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ABSTRACT

Zero-shot Human-Object Interaction (HOI) detection is a daunting problem, largely
stemming from the combinatorial explosion of potential action-object pairs. Cur-
rent studies predominantly address this issue by transferring knowledge from
large-scale pre-trained models (e.g., CLIP), yet ignore a more straightforward
idea, i.e., mimic the powerful compositional generalization ability of human intel-
ligence based on past cases. Besides, they simplify this combinatorial challenge
by operating under the assumption that knowledge about unseen compositions
is accessible, which is usually impractical in reality. In this work, we extend
prior Closed-World zero-shot setting to an Open-World scenario, where the search
space for HOI compositions is entirely unrestricted. For this challenging task,
we introduce PROTOHOI, a fresh prototype-based framework for zero-shot HOI
detection, which consists of: i) distill a set of prototypes from HOI proposal em-
beddings to model the inherent properties of objects and actions in the context of
HOI. ii) recalibrate the representation space learned by the HOI detector based on
these derived prototypes in a decoupled manner, thereby facilitating the prediction
of unseen HOI compositions. Extensive experiments on two standard benchmarks
demonstrate the superiority of ProtoHOI over the state-of-the-art methods across
all zero-shot settings. The source code will be released.

1 INTRODUCTION

Human-Object interaction (HOI) detection is a core human-centric relational detection task that re-
quires identifying all possible combinations of human action and object within images. Over
the past decades, the complexity of HOI recognition appears to be effectively addressed by existing
methods [1–3], as demonstrated by their high performance on established benchmarks. However,
these HOI detectors are built upon an oversimplified assumption: they arbitrarily constrain the set of
possible HOI relationships, and limit their evaluation to this restricted subset. For instance, HICO-
DET contains 80 object categories and 117 actions, yet provides only 600 valid HOI combinations,
while the search space for possible combinations reaches 9,360. This disparity highlights the fun-
damental challenge of combinatorial explosion in HOI detection, which conflicts with the limited
pre-defined labels in existing datasets, posing a major obstacle to real-world applications.

To develop practical HOI detection systems, zero-shot HOI detection has garnered significant atten-
tion as a critical research direction. Current work [1, 4, 5] commonly partitions labels in existing
datasets into seen and unseen sets based on their visibility during training. However, they usually
assume that the unseen compositions are known a priori at test time, thereby constraining the search
space to a pre-defined set of labels within the dataset, i.e., Closed-World zero-shot HOI detection.
This paper seeks to refocus the attention of the HOI community on the critical yet long-overlooked
combinatorial explosion challenge, and propose a more realistic Open-World zero-shot scenario that
imposes no search space restrictions during testing. Notably, while zero-shot HOI detection also in-
volves generalizing to unseen objects [5] or unseen human verbs [1], we focus on the compositional
zero-shot learning for HOI detection, which requires to learn a well-structured representation space
that facilitates the composition of known elements to recognize novel interactions. The key ques-
tion naturally arises: how to decouple the HOI representation learning with respect to the inherent
properties of objects (e.g., affordance, functionality) and actions (e.g., human poses, gestures)?

1
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Figure 1: To construct a world, it is essential to comprehend the fun-
damental nature of its basic constituents; the most straightforward ap-
proach to characterize them is through examples.

Psychologists reveal that
human conceptual repre-
sentations are decompos-
able, with compositionality
serving as a core compo-
nent in a human-like learn-
ing system [6, 7], exempli-
fied by the capacity of hu-
manoid to recognize novel
combinations by using past
learned cases [8, 9]. Draw-
ing from this inspiration,
we are motivated to lever-
age prototype learning [10–12] to solve the combinatorial problem in zero-shot HOI detection.
However, the challenge ❶ arises from substantial intra-class diversity exhibited by actions and ob-
jects within the context of HOI. For example, the verb serve in the context of sports ball may
refer to a table tennis or a badminton, while kick typically associates with soccer. Similarly, the
action open entails distinct postures and hand gestures, when applied to different objects such as
a book versus an umbrella. Even within defined HOI categories, behavioral manifestations ex-
hibit contextual variability across scenes. These variations make it difficult to represent HOI triplets
using a unified prototype. The challenge ❷ stems from the vast number of proposals generated
by HOI detector, which makes it difficult to distill representative prototypes from highly redundant
candidate instances. Moreover, HOI detectors typically comprise complex network structures archi-
tectures composed of distinct modules dedicated to specific functions (e.g., feature extraction, object
detection, and interaction recognition), which presents the challenge ❸: how to effectively leverage
prototypes to optimize the representation space.

To navigate the aforementioned challenges, we propose ProtoHOI, a one-stage HOI detection frame-
work that leverages prototypes to construct a well-structured compositional representation space.
For challenge ❶, we propose characterizing each HOI triplet by abstracting it through a set of rep-
resentative prototypes from three conceptual dimensions, i.e., object, verb, and their combinations,
which delineate the conceptual boundaries of HOI classes. For challenge ❷, we introduce a canidate
contruction strategy that selectively chooses proposals within each batch and incorporates a memory
bank to facilitate more effective prototype updating. For challenge ❸, we implement a contrastive
learning paradigm integrating both fresh (in current batch) and stale (from memory bank) proposals:
the former optimizes the interaction decoder, while the latter refines the projection head.

Extensive experiments are conducted on two benchmark datasets, i.e., HICO-DET [13] and V-
COCO [14]. Results empirically show that ProtoHOI outperforms state-of-the-art approaches by
a solid margin across all compositional zero-shot scenarios in both Closed-World and Open-World
settings. ProtoHOI also delivers competitive performance in fully supervised settings, which further
demonstrates the efficacy of the proposed framework for building a robust HOI detector. Moreover,
ablation studies verify the strength of our framework design and the effectiveness of our algorithm.

2 RELATED WORK

Human-Object Interaction Detection. Human-Object Interaction (HOI) is essential for advanced
visual understanding, entailing scene and event comprehension, human movements analysis, identi-
fication of manipulable objects, and the effect of the human actions on those objects [15]. Detecting
HOI requires not only localizing both a human and an object but also inferring their interaction
relationship, making it a challenging task [14]. InteractNet [16] first proposes a human-centric ap-
proach that constructs HOI triplets by post-composing detected humans and objects, establishing
the two-stage paradigm for HOI detection [13, 17–20]. Building upon advances in object detection
(e.g., DETR [21]), QPIC [22] employs transformer-based encoder-decoder architectures to directly
predict pre-composing interaction triplets in a set-to-set manner, pioneering the rapid development
of the one-stage paradigm [1, 3, 23, 24]. However, these conventional methods are constrained to
identifying predefined HOI categories, impairing their generalization to novel interactions.
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Zero-shot HOI Detection. Zero-shot HOI detection aims to detect both interactions seen and un-
seen in the training set, simulating real-world scenarios. Shen et al. [4] first introduce the unseen
combination setting, which partitions the seen and unseen sets based on HOI triplets. Considering
this setting, VCL [25] composes novel interactions with decomposed object and verb features, while
ATL [19] leverages affordance-object pairings to discover unseen interactions. More recently, there
is a growing interest to enhance zero-shot HOI detection performance by transferring knowledge
from pre-trained models. Bansal et al. [5] introduce the unseen objects setting and leverage lan-
guage priors derived from word2vec [26] to mitigate this issue. Liao et al. [1] further proposes the
unseen verb setting and adopts a distillation framework to align HOI embeddings with CLIP textual
representations [27] for this challenge. Most lately, CMMP [28] sets new state-of-the-art results for
zero-shot HOI detection by enhancing CLIP representations for human-object pairs.

Despite the commendable prior efforts, our work primarily focuses on the combinatorial explosion
problem in real-world HOI recognition, which is a critical yet long-overlooked challenge.

Compositional Learning. Compositionality constitutes a fundamental principle in human visual
cognition, denoting the cognitive capacity to represent complex entities through a limited set of
simple, reusable components [29]. Early research primarily explores compositional learning in vi-
sual question answering [30, 31] and image generation [32, 33]. In the field of visual recognition,
Misra et al. [34] introduce the challenge of composing unseen combinations of primitive visual
concepts under the zero-shot learning paradigm. Mancini et al. [35] further extend this task to an
open-world setting, where the search space comprises numerous unseen compositions, including
infeasible ones. This line of research shares parallels HOI recognition in compositional properties,
i.e., adjective-noun vs.verb-noun pairs, which inspires studies to investigate compositional learning
in HOI detection. For instance, Kato et al. [36] use external knowledge graphs and graph convo-
lutional networks to compose classifiers for verb-noun pairs, while Hou et al. [25] separate verbs
and objects in the feature space and compose novel interactions through feature stitching. However,
Open-World zero-shot learning for HOI compositions remains a virgin territory, which treats the
lack of constraints in the output space for unseen concepts as a necessity for practical scenarios.

Prototype Learning. Prototype-based methods operate by comparing observations or stimuli to a
set of reference prototypes or exemplars based on similarity [37], which aligns with established con-
cepts in the cognitive psychology and neuroscience. Nearest neighbor rule [38] is one of the most
established prototype-based classifiers, which utilizes all training instances as prototypes to assign
labels to new samples by measuring their distance. Nearest centroids [39, 40] offers an efficient solu-
tion by selecting representative class centroids as prototypes, rather than the entire training dataset.
These prototypes provide several compelling virtues, e.g., structured representation organization
and transparent decision-making. These strengths spurr increasing interest in integrating prototype
learning with deep learning models across diverse areas, such as supervised learning [11, 41], unsu-
pervised learning [42, 43], few-shot learning [44, 45], and zero-shot learning [46, 47].

Although prototype learning has been extensively studied in fundamental tasks such as classifica-
tion [48] and semantic segmentation [49], its potential to more complex downstream tasks remains
underexplored. In the paper, we focus on adapting prototype learning to HOI detection, leveraging
its advantageous properties to enhance the zero-shot performance in open-world scenarios.

3 METHOD

3.1 PROBLEM SETUP

LetA={a1, a2, . . . , aM} andO={o1, o2, . . . , oN} denote the sets of verb and object, respectively.
The Cartesian product C=A×O defines the complete space of all possible verb-object compositions,
while Cp⊂C represents the predefined compositions available in the labeled dataset, which is usually
sparse, i.e., |Cp|≪|C|. The set Cp is partitioned into a seen Cs and an unseen Cu composition set . In
the zero-shot setting, given a training set T ={(xi, ci)|xi∈X, ci∈Cs}Ni=1, the objective is to learn a
model f :X →Ct that generalizes to compositions in the test space Ct. Existing works on zero-shot
HOI detection [4, 24, 28, 50] assume that the unseen composition set is known a priori, thereby
constraining the test space to the predefined set, i.e., Ct=Cp. However, this assumption often fails in
real-world applications, where the test space typically encompasses all compositions, i.e., Ct=C. In
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Figure 2: Overview of our prototype-based learning framework for zero-shot HOI detection.

this paper, we formally discuss these two zero-shot HOI detection scenarios and define the former
as the Closed-World (CW) setting and the latter as the Open-World (OW) setting.

3.2 MODEL OVERVIEW

ProtoHOI is a principled framework that can be seamlessly integrated into both one-stage and two-
stage architectures. Here, we present a unified HOI detection pipeline that establishes two identifi-
cation branches for object detection and HOI recognition. Given an input image I ∈ RH0×W0×3, a
visual encoder is employed to extract the visual features I∈RH×W×3. In the object detection branch,
these features are retrieved by an instance decoder Dins via two distinct sets of queries Q∈RN×C :

Q̂ = Dins(I,Q), (1)

where Q̂ are further transformed into bounding boxes Bh,Bo and object labels Co. In the HOI
recognition branch, an interaction decoderDint is adopted to update the interaction queries Qhoi by
leveraging the extracted features I:

Q̂hoi = Dint(I,Qhoi). (2)

Finally, these interaction queries Q̂hoi are fed into the projection head h for the HOI predictions.

3.3 HOI DETECTION: FROM CLOSED TO OPEN WORLD

The paradigm shift from closed-world to open-world introduces several significant challenges for
HOI detection. First, the full combinatorial search space C is typically prohibitively large for tradi-
tional parametric classification heads, leading to excessive computational complexity and resource
demands. Alternatively, we project both images and text-based compositions into a shared embed-
ding space and replace the discriminative classifiers by computing cosine similarities between them:

f(x) = argmax
c∈C

cos
(
ω(x), ϕ(c)

)
, (3)

where the mapping ω : X →Z projects the image space into the shared embedding space, while
ϕ : C→Z embeds each HOI composition to the same space using the text encoder of CLIP [27].

Second, prior work assumes unseen compositions are known a priori during inference, which arti-
ficially limits the number of proposal candidates. However, in the open-world scenario, the number
of proposal candidates can become extremely large, and it is ill-suited to take them all for validation,
which may introduces a positive bias in within-class precision estimates. Here, we advocate that the
HOI community adopt a more rigorous validation protocol by retaining the top-K HOI candidates
(K = 100) with the highest scores, a strategy already established in one-stage frameworks [1, 22]
but not yet adopted in two-stage approaches [28]. To ensure consistency, we recommend applying
this constraint in both Closed-World and Open-World scenarios.

3.4 PROTOTYPES AS COMPOSITIONAL DECOUPLER

This section presents a prototype-driven solution to tackle the open-world combinatorial problem. It
first outlines the methodology for constructing and updating prototypes, then describes the genera-
tion of proposal candidates to support this process, and finally details the prototype-based represen-
tation learning strategies alongside its corresponding network training procedure.

Prototype Modeling. For each HOI proposal, we construct K prototypes from three perspectives:
object, human action, and HOI triplet. This results in a total of K · (|Co|+ |Ca|+ |Ct|) prototypes,
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where Co, Ca, and Ct denote the object categories, action categories, and HOI categories. These
prototypes are employed to model intra-class diversity in the candidate set N = {fi}Ni=1, which is
derived from the features of HOI proposal. For clarity, we describe only the prototype construction
of the HOI triplet; other prototypes (e.g., object and human action) follow an analogous procedure.

Given Nc proposals in the candidate set N associated with an HOI triplet c ∈ Ct, our objective is
to learn a mapping from these proposals {fi}Nc

i=1 to the K prototypes {pc
k}Kk=1 of c. This mapping

is formalized as an assignment matrix Ac = [ai]
Nc
i=1 ∈ {0, 1}K×Nc , where ai is the one-hot assign-

ment vector of proposal fi over the K prototypes. The matrix Ac can be derived by solving an
optimization problem that maximizes the similarity between the proposals and the prototype:

max
Ac∈Ac

Tr(Ac⊤P c⊤F c) + εh(Ac), (4)

where h is the entropic constraint, i.e., h(Ac)=
∑

i,k −ai,k log ai,k, and ε>0 governs the smooth-
ness of the mapping. As noted by [51], this optimization generally yields a trivial solution with all
proposals collapsing to a single prototype. To prevent this, we constrain the matrix to an element of
the transportation polytope [52], formulated as:

Ac =
{
Ac ∈ RK×Nc

+ |Ac1K = 1Nc ,Ac1Nc =
Nc

K
1K

}
, (5)

where 1K /1Nc represents the K/Nc-dimension all-ones vector. These constraints mitigate proposal-
prototype collapsing by ensuring that each proposal is exclusively assigned to a single prototype, and
each prototype is selected at least times Nc/K on average. On this basis, the optimization problem
in Eq. 4 can be expressed in the form of a normalized exponential matrix [53]:

Ac∗ = diag(α) exp(
P c⊤F c

ε
) diag(β), (6)

where exponentiation is applied element-wise, and α ∈ RK and β ∈ RNc denote renormalization
vectors computed through a few iterations of the Sinkhorn-Knopp algorithm [53].

Give the non-learnable nature of the prototypes, we adopt an online updating strategy to keep them
fresh throughout the network training process:

pc
k ← µpc

k + (1− µ)f̄ c
k , (7)

where µ ∈ [0, 1] is a momentum coefficient, and f̄ c
k denotes the cluster centroid for the (c, k)-cluster,

computed as the mean of feature vectors from proposal features assigned to this cluster.

Candidate Contruction. Unlike classification [48] or segmentation [49, 54] tasks, HOI detection
typically generates numerous proposals containing substantial redundant or irrelevant information,
which pose a significant challenge ❶ for candidate construction. To mitigate ❶, we use employ bi-
partite matching based on ground truth to select the most reliable proposals as candidates. However,
this raises another challenge ❷: since the number of annotated HOI triplets per batch is substan-
tially smaller than the number of prototypes, and HOI categories follow a long-tailed distribution,
relying solely on per-batch proposals as the candidate set may introduce biases due to uneven class-
wise update frequencies. To address ❷, we maintain a memory bankM that accumulates matched
proposal features in each batch and updates prototypes only once it reaches capacity |M|.
Proposal-Prototype Compositional Contrastive Learning. We posit that a well-generalizable
representation space should not only provide discriminative decision boundaries for distinct HOI
categories but also maintain structural integrity to capture diverse intrinsic patterns from involved
objects, humans and their combinations. To achieve this, we promote intra-class compactness and
inter-class discrimination at the prototype level by introducing a proposal-prototype compositional
contrastive loss, which operates across three attribute dimensions (i.e., object, human action, and
HOI categories) of proposal features. First, we define the contrastive loss based on the assign prob-
ability matrix Ac, as:

Lcont(fi,P
c) = − 1

|M|
∑
i∈M

log

∑
p+∈P+ exp(f⊤

i p+/τ)∑
p+∈P+ exp(f⊤

i p+/τ) +
∑

p−∈P− exp(f⊤
i p−/τ)

, (8)

where P+ refers to the prototypes assigned to the proposal feature vector fi, P− represents the
remaining set of irrelevant prototypes, and τ is the temperature parameter. To extend such a con-
strastive setup with our HOI compositions, it is essential to consider a fact: although HOI proposals
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may belong to distinct HOI categories, they can share identical objects or human actions, which may
lead to certain similar visual patterns. For instance, human ride horse and human ride bicycle might
exhibit similar human poses or spatial configurations, while human catch frisbee and human throw
frisbee may exhibit comparable visual layouts. To account for these hierarchical structures, this final
proposal-prototype compositional contrastive loss is formulated as:

LCCL(fi,P
c
o ,P

c
a ,P

c
t ) = Lcont(fi,P

c
o ) + Lcont(fi,P

c
a ) + Lcont(fi,P

c
t ). (9)

Network Training. During model training, prototypes in the memory bank originate from different
input images and thus cannot be utilized for learning in transformer-based structure, as self/cross-
attention mechanisms operate at the image level. To better leverage prototypes for recalibrating
network modules in protoHOI, we propose two training strategies: i) stale prototype learning. Stale,
heterologous yet numerous proposal prototypes from the memory bank are leveraged to optimize
the linear projection head h; ii) fresh prototype learning. Fresh, homologous but fewer proposal
prototypes within each batch are utilized to optimize the interaction decoder Dint. This decoupled
design enables us to effectively address the complexity of incorporating prototype learning into the
HOI detection pipeline, thereby allowing it to benefit from the associated advantages.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets. We evaluate on HICO-DET [13] and V-COCO [14]. HICO-DET contains 47,776 images
(38,118 for training and 9,658 for testing), with 600 HOI classes derived from 80 object categories
and 117 actions. V-COCO includes 10,396 images (5,400 for training and 4,964 for testing), with 29
action categories (including 4 body motions), forming 263 HOI classes using 80 object categories.

Fully-supervised Evaluation. In line with [13], we use mean average precision (mAP) for model
evaluation. For HICO-DET, we report results on two setups: 1) Default, where mAP is computed
over the entire dataset; 2) Konwn Object, where mAP is computed on a subset containing the object.
For V-COCO, we consider two scenarios: 1) Scenario 1 for all 29 action categories, including the 4
body motions; 2) Scenario 2 for the 25 action categories, excluding the no-object HOI categories.

Zero-shot Evaluation. Zero-shot evaluation is categorized into Closed-World (CW) and Open-
World (OW) settings based on whether HOI compositions are known a priori. On HICO-DET, three
evaluation settings are employed: 1) Unseen Composition (UC), where the training data contains all
categories of object and verb but misses some HOI triplet categories; 2) Rare First Unseen Com-
bination (RF-UC), where rare HOIs are prioritized in the held-out set; 3) Non-rare First Unseen
Combination (NF-UC), where frequent HOIs are held out, resulting in a smaller and more chal-
lenging training set. These settings operate within a composition space of 480 seen triplets during
training, with 600 possible compositions for CW and 9,360 for OW scenarios during inference.

Network Architecture. Two variants of ProtoHOI are developed: a one-stage variant ProtoHOI†
based on HOICLIP [24] and a two-stage variant ProtoHOI‡ grounded in CMMP [28], with network
architectures adhering to their respective configurations. We set the number of prototypes K = 4,
the momentum coefficient µ=0.9, and the memory bank size to 2000.

Training. Following prior work [28], ProtoHOI is initialized with DETR fine-tuned on the training
set of HICO-DET. The one-stage ProtoHOI† is trained for 90 epochs using AdamW with a learning
rate of 5×10−5 and a weight decay of 10−4, decayed by a factor of 10 every 30 epochs, with a batch
size of 6. In contrast, the two-stage ProtoHOI‡ is trained for 20 epochs with a batch size of 8. It is
optimized using AdamW with a learning rate of 1×10−3 and a weight decay of 10−4.

Inference. We retain top-K proposals (K = 100) with the highest confidence scores for final pre-
dictions without applying any additional data augmentation at test time.

4.2 ZERO-SHOT HOI DETECTION

We evaluate ProtoHOI against with existing HOI detection methods under three compositional zero-
shot settings, i.e., UC, RF-UC and NF-UC, in both Closed-World and Open-World scenarios.

6
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Table 1: Zero-shot HOI Detection Results on HICO-DET [13] test. UC denotes unseen compo-
sition, while RF-UC and NF-UC denote rare first and non-rare first unseen composition, respectively.

UC NF-UC RF-UC
Method Unseen Seen Full Unseen Seen Full Unseen Seen Full

C
W

FCL [55][CVPR21] - - - 18.66 19.55 19.37 13.16 24.23 22.01
ATL [19][CVPR21] - - - 18.25 18.78 18.67 9.18 24.67 21.57

RLIP [56][NeurIPS22] - - - 20.27 27.67 26.19 19.19 33.35 30.52
GEN-VLKT [1][CVPR22] - - - 25.05 23.38 23.71 21.36 32.91 30.56

EoID [57][AAAI23] 23.01 30.39 28.91 26.77 26.66 26.69 22.04 31.39 29.52
HOICLIP [24][CVPR23] 23.15 31.65 29.93 26.39 28.10 27.75 25.53 34.85 32.99

CLIP4HOI [50][NeurIPS23] 27.71 33.25 32.11 31.44 28.26 32.03 28.47 35.48 34.08
CMMP [28][ECCV24] 29.60 32.39 31.84 32.09 29.71 30.18 29.45 32.87 32.18

ProtoHOI† (Ours) 28.02 36.37 34.70 31.26 33.43 33.00 29.00 36.67 35.14
ProtoHOI‡ (Ours) 30.78 33.41 32.88 34.33 31.52 32.08 30.27 34.45 33.61

O
W

GEN-VLKT [1][CVPR22] - - - 20.11 18.62 18.92 17.42 23.93 22.63
HOICLIP [24][CVPR23] 18.19 25.59 23.99 21.89 20.89 21.06 20.18 25.89 24.68

CMMP [28][ECCV24] 27.26 30.77 30.07 28.55 28.28 28.33 28.19 31.47 30.81
ProtoHOI† (Ours) 24.39 32.95 31.24 25.33 29.36 28.55 25.02 32.74 31.19
ProtoHOI‡ (Ours) 28.58 31.82 31.17 31.03 28.12 28.70 29.07 32.55 31.85

Closed-World. Table 1 illustrates that ProtoHOI† outperforms all one-stage competitors by a solid
margin across all zero-shot settings. For instance, under the UC settings, it yields gains of 4.87%,
4.72%, and 4.77% mAP on the Full, Rare, and Non-Rare splits, compared with HOICLIP [24].
Compared to CLIP4HOI [50], ProtoHOI† maintains its lead on the Full set, achieving improvements
of 2.59 (UC), 0.97% (NF-UC), and 1.07% (RF-UC). As seen, two-stage methods, e.g., CLIP4HOI
[50] and CMMP [28], lag behind one-stage approaches on Full and Seen sets, but achieve superior
performance on Unseen categories. The two-stage variant ProtoHOI‡ also inherits this characteristic,
surpassing the CMMP [28] by 1.18% (UC), 2.24% (NF-UC), and 0.82% (RF-UC) on Unseen set.

Open-World. To rigorously assess the generalization capability of ProtoHOI in real-world settings,
we benchmark three state-of-the-art HOI detection methods: two one-stage frameworks (i.e., GEN-
VLKT [1] and HOICLIP [24]) and one two-stage frameworks (i.e., CMMP [28]). We extend them
to the Open-World setting by modifying their classification heads to handle the full combinatorial
output spaceA×O. As anticipated, all methods exhibited significant performance degradation, par-
ticularly one-stage approaches. For instance, HOICLIP [24] exhibits reductions of 5.97%, 6.69%,
and 8.31% on the full sets of UC, NF-UC, and RF-UC, respectively, relative to their prior results
in the Closed-World setting. In contrast, CMMP [28] exhibits relatively small decrease of approxi-
mately 1%-2%. These results demonstrate that open-world zero-shot HOI detection presents a more
challenging and realistic task formulation, warranting further investigation. Nonetheless, ProtoHOI
still demonstrates superior performance compared to other competitors under this scenario.

4.3 FULLY-SUPERVISED HOI DETECTION

This work primarily investigates the zero-shot capabilities of HOI detectors. Nevertheless, to fully
substantiate ProtoHOI’s efficacy, we also evaluate its performance under a fully-supervised setting
on HICO-DET [13] and V-COCO [14]. As shown in Table 2, ProtoHOI establishes new state-of-the-
art results on HICO-DET under both Default and Known Object settings. In particular, it surpasses
the previous state-of-the-art method Pose-Aware by 0.47%, 0.53% and 0.46% mAP on the Full,
Rare, and Non-Rare settings. Moreover, ProtoHOI achieves a more significant performance gain
over the zero-shot detector CMMP [28], with an improvement of 4.07% mAP under the Full setting.
For V-COCO, ProtoHOI observes consistent improvements over prior methods, surpassing the state-
of-the-art method STIP [20] in Scenario 1. Notably, our approach significantly surpasses existing
zero-shot detectors, outperforming HOICLIP [24] by 1.9% and CMMP [28] by 5.6% on Scenario 2.

4.4 DIAGNOSTIC EXPERIMENTS

As shown in Table 3, we conduct ablation studies on HICO-DET in zero-shot NF-UC settings.
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Table 2: Fully-supervised HOI Detection Results on the HICO-DET[13] and V-COCO[14]test.

HICO-DET (DF) HICO-DET (KO) V-COCO
Method Full Rare Non-rare Full Rare Non-rare APS1

role APS2
role

VCL [25][ECCV20] 19.43 16.55 20.29 22.00 19.09 22.87 48.3 -
PPDM [58][CVPR20] 21.73 13.78 24.10 24.58 16.65 26.84 - -
QPIC [22][CVPR21] 29.07 21.85 31.23 31.68 24.14 33.93 58.8 61.0

HOTR [59][CVPR21] 23.46 16.21 25.60 - - - 55.2 64.4
CDN [23][NeurIPS21] 31.44 27.39 32.64 34.09 29.63 35.42 61.2 63.8
STIP [20][CVPR22] 32.22 28.15 33.43 35.29 31.43 36.45 65.1 69.7
DOQ [60][CVPR22] 33.28 29.19 34.50 - - - 63.5 -

GEN-VLKT [1][CVPR22] 33.75 29.25 35.10 37.80 34.76 38.71 62.4 64.4
ADA-CM[2][ICCV23] 33.80 31.72 34.42 - - - 56.1 61.5

HOICLIP [24][CVPR23] 34.59 31.12 35.74 37.61 34.47 38.54 63.5 64.8
PViC[61][ICCV23] 34.69 32.14 35.45 38.14 35.38 38.97 62.8 67.8

Pose-Aware [62][CVPR24] 35.86 32.48 36.86 39.48 36.10 40.49 61.1 66.6
CMMP [28][ECCV24] 32.26 33.53 33.24 - - - - 61.2

ProtoHOI†(Ours) 36.33 33.01 37.32 39.39 37.03 40.09 65.4 66.8

Table 3: A Set of Ablative Experiments of ProtoHOI† on HICO-DET [13] test in CW setting.

NF-UC
K Unseen Seen Full
1 30.85 32.26 31.98
2 30.92 32.32 32.04
3 30.76 32.72 32.33
4 31.26 33.43 33.00
5 30.49 32.58 32.16

(a) Prototype Number (K)

NF-UC|M| Unseen Seen Full
0 29.93 32.55 32.02

500 30.42 32.85 32.37
1000 31.01 32.97 32.58
2000 31.26 33.43 33.00
4000 30.25 32.95 32.42

(b) Memory Bank Size (|M|)

NF-UC
µ Unseen Seen Full
0 30.52 32.14 31.82
0.8 31.13 32.69 32.38
0.9 31.26 33.43 33.00
0.99 31.07 33.10 32.69
0.999 30.89 32.71 32.36

(c) Momentum Coefficient (µ)

Prototype Number K. Table 3a investigates the effect of the number of prototypes per HOI cate-
gory. For K = 1, each prototype is defined as the mean embedding of all proposal features stored in
the memory bank that belong to the corresponding category. This baseline ahieves mAP of 30.85%,
32.26%, and 31.98% on the unseen, seen, and full splits. The performance of ProtoHOI consistently
improves as the number of prototypes per HOI category increases, peaking at K = 4, i.e., unseen:
31.26%, seen: 33.43%, full: 33.00%. This observation indicates that modeling intra-class diversity
via multiple prototypes can enhance the zero-shot performance of ProtoHOI. However, increasing
K beyond 4 leads to performance deterioration, likely due to excessive clustering produces some
trivial prototypes, which may compromise the effectiveness of other prototypes.

Memory Bank Size |M|. Table 3b examine the effect of the size of memory bank. As seen,
ProtoHOI consistently benefits from larger memory sizes, showing gradual improvements in perfor-
mance. However, when |M| > 2000, further increasing the memory size can even lead to negative
effects. This may be attributed to the fact that larger memory sizes tend to accumulate stale propos-
als, thereby introducing inconsistencies in the representation that impair prototype modeling.

Momentum Coefficient µ. Table 3c analyzes the role of the momentum coefficient µ, which gov-
erns the update rate of prototypes. Our results demonstrate that ProtoHOI achieves optimal per-
formance with a relatively large update magnitude, i.e., µ = 0.9. This can be attributed to the
inherent complexity of the HOI detection, which involves the simultaneous optimization of multiple
loss functions, leading to less stable training dynamics. In contrast, setting µ= 0, i.e., completely
discarding the previous prototypes, leads to a significant performance drop.

Table 4: Comparison of parameters and running efficiency.

Method Params(M) FLOPs(G) FPS
PPDM [58] [CVPR20] 194.9 121.63 15.28

GEN-VLKT [1] [CVPR22] 42.53 85.64 22.36
HOICLIP [24] [CVPR23] 67.12 89.22 34.98

CMMP [28] [ECCV24] 193.43 106.89 21.96
ProtoHOI† (Ours) 64.47 86.29 19.21

Model Efficiency Analysis. Table 4
benchmarks the model efficiency of
ProtoHOI against prior methods, re-
porting the number of parameters,
FLOPs, and FPS on an NVIDIA RTX
4090 GPU. ProtoHOI†, with a simi-
lar network architecture to HOICLIP,
achieves better performance with
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(i) hold/walk bicycle
hold/carry hot dog

(j) sit on bench
hold/read laptop

(k) carry/hold umbrella
hold/ride/sit/straddle bicycle

(c) board/ride train

(e) ride/straddle horse

(b) fly/pull kite(a) hold/throw frisbee (d) hold/pull kite

(g) hold/hug/kiss person(f) hold/read/type on laptop

(l) hold/open/read book
sit on chair

(h) throw hit sports ball

Figure 3: Visualization of ProtoHOI† results on HICO-DET [13] test under the NF-UC setting.
Detected interaction are marked in Green, missed interactions and objects are highlighted in Red,
while novel combinations are underlined.

fewer parameters and lower computational cost (FLOPs), e.g., 1.74 % mAP improvement in the
fully supervised setting and 2.25 % for NF-UC for closed-world zero-shot setting.

4.5 QUALITATIVE RESULTS

Figure 3 presents the visualization results on the HICO-DET test set. As seen, our method effec-
tively detects human-object interactions across diverse scenarios. For instance, in (k), our method
detects all potential actions, while in (c), it successfully distinguishes interactions involving individ-
uals and the train, i.e., identifying ride inside the train and board adjacent to it. Additionally, we
present several failure cases. Our method fails to discern interactions in severely occluded scenes,
such as the overlooked chair-human interaction in the bottom-left of (l). It also struggles with am-
biguous intentions when viewpoint is limited, as shown in (d), where the human’s back view makes
it difficult to confirm a pull action. Moreover, our method misclassified the airborne rugby ball in
(h) as throw, but it is conventionally associated with the action hit. These results highlight persistent
challenges in HOI detection, indicating a need for further investigation.

5 CONCLUSION

In this work, we emphasize the compositional generalization capability in zero-shot HOI detection
by introducing a new benchmark that extends the problem from the closed world to the open world
scenario, i.e., without restricting the search space of possible HOI combinations. Empirical ex-
periments show that current state-of-the-arts exhibit significant performance degradation on unseen
combination under the open-world scenario. To open this avenue, we devise ProtoHOI, a one-stage
HOI detection framework that leverages prototypes to construct a structured representation space
for facilitating compositional learning via: i) a compositional prototype construction and update
mechanism is designed to distill the inherent properties of objects (e.g., affordance, functionality)
and actions (e.g., human poses, gestures) involved in HOI from proposal representations. ii) fresh
and stale proposal-prototype contrastive learning strategies are employed to facilitate modular op-
timization of its components. Evaluations on two benchmark datasets in diverse zero-shot settings
demonstrate the efficacy of ProtoHOI, with ablations validating the significance of its core designs.
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SUMMARY OF THE APPENDIX

This appendix contains additional details for the ICLR 2026 submission, titled “Composing Human-
Object Interaction with Decoupled Prototype for Zero-shot Learning”, and is organized as follows:

• §A discusses our limitations.
• §B discusses our broader impact.
• §C discusses our directions of our future work.
• §D provides the Large Language Models (LLMs) usage statement in this work.

A LIMITATION

One limitation of our approach is the introduction of additional prototype construction and update
operations during training, which increases the computational overhead. However, during inference,
our method does not incur any additional computational burden or resource consumption.

B SOCIAL IMPACT

This work investigates HOI detection in open-world scenarios. However, inaccurate predictions in
real-world applications (e.g., autonomous driving and human-robot interaction) may compromise
human safety. To mitigate this risk, we recommend implementing a security protocol addressing
algorithm malfunctions during practical deployments.

C FUTURE WORK

In future work, we aim to explore more effective integration of prototype learning into the HOI
detection pipeline to enhance the model’s performance on open-world tasks. Additionally, building
upon compositional challenges as the core focus, we will further investigate applications in broader
domains of visual relationship understanding, such as scene graph generation.

D LLM USAGE STATEMENT

We employed large language models (LLMs) as auxiliary tools during manuscript preparation. Their
use was strictly limited to surface-level editing tasks, including grammar correction, minor rephras-
ing and stylistic improvements to enhance readability. At no point did we rely on LLMs for gen-
erating research ideas, methods, experiments, or conclusions. All technical content and analysis
presented in this paper are the sole work of the authors.
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