

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

VIPO: VISUAL PREFERENCE OPTIMIZATION AT SCALE

Anonymous authors

Paper under double-blind review

ABSTRACT

While preference optimization is crucial for improving visual generative models, how to effectively scale this paradigm for visual generation remains largely unexplored. Current open-source preference datasets typically contain substantial conflicting preference patterns, where winners excel in some dimensions but underperform in others. Naively optimizing on such noisy datasets fails to learn meaningful preferences, fundamentally hindering effective scaling. To enhance the robustness of preference algorithms against noise, we propose Poly-DPO, which extends the DPO objective with an additional polynomial term that dynamically adjusts model confidence during training based on dataset characteristics, enabling effective learning across diverse data distributions from noisy to trivially simple patterns. Beyond biased patterns, existing datasets suffer from low resolution, limited prompt diversity, and imbalanced distributions. To facilitate large-scale visual preference optimization by tackling key data bottlenecks, we construct ViPO, a massive-scale preference dataset with 1M image pairs (1024px) across five categories and 300K video pairs (720p+) across three categories. Leveraging state-of-the-art generative models and diverse prompts ensures consistent, reliable preference signals with balanced distributions. Remarkably, when applying Poly-DPO to our high-quality dataset, the optimal configuration converges to standard DPO. This convergence validates both our dataset quality and Poly-DPO’s adaptive nature: sophisticated optimization becomes unnecessary with sufficient data quality, yet remains valuable for imperfect datasets. We comprehensively validate our approach across various visual generation models. On noisy datasets like Pick-a-Pic V2, Poly-DPO achieves 6.87 and 2.32 gains over Diffusion-DPO on GenEval for SD1.5 and SDXL, respectively. For our high-quality ViPO dataset, models achieve performance far exceeding those trained on existing open-source preference datasets. These results confirm that addressing both algorithmic adaptability and data quality is essential for scaling visual preference optimization. All models and datasets will be released.

1 INTRODUCTION

Preference optimization techniques, such as Reinforcement Learning from Human Feedback (RLHF) Ouyang et al. (2022) and Direct Preference Optimization (DPO) Rafailov et al. (2023), have proven essential for aligning large-scale models with human values. Building on this success in language models, researchers have extended these paradigms to visual generation. Among various approaches, off-policy methods like Diffusion-DPO Wallace et al. (2024) are particularly promising for large-scale applications. Unlike on-policy RL approaches Xu et al. (2023); Liang et al. (2025); Liu et al. (2025a); Xue et al. (2025); Black et al. (2024) that require costly iterative sampling, off-policy methods leverage pre-collected preference datasets without expensive policy deployment, making them inherently more suitable for scaling Wu et al. (2025). However, while preference optimization is crucial for improving visual generative models, how to effectively scale this paradigm remains largely unexplored.

We argue that the primary obstacle to scaling lies in the conflicting preference patterns prevalent in current datasets. Specifically, existing open-source preference datasets Wu et al. (2023b;a); Ma et al. (2025); Kirstain et al. (2023) are usually constructed by early diffusion models, contain substantial conflicts where winner images excel in certain dimensions (e.g., aesthetics) but underperform in others (e.g., text-image alignment). Naively optimizing on such noisy datasets fails to learn meaningful preference patterns, fundamentally hindering effective scaling of preference optimization. Without proper handling of these conflicting signals, models struggle to extract genuine preference pattern, leading to suboptimal performance that fails to further improve with data scale, as demonstrated in Figure 1 (a). Beyond biased

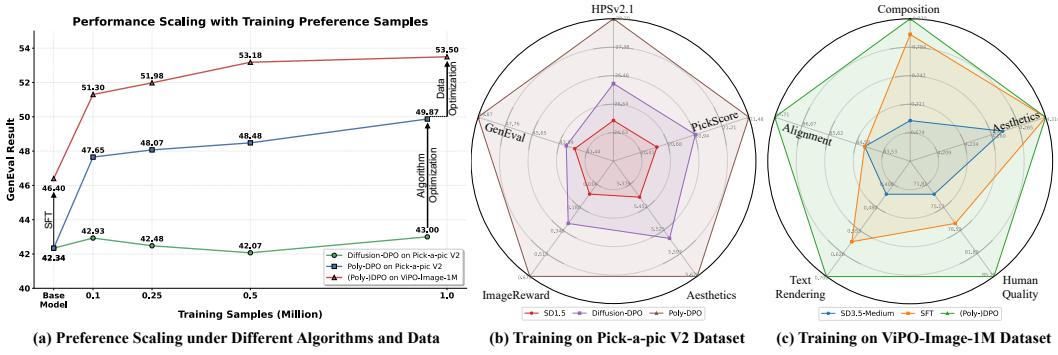


Figure 1: (a) Preference scaling with our Poly-DPO and ViPO-Image-1M dataset. (b) When training on a biased preference dataset such as Pick-a-pic V2, our Poly-DPO outperforms Diffusion-DPO in all evaluation dimensions. (c) Our proposed ViPO-Image-1M dataset can comprehensively improve the SD3.5-Medium.

preference patterns (conflict or over-simple samples), existing datasets suffer from multiple limitations: low visual resolution (typically 512-768), limited prompt diversity, imbalanced data distributions from random collection strategy, and constraints from outdated generation models, as shown in Table 1. These factors collectively hinder the effective scaling of preference learning.

To better learn from biased preference datasets, we propose Poly-DPO, which extends Diffusion-DPO with a polynomial term that dynamically adjusts sample weighting based on prediction confidence. This mechanism enables effective learning across diverse data characteristics: for existing datasets that contain conflicting preferences (e.g., Pick-a-pic V2), it helps models focus on informative samples despite contradictory signals and improves the final generation quality as shown in Figure 1 (b). To comprehensively address data quality barriers, we construct ViPO, a massive-scale and high-quality visual preference dataset comprising 1M image pairs (1024px) across five categories and 300K video pairs (720p+) across three categories. By leveraging state-of-the-art generative models (FLUX Labs (2024), Qwen-Image Wu et al. (2025), WanVideo Wan et al. (2025)) and systematic categorization, we ensure reliable, balanced preference signals that enable robust preference learning at scale.

Extensive experiments validate the synergy between our contributions. On noisy datasets like Pick-a-Pic V2, Poly-DPO significantly outperforms standard Diffusion-DPO by handling conflicting preference patterns. Training on our ViPO dataset, the SD1.5 model achieves state-of-the-art results far exceeding those trained on existing datasets in Figure 1 (a) and comprehensively improves the SD3.5-Medium as shown in Figure 1 (c). Remarkably, when applied to ViPO-Image-1M, Poly-DPO converges to standard DPO ($\alpha \rightarrow 0$) and remains robust across a neighborhood around zero, indicating it works equally well on high-quality data without tuning. This convergence mutually validates both contributions: ViPO’s quality enables stable optimization across different α values, while Poly-DPO adaptively simplifies through a single hyperparameter when data quality permits. These findings show that scaling visual preference optimization requires both algorithmic robustness for imperfect data and systematic data curation.

Our contributions are summarized as follows:

- *New Insight for Visual Preference Scaling:* We demonstrate that the biased preference distributions characterized by conflicting patterns constitute a fundamental bottleneck for preference scaling. We reveal that standard Diffusion-DPO fails to extract effective signals from such data, leading to performance saturation despite data scaling.
- *Poly-DPO Optimization Algorithm:* We introduce Poly-DPO, which dynamically adjusts sample weighting based on confidence levels, enabling effective learning from conflicting patterns in noisy datasets while preventing over-confidence on trivially distinguishable preferences.
- *Large-Scale High-Quality Dataset:* We construct ViPO dataset with 1M high-resolution image pairs and 300K video pairs using state-of-the-art models and systematic categorization, providing reliable and balanced preference signals that establish a new benchmark for preference learning at scale.
- *Mutual Validation of Approach:* Our experiments demonstrate that Poly-DPO excels on biased datasets while converging to standard DPO ($\alpha \rightarrow 0$) with robustness across neighboring α values on high-quality ViPO-Image-1M data, confirming that sophisticated optimization becomes unnecessary with sufficient data quality yet remains essential for imperfect datasets.

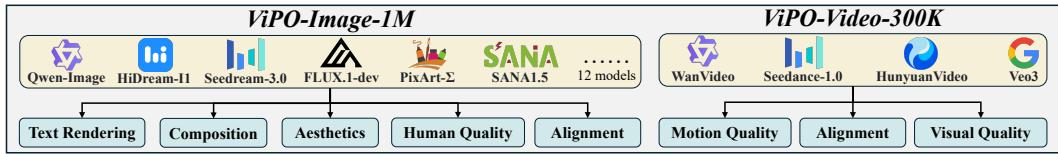


Figure 2: Overview of our ViPO-Image-1M and ViPO-Video-300K dataset.

Dataset	Prompt	Image/Video	Pair	Resolution	Construction	Generative Models
Image Dataset						
HPDv1	25,205	98,807	25,205	[512-960]	Random	SD1.4
HPDv2	103,700	430,060	645,090	[480-640]	Random	SD2.0, CogView2, DALL-E 2
Pick-a-pic v1	37,523	623,694	583,747	[512-768]	Random	SD2.1, SDXL, Dreamlike, etc
Pick-a-pic v2	58,960	928,068	959,040	[512-768]	Random	SD2.1, SDXL, Dreamlike, etc
HPDv3	202,274	1,088,274	1.17M	[256-1024]	Random	SD1.4, SDXL, FLUX.1 dev, etc
Ours	1,000,000	2,000,000	1.00M	1024	Categorized	Qwen-Image, HiDream-II, etc
Video Dataset						
VideoDPO	10,000	20,000	10,000	480p	Random	CogVideo, VideoCrafter2, etc
Ours	30,000	60,000	30,000	720p, 1024p	Categorized	WanVideo, Veo3, Seedance, etc

Table 1: Comparison with existing open-source preference datasets.

2 RELATED WORKS

Diffusion-based Visual Generation. Building upon pioneering diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al. (2021a;b); Lipman et al. (2023) and their successful scaling Rombach et al. (2022); Ho & Salimans (2022); Dhariwal & Nichol (2021), visual generation has achieved remarkable progress. Advanced models like FLUX Labs (2024), Qwen-Image Wu et al. (2025) for images, and HunyuanVideo Kong et al. (2024), WanVideo Wan et al. (2025) for videos, have enabled stunning visual content creation across diverse applications Zhang et al. (2023); Mou et al. (2024); Ruiz et al. (2023); Ye et al. (2023); Brooks et al. (2023). Despite these advances, two key challenges remain: aligning outputs with complex user prompts and optimizing multiple quality dimensions simultaneously.

Reinforcement Learning from Human Feedback (RLHF). RLHF has demonstrated remarkable success in aligning large language models with human values Ouyang et al. (2022); Touvron et al. (2023a); Bai et al. (2023); Wang et al. (2024); Team et al. (2025). Current approaches fall into two categories: on-policy methods (PPO Schulman et al. (2017), GRPO Shao et al. (2024)) that require iterative sampling and reward model evaluation during training, and off-policy methods (DPO Rafailov et al. (2023)) that learn directly from pre-collected preference datasets. Off-policy methods avoid the computational overhead of online sampling, making them more efficient Touvron et al. (2023b); Rafailov et al. (2023), though their effectiveness depends on preference dataset quality Morimura et al. (2024); Wu et al. (2025).

Reinforcement Learning for Visual Generation. Recent research extends RL success from LLMs to visual generation. On-policy methods include ReFL-based approaches Xu et al. (2023); Clark et al. (2024); Li et al. (2024a) that integrate reward maximization into diffusion training, and PPO-based methods Black et al. (2024); Xue et al. (2025); Liu et al. (2025a) that model diffusion as an MDP. However, these face scalability constraints from computational intensity and reward hacking vulnerability. Off-policy methods, particularly DPO-based approaches Wallace et al. (2024); Yang et al. (2024); Dong et al. (2024); Liu et al. (2025b); Karthik et al. (2025); Zhu et al. (2025); Zhang et al. (2025a), offer superior computational scalability by training on preference pairs without online sampling, but they require high-quality preference datasets and effective optimization algorithms.

3 DIFFUSION PREFERENCE OPTIMIZATION WITH POLY-DPO

3.1 PRELIMINARIES FOR DIFFUSION-DPO

Diffusion Models. Denoising diffusion models operate through two complementary processes: a forward process that progressively corrupts data by introducing noise, and a reverse process that reconstructs clean data from the corrupted versions. Specifically, during the forward process, a clean data point \mathbf{x} undergoes noise corruption at timestep $t \in [0,1]$, resulting in a conditional distribution $q(\mathbf{x}_t | \mathbf{x})$ characterized by $\mathbf{x}_t = \alpha_t \mathbf{x} + \sigma_t \epsilon$, where $\epsilon \sim \mathcal{N}(0, \mathbf{I})$, α_t, σ_t represent predefined noise scheduling parameters, and $\lambda_t = \log(\alpha_t^2 / \sigma_t^2)$ denotes the logarithmic signal-to-noise ratio (SNR). With the input condition c , the training process optimizes a weighted noise prediction objective formulated as:

$$\mathcal{L}_{\text{DM}}(\mathbf{x}) = \mathbb{E}_{t \sim \mathcal{U}(0,1), \epsilon} [-w_t \lambda'_t \|\mathbf{e}_\theta(\mathbf{x}_t; c, t) - \epsilon\|_2^2], \quad (1)$$

where w_t represents a weighting function and $\lambda'_t = d\lambda_t/dt$. Notably, most diffusion and flow matching training objectives can be expressed in the form of Eq. (1) through appropriate choices of w_t and λ_t .

Reward Models. For a given image \mathbf{x} and input conditioning \mathbf{c} , a reward model $R(\mathbf{x}, \mathbf{c})$ represents a function that quantifies the quality of the generated output. A widely adopted framework for modeling human preferences is the Bradley-Terry (BT) model, which establishes the preference probability distribution over a triplet $(\mathbf{c}, \mathbf{x}^w, \mathbf{x}^l)$: $P(\mathbf{x}^w \succ \mathbf{x}^l | \mathbf{c}) := \sigma(R(\mathbf{x}^w, \mathbf{c}) - R(\mathbf{x}^l, \mathbf{c}))$, where σ denotes the sigmoid function, and $\mathbf{x}^w, \mathbf{x}^l$ represent the winner and loser images, respectively. The objective of reward fine-tuning is to optimize the diffusion model p_θ such that it maximizes the expected reward of generated outputs while incorporating KL regularization D_{KL} to prevent reward over-optimization: $\max_\theta \mathbb{E}_{\mathbf{c}, \mathbf{x} \sim p_\theta(\mathbf{x}|\mathbf{c})} [R(\mathbf{x}, \mathbf{c})] - \beta D_{\text{KL}}(p_\theta(\cdot | \mathbf{c}) || p_{\text{ref}}(\cdot | \mathbf{c}))$ where p_{ref} is a reference model and β is a hyperparameter that controls the strength of KL regularization.

Diffusion-DPO. Following the DPO framework Rafailov et al. (2023), the training objective can be reformulated to enable direct optimization through the conditional distribution $p_\theta(\mathbf{x}|\mathbf{c})$:

$$L_{\text{DPO}}(\theta) = -\mathbb{E}_{(\mathbf{x}^w, \mathbf{x}^l)} \left[\log \sigma \left(\beta \log \frac{p_\theta(\mathbf{x}^w)}{p_{\text{ref}}(\mathbf{x}^w)} - \beta \log \frac{p_\theta(\mathbf{x}^l)}{p_{\text{ref}}(\mathbf{x}^l)} \right) \right]. \quad (2)$$

However, directly applying Eq. (2) to diffusion models presents a fundamental challenge, as the log-likelihoods of diffusion models are intractable. To address this limitation, Diffusion-DPO Wallace et al. (2024) introduces an approximation that connects the diffusion denoising process with the forward training objective in Eq. (1). Specifically, at timestep t , the log-likelihood ratio can be approximated as:

$$\log \frac{p_\theta(\mathbf{x})}{p_{\text{ref}}(\mathbf{x})} \approx -w_t \lambda'_t \left(\|\epsilon_\theta(\mathbf{x}_t; \mathbf{c}, t) - \epsilon_t\|_2^2 - \|\epsilon_{\text{ref}}(\mathbf{x}_t; \mathbf{c}, t) - \epsilon_t\|_2^2 \right). \quad (3)$$

By substituting Eq. (3) into Eq. (2), we obtain the final Diffusion-DPO loss function:

$$L_{\text{Diffusion-DPO}}(\theta) = -\mathbb{E}_{(\mathbf{x}^w, \mathbf{x}^l), \epsilon_t, t} \left[\log \sigma \left(-\beta w_t \lambda'_t \left((\|\epsilon_\theta(\mathbf{x}_t^w; \mathbf{c}, t) - \epsilon_t\|_2^2 - \|\epsilon_{\text{ref}}(\mathbf{x}_t^w; \mathbf{c}, t) - \epsilon_t\|_2^2) \right. \right. \right. \\ \left. \left. \left. - (\|\epsilon_\theta(\mathbf{x}_t^l; \mathbf{c}, t) - \epsilon_t\|_2^2 - \|\epsilon_{\text{ref}}(\mathbf{x}_t^l; \mathbf{c}, t) - \epsilon_t\|_2^2) \right) \right) \right]. \quad (4)$$

3.2 POLY-DPO: POLYNOMIAL EXPANSION FOR PREFERENCE OPTIMIZATION

Diffusion-DPO as the Binary Classification Task. Building upon the Diffusion-DPO framework, we propose Poly-DPO, which leverages insights from poly loss Leng et al. (2022) design to enhance preference learning. We begin by reinterpreting the standard Diffusion-DPO objective into the standard binary classification task. Specifically, we can define the preference probability:

$$p^{w>l} = \sigma \left(\beta \log \frac{p_\theta(\mathbf{x}^w)}{p_{\text{ref}}(\mathbf{x}^w)} - \beta \log \frac{p_\theta(\mathbf{x}^l)}{p_{\text{ref}}(\mathbf{x}^l)} \right), \quad (5)$$

which quantifies the model's relative preference for the winner image \mathbf{x}^w over the loser image \mathbf{x}^l compared to the reference model. This allows us to rewrite the Diffusion-DPO loss as:

$$L_{\text{Diffusion-DPO}}(\theta) = -\mathbb{E}_{(\mathbf{x}^w, \mathbf{x}^l) \sim \mathcal{D}} [\log(p^{w>l})]. \quad (6)$$

This reformulation reveals that Diffusion-DPO can be regarded a cross-entropy loss for binary classification, where the model learns to maximize the probability of correctly ranking preferred generations.

Polynomial Expansion of Preference Learning. Inspired by poly loss Leng et al. (2022), we can get the Taylor expansion of the standard cross-entropy loss in the context of Diffusion-DPO framework:

$$L_{\text{Diffusion-DPO}}(\theta) = -\log(p^{w>l}) = \sum_j^{\infty} \frac{1}{j} (1 - p^{w>l})^j = 1 \times (1 - p^{w>l})^1 + \frac{1}{2} \times (1 - p^{w>l})^2 \dots \quad (7)$$

The core idea of the Poly Loss is to add a perturb term α_j for the Top-N polynomials that contribute the most to the gradient and keep others, and we can obtain the Poly-N loss:

$$L_{\text{Poly-N}} = \underbrace{(1 + \alpha_1)(1 - p^{w>l})^1 + \dots + (1 + \alpha_N/N)(1 - p^{w>l})^N}_{\text{perturbed by } \alpha_j} + \underbrace{1/(N+1)(1 - p^{w>l})^{N+1} + \dots}_{\text{same as } L_{\text{CE}}} \\ = -\log(p^{w>l}) + \sum_j^N \alpha_j (1 - p^{w>l})^j. \quad (8)$$

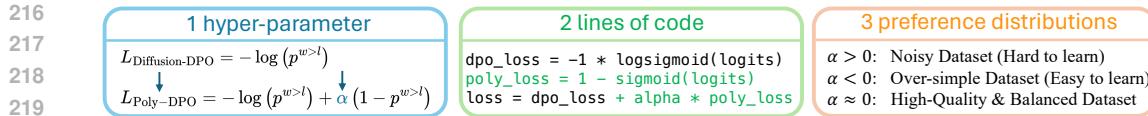


Figure 3: Summary of our Poly-DPO. By adjusting only one hyperparameter and introducing only two new lines of code, our Poly-DPO can handle preference datasets with three different data distributions.

However, it is unrealistic to perturb and adjust parameters for all polynomials. A simple form is to modify only the first term that contributes the most to the gradient Leng et al. (2022), thus obtaining Poly-DPO loss:

$$L_{\text{Poly-DPO}} = -\log(p^{w>l}) + \alpha(1 - p^{w>l}). \quad (9)$$

Hence, Poly-DPO rescales the DPO gradient $(1 - p^{w>l})$ by $(1 + \alpha p^{w>l})$, where $p^{w>l} = \sigma(\text{logit})$:

$$\frac{\partial L_{\text{Poly-DPO}}}{\partial \text{logit}} = (p^{w>l} - 1) - \alpha p^{w>l}(1 - p^{w>l}) = -(1 - p^{w>l}) \underbrace{(1 + \alpha p^{w>l})}_{\text{Poly factor}}. \quad (10)$$

- $\alpha > 0$ (Confidence Enhancing). When datasets contain conflicting preference patterns, models struggle to extract consistent signals. Setting $\alpha > 0$ upweights uncertain samples (probability near 0.5) and downweights extreme cases (near 0 or 1). This prevents the model from being confused by conflicting patterns, and instead focuses learning on borderline cases where consistent improvement is possible.
- $\alpha < 0$ (Confidence Reducing). When datasets contain trivially distinguishable preferences (e.g., our synthetic dataset with shuffled losers in Section 5.2), models quickly achieve high confidence but only learn surface-level distinctions. Setting $\alpha < 0$ reduces gradient contributions from high-confidence samples, preventing over-fitting and forcing continued exploration of winner-loser differences.
- $\alpha = 0$ (Standard DPO). When datasets contain balanced, high-quality preference signals without significant conflicts or trivial patterns, the optimal configuration of Poly-DPO converges to standard DPO and is highly robust to the choice of α .

Remark. As shown in Figure 3, our Poly-DPO augments Diffusion-DPO with a *single* additive term that makes training explicitly confidence-aware. By tuning α , it dynamically reweights samples across models and preference datasets, pushing the learning process toward informative samples while tempering over- and under-confidence, making the diffusion model better capture diverse preference patterns and achieve higher generation quality. In Section 5.2 and Figure 4, we verify the effectiveness of α for these three different preference distribution datasets.

4 LARGE-SCALE VISUAL PREFERENCE DATASET CONSTRUCTION

Motivation and Design Principles. Current open-source preference datasets suffer from three critical limitations that fundamentally impede scaling: (i) low resolution (512–768px) and limited prompt diversity restrict learning of fine-grained details; (ii) reliance on early-generation models produces unreliable preference signals; and (iii) random collection creates imbalanced distributions where simple patterns dominate while critical aspects remain underrepresented. To address these challenges, we construct a large-scale dataset using state-of-the-art models (FLUX, Qwen-Image for images; WanVideo, Seedance for videos) with systematic categorical organization to ensure balanced, reliable preference signals. Specifically, we construct 1M high-resolution (1024px) image preference pairs across five categories and 300K video pairs across three categories, as illustrated in Figure 2. Details on specific construction pipelines, filtering procedures, and labeling strategies are provided in the Appendix.

ViPO-Image-1M. We organize image preferences into five dimensions, each with 200K pairs: (1) **Aesthetics**: visual appeal and artistic merit; (2) **Text-Image Alignment**: semantic correspondence with prompts; (3) **Text Rendering**: accuracy of rendered text elements; (4) **Portrait Quality**: anatomical correctness and realism; (5) **Composition**: spatial arrangement and visual organization. For data construction, we leverage publicly available prompts from HuggingFace, employ state-of-the-art generators to create high-quality pairs, and use multiple VLMs for filtering and labeling.

ViPO-Video-300K. Video preferences span three dimensions, each with 100K pairs: (1) **Motion Quality**: temporal dynamics and smoothness; (2) **Video-Text Alignment**: semantic correspondence throughout temporal sequences; (3) **Visual Quality**: frame clarity and temporal consistency. We employ diverse generation strategies, including I2V based on our image dataset and T2VT2I2V with different models to create varied preference patterns.

270

5 EXPERIMENTS

271

5.1 EXPERIMENT SETUP

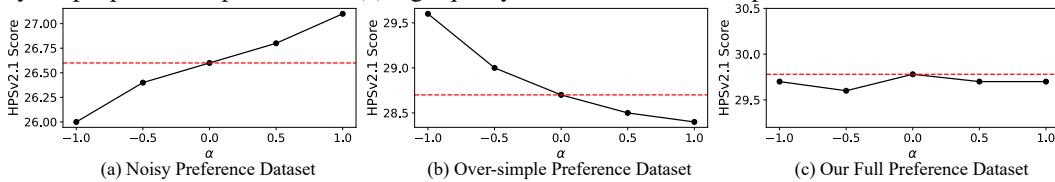
273 **Generation Models and Training Datasets.** We conduct experiments on image generation using SD1.5,
 274 SDXL, SD3, and FLUX models, and video generation using Wan2.1-T2V-1.3B. For SD1.5, we train on
 275 PickaPic-v2 for fair comparison with previous methods and test on multiple datasets to evaluate resilience
 276 to preference noise. We train all image models on our ViPO-Image-1M dataset (excluding text rendering
 277 subset for SD1.5 due to its limited text capabilities) and train Wan2.1-T2V-1.3B on ViPO-Video-300K.
 278 *We provide more implementation details, experiments and analysis in the appendix.*

279 **Evaluation Protocol.** For SD1.5, we follow established protocols using CLIP-based reward models
 280 (ImageReward Xu et al. (2023), HPSv2.1 Wu et al. (2023a), Aesthetic Predictor Schuhmann et al. (2022))
 281 and test datasets (HPSv2 Wu et al. (2023a), Pick-a-Pic Kirstain et al. (2023), Parti Yu et al. (2022)). For
 282 high-resolution models (SDXL, SD3, FLUX), we adopt multi-dimensional evaluation: (1) Aesthetics:
 283 DeQA You et al. (2025); (2) Alignment: DPG-Bench Hu et al. (2024); (3) Text Rendering: CVTG-2K Du
 284 et al. (2025); (4) Human Quality: GPT-4o evaluation; (5) Composition: GenEval Ghosh et al. (2023).
 285 Video generation is evaluated on VBVench2.0 Huang et al. (2024).

286

5.2 ABLATION STUDIES FOR POLY-DPO

287 To comprehensively demonstrate that our proposed Poly-DPO can adapt to different preference datasets
 288 by adjusting the single hyperparameter α , we conduct a series of ablation experiments based on the SD1.5
 289 model. For these experiments, we randomly sample 300 prompts from each of four sources: the test
 290 set of the Parti dataset, the test set of Pick-a-pic V2, the test set of HPD v2, and the “Validation Unique”
 291 set of Pick-a-pic V1. This resulted in a total of 1,200 prompts, for which a single image was generated
 292 for each. These prompts are then used to simulate three scenarios with distinct characteristics as discussed
 293 in Section 3.2: (1) noisy dataset with conflicting preference patterns, (2) over-simple dataset dominated
 294 by simple preference patterns, and (3) high-quality datasets with balanced preference distributions.



300 Figure 4: Ablation studies with different α on datasets with varying noise properties. While only the
 301 HPSv2.1 score is visualized for clarity, a similar trend is observed across all other evaluation metrics

302 **Noisy Preference Dataset.** As the largest publicly available preference dataset, Pick-a-Pic V2 exhibits
 303 significant multi-dimensional conflicts in preference signals. Specifically, when we evaluate image pairs
 304 using five different reward models (PickScore, ImageReward, HPSv2, Aesthetic Score, and CLIP Score),
 305 only 20.79% of pairs show consistent preference rankings across all five dimensions, where one image
 306 consistently scores higher than the other. This dimensional conflict prevents models from learning meaningful
 307 preference patterns, as illustrated in Figure 4 (a). Consequently, this dataset benefits from Poly-DPO with
 308 $\alpha > 0$, which enables the model to better navigate these conflicting signals by adaptively weighting samples
 309 based on prediction confidence. In our experiments, we found $\alpha = 8$ has the best experimental results.

310 **Over-simple Preference Dataset.** To validate that Poly-DPO with $\alpha < 0$ mitigates overconfidence, we
 311 construct a synthetic dataset where simple patterns dominate. We first perform SFT on SD1.5 using winner
 312 images from ViPO-Image-1M, then create preference pairs by randomly shuffling losers within batches
 313 while maintaining original winners. This setup causes a critical failure under standard DPO: the model
 314 quickly becomes overconfident and overfits to reproducing winner images rather than learning winner-loser
 315 distinctions. The high confidence from trivial preference patterns prevents the model from learning subtle
 316 preferences essential for alignment. We show that Poly-DPO with $\alpha < 0$ can penalize overconfident predictions,
 317 and forcing the model to learn more meaningful preference patterns in this scenario in Figure 4 (b).

318 **High-quality and Balanced Preference Dataset.** While Poly-DPO with $\alpha > 0$ and $\alpha < 0$ performs
 319 well on noisy and imbalanced datasets respectively, we observe an interesting phenomenon when training
 320 SFT-initialized SD1.5 on our complete ViPO-Image-1M dataset: the optimal α value converges to
 321 approximately zero, where Poly-DPO converges to standard DPO and exhibits robust performance
 322 across different hyperparameter settings, as demonstrated in Figure 4 (c). This convergence validates our
 323 dataset quality—when preferences are reliable and balanced, adaptive optimization becomes unnecessary,
 confirming that data quality remains the primary factor for successful and scalable preference optimization.

324 5.3 RESULTS ON PICK-A-PIC V2 TRAINING DATASET
325

326 To validate Poly-DPO’s effectiveness, we conduct experiments using SD1.5 and SDXL trained on Pick-a-
327 Pic V2, which contains substantial conflicting preference patterns as analyzed in Section 5.2, making it an
328 ideal testbed for demonstrating robustness to noisy real-world data. Table 2 presents evaluation results across
329 four test datasets. Poly-DPO consistently outperforms both Diffusion-DPO and Diffusion-KTO across
330 all metrics. On Pick-a-Pic V2 test set, Poly-DPO achieves 4.4% improvement in PickScore and 13.1%
331 in HPSv2.1, significantly surpassing Diffusion-DPO’s gains of 1.8% and 4.4% respectively. The most sub-
332 stantial improvements appear in ImageReward scores (+0.594 vs. +0.212). This pattern holds across other
333 test sets: on HPD V2, Poly-DPO achieves 15.9% HPSv2.1 improvement versus Diffusion-DPO’s 5.3%;
334 on Parti, the ImageReward gain reaches +0.542 versus +0.158. These consistent improvements confirm
335 Poly-DPO’s ability to extract meaningful preference signals despite conflicting patterns. Table 3 evaluates
336 compositional understanding using GenEval benchmark. Poly-DPO achieves the highest overall scores
337 among off-policy methods for both SD1.5 (49.87) and SDXL (60.34), even surpassing on-policy SPO while
338 avoiding iterative sampling costs. Notably, Poly-DPO excels at challenging tasks: for SD1.5, it achieves
339 51.25 on counting (vs. Diffusion-DPO’s 38.75) and 14.00 on attribute binding (vs. 3.75); for SDXL, at-
340 tribute binding reaches 31.00 compared to Diffusion-DPO’s 18.50. These substantial gains demonstrate that
341 confidence-based reweighting enables learning nuanced preference patterns beyond simple visual attributes.

342 Table 2: SD1.5 comparison results when trained on the Pick-a-Pic V2 dataset and evaluated on multiple
343 datasets. For each prompt, we generate 4 images and report the average reward scores. Baseline results
344 are evaluated with official released checkpoints, and all evaluations are conducted under the same setting.

Eval Dataset	Method	Paradigm	PickScore \uparrow	HPSv2.1 \uparrow	Aesthetic \uparrow	ImageReward \uparrow
Pick-a-Pic V2 (Test)	SD1.5	-	20.57	25.02	5.42	0.085
	Diffusion-DPO	Off-Policy	20.95 _{+1.8%}	26.12 _{+4.4%}	5.55 _{+2.4%}	0.297 _{+0.212}
	Diffusion-KTO	Off-Policy	21.06 _{+2.4%}	28.06 _{+12.2%}	5.66 _{+4.4%}	0.628 _{+0.543}
	Poly-DPO (Ours)	Off-Policy	21.48 _{+4.4%}	28.30 _{+13.1%}	5.67 _{+4.6%}	0.679 _{+0.594}
HPD V2 (Test)	SD1.5	-	20.86	0.246	5.58	0.139
	Diffusion-DPO	Off-Policy	21.31 _{+2.2%}	0.259 _{+5.3%}	5.71 _{+2.3%}	0.338 _{+0.199}
	Diffusion-KTO	Off-Policy	21.45 _{+2.8%}	0.284 _{+15.4%}	5.80 _{+3.9%}	0.690 _{+0.551}
	Poly-DPO (Ours)	Off-Policy	21.87 _{+4.8%}	0.285 _{+15.9%}	5.83 _{+4.5%}	0.716 _{+0.577}
Parti (Test)	SD1.5	-	21.28	0.253	5.36	0.194
	Diffusion-DPO	Off-Policy	21.52 _{+1.1%}	0.261 _{+3.2%}	5.44 _{+1.5%}	0.352 _{+0.158}
	Diffusion-KTO	Off-Policy	21.59 _{+1.5%}	0.279 _{+10.3%}	5.55 _{+3.5%}	0.615 _{+0.421}
	Poly-DPO (Ours)	Off-Policy	21.89 _{+2.9%}	0.280 _{+10.7%}	5.56 _{+3.7%}	0.736 _{+0.542}
Pick-a-Pic V1 (Validation Unique)	SD1.5	-	20.56	24.05	5.47	0.008
	DDPO	On-Policy	21.06 _{+2.4%}	24.91 _{+3.6%}	5.59 _{+2.2%}	0.082 _{+0.074}
	D3PO	On-Policy	20.76 _{+1.0%}	23.97 _{-0.3%}	5.53 _{+1.1%}	-0.124 _{-0.132}
	SPO	On-Policy	21.22 _{+3.2%}	25.83 _{+7.4%}	5.93 _{+8.4%}	0.168 _{+0.160}
	Diffusion-DPO	Off-Policy	20.99 _{+2.1%}	25.54 _{+6.2%}	5.60 _{+2.4%}	0.302 _{+0.294}
	Diffusion-KTO	Off-Policy	21.12 _{+2.7%}	28.19 _{+17.2%}	5.68 _{+3.8%}	0.642 _{+0.634}
	Poly-DPO (Ours)	Off-Policy	21.48 _{+4.5%}	28.32 _{+17.8%}	5.68 _{+3.8%}	0.671 _{+0.663}

362 Table 3: Evaluation results on GenEval (Ghosh et al., 2023) with **Pick-a-pic V2 training dataset**. The
363 SD1.5/SDXL/KTO/Diffusion-DPO results are evaluated with their officially released models under the
364 same setting as LPO Zhang et al. (2025b). The SPO/LPO/MAPO baseline results are from the LPO paper.

Model	RL Paradigm	Single Object	Two Object	Counting	Colors	Position	Attribute Binding	Overall \uparrow
SD1.5	-	95.62	37.63	37.81	74.73	3.50	4.57	42.34
SPO	On-Policy	95.63	36.62	34.83	72.34	3.75	6.50	41.53
LPO	On-Policy	97.81	55.30	42.19	80.59	6.75	10.00	48.77
Diffusion-DPO	Off-Policy	96.88	39.90	38.75	75.53	3.25	3.75	43.00
Diffusion-KTO	Off-Policy	97.50	35.35	36.25	79.79	7.00	6.00	43.65
Poly-DPO (Ours)	Off-Policy	96.25	46.46	51.25	87.23	4.00	14.00	49.87
SDXL	-	98.12	75.25	43.75	89.63	11.25	15.75	55.63
SPO	On-Policy	96.88	69.70	37.19	83.51	9.50	19.75	52.75
LPO	On-Policy	99.69	84.34	43.13	90.43	13.75	27.75	59.85
Diffusion-DPO	Off-Policy	99.38	82.58	49.06	85.11	13.05	18.50	58.02
MAPO	Off-Policy	96.56	66.41	40.00	84.31	10.75	18.75	52.80
Poly-DPO (Ours)	Off-Policy	98.75	82.83	46.25	87.23	16.00	31.00	60.34

378 Table 4: Evaluation results on GenEval Ghosh et al. (2023) with our **ViPO-Image-1M training dataset**.
379

380 Model	381 Single Object	382 Two Object	383 Counting	384 Colors	385 Position	386 Attribute Binding	387 Overall ↑
PixArt- α	0.98	0.50	0.44	0.80	0.08	0.07	0.48
SD3.5 Large	0.98	0.89	0.73	0.83	0.34	0.47	0.71
HiDream-II-Full	1.00	0.98	0.79	0.91	0.60	0.72	0.83
SD1.5	0.96	0.38	0.38	0.75	0.04	0.05	0.42
+ SFT	0.99	0.49	0.38	0.78	0.06	0.09	0.46
+ SFT & Poly-DPO	0.98	0.66	0.50	0.84	0.07	0.17	0.54
SDXL	0.98	0.75	0.44	0.90	0.11	0.16	0.56
+ SFT	0.98	0.77	0.43	0.88	0.13	0.21	0.57
+ SFT & Poly-DPO	1.00	0.88	0.45	0.93	0.09	0.42	0.63
SD3.5-Medium	1.00	0.87	0.68	0.80	0.20	0.57	0.69
+ SFT	1.00	0.97	0.74	0.91	0.43	0.77	0.80
+ SFT & Poly-DPO	1.00	0.97	0.75	0.91	0.47	0.86	0.83
FLUX.1 [Dev]	1.00	0.86	0.80	0.78	0.25	0.45	0.69
+ SFT	1.00	0.90	0.74	0.87	0.38	0.62	0.75
+ SFT & Poly-DPO	0.99	0.97	0.83	0.85	0.40	0.70	0.79

397 Table 5: Evaluation results on DPG-Bench Hu et al. (2024) with our **ViPO-Image-1M training dataset**.
398

399 Model	400 Global	401 Entity	402 Attribute	403 Relation	404 Other	405 Overall ↑
Hunyuan-DiT	84.59	80.59	88.01	74.36	86.41	78.87
PixArt- Σ	86.89	82.89	88.94	86.59	87.68	80.54
DALL-E 3	90.97	89.61	88.39	90.58	89.83	83.50
SD3 Medium	87.90	91.01	88.83	80.70	88.68	84.08
HiDream-II-Full	76.44	90.22	89.48	93.74	91.83	85.89
GPT-Image 1	88.89	88.94	89.84	92.63	90.96	85.15
SD3.5-Medium	91.70	90.59	89.49	92.21	85.12	84.24
+SFT	84.80	89.97	88.14	93.69	82.00	84.24
+SFT & Poly-DPO	84.80	92.64	90.10	94.81	89.20	87.71
FLUX.1 [Dev]	74.35	90.00	88.96	90.87	88.33	83.84
+SFT	85.41	89.21	85.17	92.72	80.40	83.59
+SFT & Poly-DPO	90.99	91.05	90.91	93.73	91.12	87.31

414
415 5.4 RESULTS ON ViPO-IMAGE-1M TRAINING DATASET

416 **Composition.** Table 4 demonstrates the effectiveness of our ViPO-Image-1M dataset across multiple
417 model architectures on the GenEval benchmark. All models show substantial improvements when trained
418 with our dataset. SD1.5 improves from 0.42 to 0.52 overall (+23.8%), with particularly strong gains
419 in two-object generation (0.38→0.66) and attribute binding (0.05→0.12). SDXL achieves 0.63 overall
420 score, surpassing many baseline models, with attribute binding improving dramatically from 0.16 to
421 0.42. SD3.5-Medium, already strong at 0.69, reaches 0.83 after training, approaching the performance of
422 HiDream-II-Full (0.83), a model specifically designed for compositional generation. FLUX.1-dev shows
423 consistent improvements across all metrics, reaching 0.79 overall score.

424 **Image-Text Alignment.** Tables 5 present evaluation results on text-image alignment. On DPG-Bench,
425 both SD3.5-Medium and FLUX.1-dev achieve state-of-the-art performance after training, with overall
426 scores of 87.71 and 87.31 respectively, surpassing commercial models like GPT-Image 1 (85.15) and
427 approaching HiDream-II-Full (85.89). The models excel particularly in relational understanding, with
428 SD3.5-Medium achieving 94.81 on relation tasks.

429 **Aesthetics and Human Quality Evaluation.** We evaluate aesthetic quality and human generation
430 capabilities as shown in Table 6. For aesthetic assessment using DeQA You et al. (2025), we observe
431 modest but consistent improvements (SD3.5-Medium: 4.27→4.31, FLUX: 4.37→4.40) on DrawBench,
432 demonstrating that our training maintains aesthetic quality while improving technical capabilities. For

432
 433 Table 6: SD3.5-Medium & FLUX-dev comparison results when trained on our ViPO-Image-1M dataset
 434 and evaluated across multiple benchmarks. For each prompt, we generate 4 images and report the average
 435 score. We provide more details about these experiments in the Supplementary Material.

436 Method	437 Aesthetics DeQA \uparrow	438 Alignment DPG-Bench \uparrow	439 Text Rendering CVTG-2K \uparrow	440 Human Quality GPT-4o Acc \uparrow	441 Composition GenEval \uparrow
442 SD3.5-Medium	4.27	84.24	0.4378	73.25	0.69
443 + SFT	4.31	84.24	0.5887	77.50	0.80
444 + SFT & Poly-DPO	4.31	87.71	0.6995	85.25	0.83
445 FLUX.1-dev	4.37	83.84	0.4878	80.00	0.69
446 + SFT	4.32	83.59	0.2126	81.75	0.75
447 + SFT & Poly-DPO	4.40	87.31	0.6859	88.75	0.79

448 Table 7: Wan2.1-T2V-1.3B Experiments on VBench-2.0 when trained with our ViPO-Video-300K dataset.

449 Models	450 Human Identity	451 Material	452 Thermotics	453 Dynamic Spatial Rel.	454 Dynamic Attribute	455 Motion Order Und.	456 Human Interaction	457 Camera Motion	458 Motion Rationality
460 Wan2.1	62.18	69.75	72.26	24.64	53.48	35.35	74.00	31.79	43.68
461 + Poly-DPO	67.99	71.57	68.53	33.82	57.00	38.62	78.00	32.49	47.70

462 human quality evaluation, we use GPT-4o to assess anatomical correctness on 400 human-related prompts.
 463 The results show substantial improvements: SD3.5-Medium’s accuracy increases from 73.25% to 85.25%,
 464 while FLUX improves from 80.00% to 88.75%. These gains address persistent challenges in human
 465 image generation, including correct proportions, realistic poses, and proper body structure. Our proposed
 466 ViPO-Image-1M achieves simultaneous improvements across multiple visual dimensions.

467 **Text Rendering.** Training on our dataset significantly improves performance on the challenging
 468 CVTG-2K text rendering benchmark Du et al. (2025). As shown in Table 6, our full pipeline boosts
 469 SD3.5-Medium’s word accuracy by 59.8% (from 0.4378 to 0.6995). Notably for FLUX.1-dev, it
 470 overcomes an SFT-induced performance degradation to achieve a strong final score of 0.6859. A more
 471 detailed analysis, including results on multi-region text, is available in Tabe 8 in the Appendix.

472 5.5 RESULTS ON VIPO-VIDEO-300K TRAINING DATASET

473 We evaluate the effectiveness of our ViPO-Video-300K dataset using Wan2.1-T2V-1.3B model on
 474 VBench-2.0 benchmark Zheng et al. (2025), as shown in Table 7. Training with ViPO-Video-300K yields
 475 consistent improvements across nearly all evaluated dimensions. Most notably, the model shows significant
 476 gains in motion-related metrics: Dynamic Spatial Relationship improves from 24.64 to 33.82 (+37.4%),
 477 Motion Order Understanding increases from 35.35 to 38.62, and Motion Rationality rises from 43.68
 478 to 47.70. These improvements demonstrate that our video preference dataset effectively captures temporal
 479 dynamics and motion quality distinctions. Human-centric metrics show substantial improvements, with
 480 Human Identity increasing from 62.18 to 67.99 and Human Interaction from 74.00 to 78.00, validating
 481 the quality of human motion preferences in our dataset. While Thermotics shows a slight decrease, the
 482 overall pattern of improvements across diverse evaluation criteria confirms that ViPO-Video-300K enables
 483 balanced enhancement of video generation capabilities, particularly in challenging aspects like motion
 484 understanding and temporal consistency.

485 5.6 HUMAN EVALUATION ON VIPO DATASETS

486 **Human Evaluation Setup.** To construct the evaluation set, we randomly sampled 40 images per category
 487 from the image datasets and 20 videos per category from the video datasets. We recruited 18 annotators to
 488 provide human labels for the ViPO dataset. Specifically, annotators were presented with randomly paired
 489 samples and asked to identify the superior one based on the specific instructions corresponding to each cate-
 490 gory. In total, we collected 4,378 human preference annotations. To validate the quality of these annotations,
 491 we analyze the rater reliability as illustrated in Figure 8 in the Supplementary. Here, we define *rater accuracy*
 492 as the percentage of instances where an individual rater’s choice aligns with the **majority vote (consensus**
 493 **label) among human raters** across all evaluated pairs. The distribution demonstrates the high reliability
 494 of our human evaluation: notably, the minimum accuracy among all raters exceeds 70%, with a mean
 495 accuracy of 87.2%. This strong consensus confirms that the collected human preferences are consistent and
 496 trustworthy. We also show the UI interface used for our human evaluation in Figure 9 of the supplementary.

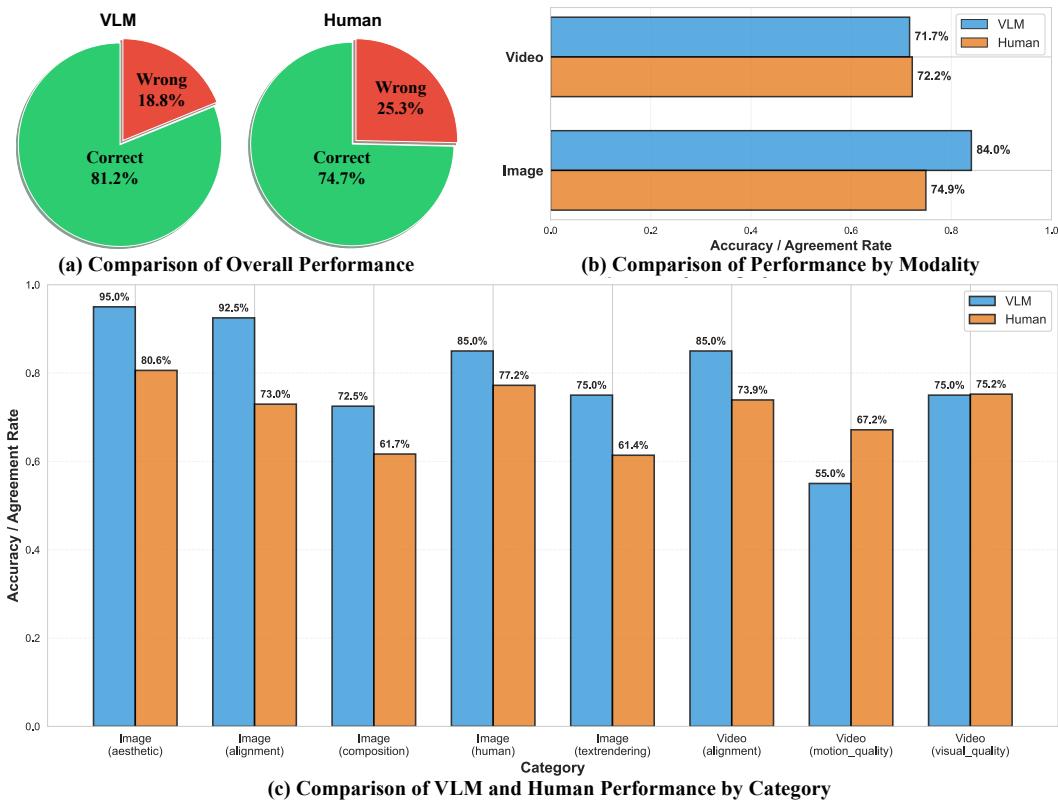


Figure 5: **Performance Comparison between VLM and Human Raters.** Accuracy (or Agreement Rate) is defined as the frequency with which a choice aligns with the consensus label (majority vote among human raters, excluding VLM predictions). **(a) Overall:** The VLM (81.2%) demonstrates higher consistency with the consensus than the average individual human annotator (74.7%). **(b) By Modality:** The VLM significantly outperforms humans on images (84.0% vs. 74.9%) but performs comparably on video tasks (71.7% vs. 72.2%). **(c) By Category:** The VLM excels in most metrics like *Aesthetic* (95.0%) but only struggles with temporal *Motion Quality* (55.0% vs. 67.2%).

Reliability of ViPO Dataset Annotations. To validate the effectiveness of our automated evaluation pipeline, we benchmark the VLM-based rater against individual human annotators, using the majority-vote consensus as the ground truth. As illustrated in Figure 5 (a), the VLM achieves an overall agreement rate of 81.2% with the consensus, surpassing the average human annotator’s accuracy of 74.7%. This result indicates that our VLM aligner successfully captures the general preference distribution of the crowd. However, a detailed breakdown reveals modality-specific behaviors. In the image domain (Figure 5 (b)), the VLM demonstrates a significant advantage (84.0% vs. 74.9%), driven by its exceptional performance on static attributes such as *Aesthetic* (95.0%) and *Alignment* (92.5%) shown in Figure 5 (c). In contrast, for the video domain, the VLM’s performance (71.7%) aligns closely with human reliability (72.2%). Notably, the model exhibits a specific limitation in assessing *Motion Quality*, where its accuracy drops to 55.0%, lagging behind human performance (67.2%). This discrepancy highlights that while current VLMs are robust spatial evaluators, they still face challenges in perceiving fine-grained temporal dynamics.

6 CONCLUSION

In this paper, we demonstrated that conflicting preference patterns in existing datasets limit visual preference optimization scaling. We introduced Poly-DPO, which dynamically adjusts sample weighting based on confidence levels, enabling effective learning across diverse data characteristics. We also constructed ViPO, a large-scale dataset with 1M image and 300K video pairs, ensuring reliable preference signals across multiple quality dimensions. Our experiments show Poly-DPO significantly improves performance on noisy datasets like Pick-a-Pic V2 while achieving state-of-the-art results on ViPO. Remarkably, Poly-DPO converges to standard DPO on ViPO, confirming that sophisticated optimization becomes unnecessary with sufficient data quality. This reveals that scaling visual preference optimization requires addressing data quality and algorithmic robustness in tandem. All models and datasets will be released.

540
541
ETHICS STATEMENT

542 This work develops preference optimization methods and datasets for visual generation models. All
 543 experiments were conducted using publicly available models and datasets, with newly generated synthetic
 544 data created from text prompts or publicly available image datasets. Our ViPO dataset construction
 545 involved AI-generated content from state-of-the-art models (FLUX, Qwen-Image for text-to-image;
 546 WanVideo for image-to-video using LAION-Aesthetics images). While we use publicly available datasets
 547 that may contain human images, we follow established practices for responsible use of such data. We
 548 recognize that visual generation models can potentially be misused for creating misleading or harmful
 549 content. To mitigate these risks, we emphasize responsible use guidelines, transparent documentation of
 550 our methods, and acknowledge that generated content should be clearly labeled as AI-created. While our
 551 work aims to improve generation quality and alignment with human preferences, we encourage ongoing
 552 research into detection methods and ethical deployment practices for generative AI systems.
 553

554
555
REPRODUCIBILITY STATEMENT

556 We are committed to ensuring the reproducibility of our research. A comprehensive description of our
 557 dataset construction, including the entire collection and processing pipeline for our proposed ViPO datasets,
 558 is provided in Section B. All implementation details, including models, training hyperparameters for each
 559 experiment, and the evaluation setup, are thoroughly documented in Section D. We believe these resources
 560 provide all the necessary components for the community to reproduce our results and build upon our work.
 561

562
REFERENCES

563 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,
 564 Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

565 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
 566 with reinforcement learning. In *ICLR*, 2024.

567 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image editing
 568 instructions. In *CVPR*, 2023.

569 Yixiong Chen, Li Liu, and Chris Ding. X-iqe: explainable image quality evaluation for text-to-image
 570 generation with visual large language models. *arXiv preprint arXiv:2305.10843*, 2023.

571 Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models on
 572 differentiable rewards. In *ICLR*, 2024.

573 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *NeurIPS*, 2021.

574 Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng
 575 Zhang, KaShun SHUM, and Tong Zhang. Raft: Reward ranked finetuning for generative foundation
 576 model alignment. *TMLR*, 2024.

577 Nikai Du, Zhennan Chen, Shan Gao, Zhizhou Chen, Xi Chen, Zhengkai Jiang, Jian Yang, and Ying
 578 Tai. Textcrafter: Accurately rendering multiple texts in complex visual scenes. *arXiv preprint
 579 arXiv:2503.23461*, 2025.

580 Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for
 581 evaluating text-to-image alignment. *NeurIPS*, 2023.

582 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*, 2022.

583 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *NeurIPS*, 2020.

584 Jiwoo Hong, Sayak Paul, Noah Lee, Kashif Rasul, James Thorne, and Jongheon Jeong. Margin-aware pref-
 585 erence optimization for aligning diffusion models without reference. *arXiv preprint arXiv:2406.06424*,
 586 2024.

587 Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models with
 588 llm for enhanced semantic alignment. *arXiv preprint arXiv:2403.05135*, 2024.

594 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
 595 Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video
 596 generative models. In *CVPR*, 2024.

597 Shyamgopal Karthik, Huseyin Coskun, Zeynep Akata, Sergey Tulyakov, Jian Ren, and Anil Kag. Scalable
 598 ranked preference optimization for text-to-image generation. In *ICCV*, 2025.

600 Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-a-pic:
 601 An open dataset of user preferences for text-to-image generation. *NeurIPS*, 2023.

602 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu,
 603 Jianwei Zhang, et al. Hunyuanyvideo: A systematic framework for large video generative models. *arXiv
 604 preprint arXiv:2412.03603*, 2024.

605 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

606 Zhaoqi Leng, Mingxing Tan, Chenxi Liu, Ekin Dogus Cubuk, Xiaojie Shi, Shuyang Cheng, and Dragomir
 607 Anguelov. Polyloss: A polynomial expansion perspective of classification loss functions. *arXiv preprint
 608 arXiv:2204.12511*, 2022.

609 Ming Li, Taojannan Yang, Huafeng Kuang, Jie Wu, Zhaoning Wang, Xuefeng Xiao, and Chen Chen.
 610 Controlnet++: Improving conditional controls with efficient consistency feedback. In *ECCV*, 2024a.

611 Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Yusuke Kato, and Kazuki Kozuka. Aligning
 612 diffusion models by optimizing human utility. *NeurIPS*, 2024b.

613 Zhanhao Liang, Yuhui Yuan, Shuyang Gu, Bohan Chen, Tiankai Hang, Mingxi Cheng, Ji Li, and Liang
 614 Zheng. Aesthetic post-training diffusion models from generic preferences with step-by-step preference
 615 optimization. In *CVPR*, 2025.

616 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow matching
 617 for generative modeling. In *ICLR*, 2023.

618 Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan, Di Zhang,
 619 and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. *arXiv preprint
 620 arXiv:2505.05470*, 2025a.

621 Runtao Liu, Haoyu Wu, Ziqiang Zheng, Chen Wei, Yingqing He, Renjie Pi, and Qifeng Chen. Videodpo:
 622 Omni-preference alignment for video diffusion generation. In *CVPR*, 2025b.

623 Yuhang Ma, Xiaoshi Wu, Keqiang Sun, and Hongsheng Li. Hpsv3: Towards wide-spectrum human
 624 preference score. *arXiv preprint arXiv:2508.03789*, 2025.

625 Tetsuro Morimura, Mitsuki Sakamoto, Yuu Jinnai, Kenshi Abe, and Kaito Ariu. Filtered direct preference
 626 optimization. In *EMNLP*, 2024.

627 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan. T2i-adapter:
 628 Learning adapters to dig out more controllable ability for text-to-image diffusion models. In *AAAI*, 2024.

629 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
 630 Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions
 631 with human feedback. *NeurIPS*, 2022.

632 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna,
 633 and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis.
 634 *arXiv preprint arXiv:2307.01952*, 2023.

635 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
 636 Direct preference optimization: Your language model is secretly a reward model. *NeurIPS*, 2023.

637 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
 638 image synthesis with latent diffusion models. In *CVPR*, 2022.

639 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 640 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *CVPR*, 2023.

648 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti,
 649 Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale
 650 dataset for training next generation image-text models. *NeurIPS*, 2022.

651

652 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 653 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

654

655 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
 656 Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open
 657 language models. *arXiv preprint arXiv:2402.03300*, 2024.

658

659 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 660 learning using nonequilibrium thermodynamics. In *ICML*, 2015.

661

662 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *ICLR*, 2021a.

663

664 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
 665 Score-based generative modeling through stochastic differential equations. In *ICLR*, 2021b.

666

667 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao,
 668 Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with llms. *arXiv
 669 preprint arXiv:2501.12599*, 2025.

670

671 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
 672 Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
 673 language models. *arXiv preprint arXiv:2302.13971*, 2023a.

674

675 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 676 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
 677 fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

678

679 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam, Stefano
 680 Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using direct
 681 preference optimization. In *CVPR*, 2024.

682

683 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming
 684 Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models. *arXiv
 685 preprint arXiv:2503.20314*, 2025.

686

687 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
 688 Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the world at
 689 any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

690

691 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai Bai,
 692 Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*, 2025.

693

694 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li. Human
 695 preference score v2: A solid benchmark for evaluating human preferences of text-to-image synthesis.
 696 *arXiv preprint arXiv:2306.09341*, 2023a.

697

698 Xiaoshi Wu, Keqiang Sun, Feng Zhu, Rui Zhao, and Hongsheng Li. Better aligning text-to-image models
 699 with human preference. *arXiv preprint arXiv:2303.14420*, 2023b.

700

701 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
 702 Imagereward: Learning and evaluating human preferences for text-to-image generation. *NeurIPS*, 2023.

703

704 Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu, Wei Liu,
 705 Qiushan Guo, Weilin Huang, et al. Dancegrpo: Unleashing grpo on visual generation. *arXiv preprint
 706 arXiv:2505.07818*, 2025.

707

708 Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen, Weihan Shen, Xiaolong Zhu, and Xiu Li.
 709 Using human feedback to fine-tune diffusion models without any reward model. In *CVPR*, 2024.

710

711 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt adapter
 712 for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

702 Zhiyuan You, Xin Cai, Jinjin Gu, Tianfan Xue, and Chao Dong. Teaching large language models to regress
703 accurate image quality scores using score distribution. In *CVPR*, 2025.

704
705 Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
706 Alexander Ku, Yinfai Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-rich
707 text-to-image generation. *arXiv preprint arXiv:2206.10789*, 2022.

708 Daoan Zhang, Guangchen Lan, Dong-Jun Han, Wenlin Yao, Xiaoman Pan, Hongming Zhang,
709 Mingxiao Li, Pengcheng Chen, Yu Dong, Christopher Brinton, and Jiebo Luo. Bridging sft
710 and dpo for diffusion model alignment with self-sampling preference optimization, 2025a. URL
711 <https://arxiv.org/abs/2410.05255>.

712
713 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion
714 models. In *ICCV*, 2023.

715 Tao Zhang, Cheng Da, Kun Ding, Huan Yang, Kun Jin, Yan Li, Tingting Gao, Di Zhang, Shiming Xiang,
716 and Chunhong Pan. Diffusion model as a noise-aware latent reward model for step-level preference
717 optimization. *arXiv preprint arXiv:2502.01051*, 2025b.

718 Dian Zheng, Ziqi Huang, Hongbo Liu, Kai Zou, Yinan He, Fan Zhang, Yuanhan Zhang, Jingwen He,
719 Wei-Shi Zheng, Yu Qiao, et al. Vbench-2.0: Advancing video generation benchmark suite for intrinsic
720 faithfulness. *arXiv preprint arXiv:2503.21755*, 2025.

721
722 Huaisheng Zhu, Teng Xiao, and Vasant G Honavar. Dspo: Direct score preference optimization for
723 diffusion model alignment. In *ICLR*, 2025.

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

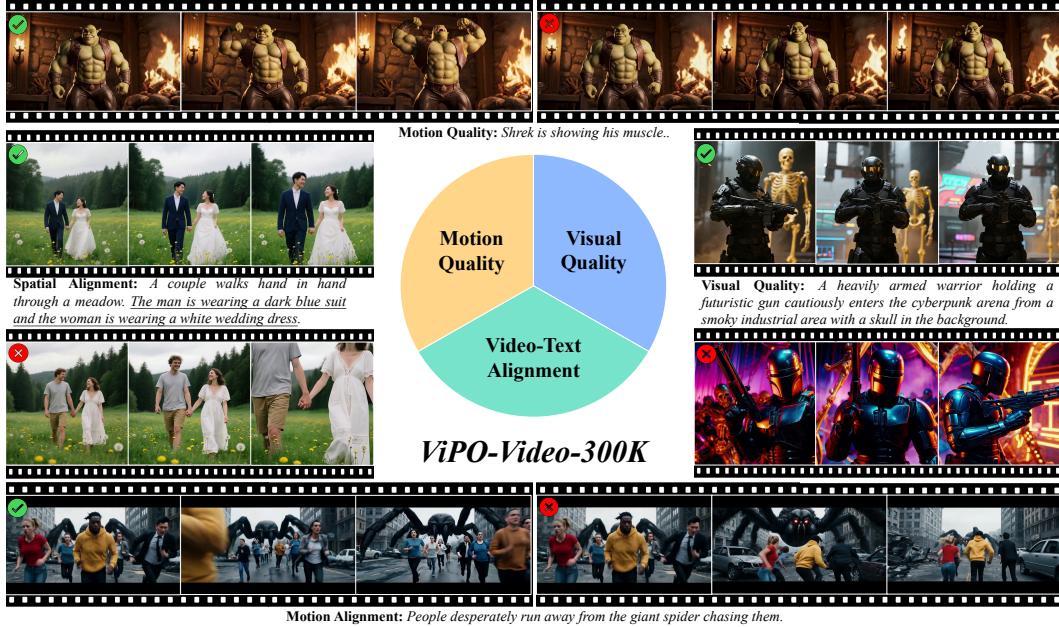
754

755

756 **A OVERVIEW OF APPENDIX**
757758 The appendix is organized into the following sections:
759760 • Section B: Dataset Construction Details.
761 • Section C: More Experiments and Analysis.
762 • Section D: Implementation Details.
763 • Section E: Discussion, Limitation and Future Work.
764 • Section F: The Use of Large Language Models (LLMs).
765
766768 **B DATASET CONSTRUCTION DETAILS**
769771 **B.1 ViPO-IMAGE-1M DATASET**
772773 **Image-Text Alignment.** To construct DPO preference pairs (win/loss) for image-text alignment while
774 minimizing impact on other attributes, we utilize a single image generation model conditioned on distinct
775 prompts to generate the corresponding image pairs.776 Our data construction pipeline begins with sampling images and prompts from the open-source LAION-
777 Aesthetics dataset. We then use Qwen2.5-VL-32B to generate a detailed caption for each image and sub-
778 sequently filter out any samples containing inappropriate content. Following this, we employ Seed-VL-1.5
779 to perform image-grounded perturbations on these clean captions. This approach requires the model to first
780 comprehend the image content, ensuring that all modifications are semantically consistent with the visual in-
781 formation. For instance, person-related attributes are only altered if human subjects are present in the image.782 Specifically, we modify one, two, or three of these dimensions in the original prompt with probabilities of
783 70%, 20%, and 10%, respectively. The primary dimensions include: (1) style, (2) rendering, (3) lighting, (4)
784 atmosphere, (5) time, (6) color-scheme, (7) saturation, (8) perspective, (9) depth-of-field, (10) composition,
785 (11) weather, (12) season, (13) location, (14) background, (15) detail-level, (16) texture, (17) mood, (18)
786 quantity, (19) size, (20) pose, (21) action, (22) interaction, (23) emotion, (24) clothing, and (25) age.787 In this setup, the image generated from the original, unperturbed caption serves as the “winner”, while the
788 image generated from the perturbed caption is designated as the “loser”. Based on preliminary experiments
789 where Seedream-3.0 achieved the highest alignment scores on a small internal test set, we selected it to
790 generate all 200K image pairs for this task.
791792 **Text Rendering.** The text prompts used for our text rendering dataset are constructed from three primary
793 sources. The first component consists of 208K prompts from the CoverBook subset of the TextAtlas5M
794 dataset. The second is a collection of 100K prompts from the ‘stzhao/movie_posters_100k_controlnet’
795 dataset on HuggingFace. The third source comprises prompts selected from the LAION-Aesthetics dataset
796 that correspond to images containing visible text; we ensure these samples do not overlap with those used
797 for the aforementioned image-text alignment task when sampling from LAION-Aesthetics.798 After aggregating these text-centric prompts, we filter them by character count to exclude excessively
799 long or short text strings and perform an additional step to remove inappropriate content. This process
800 yields a final set of 200K prompts dedicated to text rendering. To construct the corresponding image pairs
801 for these prompts, we exclusively employ Qwen-Image, HiDream-I1, Seedream-3.0, and FLUX.1-dev,
802 as other generative models exhibit inferior text rendering capabilities.803 To annotate the preference pairs for the text rendering task, we implement a two-stage evaluation process
804 involving PaddleOCR-3.0 and Seed-VL-1.5. First, we use PaddleOCR-3.0 for an initial assessment. If one
805 image in a pair accurately renders the text specified in the prompt while the other contains character-level
806 errors, the former is automatically labeled as the “winner”. However, if both images succeed or both fail
807 in rendering the correct text, we proceed to the second stage. In this stage, we employ Seed-VL-1.5 to
808 perform the comparison. The model determines the winner based on a holistic evaluation of several criteria,
809 including the clarity of the rendered text, the precision of character formation, and the degree to which
the text’s position and shape align with the prompt’s description.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

(a) Image-1M dataset visualization



(b) Video-300K dataset visualization

Figure 6: ViPO-Image-1M and ViPO-Video-300K dataset visualization.

864 **Human Quality.** To construct human-centric DPO dataset, we first gathered 100K images from existing
 865 open-source datasets. We began by filtering the ProGamerGov/synthetic-dataset-1m-dalle3-high-quality-
 866 captions dataset on HuggingFace with Seed-VL-1.5, selecting 44,501 images with exhibited human
 867 anatomical flaws. We augmented this dataset with 2,009 images from the gaunernst/flux-dev-portrait
 868 dataset on HuggingFace and 56,444 images from the HumanRefiner dataset on HuggingFace. This
 869 aggregated pool was then filtered for inappropriate content (e.g., violence or nudity) using Seed-VL-1.5,
 870 and finally we randomly sampled 80K images from the filtered pool.

871 To further diversify our dataset, we generated another 120K images. We used Seed-1.6-Lite to select 120K
 872 new human-centric prompts from the ProGamerGov/synthetic-dataset-1m-dalle3-high-quality-captions
 873 dataset, ensuring they were distinct from those used in the first step. We then prompted a suite of ten differ-
 874 ent open-source models to generate around 10K 1024x1024 images for each model (including CogView4,
 875 FLUX.1-dev, HiDream-I1-Full, Hunyuan-DiT, Kolors, PixArt- Σ , Playground-v2.5-1024px-Aesthetic,
 876 SANA1.5-4.8B-1024px, SD3.5-Medium, SDXL). In addition, we also deploy Qwen-Image to generate
 877 20K 1024x1024 images. This resulted in a collection of 200K human-centric images sourced from a wide
 878 variety of generative models.

879 To create the paired preference data, we generated a counterpart for each of the 200K images using the
 880 Seedream-3.0 model with the identical prompt. Finally, Seed-VL-1.5 was employed as an automated
 881 judge to assign the final preference labels (i.e., identifying the “winner” and “loser” image in each pair)
 882 based on which image rendered the human subject more accurately. This comprehensive pipeline yielded
 883 our final dataset of 200K unique, high-resolution DPO image pairs.

884
 885 **Image Composition.** We constructed our dataset by sourcing 200K unique prompts from two primary
 886 HuggingFace datasets: jackyhate/text-to-image-2M and peteromallet/high-quality-midjourney-srefs. For
 887 prompts from jackyhate/text-to-image-2M, we generated one image using Seedream-3.0 and a second,
 888 paired image using the same prompt with a randomly selected model from either Qwen-Image or
 889 HiDream-Dev. For prompts from peteromallet/high-quality-midjourney-srefs, we utilized the original
 890 MidJourney-V7 image and generated its counterpart with Seedream-3.0. Acknowledging the subjective
 891 and complex nature of evaluating image composition, we employed a multi-VLM voting system for
 892 robust preference labeling. Specifically, a panel of three diverse VLMs—Qwen2.5-VL-32B-Instruct,
 893 Seed-VL-1.5, and Q-Insight—was used to judge which image in each pair exhibited superior composition.
 894 The final preference was then determined by a majority vote from these three judges.

895
 896 **Aesthetics.** To construct our aesthetics DPO dataset, we first sampled 200K prompts and corresponding
 897 images from the ProGamerGov/synthetic-dataset-1m-dalle3-high-quality-captions dataset on HuggingFace,
 898 ensuring there was no overlap with the samples previously used for the other DPO datasets. For each prompt,
 899 we generated another image using Seedream-3.0. To establish preference pairs based on aesthetics, we
 900 utilized three VLMs, i.e., Qwen2.5-VL-32B-Instruct, Seed-VL-1.5, and Q-Insight—to judge which of the
 901 two images was more aesthetically pleasing. The final preference was then determined by a majority vote.

902 B.2 ViPO-VIDEO-300K

903
 904 **Motion Quality.** For our Motion Quality task, we construct all video pairs using an Image-to-Video (I2V)
 905 pipeline to ensure that the spatial information between the two videos in each pair remains as consistent
 906 as possible. Our data generation process integrates samples from four distinct datasets, all sourced from
 907 HuggingFace: (1) We collect 6,763 videos and prompts from the WenhaoWang/ShareVeo3 dataset,
 908 originally generated by Veo3, extract the first frame of each, and use Seedance-1.0-Pro to synthesize
 909 720p video pairs. (2) We take 11K prompts from LanguageBind/Open-Sora-Plan-v1.3.0, generate initial
 910 videos with HunyuanVideo-T2V-13B, extract their first frames, and then use Seedance-1.0-Lite to create
 911 the corresponding pairs. (3) We gather 32K videos from the FastVideo/Wan2.2-Syn-121x704x1280_32k
 912 dataset, generated by the WanVideo2.2 TI2V-5B model, extract the first frame and prompt for each,
 913 and use Seedance-1.0-Lite to generate the paired videos. (4) We select 50K image-text pairs from the
 914 LAION-Aesthetics dataset, augment the prompts with motion details using Seed-VL-1.5, and then
 915 generate video pairs using both Seedance-1.0-Pro and Seedance-1.0-Lite. After generating all pairs, we use
 916 Seed-VL-1.5 to score the motion quality of each video, designating the higher-scoring one as the ‘winner’.
 917 We then filter the dataset by removing pairs with the largest and smallest score differences to discard trivial
 918 or ambiguous examples, resulting in a final dataset of 100K preference pairs for this task.

918 **Visual Quality.** To construct the Visual Quality subset of our ViPO-Video-300K dataset, we first sample
 919 100K image pairs from ViPO-Image-1M. We specifically select samples for which all participating VLMs
 920 (Qwen2.5-VL-32B, Seed-1.5-VL, and Q-Insight) unanimously assigned the same preference label. Subse-
 921 quently, for each selected pair, the images are fed into Seed-VL-1.5 to generate a single motion prompt that
 922 is semantically suitable for both. This motion prompt is then integrated with the shared image description to
 923 form the final video generation prompt. Using this prompt and the two source images, we employ Seedance-
 924 1.0-Lite to perform an image-to-video synthesis task, generating the corresponding video preference pair.
 925 The preference label for each resulting video pair is directly inherited from its source image pair.

926 **Video-Text Alignment.** For the Video-Text Alignment task, we construct preference data by addressing
 927 two key aspects: spatial alignment and temporal alignment. To generate data for spatial alignment, we
 928 first select 50K image-text alignment pairs from ViPO-Image-1M, which feature subtle visual differences.
 929 We then employ Seed-VL-1.5 to generate a single, common motion prompt suitable for the main subject
 930 in both images. Subsequently, Seedance-1.0-Lite executes an I2V task for each image using this shared
 931 prompt, creating video pairs where preference is determined by the inherited spatial characteristics. For
 932 temporal alignment, we select 50K images from the LAION-Aesthetics dataset. For each image, we use
 933 Seed-VL-1.5 to generate two distinct motion prompts (e.g., “a person running” vs. “a person walking”).
 934 Seedance-1.0-Lite then generates two videos from the same source image, each conditioned on one of the
 935 different motion prompts. In both scenarios, the winner-loser designation is based on the correspondence
 936 between a video and its prompt; the video that accurately reflects its conditioning prompt is the winner.
 937

938 C MORE EXPERIMENTS AND ANALYSIS

940 **Detailed Text Rendering Results.** A distinctive advantage of our dataset is the significant improvement
 941 in text rendering on CVTG-2K benchmark Du et al. (2025), which is a historically challenging task for
 942 diffusion models. As shown in Table 8, SD3.5-Medium’s average word accuracy improves from 0.4378
 943 to 0.6995 (+59.8%), with the NED score reaching 0.8853. FLUX.1-dev demonstrates even more dramatic
 944 gains, improving from 0.4878 to 0.6859 in word accuracy despite SFT alone causing degradation (0.2126).
 945 These improvements are particularly notable for multi-region text rendering, where SD3.5-Medium
 946 achieves 0.6252 accuracy on 5-region text compared to the baseline’s 0.3933.

947 948 Table 8: Quantitative evaluation results of English text rendering on CVTG-2K Du et al. (2025).

949 Model	950 Word Accuracy\uparrow					951 NED\uparrow	952 CLIPScore\uparrow
	953 2 regions	954 3 regions	955 4 regions	956 5 regions	957 average		
958 SD3.5 Large	959 0.7293	960 0.6825	961 0.6574	962 0.5940	963 0.6548	964 0.8470	965 0.7797
966 AnyText	967 0.0513	968 0.1739	969 0.1948	970 0.2249	971 0.1804	972 0.4675	973 0.7432
974 TextDiffuser-2	975 0.5322	976 0.3255	977 0.1787	978 0.0809	979 0.2326	980 0.4353	981 0.6765
983 RAG-Diffusion	984 0.4388	985 0.3316	986 0.2116	987 0.1910	988 0.2648	989 0.4498	990 0.7797
993 3DIS	994 0.4495	995 0.3959	996 0.3880	997 0.3303	998 0.3813	999 0.6505	1000 0.7767
1003 TextCrafter	1004 0.7628	1005 0.7628	1006 0.7406	1007 0.6977	1008 0.7370	1009 0.8679	1010 0.7868
1013 SD3.5-Medium	1014 0.5104	1015 0.4788	1016 0.4197	1017 0.3933	1018 0.4378	1019 0.7325	1020 0.7548
1023 +SFT	1024 0.7474	1025 0.6485	1026 0.5625	1027 0.5027	1028 0.5887	1029 0.8228	1030 0.8107
1033 +SFT & Poly-DPO	1034 0.8188	1035 0.7422	1036 0.6900	1037 0.6252	1038 0.6995	1039 0.8853	1040 0.8287
1043 FLUX.1 [dev]	1044 0.6532	1045 0.5273	1046 0.4491	1047 0.4312	1048 0.4878	1049 0.6727	1050 0.7265
1053 +SFT	1054 0.3530	1055 0.2462	1056 0.1962	1057 0.1459	1058 0.2126	1059 0.4623	1060 0.7303
1063 +SFT & Poly-DPO	1064 0.7733	1065 0.7203	1066 0.6893	1067 0.6169	1068 0.6859	1069 0.8489	1070 0.7939

963 **Supervised Fine-Tuning on ViPO-Image-1M.** The results presented in Table 9 highlight the optimal
 964 strategy for integrating Supervised Fine-Tuning (SFT) with our Poly-DPO method. All models in this
 965 ablation are evaluated on the same 1,200-prompt test set detailed in Section 5.2. We first observe that
 966 an initial SFT stage is crucial for achieving the best performance. Applying Poly-DPO directly to the
 967 SD1.5 baseline yields only modest improvements, whereas models that first undergo SFT before DPO
 968 training demonstrate substantially higher scores across all evaluation metrics.

969 Furthermore, our experiments reveal that the composition of the SFT dataset is critical. By comparing
 970 models trained with SFT on the full winner-loser pairs versus only the winner images, we consistently find
 971 that the latter approach is superior. This is evidenced by our top-performing model, “+ SFT (Winner Only)

& Poly-DPO,” which surpasses all other configurations. This demonstrates that fine-tuning exclusively on high-preference (winner) data provides a more effective foundation for the subsequent preference alignment with Poly-DPO.

Table 9: Ablation study on the integration of Supervised Fine-Tuning (SFT) and Poly-DPO for the SD1.5 model. The results demonstrate that an initial SFT stage using only winner images is the optimal strategy to achieve the best performance. We utilize this optimal setting for all experiments in the main paper.

Method	PickScore \uparrow	HPSv2.1 \uparrow	Aesthetic \uparrow	ImageReward \uparrow
SD1.5	20.89	25.04	5.46	0.1757
+ Poly-DPO	21.51	26.40	5.60	0.6391
+ SFT (Winner-Loser)	21.74	28.75	5.71	0.7671
+ SFT (Winner Only)	21.92	29.00	5.72	0.8355
+ SFT (Winner-Loser) & Poly-DPO	22.06	29.57	5.76	0.9955
+ SFT (Winner Only) & Poly-DPO	22.19	29.69	5.78	1.0161

Gradient Analysis on α of Our Poly-DPO. Figure 7 visualizes how the gradient magnitude $|\frac{\partial L}{\partial z}| = |-(1-p)(1+\alpha p)|$ of Poly-DPO adapts to different data characteristics through the α parameter, where $p = \sigma(z)$ represents the model’s confidence in preferring the chosen response. The visualization reveals three distinct optimization regimes that directly correspond to our experimental findings. When $\alpha > 0$ (blue and purple curves), the gradient is amplified in the region $p \in [0.5, 0.8]$, maintaining substantial parameter updates even for moderately confident predictions. This enhancement proves crucial for noisy datasets like Pick-a-Pic V2, where only 20.79% of samples show consistent preferences across evaluation dimensions—the sustained gradient (approximately 2-3× stronger than standard DPO at $p \approx 0.6$ when $\alpha = 8$) prevents premature convergence on spurious patterns and encourages continued exploration to identify genuine preference signals amidst dimensional conflicts. Conversely, when $\alpha < 0$ (red and orange curves), the gradient decays more rapidly as confidence increases, actively penalizing overconfident predictions. This mechanism addresses the overconfidence problem in our synthetic dataset experiment, where negative α values enforce faster gradient decay beyond $p > 0.6$, maintaining the model in a “humble” learning state that prevents memorization of superficial patterns. Remarkably, when training on our high-quality ViPO-Image-1M dataset, the optimal α converges to approximately zero (green curve), where Poly-DPO reduces to standard DPO with linear gradient decay $|-(1-p)|$. This convergence serves as an empirical validation of dataset quality—when preference labels are reliable and balanced, additional gradient modulation becomes unnecessary, confirming that data quality remains fundamental for successful preference optimization. The visualization also provides practical insights: the optimal α value serves as a diagnostic tool for dataset quality (large positive values suggest noisy labels, negative values indicate oversimplified patterns, while $\alpha \approx 0$ validates well-balanced data), and explains why different datasets achieve different convergence points. This adaptive gradient mechanism enables Poly-DPO to achieve robust performance across diverse dataset characteristics without requiring dataset-specific algorithmic modifications.

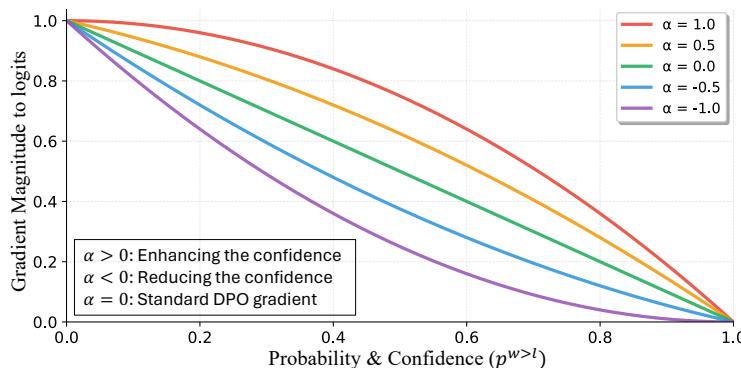


Figure 7: Gradient magnitude of Poly-DPO loss with respect to logits under different α values. The gradient $|-(1-p)(1+\alpha p)|$ adaptively controls learning dynamics based on confidence p . $\alpha > 0$ enhances gradients for medium-confidence predictions to combat noisy labels, $\alpha < 0$ suppresses overconfident predictions to prevent overfitting, while $\alpha = 0$ (standard DPO) proves optimal for high-quality balanced datasets.

1026
 1027 **Human Evaluation Details** To ensure the rigorous quality
 1028 standards of the ViPO dataset, we conducted a large-scale
 1029 evaluation by recruiting 18 annotators. This scale significantly
 1030 exceeds that of related visual generation works, such as
 1031 ControlNet (12), thereby offering higher statistical confidence
 1032 and mitigating individual bias. Figure 8 details the rater
 1033 reliability, defined as the consistency between an individual's
 1034 choices and the majority vote consensus. The empirical
 1035 results highlight exceptional agreement: every rater surpassed
 1036 70% accuracy, with 14 out of 18 exceeding 80% (Mean:
 1037 87.2%, Median: 87.6%). This distribution confirms that our
 1038 collected preference labels are stable and trustworthy. Such
 1039 high inter-rater agreement further evidences that the ViPO
 1040 tasks are well-posed and the instructions are unambiguous,
 1041 effectively minimizing the noise often inherent in subjective
 1042 visual assessments. Consequently, the derived consensus
 1043 labels provide a robust ground truth for benchmarking. Finally,
 1044 Figure 9 illustrates the annotation interface; rater IDs are
 1045 utilized strictly for tracking and resuming management to
 1046 guarantee a fully anonymous evaluation process.
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

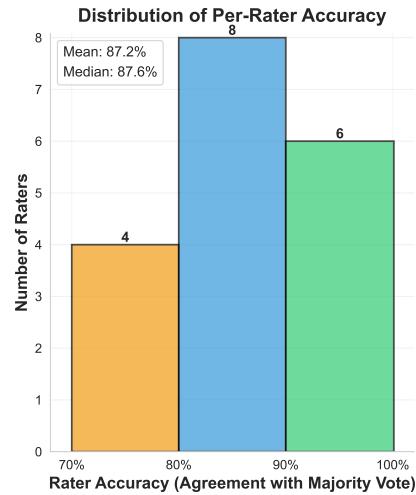


Figure 8: Distribution of human rater accuracy on our ViPO datasets.

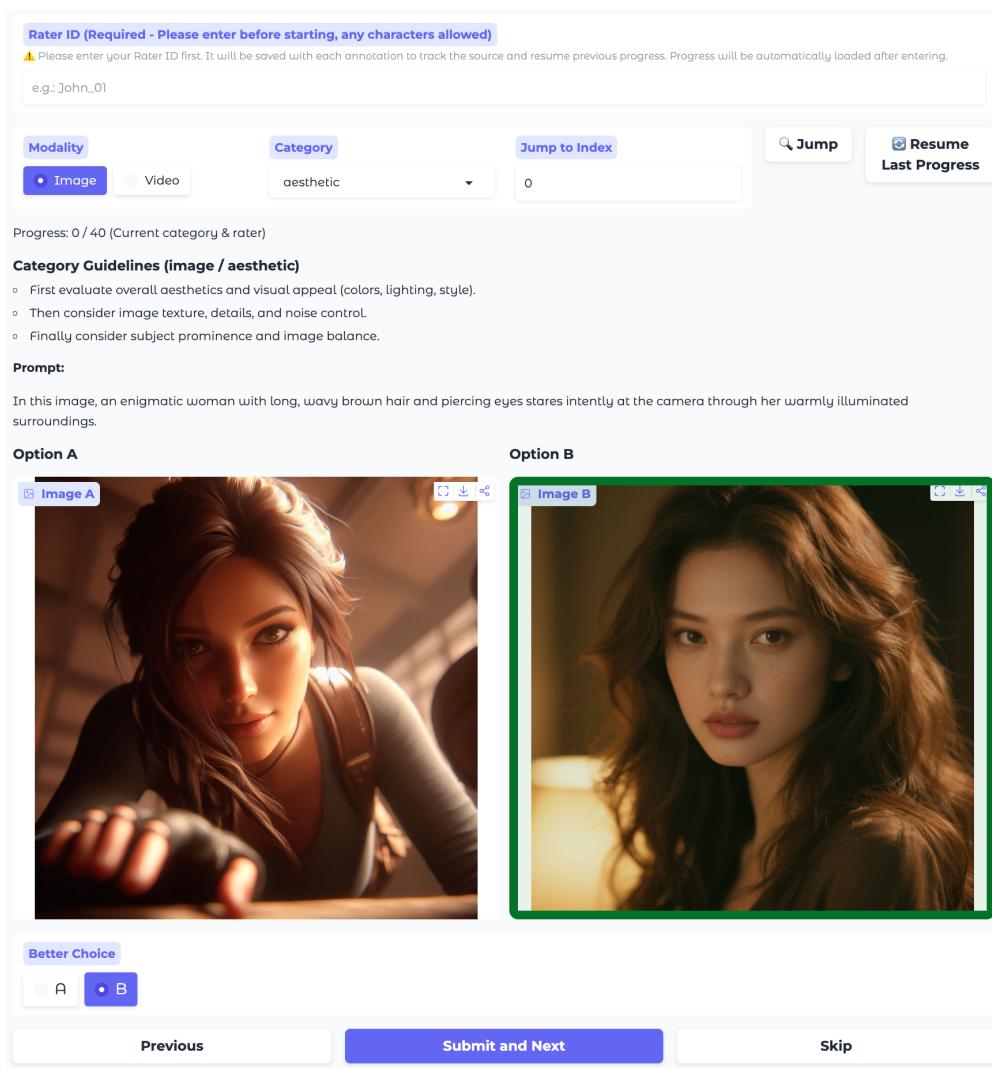


Figure 9: The UI interface used for our human evaluation.

1080
 1081 **SD1.5 & SDXL Experiments on DPG-Bench.** Table 10 presents the comparative results on the
 1082 DPG-Bench benchmark. As shown, our proposed Poly-DPO consistently outperforms existing baselines
 1083 across both SD1.5 and SDXL backbones, achieving the highest Overall scores of 67.02 and 75.67,
 1084 respectively. This demonstrates the superior capability of our Poly-DPO in aligning diffusion models
 1085 with human preferences. regarding the baseline selection, it is worth noting that we report results for
 1086 Diffusion-KTO exclusively on SD1.5 and MAPO on SDXL, as their respective official repositories have
 1087 only released model weights for these specific architectures.

1088 Table 10: Evaluation results on DPG-Bench Hu et al. (2024) with the Pick-a-pic V2 training dataset

Model	Paradigm	Global	Entity	Attribute	Relation	Other	Overall↑
SD1.5 Rombach et al. (2022)	Off-Policy	74.63	74.23	75.39	73.49	67.81	63.18
Diffusion-DPO Rafailov et al. (2023)	Off-Policy	71.50	72.53	75.25	73.55	72.84	63.29
Diffusion-KTO Li et al. (2024b)	Off-Policy	72.45	76.51	78.09	78.08	73.20	66.69
Poly-DPO	Off-Policy	73.36	78.15	76.50	75.81	73.42	67.02
SDXL Podell et al. (2023)	Off-Policy	83.27	82.43	80.91	86.76	80.41	74.65
Diffusion-DPO Rafailov et al. (2023)	Off-Policy	83.67	83.50	81.89	81.56	81.58	75.12
MAPO Hong et al. (2024)	Off-Policy	78.22	81.31	80.65	85.35	79.85	73.80
Poly-DPO	Off-Policy	84.03	83.86	81.87	83.07	81.02	75.67

1097
 1098 **Inference on Different ViPO Sub-datasets.** Table 11 comprehensively evaluates the performance of
 1099 the SD3.5-Medium model under various fine-tuning strategies, leveraging distinct sub-datasets from ViPO.
 1100 Initially, the base SD3.5-Medium model serves as our benchmark, demonstrating solid performance across
 1101 all metrics. The subsequent rows clearly illustrate the significant benefits of Supervised Fine-Tuning (SFT)
 1102 using individual ViPO sub-datasets. For instance, SFT on the “Aesthetics” dataset noticeably improves
 1103 DeQA and DPG-Bench scores, while SFT on “Text Rendering” leads to a substantial jump in CVTG-2K.
 1104 This initial phase highlights the high quality and specificity of our ViPO sub-datasets, as targeted training
 1105 on specific aspects like aesthetics or text rendering yields immediate and measurable improvements in
 1106 their corresponding evaluation metrics.

1107 A crucial observation is the inherent overlap among these diverse datasets. For example, datasets primarily
 1108 focused on “Aesthetics” or “Alignment” inevitably contain elements pertaining to “Human Quality” and
 1109 “Text Rendering.” Consequently, fine-tuning on a seemingly specific dataset can still positively influence
 1110 other, indirectly related metrics. This is evident in several SFT rows, where improvements are not strictly
 1111 confined to the explicitly targeted metric. When SFT is applied to “All Datasets,” we observe a more
 1112 generalized enhancement, albeit with some trade-offs, indicating the complexity of balancing multiple
 1113 objectives through SFT alone.

1114 The most compelling results emerge from the combination of SFT (on “All Datasets”) followed by DPO
 1115 using individual ViPO sub-datasets. This two-stage approach consistently achieves superior performance
 1116 across all evaluation metrics, significantly surpassing both the base model and models trained with SFT
 1117 alone. Notably, the “All Datasets” DPO fine-tuning achieves the highest scores across most metrics,
 1118 including a remarkable 85.25 for GPT-4o Accuracy and 0.6995 for CVTG-2K, representing a substantial
 1119 leap from the SFT-only and base models. This profound improvement underscores two key points: first, the
 1120 high quality and preference-rich nature of our ViPO datasets are exceptionally well-suited for preference
 1121 learning; and second, DPO effectively harnesses this high-quality preference data to further refine the
 1122 model’s capabilities, leading to more robust and human-aligned outputs across various dimensions like
 1123 aesthetics, alignment, text rendering, and overall human quality. The consistent gains across different
 1124 DPO fine-tuning setups further validate the effectiveness of our comprehensive training methodology
 1125 and the superior learning signals provided by the ViPO dataset.

1126 **Inference on Different SFT Training Steps.** Table 12 presents an ablation study on the number of
 1127 training steps during the SFT phase, ranging from 1,000 to 4,000 steps. As observed, extending the
 1128 training duration yields a continuous and significant improvement in complex capabilities such as Text
 1129 Rendering (CVTG-2K) and Human Quality (GPT-4o Acc), with the latter increasing from 73.25 to a
 1130 peak of 77.50. While some metrics like Alignment (DPG-Bench) saturate or slightly fluctuate after early
 1131 stages, the steady gains in text rendering (reaching 0.5887) and overall human preference indicate that
 1132 the model requires more training steps to fully absorb the fine-grained details present in our high-quality
 1133 dataset. Consequently, we select the 4,000-step checkpoint for subsequent stages, as it offers the most
 robust foundation for generating high-fidelity, human-preferred images.

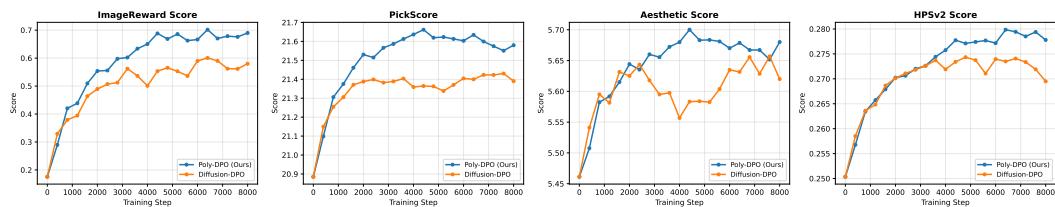
1134
1135 Table 11: SD3.5-Medium performance on various metrics after fine-tuning with different ViPO sub-datasets
1136 using SFT and DPO, demonstrating the impact of specific and comprehensive data training.
1137

Method	Dataset	Aesthetics DeQA \uparrow	Alignment DPG-Bench \uparrow	Text Rendering CVTG-2K \uparrow	Human Quality GPT-4o Acc \uparrow	Composition GenEval \uparrow
SD3.5-Medium	-	4.27	84.24	0.4378	73.25	0.69
+ SFT	Aesthetics	4.32	87.02	0.5051	76.91	0.78
+ SFT	Alignment	4.30	86.63	0.4904	76.89	0.77
+ SFT	Composition	4.30	86.57	0.4815	76.52	0.78
+ SFT	Human Quality	4.29	87.05	0.5174	77.42	0.79
+ SFT	Text Rendering	4.25	85.85	0.5319	74.45	0.76
+ SFT	All Datasets	4.31	84.24	0.5887	77.50	0.80
+ SFT (All) + DPO	Aesthetics	4.31	86.91	0.5668	82.32	0.79
+ SFT (All) + DPO	Alignment	4.31	88.55	0.6680	82.14	0.79
+ SFT (All) + DPO	Composition	4.31	86.41	0.6190	81.78	0.80
+ SFT (All) + DPO	Human Quality	4.30	86.70	0.5729	83.02	0.81
+ SFT (All) + DPO	Text Rendering	4.28	86.13	0.6344	80.18	0.79
+ SFT (All) + DPO	All Datasets	4.31	87.71	0.6995	85.25	0.83

1144 Table 12: Ablation study on the effect of training steps during the Supervised Fine-Tuning (SFT) stage.
1145

Method	Aesthetics DeQA \uparrow	Alignment DPG-Bench \uparrow	Text Rendering CVTG-2K \uparrow	Human Quality GPT-4o Acc \uparrow	Composition GenEval \uparrow
SD3.5-Medium	4.27	84.24	0.4378	73.25	0.69
+ SFT 1000 Steps	4.28	86.84	0.5134	73.98	0.79
+ SFT 2000 Steps	4.31	86.72	0.5334	75.16	0.81
+ SFT 3000 Steps	4.30	86.27	0.5614	76.34	0.81
+ SFT 4000 Steps	4.31	84.24	0.5887	77.50	0.80

1158
1159 **Training Stability for Diffusion-DPO and Poly-DPO.** To address concerns regarding potential model
1160 collapse, we visualize the training dynamics of both the baseline Diffusion-DPO and our proposed
1161 Poly-DPO. As illustrated in Figure 10, we track four key evaluation metrics—PickScore, ImageReward,
1162 Aesthetic Score, and HPSv2—throughout the training process on the Pick-a-Pic V2 dataset. Contrary
1163 to the instability often associated with on-policy RL methods, both off-policy approaches demonstrate
1164 remarkable stability. The reward scores exhibit a consistent, steady increase followed by a smooth plateau,
1165 indicating a stable convergence process with no signs of sudden performance degradation or collapse.
1166 Notably, Poly-DPO maintains the robust stability inherent to the DPO framework while achieving a higher
1167 performance ceiling than the baseline.

1175 Figure 10: Training dynamics of Poly-DPO and Diffusion-DPO on the Pick-a-Pic V2 dataset. Both
1176 methods exhibit high training stability, with evaluation metrics steadily increasing to convergence without
1177 any signs of model collapse.
1178
11791180

D IMPLEMENTATION DETAILS

1181

1182 **Training on Pick-a-pic V2 Dataset.** We validate our proposed Poly-DPO method by training the SD1.5
1183 model on the Pick-a-pic V2 dataset. Our training implementation and hyperparameters are based on the
1184 official open-source code of Diffusion-DPO. Specifically, we use a batch size of 512 and a base learning
1185 rate of $4e-9$ (the final learning rate is $512 \times 4e-9 = 2.048e-6$), the training resolution is 512×512 . We
1186 perform a grid search for the hyperparameter α of Poly-DPO over the set $\{-1, -0.5, 0, 0.5, 1, 2, 4, 6, 8,$
1187 $10\}$ and find that $\alpha = 8$ yields the best results. In addition, we observed that the original Diffusion-DPO
1188 algorithm converges in approximately 8,000 steps, whereas our Poly-DPO method achieves convergence in

1188 4,500 steps. Throughout the training process, we do not update the reference model or use the Exponential
 1189 Moving Average (EMA).
 1190

1191 **Training on ViPO-Image-1M Dataset.** For our experiments on the ViPO-Image-1M training set, we
 1192 first conduct validation on the SD1.5 model. Based on our conclusions in Section 9, we adopt a two-stage
 1193 training process for all models. First, we perform SFT using only the winner images. Following this, we
 1194 apply Poly-DPO training. For this second stage, it is important to note that both the policy model being
 1195 trained and the reference model are initialized from the checkpoint of the SFT-tuned model. We found
 1196 that there was no significant difference in the evaluation indicators when α was in the range of $[-1, 1]$, for
 1197 both the SD1.5 and the SDXL model, so we simply set $\alpha=0$ for all experiments. The training resolution
 1198 is 512×512 for SD1.5 and 1024×1024 for other models. No reference model update or EMA is used
 1199 for all experiments. The specific implementation details for each model architecture are as follows:
 1200

- 1201 • **SD1.5.** We use a batch size of 512 for both stages. The base learning rate is $4e-9$ for SFT and $1e-9$
 1202 for Poly-DPO, with both stages trained for 8,000 steps. We observed that after the initial SFT, a smaller
 1203 value for β in Equation 5 was better, so we set $\beta=500$.
- 1204 • **SDXL.** The batch size is 512. The base learning rates are $2e-9$ for SFT and $5e-10$ for Poly-DPO, with
 1205 both stages trained for 4,000 steps. We use $\beta=1000$ for this model.
- 1206 • **SD3.5-Medium.** For the SFT stage, we use a batch size of 2048 and a base learning rate of $1e-8$. For
 1207 the Poly-DPO stage, the batch size is 512 with a base learning rate of $5e-9$. The SFT stage is trained
 1208 for 4,000 steps and the Poly-DPO stage for 2,000 steps, with $\beta=500$.
- 1209 • **FLUX.1-dev.** For the SFT stage, the batch size is 2048 with a base learning rate of $1e-9$. For the
 1210 Poly-DPO stage, the batch size is 512 with a base learning rate of $5e-9$. Similar to SD3.5-Medium,
 1211 SFT is trained for 4,000 steps and Poly-DPO for 2,000 steps, using $\beta=500$.

1212 **Training on ViPO-Video-300K Dataset.** We conduct experiments by applying Poly-DPO directly to
 1213 the Wan2.1-T2V-1.3B base model, using the ViPO-Video-300K dataset for training. The model is trained
 1214 for 2,000 steps with a batch size of 256 and a base learning rate of $1e-8$. For this experiment, we set the
 1215 DPO hyperparameter $\beta=500$ and the Poly-DPO hyperparameter $\alpha=0$. During training, we utilize a
 1216 dynamic resolution approach and do not perform any resizing operations on the videos in the dataset. This
 1217 means we consistently train on video data with its original 16:9 and 1:1 aspect ratios. For final evaluation,
 1218 the VBench2.0 score is calculated by averaging the results from both the 16:9 and 1:1 generated videos.
 1219

1220 E DISCUSSION, LIMITATION AND FUTURE WORK.

1221 **Discussion.** Our work presents a dual contribution to scaling visual preference optimization: the
 1222 Poly-DPO algorithm and the high-quality ViPO dataset. The most significant finding is the symbiotic
 1223 relationship between algorithmic design and data quality. Our experiments demonstrate that while a
 1224 robust algorithm like Poly-DPO is critical for extracting meaningful signals from noisy, real-world datasets
 1225 such as Pick-a-Pic V2, the need for such sophisticated algorithmic adjustments diminishes as data quality
 1226 improves. The convergence of the optimal Poly-DPO hyperparameter α to zero when training on our
 1227 ViPO dataset serves as a powerful empirical validation of ViPO’s quality and balance.

1228 This suggests that the hyperparameter α can itself serve as a valuable diagnostic tool for assessing
 1229 preference dataset characteristics. A large positive optimal α may indicate significant noise or conflicting
 1230 preference signals, whereas a negative optimal α could suggest the dataset is dominated by trivially simple
 1231 patterns leading to model overconfidence. An optimal α near zero, as observed with ViPO, indicates a
 1232 well-balanced and reliable dataset where standard optimization is sufficient.

1233 Furthermore, our construction of the ViPO dataset highlights a scalable paradigm for future data curation
 1234 efforts. By leveraging a suite of state-of-the-art generative models and a panel of powerful Vision Language
 1235 Models (VLMs) for automated filtering, generation, and labeling, we demonstrate a pipeline that largely
 1236 bypasses the immense cost and scalability issues of collecting human preferences directly. This AI-driven
 1237 approach is fundamental to achieving preference optimization “at scale.”

1238 **Limitation.** Despite the promising results, our work has several limitations. First, the preference labels in
 1239 the ViPO dataset are generated exclusively by AI models (VLMs). While we used multiple state-of-the-art
 1240 VLMs to ensure robustness and consistency, these AI-generated labels are a proxy for, not a direct

1242 measurement of, true human preferences. We did not conduct a large-scale study to measure the correlation
 1243 between our VLM-assigned labels and those from human annotators, and the inherent biases of the judge
 1244 VLMs may be encoded in our dataset.

1245 Second, while Poly-DPO’s effectiveness is demonstrated across datasets with different characteristics,
 1246 the optimal value for the hyperparameter α was determined via grid search. This process can be
 1247 computationally intensive, and the ideal α may depend on factors beyond data noise, such as the base
 1248 model architecture or the specific domain of the content. A more automated or dynamic method for setting
 1249 α would improve the method’s practicality.

1250 Finally, the creation of the ViPO dataset itself required significant computational resources, involving gener-
 1251 ation from over a dozen state-of-the-art models. While our work helps democratize the *use* of high-quality
 1252 preference data through its public release, the initial *construction* of such datasets remains a costly endeavor,
 1253 potentially limiting the ability of smaller research groups to create similar resources for new domains.

1254 **Future Work.** Based on our findings and limitations, we propose several avenues for future research.
 1255 A critical next step is to conduct a large-scale human validation study of the ViPO dataset [and explore](#)
 1256 [more robust pseudo-labeling with better reward models](#) [Chen et al. \(2023\)](#). Comparing the VLM-generated
 1257 labels against human judgments would not only quantify the quality of ViPO but also provide valuable
 1258 insights into developing next-generation judge VLMs that are even better aligned with human values.

1259 Another promising direction is the automation of the α hyperparameter in Poly-DPO. Future work could
 1260 explore methods to make α a learnable parameter that is dynamically adjusted during training based on
 1261 batch statistics or the model’s evolving confidence distribution. This would create a truly self-adaptive
 1262 preference optimization algorithm.

1263 The categorized structure of the ViPO dataset opens up possibilities for more fine-grained and controllable
 1264 preference optimization. Future research could investigate methods for explicitly modeling the trade-offs
 1265 between different quality dimensions (e.g., prioritizing “Text Rendering” over “Aesthetics”), potentially
 1266 leading to more personalized and instruction-guided visual generation. Lastly, we believe the AI-driven
 1267 curation pipeline itself can be extended, both to new modalities like 3D and audio, and into an iterative,
 1268 self-improving loop where models trained on ViPO are used to generate new data that, after being filtered
 1269 by judge VLMs, is used to further refine the dataset.

1272 F THE USE OF LARGE LANGUAGE MODELS (LLMs)

1273 All technical content, dataset design, experimental results, and analyses presented in this paper were
 1274 produced by the authors. Large Language Models (LLMs), such as GPT and Gemini, served only as a
 1275 tool for language polishing and enhancing readability; they were not used to generate any of the core ideas,
 1276 data, or experimental results.