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Towards Efficient and Diverse Generative Model for
Unconditional Human Motion Synthesis
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Figure 1: The comparison synthesized human motion sequences based on the end pose of samples. The vanilla VAE randomly
samples latent codes from a prior distribution which are then decoded into human motions that only reside in the major
patterns of the human motions. The proposed MOOT aims to unconditionally synthesize high-quality and diverse human
motions by combining the extended optimal transport (OT) map and generator.

ABSTRACT
Recent generative methods have revolutionized the way of human
motion synthesis, such as Variational Autoencoders (VAEs), Gen-
erative Adversarial Networks (GANs), and Denoising Diffusion
Probabilistic Models (DMs). These methods have gained signifi-
cant attention in human motion fields. However, there are still
challenges in unconditionally generating highly diverse human
motions from a given distribution. To enhance the diversity of syn-
thesized human motions, previous methods usually employ deep
neural networks (DNNs) to train a transport map that transforms
Gaussian noise distribution into real human motion distribution.
According to Figalli’s regularity theory, the optimal transport map
computed by DNNs frequently exhibits discontinuities. This is due
to the inherent limitation of DNNs in representing only continuous
maps. Consequently, the generated human motions tend to heavily
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concentrate on densely populated regions of the data distribution,
resulting in mode collapse or mode mixture. To address the issues,
we propose an efficient method called MOOT for unconditional
human motion synthesis. First, we utilize a reconstruction network
based on GRU and transformer to map human motions to latent
space. Next, we employ convex optimization to match the noise
distribution with the latent space distribution of human motions
through the Optimal Transport (OT) map. Then, we combine the
extended OT map with the generator of reconstruction network to
generate new human motions. Thereby overcoming the issues of
mode collapse and mode mixture. MOOT generates a latent code
distribution that is well-behaved and highly structured, providing
a strong motion prior for various applications in the field of human
motion. Through qualitative and quantitative experiments, MOOT
achieves state-of-the-art results surpassing the latest methods, vali-
dating its superiority in unconditional human motion generation.

CCS CONCEPTS
• Applied computing→ Media arts.

KEYWORDS
Unconditional human motion synthesis, generative model, optimal
matching
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1 INTRODUCTION
Human motion synthesis task aims to generate diverse and coher-
ent human motion sequences that satisfy specific cues or spatio-
temporal constraints. This field has wide-ranging applications, such
as human motion understanding [31, 39], autonomous driving
[19, 20, 41, 42], and animation [12, 13]. Unconditionally generating
diverse human motions from a given data distribution still presents
a significant challenge, especially when the human motion datasets
are diverse, unstructured, and unlabeled. Although current human
motion generation methods have shown promising ability to pro-
duce human motions, fully capturing the potential diversity from
a given distribution for unconditional human motion synthesis
remains a challenge.

Recent advancements in deep generative models, including Vari-
ational Autoencoders (VAEs) [6, 18, 21, 35], Generative Adversarial
Networks (GANs) [8, 17, 23], and Denoising Diffusion Probabilis-
tic Models (DMs) [1, 32], emerge as the dominant approaches for
capturing the data distribution cross all possible human motions.
Specifically, VAEs leverage an encoder network to map the data dis-
tribution into a Gaussian latent distribution. This representation of
latent space is mapped back to the data distribution using a decoder
network. Although significant progress has been made, VAE-based
methods assume Gaussian distribution for the latent space of the
data distribution. This assumption often leads to the generation of
blurry human motion joints, thereby reducing the accuracy of the
generated human motions. As shown in the bottom of Figure. 1, we
visualize the results of the end pose of different motion sequences,
most human motions using VAE tend to converge to the same pat-
tern. Another popular approaches are the GAN-based methods, an
unconditional generator is trained to generate real-like motions
from random noise, while a discriminator is employed to measure
the distinction between the generated samples and real ones. Train-
ing GANs can be challenging and sensitive to hyperparameters.
Moreover, GANs tend to sample human motions from the major
patterns while ignoring the minor patterns. DMs-based methods de-
fine a diffusion process, in which Gaussian noise is gradually added
to the input data using a Markov chain. As DMs-based methods rely
on multiple iterations of denoising diffusion steps, each requiring a
substantial amount of computation, the overall inference time can
be prohibitively long for large-scale datasets or complex models.

The purpose of previous human motion generative methods is
to calculate a transport map using DNNs. This transport map trans-
forms Gaussian white noise into the distribution of human motions.
By pushing the initial noise distribution forward, the transport
map generates a new distribution that approximates real human
motions. The similarity between these two distributions determines
the generalization ability of the designed method [3]. As pointed
out by previous works [22, 33], DNNs can only represent continu-
ous mappings. The transport map may be discontinuous when the
human motion data has multiple modes [22]. This phenomenon
would incur the mode collapse or mode mixture, in which the gener-
ated human motion samples heavily concentrate around the most
dense areas of the dataset while neglecting other less frequent or
sparse regions of the data distribution during sampling. The sam-
pled human motions often have less diversity and look unrealistic.
The problem still exists even when the data distribution has a single

mode. These phenomena show that the mode collapse or mode
mixture cannot be resolved in existing human motion generative
methods.

To overcome the limitations, we propose a novel method called
MOOT, for unconditional human motion synthesis that leverages
optimal transport mapping. Our motivation is to address the mode
collapse problem and mode mixture, thereby enhancing the di-
versity while ensuring the accuracy of generated human motion
sequences. Previous generative methods for human motion gen-
eration mainly consist of two steps, i.e., manifold embedding and
probability distribution transport. Manifold embedding aims to
find the encoding and decoding maps between the data manifold
embedded in the human motions and the latent space. Probability
distribution transport aims to transport a given noise distribution
to the data distribution. In this work, the proposed MOOT separates
the process into two stages to enhance the diversity of uncondi-
tional human motion synthesis. Specifically, in the first stage, a
human motion reconstruction network is designed to learn the
manifold embedding of human motions. The manifold embedding
is implemented by Gated Recurrent Units (GRU) and transformer
[30], which aims to capture temporal smooth and spatial relations
between human motions. For the second stage, we employ the opti-
mal transport (OT) mapping to achieve the probability distribution
transport and generate diverse human motions. According to Bre-
nier’s theorem [5], the optimal transport map can be denoted by the
gradient map of the Brenier potential, which is continuous in the
computing process. The OTmapping intends to map the noise distri-
bution into the latent space of human motions, which can avoid the
mode collapse and mode mixture, thereby enhancing the diversity
of generated human motions. Figure. 1 briefly describe the human
motion synthesis process of the proposed method and vanilla VAE.
The proposed MOOT can generate more diverse human motion
sequences.

In summary, our main contributions are as follows:
• We propose a novel method called MOOT for unconditional
human motion synthesis, which aims to avoid mode collapse
and mode mixture based on the theory of optimal transporta-
tion mapping.
• We employ the encoder of reconstruction network, based
on GRU and transformer, to encode human motions into
latent space. Then we utilize the Brenier potential between
the noise distribution and latent space of human motions to
represent the optimal transport map. The extended OT map
combines the generator to generate new human motions.
• The proposed method is evaluated on widely-used human
motion datasets in the comprehensive experiments. The ob-
tained results demonstrate the effectiveness of the proposed
method over the state-of-the-art approaches for uncondi-
tional human motion generation task.

2 RELATEDWORK
2.1 Human Motion Generation
The emergence of neural networks has a significant impact on
the field of human motion synthesis. Previously, the focus was
primarily on specific human motion generation, conditioned on
some limiting factors, such as music [16], text [38], and action
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[25]. Numerous research papers have explored these areas. These
works share a common spirit with our research, and here we will
elaborate on them further. For example, Li et al. [16] proposed the
task of generating a long sequence of realistic 3D dance motions
that are well correlated with the input music. Petrovich et al. [25]
learned an action-conditioned latent representation by training a
VAE network. They sample from the learned latent space and query
a series of positional encodings to synthesize motion sequences
conditioned on actions. Degardin et al. [7] fused the architectures
of GANs and GCNs to synthesize the kinetics of human motions.
Zhang et al. [38] incorporated Denoising Diffusion Probabilistic
Models (DDPM) [10] into motion generation, and propose to guide
the generation pipeline with input texts softly, which increases the
diversity of the generation results.

Another line of work focuses on unconditional human motion
synthesis [26]. Holden et al. [11] presented a pioneer work in deep
unconditional human motion synthesis. They propose a motion
synthesis and editing method based on a deep learning framework,
which can automatically learn an embedding of human motion in
a non-linear manifold. Recent MDM [32] utilized a classifier-free
diffusion-based generative model for the human motion domain,
and reported a trading-off between diversity and fidelity of human
motions under an unconditional human motion generation. Modi
[26] employs the style of StyleGAN to synthesize human motions,
they utilize a mapping network to map noise into this latent space
to enhance the diversity.

Previous generative methods for human motion generation map
the noise Gaussian distribution to the latent space distribution
through a deep neural network. These methods usually suffer from
mode collapse or mode mixture. In this work, we propose a new
perspective human motion generation method to enhance diversity
of the generated human motion sequences.

2.2 Generative Models
Given the inherent indeterminacy of future human motions, the
generative models like variational autoencoders (VAEs) [34, 36, 40],
generative adversarial networks (GANs) [2, 23] and denoising dif-
fusion probabilistic model (DDPM) [1, 29] are appropriate methods
for diverse human motion prediction due to their capability of gen-
erating a diverse set of valid solutions. Generally, VAEs [34] utilize
the encoder-decoder mechanism to handle the task by capturing
the probability distribution of human motions. VAEs-based meth-
ods assume that the latent distribution of human motions follows
a Gaussian mixture distribution. This assumption often leads to
blurry humanmotion joints, resulting in poor performance in terms
of detail and accuracy in the generated human motions. GANs [8]
can promote the quality of generated human motions in a degree.
While being a powerful tool in generating realistically looking
samples, GANs suffer from the mode collapse problem. The major
modes (with higher likelihood) corresponding to a particular human
motion pattern will more likely generate samples, minor patterns
(those with lower likelihood) will almost not generate any samples.
Recent promising diffusion model [10] has been proposed as an
alternative generative approach for human motion generation task.
For example, Tevet et al. [32] designed a Motion Diffusion Model
(MDM) for various human motion generation, enabling different

𝜇𝜇(𝑥𝑥)

𝑋𝑋 𝑌𝑌

𝜈𝜈(𝑇𝑇(𝑥𝑥))
𝑇𝑇

Figure 2: Given two probability distributions 𝜇, 𝜈 , and cost
functions 𝑐, the Monge formalism is to find a optimal trans-
port map 𝑇 that minimizes the cost functions. The transport
map 𝑇 transforms the source 𝜇 into 𝜈 .

modes of conditioning, and different generation tasks. Ye et al. [37]
attempted to introduce physics simulation, which is based on a
pre-trained physical model through reinforcement learning. How-
ever, their approach is computationally intensive and low-efficiency
inference process.

Recent studies by [33] realized that the mode collapse and mode
mixture are caused by the discontinuous functions with continuous
DNNs. To alleviate this, Nagarajan et al. [22] proposed to utilize
gradient-based regularization to address these issues. Khayatkhoei
et al. [15] propose the utilization of multiple GANs to alleviate mode
collapse and mode mixture. Another approach that has shown suc-
cess in overcoming mode collapse is the normalized diversification
method. Pan et al. [24] proposed UniGAN with a Normalizing Flow-
based generator and uniformity regularization. Song et al. [28]
utilized a new training objective that additionally optimized over
the generated samples. However, if the target data distribution has
multiple modes, the transport map of previous generative works is
discontinuous. DNNs can only represent continuous mappings, the
intrinsic conflict causes mode collapse. In this work, we propose to
employ optimal transport to avoid mode collapse for unconditional
human motion synthesis.

3 PRELIMINARIES
Optimal Transport Problem Let 𝜇 ∼ P(𝑋 ) and 𝜈 ∼ P(𝑌 ) be
two sets of probability measures defined on 𝑋 and 𝑌 . 𝑋 ⊂ R𝑑 and
𝑌 ⊂ R𝑑 are two subset of 𝑑-dimensional Euclidean space R𝑑 . The
density functions are: 𝜇 (𝑥) = 𝑓 (𝑥)𝑑𝑥 , 𝜈 (𝑦) = 𝑔(𝑦)𝑑𝑦. The total
measures are equal, 𝜇 (𝑥) = 𝜈 (𝑦). The optimal transport problem
can be attributed to Monge’s problem, as shown in Figure. 2. Given
a cost function 𝑐 (𝑥,𝑦): 𝑋 × 𝑌 → [0, +∞], which indicates the cost
of moving each unit mass from the source 𝑥 ∈ 𝑋 to the target𝑦 ∈ 𝑌 ,
the Monge’s problem seeks the most efficient 𝜇-measurable map 𝑇 :
𝑋 → 𝑌 by

(𝑀𝑃) inf
𝑇

∫
𝑋

𝑐 (𝑥,𝑇 (𝑥))𝑑𝜇 (𝑥)

subject to 𝜈 = 𝑇#𝜇,
(1)

where 𝑇#𝜇 denotes the push-forward measure induced by 𝑇 . The
map 𝑇 is measure-preserving: if for any measurable set 𝐵 ∼ 𝑌 , the
set 𝑇 −1 (𝐵) is 𝜇-measurable and 𝜇 (𝑇 −1 (𝐵)) = 𝜈 (𝐵). The measure-
preserving condition is denoted as 𝑇#𝜇 = 𝜈 . A minimum 𝑇 ∗ to this
problem is called an OT map. Intuitively, Monge’s problem finds a
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Figure 3: The illustration of the human motion reconstruction network, which consists of the encoder and generator. Both are
implemented by the GRU and transformer network.

transport to turn the mass of 𝜇 into 𝜈 at the minimal cost measured
by the cost function 𝑐 .

Optimal Transportation Map The solution to Monge’s prob-
lem is called the optimal transportation map, whose total trans-
portation cost is called the Wasserstein distance between 𝜇 and 𝜈 ,
denoted asW𝑐 (𝜇, 𝜈).

W𝑐 (𝜇, 𝜈) = min
𝑇#𝜇=𝜈

∫
𝑋

𝑐 (𝑥,𝑇 (𝑥))𝑑𝜇 (𝑥). (2)

However, it has two drawbacks, 𝜇-mass cannot be split leading
to hard constraints, its transport map may not exist. To overcome
the above shortcomings, Kantorovich [15] relaxed transport maps
into transport plans, and in turn, raised the Kantorovich problem.

Kantorovich Problem Suppose 𝑋 ⊂ R𝑑 , 𝑌 ⊂ R𝑑 are two
subsets of the Eucidean space R𝑑 , 𝜇 =

∑𝑚
𝑖=1 𝜇𝑖𝛿 (𝑥 − 𝑥𝑖 ), 𝜈 =∑𝑛

𝑗=1 𝜈 𝑗𝛿 (𝑦 −𝑦𝑖 ) are two discrete probability measure defined on 𝑋
and 𝑌 with equal total measure,

∑𝑚
𝑖=1 𝜇𝑖 =

∑𝑛
𝑗=1 𝜈 𝑗 . Then the Kan-

torovich Problem aims to find the optimal transport plan 𝑃 = (𝑝𝑖 𝑗 )
that minimizes the total transport cost:

(𝐾𝑃) 𝑚𝑖𝑛𝑃∈𝜋 (𝜇,𝜈 )

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑝𝑖 𝑗𝑐𝑖 𝑗 (3)

where 𝑐𝑖 𝑗 = 𝑐 (𝑥𝑖 , 𝑦 𝑗 ) is the cost that transports one unit mass from
𝑥𝑖 to 𝑦𝑖 , and 𝜋 (𝜇, 𝜈) = {𝑃 |

∑𝑚
𝑖=1 𝑝𝑖 𝑗 = 𝜈 𝑗 ,

∑𝑛
𝑗=1 𝑝𝑖 𝑗 = 𝜇𝑖 , 𝑝𝑖 𝑗 ≥ 0} is

the coupling measure.
Brenier’s Approach For quadratic Euclidean distance cost, the

existence, uniqueness, and intrinsic structure of the optimal trans-
portation map were proven by Brenier [5].

Briener Potential Theorem Suppose𝑋 and𝑌 are the Euclidean
space R𝑑 and the transportation cost is the quadratic Euclidean
distance 𝑐 (𝑥,𝑦) = 1/2∥𝑥 − 𝑦∥2. Furthermore 𝜇 is absolutely con-
tinuous, 𝜇 and 𝜈 have finite second order moments,

∫
𝑋
|𝑥 |2𝑑𝜇 (𝑥) +∫

𝑌
|𝑦 |2𝑑𝜈 (𝑦) < ∞, then there exists a convex function 𝑢 : 𝑋 → R,

the so-called Briener potential, its gradient map ∇𝑢 gives the solu-
tion to the Monge’s problem,

(∇𝑢)#𝜇 = 𝜈. (4)

The Brenier potential is unique upto a constant, hence the optimal
transportation map is unique. 𝑢 is called a Brenier solution.

Legendre Transform Given a function 𝜑 : R𝑛 → R, its Le-
gendre Transform is defined as follows:

𝜑∗ (𝑦) := sup
𝑥
(⟨𝑥,𝑦⟩ − 𝜑 (𝑥)) . (5)

4 METHOD
In this section, we first briefly introduce the overview of our task
from an optimal transport perspective. Then we describe the re-
construction process of human motions. Finally, we explain how
we compute the optimal transport map, including the matching
learning and the process of generating new samples.

4.1 Overview
An overview of the MOOT method is illustrated in Figure. 1. Our
key idea is to synthesize diverse and natural human motions un-
conditionally by training a human motion generation model. The
MOOT mainly involved in two stages, one is the human motion
reconstruction (Section 4.2), the other is optimal mapping and gen-
eration module (Section 4.3). The human motion reconstruction
network, implemented by the GRU and transformer network, which
intends to learn the manifold embedding of human motions, the
detail is described in Figure. 3. The optimal mapping and generation
module aims to calculate the optimal transportation map 𝑇 that
aligns the noise distribution with the latent space distribution of
human motions, then generate new human motions by combining
the generator of reconstruction network, the detail is described in
Figure. 4. Given a random noise, the proposed method can generate
diverse and natural human motion sequences through the learned
optimal transport mapping.

4.2 Human Motion Reconstruction
The human motion reconstruction network aims to learn the mani-
fold embedding of human motions, the detail is described in Fig-
ure. 3. Specifically, given a sequence of human motion sequence
𝑋 = {𝑥1, 𝑥2, · · · , 𝑥𝑁 }, the encoder 𝑓𝜃 is trained to encode the hu-
man motions into latent space 𝑍 , which maps the human motion
distribution into the latent code distribution. Then the generator
𝑔𝜉 decodes the latent representation to the data manifold. In this
work, both the encoder and generator are implemented by the GRU
and transformer network. As shown in Figure. 3, the transformer
focuses on the inter-dependencies among human joints within the
same time step. For the transformer process, when modeling the
human motion sequences at time 𝑡 (𝑡 ∈ {1, 2, . . . ,𝑇 }), we project the
whole sequence of joint embedding 𝑬𝑡 = [𝒆 (1)𝑡 , . . . , 𝒆 (𝑎)𝑡 ]𝑁 into ma-
trices 𝑸 , 𝑲 , and 𝑽 by𝑾𝑄 ,𝑾𝐾 ,𝑾𝑉 . 𝑸 = 𝑬𝑡𝑾𝑄 , 𝑲 = 𝑬𝑡𝑾𝐾 , and
𝑽 = 𝑬𝑡𝑾𝑉 . The number of used human joint is 𝑎 (𝑎 ∈ {1, 2, . . . , 𝐴}).
The summary of the spatial joints �̃�𝑡 is calculated by aggregating all
the joint information using the multi-head mechanism. The 𝐺𝑅𝑈𝜙



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Towards Efficient and Diverse Generative Model for Unconditional Human Motion Synthesis ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Optimal Sample Generation

Extended 
OT Map �𝑻𝑻

Cell Decomposition
Noise distribution Generated Human Motion Sequences

. . .  

Generator

Transformer

GRU

Latent Space Z
Distribution

OT Map 𝑻𝑻

𝑊𝑊𝑖𝑖

𝑧𝑧𝑖𝑖

𝛀𝛀

𝑚𝑚

𝑐𝑐𝑖𝑖

𝝁𝝁𝝊𝝊

Figure 4: The process of computing optimal transport (OT) map 𝑇 and generating new samples. The extended OT map 𝑇 aligns
with the latent space of human motions, and combines with the generator to sample new human motions. The red triangle 𝑐𝑖
denotes the center of each cell𝑊𝑖 .

with parameter 𝜙 intends to capture the smoothness property of
human motions, and then encode the human motions into latent
space 𝑍 . The formula for using the encoder to map the human
motions into latent space is computed as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇√︁
𝑑𝑘

)𝑉 ,

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑸 (𝑖 ) ,𝑲 (𝑖 ) , 𝑽 (𝑖 ) ),

�̃�𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑𝐻 )𝑾 (𝑂 ) ,
𝑍 =← 𝐺𝑅𝑈𝜙 (�̃�𝑡 ),

(6)

where𝑊 (𝑂 ) denotes the concatenationweight matrix, the attention
is computed by dot products of the query 𝑸 with all keys 𝑲 , divide
each by

√︁
𝑑𝑘 , and apply a softmax function to obtain the weights

on the values 𝑽 . In addition, the architecture of the generator is the
same as the encoder. The generator aims to map the latent space 𝑍
back to the reconstructed human motion sequence 𝑋 . To train the
reconstruction network, the mean-square-error (MSE) loss function
is utilized to measure the difference between the reconstructed and
the original motion sequences. Specifically, we constrain the per-
joint 𝐿2 distance on human joints. 𝑋 and 𝑋 are the input and the
reconstructed motion sequences, respectively. The reconstruction
loss is defined as follows:

𝐿(𝑋,𝑋 ) =
𝑇∑︁
𝑡=1

𝐴∑︁
𝑎=1
∥ 𝑥 (𝑎)𝑡 − 𝑥 (𝑎)𝑡 ∥2 (7)

where 𝐴 and 𝑇 denote the number of joints and the generated
sequence length, respectively. The calculated results contain the
spatial and temporal information of human motion sequences, and
map the human motions into latent space 𝑍 . The human motion
reconstruction process is the first stage of MOOT, which learns the
manifold embedding of human motions.

4.3 Optimal Mapping and Generation Module
After learning the process of human motion reconstruction, previ-
ous generative methods aimed to increase the diversity of human
motions by utilizing a generator based on DNNs. This generator
transformed a known continuous distribution, such as Gaussian
white noise, into the real distribution of human motions. However,
the sampled human motions from the noise tend to concentrate
primarily on the most dense areas of the dataset, resulting in mode
collapse and mixture. To address this issue, we introduce optimal

transport mapping to generate a wider range of diverse human mo-
tions, which consists of two stages, i.e., optimal matching modeling
and optimal sample generation.

Optimal Matching Modeling. Optimal matching modeling
aims to match the noise distribution with the latent space of hu-
man motions, which involves learning the optimal transport map
(OT map) 𝑇 , as shown in Figure. 4. In this work, the noise dis-
tribution 𝜇 is continuous that defined on a convex domain Ω ⊂
R𝑑 , the latent space domain of human motions is a discrete set,
𝑍 = {𝑧1, 𝑧2, · · · , 𝑧𝑁 }, 𝑧𝑖 ∈ R𝑑 , which is a Dirac measure, 𝜈 =∑𝑛
𝑖=1 𝜈𝑖𝛿 (𝑧 − 𝑧𝑖 ), 𝑖 = 1, 2, . . . , 𝑁 , with the equal total mass as the

noise measure, 𝜇 (Ω) = ∑𝑛
𝑖=1 𝜈𝑖 .We random draw𝑀 samples from

𝜇 distribution, under a transport map 𝑇 : Ω → 𝑍 , a cell decom-
position is induced Ω =

⋃𝑛
𝑖=1𝑊𝑖 , such that every𝑚 in each cell

𝑊𝑖 is mapped to the target 𝑧𝑖 ,𝑇 : 𝑚 ∈ 𝑊𝑖 ↦→ 𝑧𝑖 . The map 𝑇 is
measure preserving, denoted as 𝑇#𝜇 = 𝜈 , if the 𝜇-volume of each
cell𝑊𝑖 equals to the 𝜈-measure 𝑇 (𝑊𝑖 ) = 𝑧𝑖 , 𝜇 (𝑊𝑖 ) = 𝜈𝑖 . The cost
function is given by 𝑐 : Ω × 𝑍 → R represent the cost for trans-
porting a unit mass from 𝑚 to 𝑧. The total cost of 𝑇 is given by∫
Ω 𝑐 (𝑚,𝑇 (𝑚))𝑑𝜇 (𝑚) =

∑𝑛
𝑖=1

∫
𝑊𝑖
𝑐 (𝑚, 𝑧𝑖 )𝑑𝜇 (𝑚). The introduced op-

timal transport map is the measure-preserving map that minimizes
the total cost, 𝑇 ∗ := argmin𝑇 #𝜇=𝜈

∫
Ω 𝑐 (𝑚,𝑇 (𝑚))𝑑𝜇 (𝑚) .

When the cost function is the 𝐿2 distance 𝑐 (𝑚, 𝑧) = 1/2∥𝑚 −𝑧∥2,
Brenier’s theorem claims that the optimal transport map is given by
the gradient map of a piece-wise (PL) convex function, the so-called
Brenier potential 𝑢ℎ : Ω → R, 𝑢ℎ (𝑚) := max𝑛

𝑖=1{𝜋ℎ,𝑖 (𝑚)}, where
𝜋ℎ,𝑖 (𝑚) = ⟨𝑚, 𝑧𝑖 ⟩ + ℎ𝑖 is the hyperplane corresponding to 𝑧𝑖 ∈ 𝑍 .
The vector ℎ is the unique optimizer of the following convex energy
under the condition that

∑
𝑖 ℎ𝑖 = 0,

𝐸 (ℎ) =
∫ ℎ

0

𝑛∑︁
𝑖=1

𝑤𝑖 (𝜂)𝑑𝜂𝑖 −
𝑛∑︁
𝑖=1

ℎ𝑖𝜈𝑖 , (8)

where𝑤𝑖 (𝜂) is the 𝜇-volume of𝑊𝑖 (𝜂). The convex energy 𝐸 (ℎ) can
be optimized simply by gradient descend method with ∇𝐸 (ℎ) =
(𝑤𝑖 (ℎ) − 𝜈𝑖 )𝑇 . The key is to compute the 𝜇-volume𝑤𝑖 (ℎ) of each
cell𝑊𝑖 (ℎ). We draw𝑀 random samples from noise distribution, we
can find𝑊𝑖 in which𝑚 𝑗 ∈ 𝑊𝑖 by 𝑖 = argmax𝑖 {⟨𝑚 𝑗 , 𝑧𝑖 ⟩ + ℎ𝑖 }, 𝑖 =
1, 2, . . . , 𝑀 . When𝑀 is large enough, �̂�𝑖 (ℎ) converges to𝑤𝑖 (ℎ). The
gradient of the energy is approximated as ∇𝐸 (ℎ) ≈ (�̂�𝑖 (ℎ) − 𝜈𝑖 )𝑇 .
We use adam algorithm to minimize the energy. Sampling of𝑚 is
independent of each other and finding the cell that 𝑚 is located
only involves matrix multiplication and sorting. In this way, each
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Algorithm 1 Optimal Sample Generation.

Require: Latent codes 𝑍 = {𝑧1, 𝑧2, · · · , 𝑧𝑁 }, latent code distribu-
tion 𝜈 , number of random samples 𝑀 , number of samples to
generate 𝑝 .

Ensure: Generated new samples 𝑝 .
1: Initialize 𝐸 (ℎ) = 𝑧𝑒𝑟𝑜𝑠 (𝑛).
2: repeat
3: Sample𝑀 uniformly from noise distribution {𝑚 𝑗 }𝑀𝑗=1.
4: Calculate ∇𝐸 (ℎ) = (�̂�𝑖 (ℎ) − 𝜈𝑖 )𝑇 .
5: ∇𝐸 (ℎ) = ∇𝐸 (ℎ) -𝑚𝑒𝑎𝑛(∇𝐸 (ℎ)).
6: Update 𝐸 (ℎ) by adam algorithm.
7: until Converge
8: Optimal transport map 𝑇 (·) ← ∇(max𝑖 ⟨·, 𝑧𝑖 ⟩ + ℎ𝑖 ).
9: repeat
10: Sample𝑚 ∼ 𝜇, Find the smallest 𝑑 + 1 vertex around𝑚 as

{𝑐𝑖0 , 𝑐𝑖1 , . . . , 𝑐𝑖𝑑 }.
11: Generate latent code 𝑇 (𝑚) = ∑𝑑

𝑘=0 𝜆𝑘𝑧𝑖𝑘 with
∑𝑑
𝑘=0 𝜆𝑘 = 1.

12: until Generate new samples 𝑝 .

random sample from the noise distribution is aligned with the latent
code distribution.

Optimal Sample Generation. The above process describes the
matching modeling process that aims to align latent space with the
noise distribution, but this process does not generate new samples.
Therefore, we extend the optimal transport map 𝑇 to a piecewise
linear mapping 𝑇 . The projection in the source domain induces
a cell decomposition of Ω, of which each cell is of 𝜇-volume 𝜈𝑖
and is mapped to the corresponding 𝑧𝑖 . By representing the cells
of 𝜇-volume centers as 𝑐𝑖 :=

∫
𝑊𝑖 (ℎ)𝑚𝑑𝜇 (𝑚), then the point-wise

map 𝑐𝑖 ↦→ 𝑧𝑖 . The cell decomposition induces a triangulation of the
centers 𝐶 = {𝑐𝑖 } : 𝑖 𝑓𝑊𝑖 ∩𝑊𝑗 ≠ ∅, then 𝑐𝑖 is connected with 𝑐 𝑗 to
form an edge [𝑐𝑖 , 𝑐 𝑗 ]. Similarly, if𝑊𝑖0 ∩𝑊𝑖1 · · ·∩𝑊𝑖𝑘 ≠ ∅ then there
is a 𝑘-dimensional simplex [𝑐𝑖0 , 𝑐𝑖1 , . . . , 𝑐𝑖𝑘 ] . All these simplices
form a triangulation of 𝐶 (a simplicial complex), denoted as T (𝐶).
We can triangulate 𝑍 in the same way to obtain the triangulation
T (𝑍 ). Once a random sample𝑚 is drawn from the distribution 𝜇,
we can find the simplex𝜎 in𝑇 (𝐶) containing𝑚. Assume the simplex
𝜎 has 𝑑 + 1 vertices {𝑐𝑖0 , 𝑐𝑖1 , . . . , 𝑐𝑖𝑑 }, the bary-centric coordinates
of𝑚 in 𝜎 is defined as𝑚 =

∑𝑑
𝑘=0 𝜆𝑘𝑐𝑖𝑘 , and

∑𝑑
𝑘=0 𝜆𝑘 = 1 with all

𝜆𝑘 non-negative. Then the generated latent code of𝑚 under this
piece-wise linear map is given by𝑇 (𝑚) = ∑𝑑

𝑘=0 𝜆𝑘𝑧𝑖𝑘 , then the𝑚 is
mapped to be 𝑇 (𝑚). 𝑧𝑖 is used to construct the simplicial complex
T (𝑍 ) in the support of the target distribution, we can guarantee
that no mode is lost. The algorithm for optimal sample generation
is shown in Algorithm. 1.

In summary, MOOT can synthesize diverse and natural human
motion sequences through the above-mentioned two stages. The
human motion reconstruction network learns a structured well-
structured laent space of human motions through an encoder. The
optimal matching aims to match the noise distribution with the
latent space distributions. To generate new samples, we extend the
OT map to point-wise mapping 𝑇 , and then combining the gen-
erator of the reconstruction network to generate human motions.
Finally, MOOT can fully capture the potential diversity from a given
distribution for unconditional human motion synthesis.

5 EXPERIMENTAL DESIGN
In this section, the experimental design will be described, encom-
passing the popular human motion datasets, parameter settings,
evaluation metrics, and baseline methods.

5.1 Datasets
The experiments are conducted on four widely used motion cap-
ture datasets, i.e., Human3.6M (H3.6M) [14], HumanEva-I [27],
HumanAct12[9], and GRAB [4]. H3.6M consists of 11 subjects
and 3.6 million frames at 50 Hz. The proposed method trains a
model on five subjects (S1, S5, S6, S7, and S8) and is then tested
on two subjects (S9 and S11). HumanEva-I contains 3 subjects
recorded at 60 Hz, each of which performs 5 action categories. The
pose is represented by 15 joints.HumanAct12 contains 12 subjects
in which 12 categories of actions with per-sequence annotation
are provided. The sequences with less than 35 frames are removed,
which results in 727 training and 197 testing sequences. Subjects
P1 to P10 are used for training, P11 and P12 are used for testing.
GRAB consists of 10 subjects interacting with 51 different objects,
performing 29 different actions. We use 8 subjects (S1-S6, S9, S10)
for training and the remaining 2 subjects (S7, S8) for testing.

5.2 Parameter Settings
For the parameter settings of the experiments, the batch size is set
to 128, and the number of used human joints is 16. The number
of multi-head in transformer is set to 8. The number of vertices 𝑑
to compute the bary-centric is set to 5. In this work, 𝜇 = 𝜈 = 1

𝑁
.

The sampled𝑀 and 𝑁 are set to 4990 and 1000 × 128, respectively.
The proposed method is implemented based on the PyTorch frame-
work in Python 3.6. To guarantee the convergence of the proposed
method, the Adam optimizer is adopted to train our model. The
learning rate is initially set to 10−2 with a 0.98 decay every 10
epochs. The proposed method is trained for 500 epochs.

5.3 Evaluation Metrics
In addition, for a fair comparison, ourmethod employs the following
evaluation metrics: APD, ADE, FDE, Multi-Modal ADE, and FDE
metrics (MMADE and MMFDE). APD metric aims to evaluate the
diversity of the results, while the other four metric aim to evaluate
the accuracy. In particular, lower is better for all metrics except the
APD metric.

5.4 Baseline Methods
In this work, we compare the proposedmethod with state-of-the-art
methods using the VAEs, GANs and DMs for unconditional human
motion synthesis, including Dlow [36], MT-VAE [34], MOJO [40],
HP-GAN [2], GSPS [21], BeLFusion [1], MotionDiff [32], MDM [29]
and ACTOR [25].

6 RESULTS AND ANALYSIS
The section endeavors to provide a comprehensive analysis of the
experimental results for accuracy and diversity, including the quan-
titative comparison results between the state-of-the-art methods
and the proposed method, ablation studies, and qualitative analysis.
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Table 1: The comparison results between the proposed method and state-of-the-art methods on Human3.6M and HumanEva-I
datasets. The best results are in bold. Lower is better for all metrics except the APD metric.

Method Human3.6M HumanEva-I
APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓

DLow(ECCV’20) 11.741 0.425 0.518 0.495 0.531 4.855 0.251 0.268 0.362 0.339
MOJO(CVPR’21) 12.579 0.412 0.514 0.497 0.538 4.181 0.234 0.244 0.369 0.347
MT-VAE(ECCV’18) 10.403 0.457 0.595 0.716 0.883 9.021 0.345 0.403 0.518 0.577
MoDi(CVPR’23) 17.57 0.761 0.635 0.818 0.799 12.730 0.402 0.534 0.497 0.538

HP-GAN(CVPRW’18) 7.214 0.858 0.867 0.847 0.858 1.139 0.772 0.749 0.776 0.769
GSPS(ICCV’21) 14.757 0.389 0.496 0.476 0.525 5.825 0.233 0.244 0.343 0.331
MDM(arXiv’22) 16.024 0.602 0.616 0.714 0.721 15.126 0.345 0.403 0.518 0.577
Actor(ICCV’21) 14.104 0.625 0.810 0.532 0.354 13.239 0.334 0.244 0.369 0.347

BeLFusion(ICCV’23) 7.602 0.372 0.474 0.473 0.507 9.376 0.513 0.560 0.569 0.585
MotionDiff(AAAI’23) 15.353 0.411 0.509 0.508 0.536 5.931 0.232 0.236 0.352 0.320

MOOT(Ours) 18.404 0.342 0.303 0.301 0.317 16.894 0.203 0.106 0.213 0.161

Table 2: The comparison results between the proposed method and state-of-the-art methods on ACCAD and HumanAct-12
datasets. The best results are in bold. Lower is better for all metrics except the APD metric.

Method GRAB HumanAct-12
APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓

DLow(ECCV’20) 14.295 0.432 0.924 1.261 2.362 0.532 1.328 1.371 0.926 0.734
MOJO(CVPR’21) 17.353 0.411 0.509 0.508 0.536 5.931 0.232 0.236 0.352 0.320
MoDi(CVPR’23) 25.349 1.993 3.141 2.042 3.202 14.357 0.452 0.621 0.532 0.481

HP-GAN(CVPRW’18) 18.132 0.448 0.533 0.514 0.544 13.214 0.858 0.867 0.847 0.858
GSPS(ICCV’21) 17.251 0.544 0.595 0.716 0.883 12.346 0.461 0.560 0.522 0.569
MDM(arXiv’22) 15.622 0.311 0.504 0.408 0.516 10.156 0.419 0.541 0.516 0.572
Actor(ICCV’21) 11.740 0.493 0.592 0.550 0.599 13.538 0.573 0.290 0.564 0.440

BeLFusion(ICCV’23) 15.310 0.432 0.526 0.534 0.557 14.199 0.992 0.448 0.541 0.526
MOOT(Ours) 29.404 0.204 0.326 0.513 0.487 18.496 0.331 0.251 0.212 0.241

Table 3: The influence of the introduced OT on the diversity and accuracy results.

Method GRAB HumanAct-12
APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓ APD ↑ ADE ↓ FDE ↓ MMADE ↓ MMFDE ↓

MoDi(3D Conv+linear layers) 15.402 0.462 0.625 1.491 0.661 14.357 0.452 0.621 0.532 0.481
MOOT (3D Conv+OT) 20.865 0.291 0.348 0.526 0.541 18.096 0.411 0.293 0.322 0.301

MOOT 29.404 0.204 0.326 0.513 0.487 18.496 0.331 0.251 0.212 0.241

6.1 Comparison to Existing Methods
Table 1 and Table 2 summarize the diversity and accuracy results
of the proposed method and baseline methods on the used human
motion datasets over VAEs, GANs, and DMs-based methods. From
the empirical evidence, it is observed that the proposed method
consistently outperforms all the baselines based on all the evalua-
tion metrics, particularly demonstrating significant improvements
in terms of diversity measures, under the setting of unconditional
human motion synthesis. Specifically, MOOT demonstrates a re-
markable performance improvement over VAE-based approaches,
surpassing these methods by a margin of approximately 8 percent-
age points in terms of the diversity (APD) metric. Similarly, MOOT
achieves approximately 7 percentage points higher scores than
GAN-based approaches, indicating its ability to generate more ac-
curate and diverse human motions. Furthermore, concerning the
DMs-based approaches, including MDM, Belfusion, and MotionDiff,
MOOT achieves approximately 4 percentage points higher scores
concerning the diversity metric. Overall, all these results emphasize

that MOOT can significantly improve the diversity while assuring
the accuracy of unconditional synthesized human motions.

6.2 Ablation Studies
Ablation studies are conducted to justify the influence of introduced
optimal matching module in MOOT on diversity and accuracy, as
shown in Table 3. Note that MoDi [26] presents a StyleGAN-based
style generative model. They utilized 3D convolutions network
as the backbone, and employed a mapping network that mapped
noise into latent space, which is implemented by the MLP with
several DNNs linear layers. To demonstrate the efficacy of the pro-
posed MOOT method, we first utilize the same backbone network
as MoDi, and tests different mapping styles to assess their impact
on diversity and accuracy metrics. From the results, it is observed
that the mapping styles have the greatest impact on the diversity
metric of the results. Secondly, we test the difference of different
backbone networks for the results, and using GRU and transformer
as the encoder and generator network. These results show slightly
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Human3.6M

Figure 5: Qualitative results. The synthesized high-quality, diverse human motion sequences on the Human3.6M dataset.

HumanEva-I
Figure 6: Qualitative results. The synthesized multiple human motion sequences on the HumanEva-I dataset.

improvement on the accuracy metrics. These findings again indi-
cate that the influence of MOOT in enhancing the diversity while
assuring the accuracy of unconditional human motion synthesis.

6.3 Qualitative Results
In this section, we show the qualitative results of the proposed
method on the Human3.6M and HumanEva-I datasets. As depicted
in Figure. 5 and Figure. 6. All human motion sequences are un-
conditionally generated from random noise. Specifically, we first
sample a random vector from noise distribution, and map it into a
well-structured latent space using the introduced optimal matching,
then generate diverse human motions combining the generator.
These qualitative results demonstrate that MOOT can generate
diverse and coherent human motion sequences.

7 CONCLUSION
This paper introduces a novel method called MOOT for uncondi-
tional human motion synthesis. MOOT aims to address the issues

of mode collapse and mode mixture in generated human motion se-
quences through the optimal transport mapping. Firstly, the MOOT
method employs a human motion reconstruction network to learn
the manifold embedding of human motions. This module com-
bines GRU and transformer networks as the encoder and generator
backbone network to capture temporal smoothness and spatial re-
lationships among human motions. Secondly, MOOT utilizes the
optimal transport mapping to align the noise distribution with the
latent space distribution of human motions. The optimal transport
mapping is computed using gradient mapping based on Brenier’s
theorem, which helps alleviate the issue of discontinuity caused by
DNNs. Effective exploration of the Brenier potential and optimal
transport mapping is achieved through optimization algorithms,
thereby overcoming the problems of mode collapse and mode mix-
ture that exist in current unconditional human motion generation
methods. Finally, extensive experimental results demonstrate the
efficacy of the proposed MOOTmethod in the task of unconditional
human motion synthesis.
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