Hu et al. (2024) with the Pick-a-pic V2 training dataset

Model Paradigm Global Entity Attribute Relation Other Overall↑

SD1.5 Rombach et al. (2022) Off-Policy 74.63 74.23 75.39 73.49 67.81 63.18
Diffusion-DPO Rafailov et al. (2023) Off-Policy 71.50 72.53 75.25 73.55 72.84 63.29
Diffusion-KTO Li et al. (2024b) Off-Policy 72.45 76.51 78.09 78.08 73.20 66.69
Poly-DPO Off-Policy 73.36 78.15 76.50 75.81 73.42 67.02

SDXL Podell et al. (2023) Off-Policy 83.27 82.43 80.91 86.76 80.41 74.65
Diffusion-DPO Rafailov et al. (2023) Off-Policy 83.67 83.50 81.89 81.56 81.58 75.12
MAPO Hong et al. (2024) Off-Policy 78.22 81.31 80.65 85.35 79.85 73.80
Poly-DPO Off-Policy 84.03 83.86 81.87 83.07 81.02 75.67

Inference on Different ViPO Sub-datasets. Table 11 comprehensively evaluates the performance of
the SD3.5-Medium model under various fine-tuning strategies, leveraging distinct sub-datasets from ViPO.
Initially, the base SD3.5-Medium model serves as our benchmark, demonstrating solid performance across
all metrics. The subsequent rows clearly illustrate the significant benefits of Supervised Fine-Tuning (SFT)
using individual ViPO sub-datasets. For instance, SFT on the “Aesthetics” dataset noticeably improves
DeQA and DPG-Bench scores, while SFT on “Text Rendering” leads to a substantial jump in CVTG-2K.
This initial phase highlights the high quality and specificity of our ViPO sub-datasets, as targeted training
on specific aspects like aesthetics or text rendering yields immediate and measurable improvements in
their corresponding evaluation metrics.

A crucial observation is the inherent overlap among these diverse datasets. For example, datasets primarily
focused on “Aesthetics” or “Alignment” inevitably contain elements pertaining to “Human Quality” and
“Text Rendering.” Consequently, fine-tuning on a seemingly specific dataset can still positively influence
other, indirectly related metrics. This is evident in several SFT rows, where improvements are not strictly
confined to the explicitly targeted metric. When SFT is applied to ”All Datasets,” we observe a more
generalized enhancement, albeit with some trade-offs, indicating the complexity of balancing multiple
objectives through SFT alone.

The most compelling results emerge from the combination of SFT (on “All Datasets”) followed by DPO
using individual ViPO sub-datasets. This two-stage approach consistently achieves superior performance
across all evaluation metrics, significantly surpassing both the base model and models trained with SFT
alone. Notably, the “All Datasets” DPO fine-tuning achieves the highest scores across most metrics,
including a remarkable 85.25 for GPT-4o Accuracy and 0.6995 for CVTG-2K, representing a substantial
leap from the SFT-only and base models. This profound improvement underscores two key points: first, the
high quality and preference-rich nature of our ViPO datasets are exceptionally well-suited for preference
learning; and second, DPO effectively harnesses this high-quality preference data to further refine the
model’s capabilities, leading to more robust and human-aligned outputs across various dimensions like
aesthetics, alignment, text rendering, and overall human quality. The consistent gains across different
DPO fine-tuning setups further validate the effectiveness of our comprehensive training methodology
and the superior learning signals provided by the ViPO dataset.

Inference on Different SFT Training Steps. Table 12 presents an ablation study on the number of
training steps during the SFT phase, ranging from 1,000 to 4,000 steps. As observed, extending the
training duration yields a continuous and significant improvement in complex capabilities such as Text
Rendering (CVTG-2K) and Human Quality (GPT-4o Acc), with the latter increasing from 73.25 to a
peak of 77.50. While some metrics like Alignment (DPG-Bench) saturate or slightly fluctuate after early
stages, the steady gains in text rendering (reaching 0.5887) and overall human preference indicate that
the model requires more training steps to fully absorb the fine-grained details present in our high-quality
dataset. Consequently, we select the 4,000-step checkpoint for subsequent stages, as it offers the most
robust foundation for generating high-fidelity, human-preferred images.
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Table 11: SD3.5-Medium performance on various metrics after fine-tuning with different ViPO sub-datasets
using SFT and DPO, demonstrating the impact of specific and comprehensive data training.

Method Dataset Aesthetics Alignment Text Rendering Human Quality Composition
DeQA ↑ DPG-Bench ↑ CVTG-2K ↑ GPT-4o Acc ↑ GenEval ↑

SD3.5-Medium - 4.27 84.24 0.4378 73.25 0.69
+ SFT Aesthetics 4.32 87.02 0.5051 76.91 0.78
+ SFT Alignment 4.30 86.63 0.4904 76.89 0.77
+ SFT Composition 4.30 86.57 0.4815 76.52 0.78
+ SFT Human Quality 4.29 87.05 0.5174 77.42 0.79
+ SFT Text Rendering 4.25 85.85 0.5319 74.45 0.76
+ SFT All Datasets 4.31 84.24 0.5887 77.50 0.80

+ SFT (All) + DPO Aesthetics 4.31 86.91 0.5668 82.32 0.79
+ SFT (All) + DPO Alignment 4.31 88.55 0.6680 82.14 0.79
+ SFT (All) + DPO Composition 4.31 86.41 0.6190 81.78 0.80
+ SFT (All) + DPO Human Quality 4.30 86.70 0.5729 83.02 0.81
+ SFT (All) + DPO Text Rendering 4.28 86.13 0.6344 80.18 0.79
+ SFT (All) + DPO All Datasets 4.31 87.71 0.6995 85.25 0.83

Table 12: Ablation study on the effect of training steps during the Supervised Fine-Tuning (SFT) stage.

Method Aesthetics Alignment Text Rendering Human Quality Composition
DeQA ↑ DPG-Bench ↑ CVTG-2K ↑ GPT-4o Acc ↑ GenEval ↑

SD3.5-Medium 4.27 84.24 0.4378 73.25 0.69
+ SFT 1000 Steps 4.28 86.84 0.5134 73.98 0.79
+ SFT 2000 Steps 4.31 86.72 0.5334 75.16 0.81
+ SFT 3000 Steps 4.30 86.27 0.5614 76.34 0.81
+ SFT 4000 Steps 4.31 84.24 0.5887 77.50 0.80

Training Stability for Diffusion-DPO and Poly-DPO. To address concerns regarding potential model
collapse, we visualize the training dynamics of both the baseline Diffusion-DPO and our proposed
Poly-DPO. As illustrated in Figure 10, we track four key evaluation metrics—PickScore, ImageReward,
Aesthetic Score, and HPSv2—throughout the training process on the Pick-a-Pic V2 dataset. Contrary
to the instability often associated with on-policy RL methods, both off-policy approaches demonstrate
remarkable stability. The reward scores exhibit a consistent, steady increase followed by a smooth plateau,
indicating a stable convergence process with no signs of sudden performance degradation or collapse.
Notably, Poly-DPO maintains the robust stability inherent to the DPO framework while achieving a higher
performance ceiling than the baseline.
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Figure 10: Training dynamics of Poly-DPO and Diffusion-DPO on the Pick-a-Pic V2 dataset. Both
methods exhibit high training stability, with evaluation metrics steadily increasing to convergence without
any signs of model collapse.

D IMPLEMENTATION DETAILS

Training on Pick-a-pic V2 Dataset. We validate our proposed Poly-DPO method by training the SD1.5
model on the Pick-a-pic V2 dataset. Our training implementation and hyperparameters are based on the
official open-source code of Diffusion-DPO. Specifically, we use a batch size of 512 and a base learning
rate of 4e-9 (the final learning rate is 512×4e−9=2.048e−6), the training resolution is 512×512. We
perform a grid search for the hyperparameter α of Poly-DPO over the set{-1, -0.5, 0, 0.5, 1, 2, 4, 6, 8,
10} and find that α=8 yields the best results.In addition, we observed that the original Diffusion-DPO
algorithm converges in approximately 8,000 steps, whereas our Poly-DPO method achieves convergence in
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4,500 steps. Throughout the training process, we do not update the reference model or use the Exponential
Moving Average (EMA).

Training on ViPO-Image-1M Dataset. For our experiments on the ViPO-Image-1M training set, we
first conduct validation on the SD1.5 model. Based on our conclusions in Section 9, we adopt a two-stage
training process for all models. First, we perform SFT using only the winner images. Following this, we
apply Poly-DPO training. For this second stage, it is important to note that both the policy model being
trained and the reference model are initialized from the checkpoint of the SFT-tuned model. We found
that there was no significant difference in the evaluation indicators when α was in the range of [-1, 1], for
both the SD1.5 and the SDXL model, so we simply set α=0 for all experiments. The training resolution
is 512×512 for SD1.5 and 1024×1024 for other models. No reference model update or EMA is used
for all experiments. The specific implementation details for each model architecture are as follows:

• SD1.5. We use a batch size of 512 for both stages. The base learning rate is 4e-9 for SFT and 1e-9
for Poly-DPO, with both stages trained for 8,000 steps. We observed that after the initial SFT, a smaller
value for β in Equation 5 was better, so we set β=500.

• SDXL. The batch size is 512. The base learning rates are 2e-9 for SFT and 5e-10 for Poly-DPO, with
both stages trained for 4,000 steps. We use β=1000 for this model.

• SD3.5-Medium. For the SFT stage, we use a batch size of 2048 and a base learning rate of 1e-8. For
the Poly-DPO stage, the batch size is 512 with a base learning rate of 5e-9. The SFT stage is trained
for 4,000 steps and the Poly-DPO stage for 2,000 steps, with β=500.

• FLUX.1-dev. For the SFT stage, the batch size is 2048 with a base learning rate of 1e-9. For the
Poly-DPO stage, the batch size is 512 with a base learning rate of 5e-9. Similar to SD3.5-Medium,
SFT is trained for 4,000 steps and Poly-DPO for 2,000 steps, using β=500.

Training on ViPO-Video-300K Dataset. We conduct experiments by applying Poly-DPO directly to
the Wan2.1-T2V-1.3B base model, using the ViPO-Video-300K dataset for training. The model is trained
for 2,000 steps with a batch size of 256 and a base learning rate of 1e-8. For this experiment, we set the
DPO hyperparameter β=500 and the Poly-DPO hyperparameter α=0. During training, we utilize a
dynamic resolution approach and do not perform any resizing operations on the videos in the dataset. This
means we consistently train on video data with its original 16:9 and 1:1 aspect ratios. For final evaluation,
the VBench2.0 score is calculated by averaging the results from both the 16:9 and 1:1 generated videos.

E DISCUSSION, LIMITATION AND FUTURE WORK.

Discussion. Our work presents a dual contribution to scaling visual preference optimization: the
Poly-DPO algorithm and the high-quality ViPO dataset. The most significant finding is the symbiotic
relationship between algorithmic design and data quality. Our experiments demonstrate that while a
robust algorithm like Poly-DPO is critical for extracting meaningful signals from noisy, real-world datasets
such as Pick-a-Pic V2, the need for such sophisticated algorithmic adjustments diminishes as data quality
improves. The convergence of the optimal Poly-DPO hyperparameter α to zero when training on our
ViPO dataset serves as a powerful empirical validation of ViPO’s quality and balance.

This suggests that the hyperparameter α can itself serve as a valuable diagnostic tool for assessing
preference dataset characteristics. A large positive optimal α may indicate significant noise or conflicting
preference signals, whereas a negative optimal α could suggest the dataset is dominated by trivially simple
patterns leading to model overconfidence. An optimal α near zero, as observed with ViPO, indicates a
well-balanced and reliable dataset where standard optimization is sufficient.

Furthermore, our construction of the ViPO dataset highlights a scalable paradigm for future data curation
efforts. By leveraging a suite of state-of-the-art generative models and a panel of powerful Vision Language
Models (VLMs) for automated filtering, generation, and labeling, we demonstrate a pipeline that largely
bypasses the immense cost and scalability issues of collecting human preferences directly. This AI-driven
approach is fundamental to achieving preference optimization “at scale.”

Limitation. Despite the promising results, our work has several limitations. First, the preference labels in
the ViPO dataset are generated exclusively by AI models (VLMs). While we used multiple state-of-the-art
VLMs to ensure robustness and consistency, these AI-generated labels are a proxy for, not a direct
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measurement of, true human preferences. We did not conduct a large-scale study to measure the correlation
between our VLM-assigned labels and those from human annotators, and the inherent biases of the judge
VLMs may be encoded in our dataset.

Second, while Poly-DPO’s effectiveness is demonstrated across datasets with different characteristics,
the optimal value for the hyperparameter α was determined via grid search. This process can be
computationally intensive, and the ideal α may depend on factors beyond data noise, such as the base
model architecture or the specific domain of the content. A more automated or dynamic method for setting
α would improve the method’s practicality.

Finally, the creation of the ViPO dataset itself required significant computational resources, involving gener-
ation from over a dozen state-of-the-art models. While our work helps democratize the use of high-quality
preference data through its public release, the initial construction of such datasets remains a costly endeavor,
potentially limiting the ability of smaller research groups to create similar resources for new domains.

Future Work. Based on our findings and limitations, we propose several avenues for future research.
A critical next step is to conduct a large-scale human validation study of the ViPO dataset and explore
more robust pseudo-labeling with better reward models Chen et al. (2023). Comparing the VLM-generated
labels against human judgments would not only quantify the quality of ViPO but also provide valuable
insights into developing next-generation judge VLMs that are even better aligned with human values.

Another promising direction is the automation of the α hyperparameter in Poly-DPO. Future work could
explore methods to make α a learnable parameter that is dynamically adjusted during training based on
batch statistics or the model’s evolving confidence distribution. This would create a truly self-adaptive
preference optimization algorithm.

The categorized structure of the ViPO dataset opens up possibilities for more fine-grained and controllable
preference optimization. Future research could investigate methods for explicitly modeling the trade-offs
between different quality dimensions (e.g., prioritizing “Text Rendering” over “Aesthetics”), potentially
leading to more personalized and instruction-guided visual generation. Lastly, we believe the AI-driven
curation pipeline itself can be extended, both to new modalities like 3D and audio, and into an iterative,
self-improving loop where models trained on ViPO are used to generate new data that, after being filtered
by judge VLMs, is used to further refine the dataset.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

All technical content, dataset design, experimental results, and analyses presented in this paper were
produced by the authors. Large Language Models (LLMs), such as GPT and Gemini, served only as a
tool for language polishing and enhancing readability; they were not used to generate any of the core ideas,
data, or experimental results.
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