
Under review as a conference paper at ICLR 2024

SUPPRESSING OVERESTIMATION IN Q-LEARNING
THROUGH ADVERSARIAL BEHAVIORS

Anonymous authors
Paper under double-blind review

ABSTRACT

The goal of this paper is to propose a new Q-learning algorithm with a dummy
adversarial player, which is called dummy adversarial Q-learning (DAQ), that
can effectively regulate the overestimation bias in standard Q-learning. With the
dummy player, the learning can be formulated as a two-player zero-sum game.
The proposed DAQ unifies several Q-learning variations to control overestima-
tion biases, such as maxmin Q-learning and minmax Q-learning (proposed in this
paper) in a single framework. The proposed DAQ is a simple but effective way
to suppress the overestimation bias thourgh dummy adversarial behaviors and can
be easily applied to off-the-shelf reinforcement learning algorithms to improve the
performances. A finite-time convergence of DAQ is analyzed from an integrated
perspective by adapting an adversarial Q-learning. The performance of the sug-
gested DAQ is empirically demonstrated under various benchmark environments.

1 INTRODUCTION

Q-learning (Watkins & Dayan, 1992) stands as one of the most foundational and widely-adopted re-
inforcement learning algorithms (Sutton & Barto, 2018) and has been the subject of extensive study
in several works (Jaakkola et al., 1994; Tsitsiklis, 1994; Borkar & Meyn, 2000; Zou et al., 2019; Qu
& Wierman, 2020; Xiong et al., 2020; Lee, 2023). Although Q-learning is known to converge to the
optimal solution, it has been reported in Thrun & Schwartz (1993) that the intermediate iterates of
the algorithm may suffer from maximization bias during the learning process, due to the presence
of the max operator in its update formulations. Notably, the maximization bias is especially pro-
nounced when the number of actions at a given state is substantial. To mitigate this bias, Double
Q-learning was introduced in Hasselt (2010). This approach employs dual estimators and eliminates
the max operator in the update, using an effective combination of the two estimators. More recently,
the so-called maxmin Q-learning was proposed in Lan et al. (2020) as a means to mitigate overes-
timation bias. This approach introduces multiple Q-estimators and incorporates the min operator to
counterbalance the bias induced by the max operator. A similar concept has also been presented
in Fujimoto et al. (2018) to diminish overestimation bias in actor-critic algorithms. This is achieved
by employing double Q-estimators and incorporating the min operator between the two estimators
to counteract the inherent bias.

The main objective of this paper is to introduce a novel variant of Q-learning – termed Dummy Ad-
versarial Q-learning (DAQ). This variant incorporates an additional dummy adversarial player and
offers a unified framework that encompasses existing approaches. Specifically, it includes maxmin
Q-learning, as proposed in Lan et al. (2020), and minmax Q-learning, introduced in this paper as
a minor variant of the maxmin version, as special cases within this framework. Beyond this, the
framework affords a unified perspective, aiding in the comprehension of the existing maxmin and
minmax Q-learning algorithms and facilitating the analysis of their finite-time convergence in a
unified fashion.

Specifically, DAQ deploys multiple Q-estimators akin to maxmin Q-learning (Lan et al., 2020), yet
with additional modifications to the reward function involving the integration of constant shifts, all
while preserving the original objective. The core intuition in DAQ stems from the notion that it
can be interpreted as introducing a dummy player within the intrinsic Markov decision process,
thus establishing a two-player zero-sum Markov game (Shapley, 1953). The dummy player strives
to minimize the return without influencing the environment, which subsequently enables effective

1

Under review as a conference paper at ICLR 2024

regulation of overestimation biases in the Q update formulations. Consequently, it has been estab-
lished that DAQ is equivalent to Minimax Q-learning (Littman, 1994), an algorithm formulated for
zero-sum two-player Markov games (Shapley, 1953). Therefore, its convergence can be analyzed
by directly applying existing analytical frameworks such as Littman & Szepesvári (1996) and Lee
(2023) with minimal alterations, which are also included in this paper.

We anticipate that the principles in DAQ can be integrated into existing value-based reinforcement
learning algorithms, potentially enhancing their performance. Finally, we furnish comprehensive
empirical experiments to validate the effectiveness of the proposed DAQ across diverse benchmark
tasks.

1.1 RELATED WORKS

To mitigate overestimation bias, several approaches have been introduced. Double Q-learning, as
described in Hasselt (2010), utilizes dual estimators and removes the max operator in the update,
employing an effective blend of the two estimators. maxmin Q-learning presented in Lan et al.
(2020), introduces multiple Q-estimators and integrates the min operator to counteract the bias re-
sulting from the max operator. A concept akin to this has been developed in Fujimoto et al. (2018),
which involves the use of double Q-estimators and the incorporation of the min operator between
the two estimators to neutralize the inherent bias. Bias-corrected Q-learning is proposed in Lee et al.
(2013), applying intricate bias-correction terms. Weighted double Q-learning (Zhang et al., 2017)
manages a weight between a single estimate and double estimates. Moreover, it was reported in Ren
et al. (2021) that Double Q-learning might introduce underestimation biases, potentially leading to
multiple non-optimal fixed points.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS

For reference, we first briefly introduce the standard Markov decision problem (MDP) (Puterman,
2014), where a decision-making agent sequentially takes actions to maximize cumulative discounted
rewards in environments called the Markov decision process. A Markov decision process is a math-
ematical model of dynamical systems with the state-space S := {1, 2, . . . , |S|} and action-space
A := {1, 2, . . . , |A|}. The decision maker selects an action a with the current state s, then the state
transits to a state s′ with probability P (s, a, s′), and the transition incurs a reward r(s, a, s′), where
P (s, a, s′) is the state transition probability from the current state s ∈ S to the next state s′ ∈ S
under action a ∈ A, and r(s, a, s′) is the reward function. At time t ≥ 0, let s = st, a = at
and s′ = st+1. For convenience, we consider a deterministic reward function and simply write
r(st, at, st+1) =: rt, t ∈ {0, 1, . . .}. A (deterministic) policy π : S → A maps a state s ∈ S
to an action π(s) ∈ A. The objective of the Markov decision problem (MDP) is to find a (deter-
ministic) optimal policy π∗ such that the cumulative discounted rewards over infinite time horizons
is maximized, i.e., π∗ := argmaxπ∈Θ E [

∑∞
t=0 γ

trt|π], where γ ∈ [0, 1) is the discount factor
and Θ is the set of all admissible deterministic policies. The Q-function under policy π is de-
fined as Qπ(s, a) = E [

∑∞
t=0 γ

trt| s0 = s, a0 = a, π], and the optimal Q-function is defined as
Q∗(s, a) = Qπ∗

(s, a) for all s ∈ S, a ∈ A. Once Q∗ is known, then an optimal policy can be re-
trieved by the greedy policy π∗(s) = argmaxa∈A Q∗(s, a). Q-learning (Watkins & Dayan, 1992) is
one of the most fundamental and popular reinforcement learning algorithms (Sutton & Barto, 2018)
to solve MDP, whose Q-estimator update defined by

Q(st, at)← Q(st, at) + α [r(st, at, st+1) + γmaxa′∈AQ(st+1, a
′)−Q(st, at)] (1)

where α > 0 is a step-size. The Q-estimator Q is known to converge to the optimal Q-function Q∗,
by which optimal policy π∗ can be retrieved.

2.2 TWO-PLAYER ZERO-SUM MARKOV GAME

In a two-player zero-sum Markov game (Shapley, 1953), two agents compete with each other to
maximize and minimize a return, respectively. Hereafter, these two agents will be called the user
and the adversary. The user’s goal is to maximize the return, while that of the adversary is to hinder

2

Under review as a conference paper at ICLR 2024

the user and minimize the return. We focus on an alternating two-player Markov game, where the
user and the adversary take turns selecting their actions. The user takes an action without knowledge
of the adversary. After that, the adversary observes the user’s action and then takes its action.

Additional to the state space S and the user’s action spaceA, we define the adversary’s action space
B := {1, 2, . . . , |B|}. After the user takes action a ∈ A in state s ∈ S, the adversary observes s
and a, then takes action b ∈ B. The state transits to s′ after the adversary’s turn, and yields a reward
based on the reward function r(s, a, b, s′). For the user’s policy π : S → A and the adversary’s
policy µ : S ×A → B, it is known that there exists an optimal policy for both user and adversary.

The seminal work by Littman (1994) introduced the following Minimax Q-learning, a Q-learning
algorithm designed for zero-sum two-player Markov games:

Q(st, at, bt)← Q(st, at, bt)+α [r(st, at, st+1) + γmaxa∈Aminb∈BQ(st+1, a, b)−Q(st, at, bt)] ,

where the actions of the user and adversary at, bt are selected following some behavior policies.
Subsequently, Littman & Szepesvári (1996) established the asymptotic convergence of Minimax
Q-learning towards the optimal value derived from game theory. Recently, Lee (2023) proposed
a finite-time convergence analysis of Minimax Q-learning based on the switching system model
developed in Lee et al. (2023). Later in this paper, we provide a new perspective that the proposed
Q-learning algorithms can be analyzed based on Minimax Q-learning for solving two-player zero-
sum Markov games.

3 CONTROLLING OVERESTIMATION BIASES

In this section, we briefly overview some existing algorithms that are designed to neutralize the
overestimation biases inherent in standard Q-learning.

3.1 MAXMIN Q-LEARNING

To control overestimation biases in the naı̈ve Q-learning, maxmin Q-learning was suggested in Lan
et al. (2020), which maintains N estimates of the Q-functions, Qi, and using the minimum of these
estimates for the Q-learning target. The corresponding update is given by

Qi(st, at)← Qi(st, at) + α

[
r(st, at, st+1) + γmax

a′∈A
min

j∈{1,...,N}
Qj(st+1, a

′)−Qi(st, at)

]
for some randomly selected i. When N = 1, the naı̈ve Q-learning is recovered. As N increases, the
updates tend to suppress the overestimation biases.

3.2 DOUBLE Q-LEARNING

A double estimator was first introduced in Double Q-learning (Hasselt, 2010) to reduce the overes-
timation of Q-learning induced by the max operator. The update is given as follows:

Qi(st, at)← Qi(st, at) + α [r(st, at, st+1) + γQj(st+1, argmaxa′∈AQi(st+1, a
′))−Qi(st, at)]

where i ∈ {1, 2} is randomly selected, and j = 1 if i = 2 and j = 2 when i = 1.

3.3 TWIN-DELAYED DEEP DETERMINISTIC POLICY GRADIENT (TD3)

Twin-delayed deep deterministic policy gradient (TD3) (Fujimoto et al., 2018) is an improved actor-
critic algorithm, which considered a target that takes the minimum between the two Q-estimates:
Y target = r(s, a, s′) + γminj∈{1,2} Qθ′

j
(s′, πϕi(s

′)) for a pair of actors πϕi and critics Qθi , and
targets πϕ′ and Qθ′ . This modification leads to reduced overestimation biases due to the newly
introduced min operator.

3

Under review as a conference paper at ICLR 2024

4 PROPOSED ALGORITHMS

4.1 MINMAX Q-LEARNING

First, we introduce a minor modification to maxmin Q-learning, accomplished by simply switching
the order of the min and max operators. In particular, consider the following update:

Qi(st, at)← Qi(st, at) + α

[
r(st, at, st+1) + γ min

j∈{1,...,N}
max
a′∈A

Qj(st+1, a
′)−Qi(st, at)

]
for all i ∈ {1, . . . , N} (synchronous case) or randomly selected i (asynchronous case), where N
represents the number of Q-estimators, the selection of which can be flexibly adapted depending
on the problem. We call this algorithm minmax Q-learning1. Although it represents a subtle mod-
ification of maxmin Q-learning, its characteristics have remained unexplored in existing literature
until now. In this paper, we provide experimental results demonstrating that the proposed minmax
Q-learning can also effectively regulate overestimation biases. Moreover, we will soon demonstrate
that minmax Q-learning can be integrated into a broader class of algorithms, named the Dummy Ad-
versarial Q-learning (DAQ), which will be introduced in the following subsection. This integration
enables a unified analysis and interpretation framework alongside maxmin Q-learning.

4.2 DUMMY ADVERSARIAL Q-LEARNING (DAQ)

In this paper, we introduce a novel Q-learning algorithm, termed Dummy Adversarial Q-learning
(DAQ), designed to exert more effective control over the overestimation biases induced by the max
operator. The algorithms are presented in two versions: the maxmin and the minmax versions, and
the corresponding Q-updates are summarized as follows.

Dummy Adversarial Q-learning (maxmin version)

Qi(st, at)← Qi(st, at) + α

[
r(st, at, st+1) + bi + γmax

a′∈A
min

j∈{1,...,N}
Qj(st+1, a

′)−Qi(st, at)

]
(2)

for all i ∈ {1, . . . , N} (synchronous case) or randomly selected i (asynchronous case).

Dummy Adversarial Q-learning (minmax version)

Qi(st, at)← Qi(st, at) + α

[
r(st, at, st+1) + bi + γ min

j∈{1,...,N}
max
a′∈A

Qj(st+1, a
′)−Qi(st, at)

]
(3)

for all i ∈ {1, . . . , N} (synchronous case) or randomly selected i (asynchronous case).

The main difference from the maxmin and minmax Q-learning algorithms lies in the modified re-
ward, r(st, at, st+1)+bi, where the constant bi depending on the Q-estimator index i is added to the
original reward when updating the target2. The constant shift terms bi can be either positive or neg-
ative, and either random or deterministic, contingent upon the environment, functioning as design
parameters. In subsequent sections, experimental results are presented to illustrate the impacts of
different choices of bi. Due to the constants, each estimator Qi learns a modified optimal Q-function

Q∗
i (s, a) := E

[∞∑
t=0

γt(r(st, at, st+1) + bi)

∣∣∣∣∣ s0 = s, a0 = s, π∗

]
which differs from the original optimal Q-function

Q∗(s, a) := E

[∞∑
t=0

γtr(st, at, st+1)

∣∣∣∣∣ s0 = s, a0 = s, π∗

]
1Note that our minmax Q-learning is different from Minimax Q-learning (Littman, 1994) which was de-

signed for a two-player Markov game.
2Unlike conventional reward shaping methods using shaping function F (s, a, s′) which depends on state

and action (Ng et al., 1999; Wiewiora et al., 2003), here we use a fixed constant.

4

Under review as a conference paper at ICLR 2024

with the constant bias
∑∞

t=0 γ
tE[bi] = E[bi]

1−γ , i.e., Q∗
i (s, a) −

E[bi]
1−γ = Q∗(s, a). Recalling

that our goal is to find an optimal policy and finding the optimal Q-function aids this, adding a
constant to the reward function does not affect the optimal policy which comes from a relative
comparison among Q-function values of the given state, i.e., π∗(s) = argmaxa∈AQ

∗(s, a) =
argmaxa∈AQ

∗
i (s, a), i ∈ {1, 2, . . . , N}.

A larger N might lead to slower convergence but has the potential to significantly mitigate over-
estimation biases. The reduction in convergence speed can be counterbalanced by a synchronized
update of the Q-iterate, a topic that will be elaborated upon in the ensuing subsection.

In summary, DAQ is capable of learning an optimal policy through the utilization of multiple Q-
estimators without modifying the original objective. However, the adjustments made to the rewards
and updates have the potential to regulate the overestimation biases arising from the max operator.

The fundamental intuition behind DAQ hinges on the viewpoint that it can be regarded as intro-
ducing a dummy player to the inherent Markov decision process, thereby establishing a two-player
zero-sum Markov game (Shapley, 1953). Consequently, DAQ can be interpreted as Minimax Q-
learning (Littman, 1994) for the Markov game, featuring a dummy player who, while not influenc-
ing the environment, can regulate the overestimation biases. These insights will be further detailed
in the subsequent sections. Lastly, we foresee the extension of this approach to deep Q-learning and
actor-critic algorithms as a viable means to augment their performances.

4.3 DISCUSSION ON ASYNCHRONOUS VERSUS SYNCHRONOUS UPDATES

There exist two potential implementations of DAQ: synchronous updates and asynchronous updates.
In asynchronous updates, each estimator i is randomly selected from some distribution µ. Con-
versely, in synchronous updates, all estimators i ∈ {1, 2, . . . , N} are updated at every iteration. A
trade-off emerges between convergence speed and computational cost per iteration step in these ver-
sions. The asynchronous version converges more slowly than the synchronous version, as it updates
only one estimator at a time, while the latter updates all estimators. However, the computational
cost per step is higher in the synchronous version. Note that in the synchronous version, with bi = 0
(in the case of minmax or maxmin Q-learning algorithms), all the Q-estimators will have identical
values at every step, provided the initial Q-estimators are not set randomly. Therefore, to implement
the synchronous version, one should either initialize the multiple Q-estimators randomly or apply
nonzero shifts bi, ideally choosing these shifts at random.

4.4 INTERPRETATION FROM THE TWO-PLAYER ZERO-SUM GAME

DAQ can be interpreted as the Minimax Q-learning algorithm for a two-player zero-sum game (Lee,
2023; Shapley, 1953; Littman, 1994). The index i of equation 2 and equation 3 can be interpreted as
the action selected by the adversary, r(st, at, st+1) + bi is the reward affected by both the user and
adversary, and B = {1, 2, . . . , N} is the action set of the adversary.

More specifically, consider the addition of a dummy player who, at each stage, executes an action
i ∈ B, incorporating the additional value bi into the reward r(st, at, st+1); that is, r(st, at, st+1)
becomes r(st, at, st+1) + bi. This player endeavors to minimize the return, the discounted summa-
tion of rewards, signifying its adversarial role, and thus reformulating the MDP into a two-player
zero-sum game. The dummy player’s action does not alter the inherent transition probabilities of
the MDP, preserving the user’s ability to attain its goal unimpeded. However, it can modify the
overestimation biases during the learning updates, serving as the core concept of DAQ. The Mini-
max Q-learning algorithm, which is suitable for a two-player zero-sum game, can be adapted to this
redefined game framework leading to

Q(st, at, i)← Q(st, at, i) + α

r(st, at, i)︸ ︷︷ ︸
=rt+bi

+γmaxa∈Aminj∈{1,...,N}Q(st+1, a, j)−Q(st, at, i)

and

Q(st, at, i)← Q(st, at, i) + α

r(st, at, i)︸ ︷︷ ︸
=rt+bi

+γminj∈{1,...,N}maxa∈AQ(st+1, a, j)−Q(st, at, i)

5

Under review as a conference paper at ICLR 2024

These algorithms are exactly identical to DAQ (minmax and maxmin versions) in this paper. Since
the adversary tries to minimize the reward, she or he may cause underestimation biases, regulating
the overestimation biases in the naı̈ve Q-learning. We observe that the adversarial actions have
no impact on the user’s goal as these actions are artificially incorporated into both the reward and
the Q-updates, rendering them redundant. However, the incorporation of such dummy adversarial
behavior can alter the overestimation biases.

Moreover, the sole distinction between the minmax and maxmin versions in DAQ lies in the re-
versed order of alternating turns. Specifically, within the maxmin version, the adversary holds more
advantages over the user as it can observe the actions undertaken by the user and respond accord-
ingly. This suggests that the algorithm tends to have underestimation biases. In contrast, within the
minmax version, the user maintains more advantages over the adversary, afforded by the ability to
observe the adversary’s actions. This means that the algorithm is inclined to have overestimation
biases.

4.5 FINITE-TIME CONVERGENCE ANALYSIS

Since DAQ can be interpreted as Minimax Q-learning for the two-player Markov game, existing
analyses such as Lee (2023) and Littman & Szepesvári (1996) can be directly applied with minimal
modifications. In this paper, we refer to the simple finite-time analysis presented in Lee (2023).

For simplicity of analysis, let us suppose that the step-size is a constant α ∈ (0, 1), the initial iterate
Q satisfies ∥Q∥∞ ≤ 1, |r(s, a, s′)| ≤ 1 for all (s, a, s′) ∈ S × A × S , and {(sk, ak, s′k)}∞k=0 are
i.i.d. samples under the behavior policy β for action a ∈ A, where the behavior policy denotes
the strategy by which the agent operates to collect experiences. Moreover, we assume that the state
at each time is sampled from the stationary state distribution p, and in this case, the state-action
distribution at each time is identically given by

d(s, a) = p(s)β(a|s) ∀(s, a, b) ∈ S.
Moreover, let us suppose that d(s, a) > 0 holds for all s ∈ S, a ∈ A. In the asynchronous version,
the distribution µ of i can be seen as the adversary’s behavior policy. We assume also that µ(i) >
0,∀i ∈ {1, 2, . . . , N}. Moreover, let us define dmax := max(s,a,i)∈S×A×{1,2,...,N}d(s, a)µ(i) ∈
(0, 1), dmin := min(s,a,i)∈S×A×{1,2,...,N}d(s, a)µ(i) ∈ (0, 1), and ρ := 1−αdmin(1−γ). Applying
Theorem 4 from Lee (2023) directly yields the following theorem.

Theorem 1 Let us consider the asynchronous version of DAQ. For any t ≥ 0, we have

E[∥Qi −Q∗
i ∥∞] ≤27dmax|S × A|Nα1/2

dmin3/2(1− γ)
5/2

+
6|S × A|3/2N3/2

1− γ
ρt

+
24γdmax|S × A|2/3N2/3

1− γ

3

dmin(1− γ)
ρt/2−1,

where Qi is the i-th estimate at iteration step t, and Q∗
i is the optimal Q-function corresponding to

the i-th estimate.

Note that in the bound detailed in Theorem 1, both the second and third terms diminish expo-
nentially as the iteration step t approaches infinity. The first term stands as a constant bias term,
originating from the use of the constant step-size α, but this term disappears as α → 0. This
suggests that by employing a sufficiently small step-size, the constant bias can be effectively con-
trolled. Along similar lines, the finite-time error bound for the synchronous version can be derived
as in Theorem 1 with dmax and dmin replaced with dmax := max(s,a,i)∈S×Ad(s, a) ∈ (0, 1) and
dmin := min(s,a,i)∈S×Ad(s, a) ∈ (0, 1), respectively. Note also that in this case, the error bound
in Theorem 1 becomes smaller because dmin tends to increase and dmax tends to decrease in the
synchronous case.

5 EXPERIMENTS

In this section, the efficacy of DAQ is demonstrated across several benchmark environments, and
a comparative analysis is provided between DAQ and existing algorithms, including standard Q-
learning, Double Q-learning, maxmin Q-learning, and minmax Q-learning. An ϵ-greedy behavior

6

Under review as a conference paper at ICLR 2024

based on
∑

Qi and tabular action-values initialized with 0 are used. Any ties in ϵ-greedy action
selection are broken randomly.

5.1 MDP ENVIRONMENTS

Grid World in Hasselt (2010) is considered, which is illustrated in Figure 1a. In this environment,
the agent can take one of four actions at each state: move up, down, left, or right. The episode starts
at S, and the goal state is G. For each transition to non-terminal states, the agent receives a random
reward r = −12 or r = +10 with equal probabilities. When transiting to the goal state, every action
incurs r = +5, and the episode is terminated. If the agent follows an optimal policy, the episode
is terminated after five successive actions, and hence, the expected reward per step is +0.2. We
will also consider another reward function adapted from Wang et al. (2020). For each transition, the
agent receives a fixed reward r = −1. When transiting to the goal state, every action yields r = −35
or r = +45 with equal probabilities, and the episode ends. Under an optimal policy, the expected
average reward per step is also +0.2.

Sutton’s Example shown Figure 6.5 of Sutton & Barto (2018) is illustrated in Figure 1b. There
exist two non-terminal states A and B at which two actions, left and right, are admitted. There are
two terminal states denoted with grey boxes and A is the initial state. Executing the action right
leads to the termination of an episode with no rewards, while the action left leads to state B with no
reward. There exist many actions at state B, which will all immediately terminate the episode with a
reward drawn from a normal distribution N (−0.1, 1). In our experiments, we will consider the two
cases r ∼ N (µ, 1) with µ = −0.1 and µ = +0.1.

Weng’s Example from Weng et al. (2020) is adapted, and it is illustrated in Figure 1c. There exist
M + 1 states labeled as {0, . . . ,M} with two actions, left and right, at each state, where 0 is the
initial state. Choosing action right at the initial state leads to the terminal state, while choosing left
leads to random transitions to one of the other M states. At the initial state, both actions result in
the reward r = 0. At any s ∈ {1, 2, . . . ,M}, it transits to 0 with the action right. On the other hand,
the episode is terminated with the action left. Both actions incur a reward drawn from a normal
distribution N (−0.1, 1).

(a) Grid World (b) Sutton’s Example
(c) Weng’s Example

Figure 1: MDP Environments

5.2 EMPIRICAL RESULTS

Grid World For exploration, we employ the ϵ-greedy policy with a count-based ϵ(s) = 1/
√
n(s),

where n(s) represents the number of visits to state s. The step-size is designated as α(s, a) =
1/n(s, a)0.8, where n(s, a) denotes the number of visits3 to the state-action pair (s, a).

The left subfigure in Figure 2 shows a comparative analysis of several algorithms. Using Hasselt’s
reward function from Hasselt (2010), an algorithm is supposed to underestimate the value of the
non-terminal transitions to reach the goal. Q-learning tends to prioritize exploration over reaching
the goal due to its overestimation, which results in the average reward per step remaining around
−1. Minmax Q-learning demonstrates superior performance compared to Q-learning, as its average
reward per step tends to converge to 0.2. With appropriate reward shifts, the minmax version of DAQ
markedly enhances the performance of minmax Q-learning, as illustrated by the progression from
the blue curve (minmax Q-learning) to the purple (DAQ minmax version). Here, we set b1 = −5
and b2 = −10 for both DAQs, which were determined based on some experiments in Figure 6a in
the supplemental document.

3If double estimators Q1 and Q2 are employed with asynchronous updates, then each estimator Qi must be
equipped with its own counter ni(s, a) that records the number of visits to the pair (s, a) when Qi is updated.

7

Under review as a conference paper at ICLR 2024

Figure 2: Experiments with grid world environment, where γ = 0.95 were employed. Learning
curves are averaged over 10,000 experiments, and the moving averages with a window size of 100
are shown in the vivid lines. In Figure 5 in the supplement, experiments were conducted with
different parameter values, α = 0.1 or ϵ = 0.1, where the trends were similar.

The right subfigure in Figure 2 depicts results corresponding to Wang’s reward function in Wang
et al. (2020), where overestimation is more beneficial for reaching the goal state. Due to its inher-
ent bias towards underestimation corresponding to the goal state, Double Q-learning persistently
explores, showcasing the slowest convergence to the optimal average reward per step. Within the
non-reward-shifting models, minmax Q-learning provides the best performance. This suggests that
in certain environment setups, the minmax Q-learning holds inherent advantages over the maxmin
Q-learning. The forementioned non-DAQ models all converge to suboptimal values for the averaged
reward per step in their early stages of evolution. This implies that, in the scenarios with a constant
step-size, they possess larger biases in their error bounds. Conversely, in the decreasing step-size
scenario, this means a slower rate of convergence. However, by implementing the negative reward
shifts b1 = −5 and b2 = −10, both minmax and maxmin versions of DAQ exhibit accelerated
convergence to the optimal average reward per step.

Sutton’s Example4 with µ = −0.1 Since µ is less than 0, the optimal action at state A is right.
Consequently, 5% is the optimal ratio, illustrated as the black horizontal lines. Figure 3 depicts the
learning curves of several algorithms. The first, second, and last subfigures display results associated
with 8, 20, and 100 actions at state B, respectively. On the first subfigure with 8 actions, with a
constant step-size α = 0.1, all the discussed algorithms converge to the optimal ratio. However,
DAQs attain precisely a 5% ratio relatively early on, around the 180-th episode, outperforming
Double Q-learning which continues to exhibit biases at this stage.

The second subfigure illustrates learning curves corresponding to 20 actions, that are similar to
the results in the first subfigure. The DAQ versions exhibit a delay in learning the optimal action,
maintaining a 50% ratio for a duration, but eventually, they do converge to the optimal 5% ratio at
a faster rate than Double Q-learning. Here, minmax Q-learning exposes a drawback: it exhibits a
markedly slow learning pace, especially as the action space expands.

The final subfigure depicts the learning curves associated with 100 actions. As expected, minmax
Q-learning learns at a slower pace; therefore, we have omitted its graph for clarity. When negative
shifts are implemented in the reward function, the related DAQ versions converge to the optimal 5%
ratio more swiftly compared to both Q-learning and maxmin Q-learning but at a more gradual pace
than the previous cases. To expedite convergence, synchronous DAQ was also tested. A notable
enhancement in the learning curve is evident transitioning from the purple curve to the olive one.
In the synchronized DAQ, it learns to take right action quickly until around 250-th episode. We
additionally conducted tests with decreasing αn = 10

n+100 , and the learning curves closely resemble
those in the constant step-size case, detailed in Figure 9 in the supplement.

Weng’s Example In this experiment, we utilize M ∈ {8, 20, 100}, with results displayed in Fig-
ure 4. Note that in Sutton’s Example, the action space enlarges, whereas in Weng’s Example, it’s the
state space that expands as M increases. Since every action from state 1 to M results in a negative
expected reward, the optimal action at state 0 is the right action. Given ϵ-greedy exploration, a 5%

4The experimental results with µ = +0.1 is shown in Appendix A.2 in the supplement, and the result is not
much different.

8

Under review as a conference paper at ICLR 2024

Figure 3: Experiments with Sutton’s example with µ = −0.1, experimented with ϵ = 0.1, α = 0.1
and γ = 1. The three subfigures show the learning curves for different numbers of actions at state
B, where the learning curves were averaged over 10,000 experiments. For DAQs, b1 = −1 and
b2 = −2 were used. In each subfigures, the number of episodes are different in order to show the
convergence of the algorithms.

Figure 4: Experiments with Weng’s example, where αn = 10
n+100 , ϵ = 0.1 and γ = 1 are used. The

three subfigures correspond to the results with different numbers of states M . The learning curves
were averaged over 10,000 experiments. Similar results can be obtained with the constant step-size
α = 0.1 as shown in Figure 10b in the supplement.

ratio of taking the left action is optimal, represented by 5% horizontal lines. The learning curves of
DAQs are highlighted with pink and purple colors, revealing that DAQ versions attain the optimal
action faster compared to the other algorithms. In DAQ, b1 = +0.0001 and b2 = +0.0002 are
incorporated into the reward function to attain better performance; these are minor compared to the
reward N (−0.1, 1) or 0. When the shifts get closer to zero, the DAQs converge faster as shown in
Figure 10a in the supplemental document. Note that the graphs for DAQ versions begin at nearly
50%, in contrast to others starting at around 40%. With the incorporation of shifted rewards, DAQ
versions achieve more uniform exploration, preventing biased exploration.

6 CONCLUSION

In this paper, we have introduced DAQ to mitigate overestimation biases in Q-learning. The DAQ
proposed is capable of learning an optimal policy by leveraging multiple Q-estimators without alter-
ing the original objective. The fundamental intuition underpinning DAQ is based on the perspective
that it can be conceptualized as introducing a dummy player to the inherent MDP, thereby formu-
lating a two-player zero-sum game. This dummy player endeavors to minimize the return without
influencing the environment, and as a result, can effectively regulate overestimation biases. DAQ
successfully unifies several algorithms, including maxmin Q-learning and minmax Q-learning – the
latter being a slightly modified version of the former – under a single framework. Moreover, the
principles of DAQ can be integrated into existing value-based reinforcement learning algorithms.
To illustrate the efficacy of DAQ algorithms, we have executed experiments across various environ-
ments. We envision the extension of this approach to deep Q-learning and actor-critic algorithms as
a promising avenue to enhance their performances; this aspect remains open for further research.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Vivek S Borkar and Sean P Meyn. The ode method for convergence of stochastic approximation
and reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447–469, 2000.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010.

Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative
dynamic programming algorithms. Neural Computation, 6(6):1185–1201, 1994. doi: 10.1162/
neco.1994.6.6.1185.

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling
the estimation bias of q-learning. arXiv preprint arXiv:2002.06487, 2020.

Donghun Lee, Boris Defourny, and Warren B Powell. Bias-corrected q-learning to control max-
operator bias in q-learning. In 2013 IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning (ADPRL), pp. 93–99. IEEE, 2013.

Donghwan Lee. Finite-time analysis of minimax q-learning for two-player zero-sum markov games:
Switching system approach. arXiv preprint arXiv:2306.05700, 2023.

Donghwan Lee, Jianghai Hu, and Niao He. A discrete-time switching system analysis of q-learning.
SIAM Journal on Control and Optimization, 61(3):1861–1880, 2023.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Michael L Littman and Csaba Szepesvári. A generalized reinforcement-learning model: conver-
gence and applications. In ICML, volume 96, pp. 310–318, 1996.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In Icml, volume 99, pp. 278–287. Citeseer, 1999.

Martin L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Guannan Qu and Adam Wierman. Finite-time analysis of asynchronous stochastic approximation
and q-learning. In Conference on Learning Theory, pp. 3185–3205. PMLR, 2020.

Zhizhou Ren, Guangxiang Zhu, Hao Hu, Beining Han, Jianglun Chen, and Chongjie Zhang. On the
estimation bias in double q-learning. Advances in Neural Information Processing Systems, 34:
10246–10259, 2021.

Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):
1095–1100, 1953.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Sebastian Thrun and A. Schwartz. Issues in using function approximation for reinforcement learn-
ing. In Proceedings of 4th Connectionist Models Summer School. Erlbaum Associates, June 1993.

John N Tsitsiklis. Asynchronous stochastic approximation and q-learning. Machine learning, 16:
185–202, 1994.

Bi Wang, Xuelian Li, Zhiqiang Gao, and Yangjun Zhong. Risk aversion operator for addressing
maximization bias in q-learning. IEEE Access, 8:43098–43110, 2020.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

Wentao Weng, Harsh Gupta, Niao He, Lei Ying, and R Srikant. The mean-squared error of double
q-learning. Advances in Neural Information Processing Systems, 33:6815–6826, 2020.

10

Under review as a conference paper at ICLR 2024

Eric Wiewiora, Garrison W Cottrell, and Charles Elkan. Principled methods for advising reinforce-
ment learning agents. In Proceedings of the 20th international conference on machine learning
(ICML-03), pp. 792–799, 2003.

Huaqing Xiong, Lin Zhao, Yingbin Liang, and Wei Zhang. Finite-time analysis for double q-
learning. Advances in neural information processing systems, 33:16628–16638, 2020.

Zongzhang Zhang, Zhiyuan Pan, and Mykel J Kochenderfer. Weighted double q-learning. In IJCAI,
pp. 3455–3461, 2017.

Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-sample analysis for sarsa with linear function
approximation. Advances in neural information processing systems, 32, 2019.

11

Under review as a conference paper at ICLR 2024

A ADDITIONAL EMPIRICAL RESULTS

Here, we give more experimental results which are omitted from Section 5.2.

A.1 GRID WORLD

The experimental results using the Grid World environment is depicted in this subsection.

In Figure 5, parameter values other than mainly suggested in Section 5.2 are tested. The first column
is the same as Figure 2 for comparison, and the second and the last column use parameter values
of α = 0.1 or ϵ = 0.1. Figure 5a shows the result using Hasselt’s reward function. The second
subfigure presents a comparative analysis featuring a decreasing step-size and ϵ-greedy exploration
with a constant ϵ = 0.1, and the result is not much different from the first subfigure. The last
subfigure provides a comparative analysis employing a constant step-size α = 0.1 and a constant
ϵ = 0.1, where the DAQs continue to display superior results. Figure 5b shows the result using
Wang’s reward function. Both minmax Q-learning and maxmin Q-learning show significantly better
results than Q-learning and Double Q-learning. In the second subfigure, the distinctions between
DAQs and other considered algorithms become clearer when a constant step-size α = 0.1 is used.
Employing a constant ϵ = 0.1 does not significantly alter the comparative results, as is shown in the
last subfigure.

In Figure 6, shift values other than mainly suggested in Section 5.2 are tested. Figure 6a shows the
result using Hasselt’s rewards. For both DAQs, we empirically checked that the negative value of
bi facilitates converging to optimal while the positive values hinder convergence. Performance is
better with (b1, b2) = (−5,−10) than (b1, b2) = (−1,−2), and even slightly better with (b1, b2) =
(−20,−30). However, we decided to use −5 and −10 in Figure 2 since the difference is not much
distinguishable. Figure 6b shows the results using Wang’s rewards, especially when (b1, b2) =
(−1,−2) is used for DAQs at Grid World Experiment using Wang’s reward function. The result
with decreasing step-size is not much different from that of Figure 2, but the convergence at constant
step-size was better at Figure 2 which used (b1, b2) = (−5,−10).

(a) Result using Hasselt’s reward function. Decreasing step-size is used on the first and the second subfigures,
and count-based ϵ(s) is also used on the first subfigure.

(b) Result using Wang’s reward function. Decreasing step-size is used on the first subfigure, and count-based
ϵ(s) is also used on the first and the second subfigures.

Figure 5: Result of Grid World Experiment. γ = 0.95 is used. Data is averaged over 10,000
experiments, and the moving average with a window size of 100 is shown in vivid lines. The
horizontal lines at 0.2 represent the average reward per step for optimal policy.

12

Under review as a conference paper at ICLR 2024

(a) Result using Hasselt’s reward function with various shift values, which are presented in titles of each subfig-
ures. α = 1/n(s, a)0.8 and count-based ϵ(s) are used. The graphs of Q-learning, Double Q-learning, minmax
Q-learning and maxmin Q-learning are the same for all three subfigures for better comparison, and only their
moving averages are drawn here.

(b) Result with Wang’s reward function. α = 1/n(s, a)0.8 is used on the first subfigure, and count-based ϵ(s)
is also used on the first and the second.

Figure 6: Result of Grid World Experiments. γ = 0.95 is used. Data is averaged over 10,000
experiments, and the moving average with a window size of 100 is shown in vivid lines. The
horizontal lines at 0.2 represent the average reward per step for optimal policy.

A.2 SUTTON’S EXAMPLE

Sutton’s Example with µ = +0.1 In this scenario, actions at state B are anticipated to yield
positive rewards, thus making left the optimal action at state A. To explore this environment, the
ϵ-greedy exploration with ϵ = 0.1 is employed. Consequently, after the convergence of the Q iterate
to Q∗, it is optimal to take the action left at state A 95% of the time, aligning with the logic of ϵ-
greedy exploration. The action right is chosen for the remaining 5%. These two ratios are illustrated
by the black horizontal lines in Figure 7. Each curve other than the lines represents the evolution
of the ratio of selecting left actions. In this setting, the designer has the autonomy to determine the
number of available actions at state B, which, in this instance, has been set to eight.

Figure 7a illustrates the learning curves associated with the decreasing step-size, denoted as
αn = 10

n+100 for episode n. Minmax Q-learning reaches the optimal ratio considerably quicker
than the other algorithms, and both Q-learning and maxmin Q-learning approach the optimum but
exhibit a preference for the right action during the exploration phase. The grey curve in the graph
represents the maxmin version of DAQ with b1 = +0.01 and b2 = +0.02, which were determined
from experiments in Figure 8. A significant alteration in the learning curve can be observed when
comparing the grey and the orange curves. Even though 0.01 or 0.02 are relatively small quantities
when compared to the rewards, these reward shifts significantly aid the algorithm in learning an
optimal policy effectively and efficiently.

Figure 7b displays the learning curves associated with a constant step-size, α = 0.1. One can ob-
serve that only the DAQ versions converge to the optimal ratio, while the remaining algorithms settle
at values with larger biases. DAQs with positive bi maintain exploratory actions up to approximately
the 300-th episode, after which they acquire the proficiency to choose the optimal left action.

Figure 8 is another experiment with various shift values tested to Sutton’s Example with µ = +0.1,
and the grounds for the chosen shift values at Figure 7a. Starting from positive (b1, b2) = (+1,+2)

13

Under review as a conference paper at ICLR 2024

(a) Experiments using decreasing step-sizes, where
minmax Q-learning exhibits the best performance.
Minmax Q-learning can be considered as minmax
DAQ with bi = 0.

(b) Experiments with constant step-sizes, where b1 =
+1 and b2 = +2 are used to both DAQs. Note that
the curves of the two DAQs are almost overlapped.

Figure 7: Experiments with Sutton’s example with µ = +0.1, where 95% is optimal, ϵ = 0.1 and
γ = 1 were used. The two subfigures show learning curves with different step-size rules. The
learning curves were averaged over 5,000 experiments.

Figure 8: Result of various shift values, which are presented in titles of each subfigures, using
Sutton’s Example with µ = +0.1. Here, 95% line is optimal and 5% is sub-optimal. αn = 10

n+100 ,
ϵ = 0.1 and γ = 1 are used. Data is averaged over 5,000 experiments. The graphs of Q-learning,
Double Q-learning, minmax Q-learning and maxmin Q-learning are the same for all three subfigures
for better comparison.

and negative (b1, b2) = (−1,−2), we adjusted the amount by 10 times, from 10−3 to 101 scale. All
positive shifts disturb the algorithm to converge: the larger the value, the slower the convergence. On
the other hand, among the negative values, 10−2 is the most effective while 10−3 converges faster
to the optimal at first, but is soon saturated and shows the same slope with Q-learning or maxmin
Q-learning. Especially, positive shifts are shown in Figure 8. (b1, b2) = (+1,+2) or (+10,+20)
cannot learn any specific policy, and the algorithm starts to converge as the amount of shift decreases.

Figure 9 shows the results using Sutton’s Example with µ = −0.1. The graphs are similar to Figure
3, except for the complete convergence of Q-learning and maxmin Q-learning here. Decreasing step-
size makes the algorithms converge to exact optimal compared to constant step-size. We additionally
suggested the graphs of synchronized DAQ for all three subfigures. When the size of the action
space is small, the synchronized DAQ fluctuates a lot, though steadily gets closer to the optimal and
achieves the optimal faster than any other algorithms.

A.3 WENG’S EXAMPLE

Figure 10 shows the experimental results using Weng’s Example. In Figure 10a, we give results
with varying shifts. We tested with a scale from 101 to 10−4, both for positive and negative values
of shifts. As the value of shifts gets closer to zero, DAQs converge faster. The result with constant
step-size is shown in Figure 10b. The graphs are very similar to Figure 4 except for the behavior of
Q-learning.

14

Under review as a conference paper at ICLR 2024

Figure 9: Result using Sutton’s Example with µ = −0.1, where a 5% line is optimal. From the
first to the last subfigure: 8 actions, 20 actions, and 100 actions from state B, respectively. ϵ = 0.1,
αn = 10

n+100 and γ = 1 are used. Data is averaged over 10,000 experiments. b1 = −1 and b2 = −2
are used for shifting. We increased the number of episodes from 600 to 1,000 and 4,000 to check
the convergence of the algorithms.

(a) Results with various shift values, which are presented in titles of each subfigures. αn = 10
n+100

and M = 8
is used. The graphs of Q-learning, Double Q-learning, minmax Q-learning and maxmin Q-learning are the same
for all six subfigures for better comparison. From upper left to bottom right, the amount of shifts decreases and
the performance of DAQs gets better.

(b) Result using constant step-size α = 0.1. From the first subfigure to the last, M = 8, 20 and 100, respec-
tively. b1 = +0.001 and b2 = +0.002 are used for both DAQs.

Figure 10: Result using Weng’s Example. A 5% line is optimal. ϵ = 0.1 and γ = 1 are used. Data
is averaged over 10,000 experiments.

15

	Introduction
	Related Works

	Preliminaries
	Markov Decision Process
	Two-Player Zero-Sum Markov Game

	Controlling Overestimation Biases
	Maxmin Q-Learning
	Double Q-Learning
	Twin-Delayed Deep Deterministic Policy Gradient (TD3)

	Proposed Algorithms
	Minmax Q-Learning
	Dummy Adversarial Q-Learning (DAQ)
	Discussion on Asynchronous versus Synchronous Updates
	Interpretation from the Two-Player Zero-Sum Game
	Finite-Time Convergence Analysis

	Experiments
	MDP Environments
	Empirical Results

	Conclusion
	Additional Empirical Results
	Grid World
	Sutton's Example
	Weng's Example

